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INTRODUCTION

Throughout this paper F denotes a field of characteristic 2 and W q (F ) the Witt group of nonsingular quadratic forms over F . Given a field extension K of F , one asks for the kernel of the homomorphism W q (F ) -→ W q (K) induced by scalar extension. The same type of question arises when considering the groups I n q (F ) := I n-1 (F ) ⊗ W q (F ) instead of W q (F ) (for n ≥ 1), where I k (F ) denotes the k-th power of the fundamental ideal I(F ) of the Witt ring W (F ) of regular symmetric bilinear forms over F , and ⊗ is the module action of W (F ) on W q (F ). A very nice general overview on the advances, up until 2015, on this problem can be found in [11, Section 2].

One important tool to study these kernels is a celebrated Theorem of Kato, see [START_REF] Kato | Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic 2[END_REF], which connects quadratic forms in characteristic 2 and differential forms over F, this result allows to interpret the above kernels as H m+1 ). Also, for A ⊆ Ω m F we denote by A its class in Ω m F /(℘(Ω m F ) + dΩ m-1 F ) (see below for the details).

The kernel H m+1 2 (K/F ) has been computed in the following cases:

(A1) K/F is purely transcendental [2, Lem. 2.17].

(A2) K/F is quadratic [START_REF] Aravire | Milnor's K-Theory and quadratic forms over fields of characteristic two[END_REF]Prop. 6.4] and [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF]Lem. 2.18]. (A3) K/F is biquadratic separable [START_REF] Aravire | The graded Witt group kernel of biquadratic extensions in characteristic two[END_REF]Th. 19].

(A4) K/F is a general quartic extenion [START_REF] Aravire | Cohomology and graded Witt group kernels for extensions of degree four in characteristic two[END_REF].

(A5) K = F (Q) the function field of a projective quadric given by a bilinear Pfister form Q of arbitrary dimension [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF]Th. 4.1], or a quadratic Pfister form Q of dimension 2 n+1 such that m ≤ n [2, Th. 5.5] and [9, Page 655],

or n = 0, 1 and m arbitrary [START_REF] Aravire | Milnor's K-Theory and quadratic forms over fields of characteristic two[END_REF]Prop. 6.4] and [START_REF] Aravire | H 1 (X, ν) of conics and Witt kernels in characteristic 2[END_REF]Th. 1.6]. (A6) K/F is multiquadratic of separability degree ≤ 2 [8, Prop. 2 and 3]. (A7) K is the compositum of a multiquadratic extension of F of separability degree ≤ 2 with the function field of a projective quadric given by a bilinear Pfister form [START_REF] Aravire | Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms[END_REF]. (A8) K/F is an arbitrary purely inseparable extension (including the case of infinite degree) [START_REF] Aravire | The behavior of differential forms under purely inseparable extensions[END_REF]. This case was also treated independently by Sobiech in [START_REF] Sobiech | The behavior of differential, quadratic and bilinear forms under purely inseparable field extensions[END_REF].

The field K in the cases (A3), (A6) and (A7) is given as a compositum of some fields extensions of F . The remarkable fact in these cases is that K satisfies a "kernel splitting property", meaning that the kernel H m+1 2 (K/F ) splits into the kernels of the fields composing K.

To make the statement kernel splitting property more precise we give the following definition.

Definition 1.1. Let K/F be an extension of fields of characteristic 2. Let E 1 , E 2 be subfields of K/F such that K = E 1 • E 2 is the compositum of E 1 and E 2 , and E 1 ∩ E 2 = F. We say that K/F satisfies the kernel splitting property with respect to E 1 and E 2 if for any integer m ≥ 1, we have the equality

H m+1 2 (K/F ) = H m+1 2 (E 1 /F ) + H m+1 2 (E 2 /F ).
This property is strongly dependent on the subfields as Example 6.2 shows.

The motivation of this paper is to discuss the kernel splitting property for other examples of kernels completing those cited before. More precisely, we will prove that the results of [START_REF] Aravire | Results on Witt kernels of quadratic forms for multiquadratic extension[END_REF][START_REF] Aravire | Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms[END_REF] (cited in the cases (A6) and (A7)) extend, in the sense of the kernel splitting property, to any multiquadratic purely inseparable extension composed with a biquadratic separable extension. More precisely, we have the following theorem: Theorem 1.2. Let L/F be a finite purely inseparable multiquadratic extension and K/F a biquadratic separable extension. Then, the extension K • L/F satisfies the kernel splitting property with respect to K and L. Set β =2 n+1 √ b and write f = f 0 + βf 1 with f 0 , f 1 ∈ F (β 2 ) = E.

