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Given A the family of weights a " panqn decreasing to 0 such that the series ř 8 n"0 an diverges, we show that the supremum on A of lower weighted densities coincides with the unweighted upper density and that the infimum on A of upper weighted densities coincides with the unweighted lower density. We then investigate the notions of U -frequent hypercyclicity and frequent hypercyclicity associated to these weighted densities. We show that there exists an operator which is U -frequently hypercyclic for each weight in A but not frequently hypercyclic, although the set of frequently hypercyclic vectors always coincides with the intersection of sets of U -frequently hypercyclic vectors for each weight in A.

Let a " pa n q ně0 be a sequence of positive real numbers such that ř 8 n"0 a n " 8. We define the upper density d a and the lower density d a by d a pIq " lim sup N Ñ8 ř nPr0,N sXI a n ř N n"0 a n and d a pIq " lim inf

N Ñ8 ř nPr0,N sXI a n ř N n"0 a n .
In particular, if a n " 1 for every n ě 0, we get the upper and lower unweighted densities. We know thanks to Ernst and Mouze [START_REF] Ernst | A quantitative interpretation of the frequent hypercyclicity criterion[END_REF] that if pa n {b n q decreases to 0 then for every I Ă N, d b pIq ď d a pIq ď d a pIq ď d b pIq. In their paper, Ernst and Mouze [START_REF] Ernst | A quantitative interpretation of the frequent hypercyclicity criterion[END_REF] are interested in the lower weighted densities d a smaller than the lower unweighted density d. In this paper, we will be interested in the weighted densities between the unweighted densities d and d. To this end, we will focus on the densities d a and d a where a is a decreasing sequence tending to 0 such that ř 8 n"0 a n " 8. We denote by A the set of these sequences. Our interest in these densities comes from the study of two important notions in linear dynamics: U-frequent hypercyclicity and frequent hypercyclicity.

Given X a separable infinite-dimensional Fréchet space and T a continuous linear operator on X, the orbit of a vector x in X under the action of T is given by the set Orbpx, T q " tT n x : n ě 0u. Linear dynamics is the theory investigating the properties of these orbits (see [START_REF] Bayart | Dynamics of linear operators[END_REF] and [START_REF] Grosse-Erdmann | Linear chaos[END_REF] for more information). For instance, we say that T is hypercyclic if there exists x P X such that Orbpx, T q is dense, or equivalently, such that for each non-empty open set U , the set N px, U q " tn ě 0 : T n x P U u is non-empty.

If the orbit of a vector visits each non-empty open set then this orbit visits infinitely often each non-empty open set and we can investigate the frequency of these visits. This study has been started by Bayart and Grivaux [START_REF] Bayart | Hypercyclicité : le rôle du spectre ponctuel unimodulaire[END_REF][START_REF] Bayart | Frequently hypercyclic operators[END_REF] via the notion of frequently hypercyclic operators. An operator T is said to be frequently hypercyclic (FHC) if there exists a vector x (called a frequently hypercyclic vector) such that for each non-empty open set U , we have dpN px, U qq ą 0. In the same way, Shkarin [START_REF] Shkarin | On the spectrum of frequently hypercyclic operators[END_REF] introduced the notion of U-frequently hypercyclic operators (UFHC) by replacing the lower density by the upper density. These two notions of hypercyclicity have interesting differences. For instance, the set U F HCpT q of U-frequently hypercyclic vectors is either empty or residual [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF][START_REF] Grivaux | Invariant measures for frequently hypercyclic operators[END_REF][START_REF] Moothathu | Two remarks on frequent hypercyclicity[END_REF] but the set F HCpT q of frequently hypercyclic vectors is always meager [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF]. For this reason, we try to create a bridge between these two notions in the hope to better understand their differences and their limits. Definition 0.1. Let X be a separable infinite-dimensional Fréchet space, T a continuous linear operator on X and a P A.

' T is said to be frequently hypercyclic with respect to a (in short, F HC a )

if there exists x P X such that for every non-empty open set U , we have d a pN px, U qq ą 0. ' T is said to be U-frequently hypercyclic with respect to a (in short, U F HC a )

if there exists x P X such that for every non-empty open set U , we have d a pN px, U qq ą 0.

We denote by F HC a pT q (resp. U F HC a pT q) the set of vectors which are frequently hypercyclic (resp U-frequently hypercyclic) with respect to a for T .

In view of the result of Ernst and Mouze [START_REF] Ernst | A quantitative interpretation of the frequent hypercyclicity criterion[END_REF], we have for every a P A F HC ñ F HC a ñ U F HC a ñ U F HC.

We can therefore wonder if the notions of F HC a and U F HC a allow to create a bridge between UFHC and FHC and which of these three possibilities is correct:

(1) sup aPA d a ă inf aPA d a : It means that there is a gap between the weighted lower and upper densities and we would have to investigate this gap. (2) sup aPA d a " inf aPA d a : The weighted lower and upper densities share a limit density which would be particularly interesting. (3) sup aPA d a ą inf aPA d a : We can get a bridge between UFHC and FHC by using weighted lower densities and weighted upper densities.

