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Introduction

The current gold standard for the automatic detection of gait events in clinical practice involves the use of ground reaction forces measured by force platforms [START_REF] Veilleux | Agreement of spatio-temporal gait parameters between a vertical ground reaction force decomposition algorithm and a motion capture system[END_REF]. However, pathological gait is highly variable and the use of gait aids, small steps or foot dragging during swing phase can produce false force thresholds, all of which may reduce the accuracy of the detection. To avoid these issues, gait events are therefore often determined manually, in particular for pediatric gait which is highly variable, however this process is time consuming and its accuracy and reliability strongly depend on operator expertise. To overcome these issues, computational methods of gait event detection, mostly based on kinematic data from opto-electronic systems, have been developed. A literature review [START_REF] References Bruening | Automated event detection algorithms in pathological gait[END_REF] identified nine kinematic-based algorithms [START_REF] De Asha | A marker based kinematic method of identifying initial contact during gait suitable for use in real-time visual feedback applications[END_REF][START_REF] Desailly | Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait[END_REF][START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF][START_REF] Hreljac | Algorithms to determine event timing during normal walking using kinematic data[END_REF][START_REF] Hsue | Gait timing event determination using kinematic data for the toe walking children with cerebral palsy[END_REF][START_REF] Jasiewicz | Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals[END_REF][START_REF] O'connor | Automatic detection of gait events using kinematic data[END_REF][START_REF] Salazar-Torres | Validity of an automated gait event detection algorithm in children with cerebral palsy and non-impaired children[END_REF][START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF] that appeared promising for event detection in gait patterns such as equinus, slide/drag or steppage gait. The literature review and a recent study by [START_REF] Gonçalves | Identification of gait events in children with spastic cerebral palsy: comparison between the force plate and algorithms[END_REF] both revealed that the variables that result in the most accurate determination of events are sagittal resultant velocity [START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF], horizontal position [START_REF] Desailly | Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait[END_REF][START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF], and vertical/horizontal acceleration [START_REF] Hreljac | Algorithms to determine event timing during normal walking using kinematic data[END_REF][START_REF] Hsue | Gait timing event determination using kinematic data for the toe walking children with cerebral palsy[END_REF] for FS, and horizontal position [START_REF] Desailly | Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait[END_REF][START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF] and sagittal velocity [START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF] for FO. However, all those algorithms are limited by an accuracy of four frames (33.3 ms), and the fact that none can be used accurately across all types of gait pathologies. There is therefore a need for the development of learning-based approaches that do not require a priori information relative to the input data.

Most studies that have used machine learning to study biomechanical parameters in patients with musculoskeletal and neuromuscular diseases have focused on the classification of pathological movements, prediction of the risk of development of certain diseases or the effect of an intervention, or the automatic recognition of activity for outof-clinic monitoring [START_REF] Halilaj | Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities[END_REF]. Recently, a method using deep neural networks to detect gait events in children with cerebral palsy determined FS and FO with respective errors of 18.3 ms and 12.5 ms [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF]. However, that method requires the use of a biomechanical model to compute the kinematic input data (3D joint angles using the conventional gait model described by [START_REF] Kadaba | Measurement of lower extremity kinematics during level walking[END_REF], 3D position and velocity of the markers, and 3D position, velocity and acceleration of the pelvis).

Recurrent neural networks, and more specifically long short term memory (LSTM) networks are among the most efficient in learning dynamics from time series [START_REF] Hochreiter | Long short-term memory[END_REF]. Although LSTM networks are very popular [START_REF] Schmidhuber | Deep learning in neural networks: An overview[END_REF]), a specific type of analysis such as sensitivity analysis, Taylor decomposition or backward propagation, is necessary to understand the decision process used by such networks and thus to ensure appropriate interpretation of the output from the network, especially in the clinical context.

The primary aim of this study was to test the proof-of-concept of a new gait event detection method (DeepEvent) using an LSTM network. The second aim was to compare the accuracy of this new method with a set of different methods proposed in the literature and to determine if a resulting error of less than 10 ms (1 frame at 100 Hz) could be achieved. The third aim was to identify and interpret the parameters used in the decision process.

Method

Gait data

Data from 226 children who had undergone clinical 3D gait analysis were used. All parents provided written informed consent on a form that had been approved by the Brest CHRU. The children had the following pathologies: neurological disorders (65%, 76% of whom had cerebral palsy), neuromuscular disorders (11%), orthopedic disorders (9%) and other types of disorders (15%). All data were recorded using the same motion analysis system (Vicon MX, Oxford Metrics, UK) and four force platforms (Advanced Mechanical Technology, Inc., Watertown, MA, USA) in the same motion laboratory (Brest CHRU) between 2015 and 2019. The data collected by the 15 infrared cameras (sampling rate 100 Hz or 120 Hz) were synchronized with the ground reaction forces recorded by the force platforms (1000 Hz or 1200 Hz). The markers were placed according to the protocol by by [START_REF] Kadaba | Measurement of lower extremity kinematics during level walking[END_REF]. Marker trajectories and ground reactions forces were dual-pass filtered with a low-pass Butterworth filter at a cut-off frequency of 6 Hz. All participants walked independently, with no gait aids, at their natural speeds. An average of 5 trials was recorded for each child, yielding 1156 trials in total. All FS and FO events were manually identified by an engineer [START_REF] Crowther | A method for optimal division of data sets for use in neural networks[END_REF]). Among the test data, 815 FS (446 left FS and 369 right FS) and 815 FO (369 left FO and 446 right FO) had previously been identified using the force platform data and were used as the gold standard method for comparison purposes. FS was determined as the first frame at which the vertical ground reaction force was greater than 10 N. FO was determined as the first frame at which the vertical ground reaction force was lower than 10 N.