Then df f = f 0 f 0 +βf 1 df 0 f 0 + βf 1 f 0 +βf 1 df 1 f 1 + βf 1 f 0 +βf 1 dβ β . Since dβ /
∈ Ω 1 F we conclude that f = f 0 ∈ E. Writing f = 2 n -1 j=0 h j β 2j with h 0 , . . . , h 2 n -1 ∈ F , we see that df f = 2 n -1 j=0 h j β 2j f dh j h j . More generally, considering the generators df 1 f 1 ∧ • • • ∧ dfm fm of the group ν L (m) ∩ (E • Ω m F ) L , we express each df i f i as above, multiply them out and squaring several times if necessary (see definition on Section 2), we obtain a differential defined over F modulo powers of exact forms. Bearing this in mind we propose the following definition:

Definition 1.3. Let L = F ( 2 n+1 √ b) where b ∈ F \ F 2 and n is a positive integer. Let's write β = 2 n+1 √ b. For any integer l ≥ 0, define G l L (m) as the subgroup of Ω m F (β 2 l+1 )
generated by the differentials:

(k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i
For the case of separable quadratic extensions, we will prove the following theorem.

Theorem 1.4. Let K = F (α) be a separable quadratic extension of F given by α 2 + α = a ∈ F \ ℘(F ), and L = F (β) a simple purely inseparable extension of F given by β

2 n+1 = b ∈ F \ F 2 .
Suppose that a ∈ F 2 l for some l > n. Then, we have

H m+1 2 (K • L/F ) = n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + aG n L (m).
With the same notations as in Theorem 1.4, the hypothesis that a ∈ F 2 l for some l > n is obviously realized without changing the separable extension K/F . Moreover, the group

n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db
is nothing but the kernel of the extension L/F that was considered in [START_REF] Aravire | Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms[END_REF]. However, the group aν F (m), which is the kernel of K/F [4, Prop. 6.4], does not appear explicitly in the theorem, this is because aν F (m) is contained in aG n L (m). It is not difficult to see that Theorem 1.4 can be generalized to consider L a finite purely inseparable extension of F.

On a different direction, Theorem 1.4 extends to the case of biquadratic separable extensions as follows:

Theorem 1.5. Let K = F (α 1 , α 2 ) be a biquadratic separable extension of F such that α 2 i + α i = a i ∈ F \ ℘(F ) for 1 ≤ i ≤ 2, and L = F (β) a simple purely inseparable extension of F such that β 2 n+1 = b ∈ F \ F 2 . Suppose that a 1 , a 2 ∈ F 2 l
for some l > n. Then, we have

H m+1 2 (K • L/F ) = n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + + a 1 G n L (m) + a 2 G n L (m).
The rest of this paper is organized as follows. In section 2 we recall some results on differential forms that we need, like a description of the leading coefficient of an exact differential form (Lemma 2.2), and a useful result due to Kato (Lemma 2.3). In section 3 we give the proof of Theorem 1.4. This proof uses intensively the action of the square operator on the group ν

F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β)
, where F (β)/F is a simple purely inseparable extension (Proposition 3.3), and a precise description of the F -component of 2 j powers of exact differentials forms (Lemmas 3.5 and 3.6). Section 4 states the preliminary results needed for the proofs of Theorems 1.2 and 1.5, these proofs use a very different technique when compare to the one used in Theorem 1.4. Specifically, for Theorem 1.4 we will work over the separable quadratic extension K = F (α), α 2 + α = a ∈ F \ ℘(F ), and use the description of the groups ℘(Ω m K ) and dΩ m-1 K in terms of the groups ℘(Ω m F ) and dΩ m-1 F . However, for Theorem 1.5 we will first work over the simple purely inseparable extension L = F (β), so that we apply the kernel of the biquadratic separable extension K = F (α 1 , α 2 ) found in [START_REF] Aravire | The graded Witt group kernel of biquadratic extensions in characteristic two[END_REF]. This allows us to work with a relation of the shape

w L ∈ a 1 ν L (m) + a 2 ν L (m) + ℘(Ω m L ) + dΩ m-1 L
, where w ∈ Ω m F .