We will show in Section 1 that the correct possibility is the third. In fact, we can show that sup aPA d a " d and that inf aPA d a " d. These equalities will result in the following ones for U-frequent hypercyclicity and frequent hypercyclicity: U F HCpT q " ď aPA F HC a pT q and F HCpT q " č aPA U F HC a pT q.

In particular, every U-frequently hypercyclic operator is F HC a for some a P A. It is natural to wonder if an operator U F HC a for every a P A is also frequently hypercyclic. This implication would allow us to use Baire arguments in the study of frequent hypercyclicity in view of results obtained by Bonilla and Grosse-Erdmann in [START_REF] Bonilla | Upper frequent hypercyclicity and related notions[END_REF]. Unfortunately, we will show in Section 2 that there exist operators on 1 pNq which are U F HC a for every a P A but not frequently hypercyclic. However, we do not know if such an operator can also be found in Hilbert spaces. Problem 1. Does there exist an operator on p pNq for 1 ă p ă 8 which is U F HC a for every a P A but not frequently hypercyclic?

Weighted densities between d and d

We start by showing that for every set I of non-negative integers, there exists a weight a P A such that the upper density dpIq coincides with the weighted lower density d a pIq. This result will imply that sup aPA d a " d and inf aPA d a " d.

Theorem 1.1. For every set I of non-negative integers, there exists a P A such that d a pIq " d a pIq " dpIq.

Proof. Let I be a set of non-negative integers such that dpIq " δ. We consider an increasing sequence pn k q with n 0 " 0 tending to infinity such that for every k ě 0,

|rn k ,n k`1 qXI| n k`1 ´nk
ě p1 ´1 2 k qδ and such that n k`1 ´nk ą n k ´nk´1 for every k ě 1. We then let a n " 1 n k`1 ´nk if n P rn k , n k`1 q and we remark that a P A. Moreover, if

n k ă N ď n k`1 with k ě 1, we have ř jPr0,N qXI a j ř jPr0,N q a j ě ř jPr0,n k qXI a j ř jPr0,n k`1 q a j ě ř k´1 j"1 p1 ´1 2 j qδ k `1 " δ ´k ´1 k `1 ´řk´1 j"1 1 2 j k `1 ¯Ñ δ.
We deduce that d a pIq " δ and thus that d a pIq " d a pIq " dpIq. Proof. Let I be a set of non-negative integers and a P A. Since we have

d a pNzIq " lim inf N Ñ8 ř nPr0,N sXpNzIq a n ř N n"0 a n " lim inf N Ñ8 ˜1 ´řnPr0,NsXI a n ř N n"0 a n ¸" 1 ´da pIq,
the result follows from Theorem 1.1.

This last corollary allows to express the set of frequently hypercyclic vectors in terms of U-frequently hypercyclic vectors with respect to weights in A.

Theorem 1.4. Let X be a separable infinite-dimensional Fréchet space and T a continuous linear operator on X. Then F HCpT q " č aPA F HC a pT q " č aPA U F HC a pT q.

Proof. We know that F HCpT q Ă č aPA F HC a pT q Ă č aPA U F HC a pT q.

On the other hand, if x P Ş aPA U F HC a pT q and pU n q is an open basis of X then we have d a pN px, U n qq ą 0 for every n and every a P A. Therefore, since for every n there exists a P A such that dpN px, U n qq " d a pN px, U n qq, we deduce that dpN px, U n qq ą 0 for every n.

We can obtain a similar result for the U-frequent hypercyclicity. However, we first need to adapt Theorem 1.1.

Theorem 1.5. Let pI n q ně1 be a sequence of sets of positive upper density. There exists a P A such that d a pI n q ą 0 for every n ě 1.

Proof. Let pI n q ně1 be a sequence of sets of positive upper density and δ n " dpI n q. We consider pA n q ně1 a partition of N such that each set A n is infinite and has bounded gaps. We let n 0 " 0 and we select an increasing sequence pn l q lě1 such that pn l`1 ´nl q lě1 is an increasing sequence tending to infinity and such that for every n ě 1, every l P A n ,

|rn l , n l`1 q X I n | n l`1 ´nl ě ˆ1 ´1 2 l ˙δn .
We then let a n "

1 n l`1 ´nl if n P rn l , n l`1 q and we remark that a P A. Moreover, for every n ě 1, if pl j q jě1 is the increasing enumeration of A n and if n lj ă N ď n lj`1 , we have

ř kPr0,N qXIn a k ř kPr0,N q a k ě ř kPr0,n l j qXIn a k ř kPr0,n l j`1 q a k ě ř j´1 j 1 "1 ř kPrn l j 1 ,n l j 1 `1 qXIn a k l j`1 ě ř j´1 j 1 "1 ´1 ´1 2 l j 1 ¯δn l j`1 ě pj ´3qδ n l j`1 .
Finally, since A n is a set with bounded gaps, there exists R n such that for every j ě 1, l j ď jR n and we conclude that

d a pI n q " lim inf N ř kPr0,N qXIn a k ř kPr0,N q a k ě δ n R n ą 0.
Corollary 1.6. Let X be a separable infinite-dimensional Fréchet space and T a continuous linear operator on X. Then U F HCpT q " ď aPA U F HC a pT q " ď aPA F HC a pT q.

