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Abstract10

The stance and swing phases of the gait cycle are defined by foot strike (FS) and foot off (FO). Accurate determination11

of these events is thus an essential component of 3D motion recordings processing. Several methods have been developed12

for the automatic detection of these events (based on the heuristics of 3D marker position, velocity and acceleration),13

however the results may be inaccurate due to the high variability that is intrinsic to pathological gait. For this reason,14

gait events are still commonly determined manually, which is a tedious process. Here we propose a new application15

(DeepEvent) of a long short term memory recurrent neural network for the automatic detection of gait events. The16

3D position and velocity of the markers on the heel, toe and lateral malleolus were used by the network to determine17

FS and FO. The method was developed from 10526 FS and 9375 FO from 226 children. DeepEvent predicted FS18

within 5.5 ms and FO within 10.7 ms of the gold standard (automatic determination using force platform data) and19

was more accurate than common heuristic marker trajectory-based methods proposed in the literature and another20

deep learning method.21

A sensitivity analysis showed that DeepEvent mainly used the toe and heel markers (z-axis (longitudinal) position22

and velocity) at the beginning and end of gait cycle to predict FS, and the toe marker (x-axis (anterior/posterior)23

velocity and z-axis position and velocity) at around 60% of the gait cycle to predict FO.24
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1 Introduction29

The current gold standard for the automatic detection of gait events in clinical practice involves the use of ground30

reaction forces measured by force platforms (Veilleux et al., 2016). However, pathological gait is highly variable and31

the use of gait aids, small steps or foot dragging during swing phase can produce false force thresholds, all of which32

may reduce the accuracy of the detection. To avoid these issues, gait events are therefore often determined manually,33

in particular for pediatric gait which is highly variable, however this process is time consuming and its accuracy and34

reliability strongly depend on operator expertise. To overcome these issues, computational methods of gait event35

detection, mostly based on kinematic data from opto-electronic systems, have been developed. A literature review36

(Bruening & Ridge, 2014) identified nine kinematic-based algorithms (De Asha et al., 2012; Desailly et al., 2009;37

Ghoussayni et al., 2004; Hreljac & Marshall, 2000; Hsue et al., 2007; Jasiewicz et al., 2006; O’Connor et al., 2007;38

Salazar-Torres, 2006; Zeni et al., 2008) that appeared promising for event detection in gait patterns such as equinus,39

slide/drag or steppage gait. The literature review and a recent study by Gonçalves et al. (2019) both revealed that the40

variables that result in the most accurate determination of events are sagittal resultant velocity (Ghoussayni et al.,41

2004), horizontal position (Desailly et al., 2009; Zeni et al., 2008), and vertical/horizontal acceleration (Hreljac &42

Marshall, 2000; Hsue et al., 2007) for FS, and horizontal position (Desailly et al., 2009; Zeni et al., 2008) and sagittal43

velocity (Ghoussayni et al., 2004) for FO. However, all those algorithms are limited by an accuracy of four frames44

(33.3 ms), and the fact that none can be used accurately across all types of gait pathologies. There is therefore a need45

for the development of learning-based approaches that do not require a priori information relative to the input data.46

Most studies that have used machine learning to study biomechanical parameters in patients with musculoskeletal47

and neuromuscular diseases have focused on the classification of pathological movements, prediction of the risk of48

development of certain diseases or the effect of an intervention, or the automatic recognition of activity for out-49

of-clinic monitoring (Halilaj et al., 2018). Recently, a method using deep neural networks to detect gait events in50

children with cerebral palsy determined FS and FO with respective errors of 18.3 ms and 12.5 ms (Kidziński et al.,51

2019). However, that method requires the use of a biomechanical model to compute the kinematic input data (3D52

joint angles using the conventional gait model described by Kadaba et al. (1990), 3D position and velocity of the53

markers, and 3D position, velocity and acceleration of the pelvis).54

Recurrent neural networks, and more specifically long short term memory (LSTM) networks are among the most55

efficient in learning dynamics from time series (Hochreiter & Schmidhuber, 1997). Although LSTM networks are56

very popular (Schmidhuber (2015)), a specific type of analysis such as sensitivity analysis, Taylor decomposition or57

backward propagation, is necessary to understand the decision process used by such networks and thus to ensure58

appropriate interpretation of the output from the network, especially in the clinical context.59