Network architecture

3D position and velocity of the left and right heel, toe and lateral malleolus markers for each trial were used as input data for the DeepEvent recurrent network. A zero-padding technique was used to obtain the same number of frames for each trial (with a maximum duration of 1536 frames).

The neural network consisted of M bidirectional LSTM layers with N hidden units (Supplementary data) and was followed by a dropout layer. Finally, a one-time distributed dense layer was used to detect gait events. The 5 gait events (no event, left FS, right FS, left FO and right FO) were encoded using a one-hot encoding scheme. The parameters M and N were empirically chosen to maximize the performance of the network with the validation data set by an empirical approach. A sensitivity analysis was carried out to explain the neural network decisions by measuring the contribution of each input variable to the overall prediction [START_REF] Simonyan | Deep inside convolutional networks: Visualising image classification models and saliency maps[END_REF].

DeepEvent was implemented using Keras [START_REF] Chollet | Keras[END_REF]) in Python [START_REF] Van Rossum | Python tutorial[END_REF]), with crossentropy as loss function and Adaptive Moment Estimation (Adam) for optimization on a Dell Workstation 7910 (CPU Xeon e5-2680-v4 2.4 GHz) with a Nvidia GeForce GTX 1080 Ti. DeepEvent is available on Github (github.com/LempereurMat/deepevent).

The contribution of each type of input data to the decision process is presented in figures 1 and 2. The sensitivity analysis showed that DeepEvent used the input data between 0 and 20%, between 50 and 70% and between 90 and 100% of the gait cycle. During these intervals, the contribution of each typeof input data was between 0 and 0.04. Outside of these intervals, the weights were closer to 0. These timings perfectly matched the definition of the beginning of swing phase at 60% of the gait cycle. The determination of the FS mainly involved the use of the z-axis (longitudinal) position and velocity of the toe and heel markers at the beginning and end of gait cycle (weight ¿ 0.04). To predict FO, DeepEvent mainly used the x-axis (antero-posterior) velocity and z-axis position and velocity of the toe marker around 60% of the gait cycle (weight ¿ 0.03).

FS [CI]

FO [CI] Table 1: Absolute differences in milliseconds between DeepEvent, the methods in the literature, and the gold standard (automatic determination using force platform data). CI: confidence interval. Best results are highlighted in bold.

Discussion

The aim of this study was to test the proof-of-concept of a new gait event detection approach using an LSTM network.

The results showed that DeepEvent determined FS and FO more accurately than three heuristic methods from the literature. Moreover, it was more accurate than the recently developed deep learning approach by [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF] that uses more input variables (kinematic outputs from conventional gait models). The high level of accuracy of DeepEvent means that it can be used in clinical practice for the automatic detection of the gait events with a very good inter-trial reliability. This study showed that the number of sequence frame (128 frames in [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF]; 1536 in DeepEvent) is an important input parameter, since increasing the number of frames in the method by [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF] to the number used by DeepEvent improved the accuracy of the former method. The detection of FO was consistently less accurate than the detection of FS. This is not surprising, DeepEvent is a supervised LSTM-based approach. The accuracy of this type of algorithm is determined by the quality of the manual event annotation. In many cases, gait transitions, in particular FO, occur gradually and the identification of a single event frame is somewhat subjective, as reported by [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF]. The location of the toe marker may also affect FO detection. The use of a hallux marker as in [START_REF] Stebbins | Repeatability of a model for measuring multi-segment foot kinematics in children[END_REF] could increase FO detection accuracy but this marker placement is not commonly used in clinical gait analysis.