Proof. Let pU n q ně1 be an open basis of X. If T is not U-frequently hypercyclic then the result is obvious since F HC a pT q Ă U F HC a pT q Ă U F HCpT q. On the other hand, if T is U-frequently hypercyclic and x is a U-frequently hypercyclic vector for T , then we have dpN px, U n qq ą 0 for every n ě 1 and it follows from Theorem 1.5 that there exists a P A such that d a pN px, U n qq ą 0 for every n ě 1. Since pU n q is an open basis, this implies that x is frequently hyperyclic with respect to a and thus U F HCpT q Ă ď aPA F HC a pT q Ă ď aPA U F HC a pT q Ă U F HCpT q.

Since we have already mentionned, the set U F HCpT q of U-frequently hypercyclic vectors is either empty or residual [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF][START_REF] Grivaux | Invariant measures for frequently hypercyclic operators[END_REF][START_REF] Moothathu | Two remarks on frequent hypercyclicity[END_REF] and the set F HCpT q of frequently hypercyclic vectors is always meager [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF]. These results can be generalized to weighted versions of U-frequent hypercyclicity and of frequent hypercyclicity.

Theorem 1.7. Let X be a separable infinite-dimensional Fréchet space and T a continuous linear operator on X. For every a P A, U F HC a pT q is either empty or residual and F HC a pT q is a meager set.

Proof. The result for U F HC a pT q follows from the fact that the family of sets with positive density d a is an upper Furstenberg family [START_REF] Bonilla | Upper frequent hypercyclicity and related notions[END_REF]Example 12(d) and Theorem 15]. On the other hand, for the set F HC a pT q, if we look at the proof given by Moothathu [START_REF] Moothathu | Two remarks on frequent hypercyclicity[END_REF]Theorem 1] in the case of frequent hypercyclicity, it is sufficient to show that d a pIq " d a pI `1q for every set I of non-negative integers.

Observe that

ÿ kPr0,N sXI a k ´ÿ kPr0,N sXpI`1q a k " ÿ kPr0,N ´1sXI pa k ´ak`1 q `aN ε n,I ,
where ε n,I " 1 if n P I and ε n,I " 0 otherwise. Therefore, since a is a decreasing sequence of positive real numbers, we deduce that

ˇˇˇˇˇÿ kPr0,N sXI a k ´ÿ kPr0,N sXpI`1q a k ˇˇˇˇˇď ÿ kPr0,N ´1sXI pa k ´ak`1 q `aN ε n,I ď ÿ kPr0,N ´1s
pa k ´ak`1 q `aN " a 0 .

Hence we have

lim N Ñ8 ˜řkPr0,NsXI a k ř N k"0 a k ´řkPr0,NsXpI`1q a k ř N k"0 a k ¸" 0
and thus

|d a pIq ´da pI `1q| " ˇˇˇˇl im inf N Ñ8 ř kPr0,N sXI a k ř N k"0 a k ´lim inf N Ñ8 ř kPr0,N sXpI`1q a k ř N k"0 a k ˇˇˇˇ" 0.
Remark 1.8. It follows from this theorem that it is not possible to find a countable set B Ă A such that F HCpT q " Ş bPB U F HC b pT q.

Difference between UFHC a and FHC

In view of Theorem 1.4, we can wonder if an operator U F HC a for every a P A is also frequently hypercyclic. Unfortunately, this is not the case. Indeed, we will show in this section how we can construct an operator which is UFHC a for every a P A and not frequently hypercyclic. However, we will only be able to exhibit such an operator on 1 pNq, while examples of operators which are U-frequently hypercyclic and not frequently hypercyclic were given by Bayart and Ruzsa on c 0 pNq [START_REF] Bayart | Difference sets and frequently hypercyclic weighted shifts[END_REF] and by Grivaux, Matheron and Menet on p pNq [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF] for every 1 ď p ă 8.

In order to identify operators which are U F HC a for every a P A, we first need a criterion for U-frequent hypercyclicity with respect to a weight a. To this end, we adapt the condition based on periodic points for U-frequent hypercyclicity given in [8, Theorem 5.14].

Theorem 2.1. Let a P A and X 0 a dense subspace of X with T pX 0 q Ă X 0 and X 0 Ă PerpT q. There exists a non-decreasing sequence of positive integers pα n q ně1 such that if for every x P X 0 and every ε ą 0, there exist z P X 0 and n ě 1 such that

(1) }z} ă ε (2) }T n`k z ´T k x} ă ε for every 0 ď k ď α n n. then T is U F HC a .
Proof. Let a P A and X 0 a dense subspace of X with T pX 0 q Ă X 0 and X 0 Ă PerpT q. There exists a non-decreasing sequence of positive integers pα n q ně1 such that for every n ě 1, (2.1)

ř p1`αnqn´1 k"n a k ř p1`αnqn k"0 a k ě 1 2 .
Let px l q lě1 be a dense sequence in X 0 , pI l q lě1 a partition of N such that for every l, I l is an infinite set and y j " x l if j P I l . If for every x P X 0 and every ε ą 0, there exist z P X 0 and n ě 1 such that