The primary aim of this study was to test the proof-of-concept of a new gait event detection method (DeepEvent)60

using an LSTM network. The second aim was to compare the accuracy of this new method with a set of different61

methods proposed in the literature and to determine if a resulting error of less than 10 ms (1 frame at 100 Hz) could62

be achieved. The third aim was to identify and interpret the parameters used in the decision process.63
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2 Method64

2.1 Gait data65

Data from 226 children who had undergone clinical 3D gait analysis were used. All parents provided written in-66

formed consent on a form that had been approved by the Brest CHRU. The children had the following pathologies:67

neurological disorders (65%, 76% of whom had cerebral palsy), neuromuscular disorders (11%), orthopedic disorders68

(9%) and other types of disorders (15%). All data were recorded using the same motion analysis system (Vicon MX,69

Oxford Metrics, UK) and four force platforms (Advanced Mechanical Technology, Inc., Watertown, MA, USA) in70

the same motion laboratory (Brest CHRU) between 2015 and 2019. The data collected by the 15 infrared cameras71

(sampling rate 100 Hz or 120 Hz) were synchronized with the ground reaction forces recorded by the force platforms72

(1000 Hz or 1200 Hz). The markers were placed according to the protocol by by Kadaba et al. (1990). Marker tra-73

jectories and ground reactions forces were dual-pass filtered with a low-pass Butterworth filter at a cut-off frequency74

of 6 Hz. All participants walked independently, with no gait aids, at their natural speeds. An average of 5 trials was75

recorded for each child, yielding 1156 trials in total. All FS and FO events were manually identified by an engineer76

with 15 years’ experience in gait analysis. The data included 10526 FS (5247 left and 5279 right) and 9375 FO (465477

left and 4721 right).78

The data were randomly divided up such that: 60% were used for training (694 trials, 6303 FS (3139 left FS; 316479

right FS)), 5614 FO (2789 left FO; 2825 right FO)), 10% for validation (116 trials, 1039 FS (514 left FS; 525 right FS),80

923 FO (457 left FO; 466 right FO)) and 30% for testing (346 trials, 3184 FS (1594 left FS; 1590 right FS), 2841 FO81

(1411 left FO; 1430 right FO)). These proportions are typically used in deep learning methodology (Crowther & Cox82

(2005)). Among the test data, 815 FS (446 left FS and 369 right FS) and 815 FO (369 left FO and 446 right FO) had83

previously been identified using the force platform data and were used as the gold standard method for comparison84

purposes. FS was determined as the first frame at which the vertical ground reaction force was greater than 10 N. FO85

was determined as the first frame at which the vertical ground reaction force was lower than 10 N.86

2.2 Network architecture87

3D position and velocity of the left and right heel, toe and lateral malleolus markers for each trial were used as input88

data for the DeepEvent recurrent network. A zero-padding technique was used to obtain the same number of frames89

for each trial (with a maximum duration of 1536 frames).90

The neural network consisted of M bidirectional LSTM layers with N hidden units (Supplementary data) and91

was followed by a dropout layer. Finally, a one-time distributed dense layer was used to detect gait events. The 592

gait events (no event, left FS, right FS, left FO and right FO) were encoded using a one-hot encoding scheme. The93

parameters M and N were empirically chosen to maximize the performance of the network with the validation data set94

by an empirical approach. A sensitivity analysis was carried out to explain the neural network decisions by measuring95

the contribution of each input variable to the overall prediction (Simonyan et al., 2013).96

DeepEvent was implemented using Keras (Chollet (2015)) in Python (Van Rossum & Drake (1995)), with cross-97

entropy as loss function and Adaptive Moment Estimation (Adam) for optimization on a Dell Workstation 7910 (CPU98

Xeon e5-2680-v4 2.4 GHz) with a Nvidia GeForce GTX 1080 Ti. DeepEvent is available on Github99