The sensitivity analysis demonstrated the importance of both the toe and heel markers for the accurate detection of FS and FO while the lateral malleolus marker did not appear to be essential. Equally, pelvic and other markers were unnecessary because the deep learning approach could determine gait direction due to the numerous cases in the database of gait with direction along the anterior or posterior axis. In this study, all gait events were manually identified by a single experienced engineer and the neural network was trained using this information. The results now need to be externally validated by evaluating the robustness of this supervised technique using data from other laboratories.

  with 15 years' experience in gait analysis. The data included 10526 FS (5247 left and 5279 right) and 9375 FO (4654 left and 4721 right). The data were randomly divided up such that: 60% were used for training (694 trials, 6303 FS (3139 left FS; 3164 right FS)), 5614 FO (2789 left FO; 2825 right FO)), 10% for validation (116 trials, 1039 FS (514 left FS; 525 right FS), 923 FO (457 left FO; 466 right FO)) and 30% for testing (346 trials, 3184 FS (1594 left FS; 1590 right FS), 2841 FO (1411 left FO; 1430 right FO)). These proportions are typically used in deep learning methodology
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Validation: concurrent validity

The results of the DeepEvent method were compared to the position-, velocity-and acceleration-based algorithms proposed by [START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF], [START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF] and [START_REF] Hsue | Gait timing event determination using kinematic data for the toe walking children with cerebral palsy[END_REF] and the deep learning method proposed by [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF]. The position-based algorithms reported by [START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF] and [START_REF] Desailly | Foot contact event detection using kinematic data in cerebral palsy children and normal adults gait[END_REF] detected FS with the same degree accuracy, however the method by [START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF] more accurately identified FO [START_REF] References Bruening | Automated event detection algorithms in pathological gait[END_REF]). The velocity-based method reported by [START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF] identified gait events most accurately [START_REF] Gonçalves | Identification of gait events in children with spastic cerebral palsy: comparison between the force plate and algorithms[END_REF]), and the use of horizontal acceleration resulted in a more accurate determination of FS and FO than the use of vertical acceleration [START_REF] Hsue | Gait timing event determination using kinematic data for the toe walking children with cerebral palsy[END_REF]).

The coordinate-based algorithm by [START_REF] Zeni | Two simple methods for determining gait events during treadmill and overground walking using kinematic data[END_REF] uses the anterior/posterior position of the heel and toe marker relative to the sacrum marker. The equation for the definition of FS is: t F S = max(X Heel -X Sacrum ) and for FO is: [START_REF] Ghoussayni | Assessment and validation of a simple automated method for the detection of gait events and intervals[END_REF] uses the sagittal plane resultant velocity and applies a gait speed-dependent threshold to detect FS: F S T hreshold = 0.78 × W alkSpeed and FO: F O T hreshold = 0.66 × W alkSpeed. [START_REF] Hsue | Gait timing event determination using kinematic data for the toe walking children with cerebral palsy[END_REF] uses the peak horizontal deceleration of the heel marker to identify FS:

) and the peak horizontal acceleration of toe marker to detect FO:

Kidziński et al. ( 2019) uses the 3D joint angles using the conventional gait model described by [START_REF] Kadaba | Measurement of lower extremity kinematics during level walking[END_REF], 3D position and velocity of the markers, and 3D position, velocity and acceleration of the pelvis. Their network is built with 3 LSTM layers using a sequence of 128 frames. The results from DeepEvent were also compared to a modified version of the method by [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF], in which the number of frames was increased in order to obtain the same number of frames as in DeepEvent (1536).

Absolute differences in time were compared between the four algorithms in the literature, the modified Kidziński et al. ( 2019) algorithm, DeepEvent, and the force platform data.

Results

Proof-of-concept

Three bidirectional LSTM layers with 800 hidden units were chosen to maximize the performance of the network.

With these parameters, the trained model had a validation cross-entropy of 0.0286 and an accuracy of 100%. The receiver operating characteristic analysis showed that the fully trained model achieved an area under the curve of 0.9955 for the left FS, 0.9971 for the right FS, 0.9958 for the left FO and 0.9955 for the right FO indicating that the model accurately determined FS and FO.

Computational times for training DeepEvent, the original and the modified [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF] methods were on average about 20, 8 and 42 minutes respectively.

Concurrent validity and parameters used in the decision process

DeepEvent predicted FS within 5.5 ms and within 10.7 ms of the gold standard, and was more accurate than the three methods from the literature, as well as the modified [START_REF] Kidziński | Automatic real-time gait event detection in children using deep neural networks[END_REF] method (Table 1). These errors are acceptable since they are well below or just superior to the threshold of 10 ms.

Conflict of interest statement

None of the authors had any financial or personal conflict of interest with regard to this work.

Supplementary data

The Long Short Term Memory (LSTM) is composed of four different gates that can change the information to the cell state in order to build a long-term memory (figure supplementary data). The first gate is called the "forget gate" (f t ) that decides for each element of the previous cell state vector C t-1 how much information to forget:

with σ the sigmoid function 1 1+e -t and x t the input data (3D position of the left and right lateral malleolus, 3D position of the left and right toe, 3D position of the left and right heel, 3D velocity of the left and right lateral malleolus, 3D velocity of the left and right toe and 3D velocity of the left and right heel). The second step concerns the "input gate" (i t ) and the "candidate gate" (g t ) . The first one is used to update value in C t-1 while the second one is used to create a "candidate" that will be added to C t-1 . Then, the cell state is updated:

C t = f t C t-1 + g t i t , : pointwise operator with tanh a hyperbolic tangent function. Finally, the "output gate" (O t ) gives the output value (h t ):

In the four gates, the values of the weight matrix W and the bias b were obtained during the training part of the recurrent neural network.