(1) }z} ă ε (2) }T n`k z ´T k x} ă ε for every 0 ď k ď α n n,
then we can construct a sequence pz j q jě0 in X 0 and a strictly increasing sequence pn j q jě0 with z 0 " 0 and n 0 " 0 such that for every j ě 1,

(1) }T k z j } ă 2 ´j for every 0 ď k ď p1 `αnj´1 qn j´1 ;

(2) }T nj `kz j ´T k py j ´řiăj z i q} ă 2 ´j for every 0 ď k ď α nj n j ; (3) n j is a multiple of the period of the vector ř iăj z i . We can assume that n j is a multiple of the period of the vector ř iăj z i because if d is the period of ř iăj z i , if }T k z} ă 2 ´j }T } ´d for every 0 ď k ď p1 `αnj´1 qn j´1 and if }T n`k z ´T k py j ´řiăj z i q} ă 2 ´j for every 0 ď k ď α n n, then there exists d 1 ď d such that n j " n ´d1 is a multiple of d and such that z j " T d 1 z satisfies p1q and p2q since the sequence pα k kq k is increasing.

By letting z " ř iě1 z i , we can then show that for every l ě 1, every ε ą 0, there exists j 0 such that for every j ě j 0 , j P I l , the set N pz, Bpx l , εqq contains tn j `mperpx l q : 0 ď m ď α nj n j {perpx l qu (see [8, Proof of Theorem 5.14]).

Therefore, since the sequence pa k q k is decreasing, we get for every l ě 1, every ε ą 0,

d a pN pz, Bpx l , εqqq ě lim sup jPI l řα n j nj {perpx l q m"0 a nj `mperpx l q řp1`α n j qnj k"0 a k ě lim sup jPI l řp1`α n j qnj ´1 k"nj a k perpx l q řp1`α n j qnj k"0 a k ě 1 2perpx l q by (2.1).
Since px l q is a dense sequence, we deduce that z P U F HC a pT q and thus that T is U F HC a .

In order to exhibit an operator which is UFHC a for every a P A and not frequently hypercyclic, we will consider operators of C-type which have been introduced in [START_REF] Menet | Linear chaos and frequent hypercyclicity[END_REF] to get a chaotic operator which is not frequently hypercyclic and have allowed to exhibit U-frequently hypercyclic operators on Hilbert spaces which are not frequently hypercyclic [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF].

An operator of C-type is associated to four parameters v, w, ϕ, and b where v " pv n q ně1 is a bounded sequence of non-zero complex numbers; w " pw j q jě1 is a sequence of complex numbers which is both bounded and bounded below, i.e. 0 ă inf kě1 |w k | ď sup kě1 |w k | ă 8; ϕ is a map from N into itself, such that ϕp0q " 0, ϕpnq ă n for every n ě 1, and the set ϕ ´1plq " tn ě 0 : ϕpnq " lu is infinite for every l ě 0; b " pb n q ně0 is a strictly increasing sequence of positive integers such that b 0 " 0 and b n`1 ´bn is a multiple of 2pb ϕpnq`1 ´bϕpnq q for every n ě 1.

Definition 2.2. The operator of C-type T v,w,ϕ,b associated to the data v, w, ϕ, and b given as above is defined by

T v,w,ϕ,b e k " $ ' ' ' & ' ' ' % w k`1 e k`1 if k P rb n , b n`1 ´1q, n ě 0, v n e b ϕpnq ´´ś bn`1´1 j"bn`1 w j ¯´1 e bn if k " b n`1 ´1, n ě 1, ´ś b1´1 j"b0`1 w j ¯´1 e 0 if k " b 1 ´1.
We remark that the operator T v,w,ϕ,b is well-defined and bounded on 1 pNq as soon as inf ně0 ś bn`1´1 j"bn`1 |w j | ą 0. From now on, we will always assume that this condition is satisfied. In [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF], it was also assumed that ř n |v n | ă 8 in order to get a continuous operator on p pNq for any 1 ď p ă 8. However, in our construction, we will need to consider a sequence pv n q which takes infinitely often the same values and we will thus restrict ourselves to operators on 1 pNq so that such a sequence pv n q can be considered.

Moreover, we impose the following restrictions on the parameters v, w, ϕ and b. We first consider a map ψpkq " pψ 1 pkq, ψ 2 pkqq such that for every k ě 1, (2.2)