Subsequently using Proposition 4.4, we descend the above relation to one defined over the field L (2) := F (β 2 ), that is, for the same w we reduce to a relation

w L ∈ a 1 (ν L (2) (m)) L + a 2 (ν L (2) (m)) L + (℘(Ω m L (2) ) + dΩ m-1 L (2) ) L .
Based on this last relation, we prove Theorem 1.2 and conclude the proof of Theorem 1.5 using arguments similar as those in the proof of Theorem 1.4 (Section 5). Note that Proposition 4.4 uses Lemma 4.3 which is based on some important exact sequences concerning Izhboldin's groups done by the first author and B. Jacob in [START_REF] Aravire | Cohomology and graded Witt group kernels for extensions of degree four in characteristic two[END_REF]. We finish with Section 6 giving an example that illustrates the strong dependency of the kernel splitting property on the subfields defining the compositum.

DIFFERENTIAL FORMS

Background on differential forms. For any integer

m ≥ 1, let Ω m F = ∧ m Ω 1
F be the space of m-differential forms over F , where Ω 1 F is the F -vector space generated by the symbols dx, x ∈ F , subject to the relations: d(x + y) = dx + dy and d(xy) = xdy + ydx for all x, y ∈ F (we take Ω 0 F = F ). In particular, there is an F 2 -linear map F -→ Ω 1 F , given by x → dx. This map extends to the differential operator d :

Ω m F -→ Ω m+1 F as follows: d(xdx 1 ∧ • • • ∧ dx m ) = dx ∧ dx 1 ∧ • • • ∧ dx m . Let B = {e i | i ∈ I} be a 2-basis of F , that is, the set i∈I e i i | i ∈ {0, 1}
, and i = 0 for almost all i ∈ I is an F 2 -basis of F . We fix an ordering on I and consider m,F := {σ : {1, . . . , m} -→ I | σ(i) < σ(j) whenever i < j}, this set is then equipped with the lexicographic ordering, thus the set

{ deγ eγ | γ ∈ m,F } is an F -basis of Ω m F , where deγ eγ = de γ(1) e γ(1) ∧ • • • ∧ de γ(m) e γ(m)
. Also for any i ∈ I, we define F i as the field F 2 (e j | j ≤ i) and F <i as F 2 (e j | j < i). Similarly, for γ ∈ m,F let Ω m F,γ be the subspace of Ω m F generated by deσ eσ with σ ≤ γ and Ω m F,<γ the subspace of Ω m F generated by deσ eσ with σ < γ. Thus, there is a filtration of Ω m F given by Ω m F,γ , γ ∈ m,F (and Ω m F,<γ , γ ∈ m,F ).

The maximal multi-index of a nonzero u ∈ Ω m F will be denoted by max(u). The well known Artin-Schreier map ℘ : F -→ F, defined by ℘(a) = a 2 -a for a ∈ F, extends to Ω m F by setting

℘ : Ω m F -→ Ω m F /dΩ m-1 F as ℘( σ≤γ c σ deσ eσ ) = σ≤γ (c 2 σ -c σ ) deσ eσ + dΩ m-1 F
and it is also called the Artin-Schreier operator. Its definition depends on the 2-basis but is independent of that modulo dΩ m-1 F . The kernel of the Artin-Schreier operator is denoted by ν F (m). Also H m+1 2 (F ) is defined as the cokernel of ℘ and we may consider the group

H m+1 2 (F ) as the quotient Ω m F /(℘(Ω m F ) + dΩ m-1 F ).
The square operator defined by: w = σ≤γ c σ deσ eσ → w [2] = σ≤γ c 2 σ deσ eσ depends on the choice of the 2-basis, but it is well defined modulo the subgroup dΩ m-1 F and thus is a group homomorphism.

For any w = σ≤γ c σ deσ eσ ∈ Ω m F we write w [2] = σ≤γ c 2 σ deσ eσ + ds 1 for some

s 1 ∈ Ω m-1 F
. Using this expression and applying the square operator again we get w [2 2 ] := (w [2] ) [2] = σ≤γ c 4 σ deσ eσ + (ds 1 ) [2] + ds 2 for some

s 2 ∈ Ω m-1 F , and thus w [2 2 ] = σ≤γ c 4 σ deσ eσ + ℘(ds 1 ) + d(s 1 + s 2 ).
More generally, we have

w [2 k ] = σ≤γ c 2 k σ deσ eσ + ℘(ds) + dt for some s, t ∈ Ω m-1 F
, and therefore

w [2 k ] = σ≤γ c 2 k σ deσ eσ in H m+1 2 (F ).

Tools for differential forms.