(github.com/LempereurMat/deepevent).100
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2.3 Validation: concurrent validity101

The results of the DeepEvent method were compared to the position-, velocity- and acceleration-based algorithms102

proposed by Zeni et al. (2008), Ghoussayni et al. (2004) and Hsue et al. (2007) and the deep learning method proposed103

by Kidziński et al. (2019). The position-based algorithms reported by Zeni et al. (2008) and Desailly et al. (2009)104

detected FS with the same degree accuracy, however the method by Zeni et al. (2008) more accurately identified FO105

(Bruening & Ridge (2014)). The velocity-based method reported by Ghoussayni et al. (2004) identified gait events most106

accurately (Gonçalves et al. (2019)), and the use of horizontal acceleration resulted in a more accurate determination107

of FS and FO than the use of vertical acceleration (Hsue et al. (2007)).108

The coordinate-based algorithm by Zeni et al. (2008) uses the anterior/posterior position of the heel and toe marker109

relative to the sacrum marker. The equation for the definition of FS is: tFS = max(XHeel −XSacrum) and for FO is:110

tFO = min(XToe −XSacrum).111

Ghoussayni et al. (2004) uses the sagittal plane resultant velocity and applies a gait speed-dependent threshold to112

detect FS: FSThreshold = 0.78 ×WalkSpeed and FO: FOThreshold = 0.66 ×WalkSpeed.113

Hsue et al. (2007) uses the peak horizontal deceleration of the heel marker to identify FS: tFS = min(∂2XHeel

∂t2 ) and114

the peak horizontal acceleration of toe marker to detect FO: tFS = max(∂2XToe

∂t2 ).115

Kidziński et al. (2019) uses the 3D joint angles using the conventional gait model described by Kadaba et al. (1990),116

3D position and velocity of the markers, and 3D position, velocity and acceleration of the pelvis. Their network is built117

with 3 LSTM layers using a sequence of 128 frames. The results from DeepEvent were also compared to a modified118

version of the method by Kidziński et al. (2019), in which the number of frames was increased in order to obtain the119

same number of frames as in DeepEvent (1536).120

Absolute differences in time were compared between the four algorithms in the literature, the modified Kidziński121

et al. (2019) algorithm, DeepEvent , and the force platform data.122

3 Results123

3.1 Proof-of-concept124

Three bidirectional LSTM layers with 800 hidden units were chosen to maximize the performance of the network.125

With these parameters, the trained model had a validation cross-entropy of 0.0286 and an accuracy of 100%. The126

receiver operating characteristic analysis showed that the fully trained model achieved an area under the curve of127

0.9955 for the left FS, 0.9971 for the right FS, 0.9958 for the left FO and 0.9955 for the right FO indicating that the128

model accurately determined FS and FO.129

Computational times for training DeepEvent , the original and the modified Kidziński et al. (2019) methods were130

on average about 20, 8 and 42 minutes respectively.131

3.2 Concurrent validity and parameters used in the decision process132

DeepEvent predicted FS within 5.5 ms and within 10.7 ms of the gold standard, and was more accurate than the133

three methods from the literature, as well as the modified Kidziński et al. (2019) method (Table 1). These errors are134

acceptable since they are well below or just superior to the threshold of 10 ms.135
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The contribution of each type of input data to the decision process is presented in figures 1 and 2. The sensitivity136

analysis showed that DeepEvent used the input data between 0 and 20%, between 50 and 70% and between 90 and137

100% of the gait cycle. During these intervals, the contribution of each typeof input data was between 0 and 0.04. Out-138

side of these intervals, the weights were closer to 0. These timings perfectly matched the definition of the beginning of139

swing phase at 60% of the gait cycle. The determination of the FS mainly involved the use of the z-axis (longitudinal)140

position and velocity of the toe and heel markers at the beginning and end of gait cycle (weight ¿ 0.04). To predict141

FO, DeepEvent mainly used the x-axis (antero-posterior) velocity and z-axis position and velocity of the toe marker142

around 60% of the gait cycle (weight ¿ 0.03).143

FS [CI] FO [CI]