1 ď ψ 1 pkq ă mintk `1, ψ 2 pkqu and ψ 2 pkq ą maxtψ 2 pjq : j ă ψ 1 pkqu and such that for every i ě 1, there exists j i such that for every j ě j i , the set tk ě 1 : ψpkq " pi, jqu is infinite. We let n 0 " 0, n 1 " 1 and n k`1 " n k `ψ1 pkq for every k ě 1. For every k ě 1, every n P rn k , n k`1 q, we then let ϕpnq " n ´nk , v n " v pkq " 2 ´τ pψ 2 pkqq , b n`1 ´bn " ∆ pkq and for every j P rb n `1, b n`1 ´1s,

w j " $ ' ' ' ' ' ' & ' ' ' ' ' ' % 2 if b n ă j ď b n `kδ pψ2pkqq `2n `1 1 if b n `kδ pψ2pkqq `2n `1 ă j ă ∆ pkq ´3δ pψ2pkqq ´2n ´1 1{2 if ∆ pkq ´3δ pψ2pkqq ´2n ´1 ď i ă ∆ pkq ´2δ pψ2pkqq 2 if ∆ pkq ´2δ pψ2pkqq ď i ă ∆ pkq ´δpψ2pkqq 1 if ∆ pkq ´δpψ2pkqq ď i ă ∆ pkq
where pk `3qδ pψ2pkqq `4n k`1 `2 ă ∆ pkq for every k ě 1, pδ pkq q and pτ pkq q are increasing sequences of positive integers and ∆ pkq is a multiple of 2∆ pk´1q with ∆ p0q " b 1 ´b0 . Observe that for every n P rn k , n k`1 q, we have bn`1´1 ź j"bn`1

w j " ∆ pkq ´1 ź i"1
w bn`i " 2 kδ pψ 2 pkqq .

The operator T v,w,ϕ,b associated to these parameters is then an operator of Ctype on 1 pNq which will be denoted by T from now and we will show that for a convenient choice of parameters pδ pkq q, pτ pkq q and p∆ pkq q, T is an operator which is UFHC a for every a P A and not frequently hypercyclic.

We first show that T is UFHC a for every a P A if δ pkq ´τ pkq tends to infinity by applying Theorem 2.1 with X 0 " span re k : k ě 0s since operators of C-type have the property that for every n ě 0, every j P rb n , b n`1 q, T 2pbn`1´bnq e j " e j ([8, Lemma 6.4]).

Theorem 2.3. If δ pkq ´τ pkq tends to infinity then T is UFHC a for every a P A.

Proof. Let a P A and X 0 " span re k : k ě 0s. We consider the non-decreasing sequence of positive integers pα n q ně1 given by Theorem 2.1 and we show that we can apply this one to T if δ pkq ´τ pkq tends to infinity. Let x P X 0 and ε ą 0. There exists k 0 ě 1 such that x may be written as

x " ÿ lăn k 0 b l`1 ´1 ÿ j"b l
x j e j .

Let j n k 0 such that for every j ě j n k 0 , the set tk ě 1 : ψpkq " pn k0 , jqu is infinite. We choose K ě j n k 0 such that δ pKq ą b n k 0 and such that

}x}psup i |w i |q bn k 0 2 δ pKq ´τ pKq pinf i |w i |q bn k 0 ă ε
and we then choose k ě 1 such that k ě 2α 2δ pKq `1, ψ 1 pkq " n k0 and ψ 2 pkq " K. It follows that for every n P rn k , n k`1 q,

|v pkq | bn`1´1 ź i"bn`1´2δ pKq |w i | " 2 δ pKq ´τ pKq (2.3) and |v pkq | bn`1´1 ź i"bn`m`1 |w i | ě 2 δ pKq ´τ pKq
for every 0 ď m ď α 2δ pKq 2δ pKq , (2.4) since α 2δ pKq 2δ pKq ď pk ´1qδ pKq by assumption on k. We then set z :"

ÿ lăn k 0 b l`1 ´1 ÿ j"b l « x j ´vpkq b n k `l`1 ´1 ź i"b n k `l`1 ´2δ pKq `j´b l `1 w i ¯´1 ´j´b l ź i"1 w b l `i¯´1 e b n k `l`1 ´2δ pKq `j´b l ff .
It remains to prove that }z} ă ε and }T 2δ pKq `mz ´T m x} ă ε for every 0 ď m ď α 2δ pKq 2δ pKq since the desired result will then follow from Theorem 2.1 with n " 2δ pKq . Note that the key point in the construction of z relies on the fact that the weights appearing in the definition of z and in particular the choice of n only depend on K while the orbit of T n z will follow the orbit of x during a time depending on the size of the first block of 2 in pw j q jPrbn,bn`1q for n P rn k , n k`1 q which can be arbitrarily big if k is sufficiently big.

We remark by applying (2.3) that }z} ď }x} sup

lăn k 0 sup jPrb l ,b l`1 q ¨|v pkq | b n k `l`1 ´1 ź i"b n k `l`1 ´2δ pKq `j´b l `1 |w i | '´1 ´j´b l ź i"1 |w b l `i| ¯´1 ď }x}psup i |w i |q bn k 0 2 δ pKq ´τ pKq pinf i |w i |q bn k 0 ă ε.
Let us now estimate the norm of the vector T 2δ pKq `mz ´T m x for every 0 ď m ď α 2δ pKq 2δ pKq . Note that if 0 ď l ă n k0 and b l ď j ă b l`1 , then 2δ pKq ´pj ´bl q ą 1 since 0 ď j ´bl ă b n k 0 and δ pKq ą b n k 0 . Let 0 ď l ă n k0 . Since n k `l ă n k `ψ1 pkq " n k`1 , we have for every b l ď j ă b l`1 ,