In this part we gather some results about differential forms. Some of our proofs will consider changing the initial 2-basis by another one without changing the filtrations, namely (Ω m F,γ ) γ∈Σ m,F and (Ω m F,<γ ) γ∈Σ m,F (resp. (ν F,α (m)) γ∈Σ m,F and (ν F,<γ (m)) γ∈Σ m,F ) given by the original 2-basis. One instance of this behavior is given by the following proposition. Proposition 2.1. Let B = {e i | i ∈ I} be a 2-basis of F . We choose an ordering on I and let σ ∈ Σ m,F . Let f σ(i) = r i + s i e σ(i) be such that r i , s i ∈ F <σ(i) and s i = 0 for all 1 ≤ i ≤ m, i.e., f σ(i) ∈ F σ(i) \ F <σ(i) . We introduce the set B = {e i | i ∈ I} given as follows:

e k = e k if k = σ(1), . . . , σ(m), f k if k ∈ {σ(1), . . . , σ(m)},
and we keep the same ordering on I. Then:

(1) B is a 2-basis of F . (2) F 2 (e j | j < σ(i)) = F 2 (e j | j < σ(i)) and F 2 (e j | j ≤ σ(i)) = F 2 (e j | j ≤ σ(i)).
(3) For any w ∈ Ω m F , the maximal multi-indices of w with respect to B and B are the same. (4) The group Ω m F,σ is the same for B and B . Similarly for Ω m F,<σ and ν F,<σ (m).

Proof.

(1) and ( 2) are straight forward.

(3) Let w ∈ Ω m F and τ ∈ Σ m,F be the maximal multi-index of w with respect to B. We will prove that τ is also the maximal multi-index of w with respect to B . It suffices to prove the statement when w = de τ (1) e τ (1)

∧ • • • ∧ de τ (m) e τ (m)
. Let σ ∩ τ be the intersection of the multi-indices σ and τ defined as the set {i ∈ I | σ(k) = i = τ (l) for some 1 ≤ k, l ≤ m}.

• Suppose σ ∩ τ = ∅. Then, w = de τ (1) e τ (1) ∧ • • • ∧ de τ (m) e τ (m)
, and thus τ is the maximal multi-index of w with respect to B .

• Suppose σ ∩ τ = ∅. Let s be the cardinal of σ ∩ τ , and let

k 1 < k 2 < • • • < k s and l 1 < l 2 < • • • < l s be such that σ(k i ) = τ (l i ) for 1 ≤ i ≤ s. Let w = ∧ i =l 1 ,••• ,ls 1≤i≤m de τ (i) e τ (i) . Clearly, w = ∧ i =l 1 ,••• ,ls 1≤i≤m de τ (i) e τ (i)
and,

w = w ∧ de τ (l 1 ) e τ (l 1 ) ∧ • • • ∧ de τ (ls) e τ (ls) , (1) 
and

w ∧ df σ(k 1 ) f σ(k 1 ) ∧ • • • ∧ df σ(ks) f σ(ks) = de τ e τ (2) 
because

σ(k i ) = τ (l i ) and f σ(k i ) = e σ(k i ) . Moreover, e σ(k i ) = s -1 k i (r k i + f σ(k i ) ) with r k i , s k i ∈ F 2 (e j | j < σ(k i ))
, and by (2) we see that

r k i , s k i ∈ F 2 (e j | j < σ(k i )) = F 2 (e j | j < τ (l i )).
Substituting the expression for e σ(k i ) in (1), and using (2), we conclude that w = c de τ e τ + w , for suitable c ∈ F * and w ∈ Ω m F whose maximal multi-index with respect to B is smaller than τ , i.e., the maximal multi-index of w with respect to B is τ .

(4) This is a direct consequence of (3).

The following Lemma, due to Aravire and Baeza, gives a precise description of the leading coefficient of an exact differential form.

Lemma 2.2. ([3, Lemma 3.2]) Let B = {e i | i ∈ I} be a 2-basis of F , and u = τ ≤γ c τ deτ eτ ∈ dΩ m-1 F (m ≥ 1) such that c γ = 0. Then, c γ = m i=1 x i e γ(i) , where x i ∈ F <γ(i) for each 1 ≤ i ≤ m.
The following result, due to Kato, plays a relevant role in the proof of the following Corollary 2.4 and Lemma 2.5.

Lemma 2.3. ([14, Lemma 2]) Let B = {e i | i ∈ I} be a 2-basis of F. Let γ ∈ m,F and x ∈ F be such that ℘(x deγ eγ ) ∈ Ω m F,<γ + dΩ m-1 F . Then, there exist v ∈ Ω m F,<γ and c i ∈ F γ(i) , 1 ≤ i ≤ m, such that x de γ e γ = dc 1 c 1 ∧ • • • ∧ dc m c m + v.
By an induction argument on multi-indices and using the above Lemma 2.3 one can prove the following.