DeepEvent
5.5
[0.9;10.2]

10.7
(5.4;15.9)

Zeni et al. (2008)
39.7
[15.6;63.8]

13.7
[6.1;21.3]

Ghoussayni et al. (2004)
27.1
[11.4;43.0]

11.4
[5.9;16.9]

Hsue et al. (2007)
54.5
[25.7;83.3]

39.4
[26.9;51.9]

Kidziński et al. (2019)
8.6
[3.3;13.9]

22.7
[10.8;34.5]

Modified Kidziński et al. (2019)
6.3
[2;10.5]

11.2
[5.9;16.6]

Table 1: Absolute differences in milliseconds between DeepEvent , the methods in the literature, and the gold standard
(automatic determination using force platform data). CI: confidence interval. Best results are highlighted in bold.

4 Discussion144

The aim of this study was to test the proof-of-concept of a new gait event detection approach using an LSTM network.145

The results showed that DeepEvent determined FS and FO more accurately than three heuristic methods from the146

literature. Moreover, it was more accurate than the recently developed deep learning approach by Kidziński et al.147

(2019) that uses more input variables (kinematic outputs from conventional gait models). The high level of accuracy148

of DeepEvent means that it can be used in clinical practice for the automatic detection of the gait events with a149

very good inter-trial reliability. This study showed that the number of sequence frame (128 frames in Kidziński et al.150

(2019); 1536 in DeepEvent) is an important input parameter, since increasing the number of frames in the method by151

Kidziński et al. (2019) to the number used by DeepEvent improved the accuracy of the former method. The detection152

of FO was consistently less accurate than the detection of FS. This is not surprising, DeepEvent is a supervised153

LSTM-based approach. The accuracy of this type of algorithm is determined by the quality of the manual event154

annotation. In many cases, gait transitions, in particular FO, occur gradually and the identification of a single event155

frame is somewhat subjective, as reported by Kidziński et al. (2019). The location of the toe marker may also affect156

FO detection. The use of a hallux marker as in Stebbins et al. (2006) could increase FO detection accuracy but this157

marker placement is not commonly used in clinical gait analysis.158

The sensitivity analysis demonstrated the importance of both the toe and heel markers for the accurate detection159

of FS and FO while the lateral malleolus marker did not appear to be essential. Equally, pelvic and other markers160

were unnecessary because the deep learning approach could determine gait direction due to the numerous cases in161
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the database of gait with direction along the anterior or posterior axis. In this study, all gait events were manually162

identified by a single experienced engineer and the neural network was trained using this information. The results163

now need to be externally validated by evaluating the robustness of this supervised technique using data from other164

laboratories.165
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Supplementary data218

The Long Short Term Memory (LSTM) is composed of four different gates that can change the information to the219

cell state in order to build a long-term memory (figure supplementary data). The first gate is called the ”forget gate”220

(ft) that decides for each element of the previous cell state vector Ct−1 how much information to forget:221

ft = σ(Wf [ht−1, xt] + bf )222

with σ the sigmoid function 1
1+e−t and xt the input data (3D position of the left and right lateral malleolus, 3D position223

of the left and right toe, 3D position of the left and right heel, 3D velocity of the left and right lateral malleolus, 3D224

velocity of the left and right toe and 3D velocity of the left and right heel). The second step concerns the ”input225

gate” (it) and the ”candidate gate” (gt) . The first one is used to update value in Ct−1 while the second one is used226

to create a “candidate” that will be added to Ct−1. Then, the cell state is updated:227

it = σ(Wf [ht−1, xt] + bi)228

gt = tanh(Wg[ht−1, xt] + bc)229

Ct = ft � Ct−1 + gt � it, � : pointwise operator230

with tanh a hyperbolic tangent function. Finally, the ”output gate” (Ot) gives the output value (ht):231

O1 = σ(WO[ht−1, xt] + bO)232

O2 = tanh(Ct)233

ht = O1 �O2234

In the four gates, the values of the weight matrix W and the bias b were obtained during the training part of the235

recurrent neural network.236
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