T 2δ pKq ´pj´b l q e b n k `l`1 ´2δ pKq `j´b l " ´vpkq b n k `l`1 ´1 ź i"b n k `l`1 ´2δ pKq `j´b l `1 w i ¯eb l ´˜b n k `l`1 ´2δ pKq `j´b l ź i"b n k `l`1 w i ¸´1 e b n k `l ,
and thus

T 2δ pKq e b n k `l`1 ´2δ pKq `j´b l " ˜vpkq b n k `l`1 ´1 ź i"b n k `l`1 ´2δ pKq `j´b l `1 w i ¸´j´b l ź i"1 w b l `i¯e j ´˜b n k `l`1 ´2δ pKq `j´b l ź i"b n k `l`j´b l `1 w i ¸´1 e b n k `l `j´b l .
Therefore,

T 2δ pKq z " x ´ÿ lăn k 0 b l`1 ´1 ÿ j"b l « x j ´vpkq b n k `l`1 ´1 ź i"b n k `l`1 ´2δ pKq `j´b l `1 w i ¯´1 ´j´b l ź i"1 w b l `i¯´1 ´bn k `l`1 ´2δ pKq `j´b l ź i"b n k `l `j´b l `1 w i ¯´1 e b n k `l`j´b l ff .
Moreover, if 0 ď m ď α 2δ pKq 2δ pKq then for every 0 ď l ă n k0 and every b l ď j ă b l`1 ,

T m e b n k `l `j´b l " ˜bn k `l`j´b l `m ź i"b n k `l `j´b l
`1 w i ¸eb n k `l`j´b l `m, because j ´bl `α2δ pKq 2δ pKq ă b l`1 ´bl `pk ´1qδ pKq ă b n k 0 `pk ´1qδ pKq ă kδ pKq ă ∆ pkq ´3δ pKq . So we get for any 0 ď m ď α 2δ pKq 2δ pKq ,

T 2δ pKq `mz " T m x ´ÿ lăn k 0 b l`1 ´1 ÿ j"b l « x j ˜vpkq b n k `l`1 ´1 ź i"b n k `l `j´b l `m`1 w i ¸´1 ´j´b l ź i"1 w b l `i¯´1 e b n k `l `j´b l `mff
.

We deduce from (2.4) that for any 0 ď m ď α 2δ pKq 2δ pKq ,

}T 2δ pKq `mz ´T m x} ă }x} sup i |w i | bn k 0 2 δ pKq ´τ pKq inf i |w i | bn k 0 ă ε.
The assumptions of Theorem 2.1 are thus satisfied and this concludes the proof.

It remains to determine under which conditions T is not frequently hypercyclic. To this end, it will be necessary to investigate the dynamical properties of finite sequences under the action of T . Therefore, we denote for every l ě 0,

P l x " b l`1 ´1 ÿ k"b l x k e k and X l " › › › b l`1 ´1 ÿ k"b l ´bl`1 ´1 ź s"k`1 w s ¯xk e k › › ›.
We recall the following result proved in [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF].

Proposition 2.4 ([8, Proposition 6.12]). Let T be an operator of C-type on 1 pNq, and let pC n q ně0 be a sequence of positive numbers with 0 ă C n ă 1. Assume that

|v n | . sup jPrb ϕpnq ,b ϕpnq`1 q ´j ź
s"b ϕpnq `1 |w s | ¯ď C n for every n ě 1. Then, for any x P 1 pNq, we have for every l ě 1 and every 0 ď n ă l,

(1) sup jě0 }P n T j P l x} ď C l X l and

(2)

sup jďN }P n T j P l x} ď C l ´sup b l`1 ´N ďkăb l`1 b l`1 ´1 ź s"k`1 |w s | ¯}P l x}
for every 1 ď N ď b l`1 ´bl .

We will also need a simple adaptation of [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]Proposition 6.13].

Proposition 2.5. Let T be an operator of C-type on p pNq and let x P p pNq. Suppose that there exist two integers 0 ď K 0 ă K 1 ď b l`1 ´bl such that |w b l `k| " 1 for every k P pK 0 , K 1 q and

b l`1 ´1 ź s"b l `K0`1 |w s | " α.
Then we have for every J ě 0,

1 J `1 # ! 0 ď j ď J : }P l T j P l x} ě α ´1X l {2 ) ě 1 ´2`b l`1 ´bl ´pK 1 ´K0 q ˘¨´1 J `1 `1 b l`1 ´bl
¯Ẅe can now state sufficient conditions for T not to be frequently hypercyclic by following the proof of [START_REF] Grivaux | Linear dynamical systems on Hilbert spaces: typical properties and explicit examples[END_REF]Lemma 6.11].

Theorem 2.6. For every k ě 1, set γ k :" 2 kδ pk´1q `2n k `1´τ pkq . Suppose that for every k ě 1, γ k ď mint2 ´16k , min sďk´1 γ 2 s u and that the following two conditions are satisfied: lim kÑ8 kδ pkq δ pk`1q " 0 and lim kÑ8 kδ pψ2pkqq `nk`1 ∆ pkq " 0.

Then T is not frequently hypercyclic.

Proof. Let x be a hypercyclic vector of T . It suffices to show that x cannot be a frequently hypercyclic vector. We first consider k 0 ě 1 and l 0 P rn k0 , n k0`1 q such that

}P l0 x} ě γ 1{2 ψ2pk0q 
2 l0 }x ´P0 x}.

Such integers k 0 and l 0 exist because

ř kě1 γ 1{2 ψ2pkq ř n k`1 ´1 l"n k 1 2 l ď 1 since γ k ď 1 for every k ě 1.
Moreover, we remark that x ´P0 x is non-zero since x is hypercyclic.

We now construct a strictly increasing sequence of integers pl m q mě0 such that for every m ě 1, if we set j m´1 :" min " j ě 0 :

ÿ ląlm´1 }P lm´1 T j P l x} ą X lm´1 * ,
and if l m P rn km , n km`1 q then (2.5) ψ 1 pk m q ą l m´1 , j m´1 ą δ pψ2pkmqq and X lm ě 1

2 lm γ 1{2 ψ2pkmq X lm´1 .
Assume that the integers l 1 , . . . , l m´1 have already been constructed and satisfy (2.5). We first remark that the integer j m´1 is well-defined since x is hypercyclic and thus lim sup j ÿ ląlm´1 }P lm´1 T j P l x} " 8. Therefore, there exist k m with ψ 2 pk m q " S and l m P rn km , n km`1 q X pl m´1 , 8q such that (2.7)

Moreover

}P lm´1 T jm´1 P lm x} ą γ 1{2 ψ2pkmq 
2 lm X lm´1 . In particular, since X lm´1 ą 0 and since l m ą l m´1 , we have ψ 1 pk m q ą l m´1 . Let k ě 1, l P rn k , n k`1 q and κ such that ϕplq P rn κ , n κ`1 q. Since κ ď n κ ď ϕplq ă ψ 1 pkq, we have ψ 2 pκq ă ψ 2 pkq by (2.2) and since ϕplq ă ψ 1 pkq ă ψ 2 pkq ď n ψ2pkq , we have

|v l | . sup jPrb ϕplq ,b ϕplq`1 q ´j ź s"b ϕplq `1 |w s | ď 2 ´τ pψ 2 pkqq 2 κδ pψ 2 pκqq `2ϕplq`1 ď 2 ´τ pψ 2 pkqq 2 ψ2pkqδ pψ 2 pkq´1q `2n ψ 2 pkq `1 " γ ψ2pkq .
It follows from Proposition 2.4 and (2.7) that

X lm ě 1 γ ψ2pkmq }P lm´1 T jm´1 P lm x} ą 1 2 lm γ 1{2 ψ2pkmq X lm´1 .
On the other hand, for every 1 ď s ď m, we have 2 ls´1 γ 1{2 ψ2pksq ď 2 4ls´1 γ 1{4 ψ2pksq ď 2 4pls´1´ψ2pksqq ď 1 since ψ 2 pk s q ą ψ 1 pk s q ą l s´1 . It follows from Proposition 2.4 that for every 0 ď j ď δ pSq " δ pψ2pkmqq , ψ2pk0q because ψ 1 pk m q ą l m´1 ě l 0 ě n k0 ě k 0 and thus ψ 2 pk 0 q ă ψ 2 pk m q by (2.2). We deduce from (2.6) that j m´1 ą δ pψ2pkmqq and thus that a sequence pl m q mě0 satisfying (2.5) can be constructed.

ÿ k:ψ2pkq"S ÿ lPrn k ,n k`1 qXplm´1,8q }P lm´1 T j P l x} ď γ S ÿ k:ψ2pkq"S ÿ lPrn k ,n k`1 qXplm´1,8q }P l x} ď γ ψ2pkmq }x ´P0 x} ď 2 l0 γ ψ2pkmq γ 1{2 ψ2pk0q }P l0 x} ď 2 3l0`1 γ ψ2pkmq γ 1{2 ψ2pk0q X l0 ď 2 3l0`1 γ ψ2pkmq γ 1{2 ψ2pk0q
Note that the sequences pj m q mě0 , pψ 2 pk m qq mě0 and pk m q mě0 tends to infinity as m tends to infinity since ψ 2 pk m q ą ψ 1 pk m q ą l m´1 and pl m q mě0 is increasing. For every j ě 0 and n ě 0, since }T j x} ě }P n T j x} ě }P n T j P n x} ´ÿ ląn }P n T j P l x}, we have by definition of j m }T j x} ě }P lm T j P lm x} ´Xlm for every 0 ď j ă j m .

It follows from this inequality that for every m ě 1, 0 ď j ď j m ´1 : }P lm T j P lm x} ě 2 2lm X lm ( Ď 0 ď j ď j m ´1 : }P lm T j P lm x} ě p2 lm `1qX lm ( Ď 0 ď j ď j m ´1 : }T j x} ě 2 lm X lm ( Ď 0 ď j ď j m ´1 : }T j x} ě X l0 ( .

Hence, we have dens N `x, Bp0, X l0 q c ˘ě lim sup m # 0 ď j ď j m ´1 : }P lm T j P lm x} ě 2 2lm X lm ( j m Finally, by applying Proposition 2.5 with K 0 " k m δ ψ2pkmq `2l m `1, K 1 " ∆ pkmq ´3δ pψ2pkmqq ´2l m ´1 and thus α " 2 ´p2lm`1q , we get for every J ě 0, # 0 ď j ď J : }P lm T j P lm x} ě 2 2lm X lm (

J `1 ě 1 ´2´p k m `3qδ pψ2pkmqq `4l m `2¯´1 J `1 `1 ∆ pkmq ¯.
We deduce that dens N `x, Bp0, X l0 q c ě lim sup m " 1 ´2´p k m `3qδ pψ2pkmqq `4l m `2¯´1 j m `1 ∆ pkmq ¯ı.

Therefore, since j m ą δ pψ2pkm`1qq , since ψ 2 pk m`1 q ą ψ 1 pk m`1 q ą l m ě n km ě k m , since ψ 2 pk m`1 q ą ψ 2 pk m q and since l m ă n km`1 , we can conclude from lim kÑ8 kδ pkq δ pk`1q " 0 and lim kÑ8 kδ pψ2pkqq `nk`1 ∆ pkq " 0 that dens N `x, Bp0, X l0 q c ě lim sup m " 1 ´2pk m `3qδ pψ2pkmqq δ pψ2pkm`1qq ´8pψ 2 pk m`1 q ´1q δ pψ2pkm`1qq

´4 j m ´2pk m `3qδ pψ2pkmqq ∆ pkmq ´8n km`1 ∆ pkmq ´4 ∆ pkmq  " 1

The vector x is thus not frequently hypercyclic since dens N `x, Bp0, X l0 q ˘" 1 dens N `x, Bp0, X l0 q c ˘" 0 and X l0 ą 0.

We can now state and prove the main result of this section.

Moreover, we have for every m ě 1 ,ψ2pk1q 2

 12 lm X lm ď 2 lm X lm .

  lPrn k ,n k`1 qXplm´1,8q }P lm´1 T jn´1 P l x} ď γ

	because if we had	ř	k:ψ2pkq"S			1{2 S X lm´1
	for every S ě 1, this would imply that	ř	ląlm´1 }P lm´1 T jm´1 P l x} ď	`ř8 S"1 γ	1{2 S ˘Xlm´1 ď
	X lm´1 , violating the definition of j m´1 .	
					1{2 S X lm´1 ,

, we can find an integer S ě 1 such that (2.6)

ÿ k:ψ2pkq"S ÿ lPrn k ,n k`1 qXplm´1,8q }P lm´1 T jm´1 P l x} ą γ ř
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Q. MENET

Theorem 2.7. There exists an operator on 1 pNq which is U F HC a for every a P A and not frequently hypercyclic.

Proof. Let ψpkq " pψ 1 pkq, ψ 2 pkqq such that for every k ě 1, 1 ď ψ 1 pkq ă mintk `1, ψ 2 pkqu and ψ 2 pkq ą maxtψ 2 pjq : j ă ψ 1 pkqu and such that for every i ě 1, there exists j i such that for every j ě j i , the set tk : ψpkq " pi, jqu is infinite. Let n 0 " 0, n 1 " 1 and n k`1 " n k `ψ1 pkq for every k ě 1. For every k ě 1, every n P rn k , n k`1 q, we then let ϕpnq " n ´nk , v n " v pkq " 2 ´τ pψ 2 pkqq , b n`1 ´bn " ∆ pkq and for every j P pb n , b n`1 ´1s,

where pk `3qδ pψ2pkqq `4n k`1 `2 ă ∆ pkq for every k ě 1, pδ pkq q and pτ pkq q are increasing sequence of positive integers and for every k ě 1, ∆ pkq is a multiple of 2∆ pk´1q with ∆ p0q " b 1 ´b0 . Let γ k :" 2 kδ pk´1q `2n k `1´τ pkq . Suppose that (1) lim kÑ8 δ pkq ´τ pkq " 8;

(2) for every k ě 1, γ k ď mint2 ´16k , min sďk´1 γ 2 s u; (3) lim kÑ8 kδ pkq δ pk`1q " 0;

(4) lim kÑ8 kδ pψ2pkqq `nk`1 ∆ pkq " 0.

Then the operator of C-type T v,w,ϕ,b is U F HC a for every a P A by Theorem 2.3 but not frequently hypercyclic by Theorem 2.6, and it suffices to remark that Conditions p1q ´p3q can be simultaneously satisfied by chosing by induction ' τ pkq sufficiently big so that γ k ď mint2 ´16k , min sďk´1 γ 2 s u, and then ' δ pkq sufficiently big so that δ pkq ´τ pkq ě k and pk´1qδ pk´1q δ pkq ď 1 k , and that when the sequence pδ pkq q k has been completely fixed, the remaining conditions can be satisfied by chosing for every k ě 1 ' ∆ pkq sufficiently big so that ∆ pkq ą pk `3qδ pψ2pkqq `4n k`1 `2, ∆ pkq is a multiple of 2∆ pk´1q and kδ pψ2pkqq `nk`1 ∆ pkq ď 1 k .