Corollary 2.4. Let B = {e i | i ∈ I} be a 2-basis of F , γ ∈ Σ m,F and u ∈ ν F (m) nonzero such that γ = max(u). Then, u = σ≤γ df σ(1) f σ(1) ∧ • • • ∧ df σ(m) f σ(m) such that f σ(i) ∈ F σ(i) for each 1 ≤ i ≤ m.
We will refer to this result as Kato's decomposition of elements in ν F (n).

The next Lemma is another result that depends on Lemma 2.3, we ommit its proof.

Lemma 2.5. ([9, Lemma 3.5]) Let B be a 2-basis of F , γ ∈ Σ m,F and u, w ∈ Ω m F , v ∈ Ω m-1 F satisfying max(w) = γ and w = ℘(u) + dv. Then, there exist ξ ∈ ν F (m), u ∈ Ω m F,<γ and v ∈ Ω m-1 F such that: (1) u = ξ + u . (2) w = ℘(u ) + dv and max(dv ) ≤ γ.
The following result can be found in [START_REF] Aravire | Graded Witt kernels of the compositum of multiquadratic extensions with the function fields of Pfister forms[END_REF] and we omit the proof.

Lemma 2.6. ([9, Lemma 3.4]) Let {e i | i ∈ I} be a 2-basis of an extension F of F , γ ∈ Σ m,F and f γ(i) ∈ F γ(i) for 1 ≤ i ≤ m. Let M 1 , . . . , M m ∈ F be such that M i ∈ F <γ(i) for 1 ≤ i ≤ m. Then: (1) m i=1 M i f γ(i) df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) ∈ dΩ m-1 F + Ω m F ,<γ . (2) df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) = d(M 1 f γ(1) ) M 1 f γ(1) ∧ • • • ∧ d(Mmf γ(m) ) Mmf γ(m)
+ µ, where µ ∈ ν F ,<γ (m).

(3) If moreover f γ(i) and M i belong to F, 1 ≤ i ≤ m, then combining (1) and ( 2) we get: (a)

m i=1 M i f γ(i) df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) ∈ (dΩ m-1 F ) F + (Ω m F ) F ,<γ . (b) µ ∈ (ν F (m)) F ,<γ .
If L is a field extension of F , then the images of the natural homomorphisms

Ω m F -→ Ω m L and ν F (m) -→ ν L (m) are denoted by (Ω m F ) L and (ν F (m)) L , re- spectively. For each γ ∈ Σ m,L , we denote by (Ω m F ) L,<γ and (ν F (m)) L,<γ the groups (Ω m F ) L ∩ Ω m L,<γ and (ν F (m)) L ∩ Ω m L,<γ , respectively.

PROOF OF THEOREM 1.4

Throughout this section, let K = F (α) and L = F (β), where

α 2 + α = a ∈ F \ ℘(F ) and β 2 n+1 = b ∈ F \ F 2 . We consider B = {e 1 = b, e 2 , .
. .} a 2-basis of F together with an ordering. The set C = {e 2 , . . .} ∪ {β} is then a 2-basis of F (β) and we consider an ordering on C so that β is its last element.

We begin by showing that the groups aG n L (m), see Definition 1.3, are part of the kernels we are dealing with. Lemma 3.1. Let K and L be as above and suppose that a ∈ F 2 n . Then,

aG n L (m) ⊂ H m+1 2 (K • L/F ). Proof. Let ξ = a (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i 2 n df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km
f m,km be a generator of the group aG n L (m), where

f i = 2 n -1 k i =0 f i,k i β 2k i and f i,k i ∈ F for each 1 ≤ i ≤ m. Since a ∈ F 2 n , we may write ξ = (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 2 n √ a m i=1 β 2k i f i,k i f i 2 n df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km .
Clearly, modulo the group

℘(Ω m L ) + dΩ m-1 L , we have ξ = (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 2 n √ a m i=1 β 2k i f i,k i f i df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km = 2 n √ a df 1 f 1 ∧ • • • ∧ df m f m = a df 1 f 1 ∧ • • • ∧ df m f m . Since a df 1 f 1 ∧ • • • ∧ dfm fm ∈ H m+1 2 (K • L/F ), it follows that ξ ∈ H m+1 2 (K • L/F ).
A key point in the proof of Theorem 1.4 is provided by the following observation.

Lemma 3.2. Keeping the same notations as before. For any integer m ≥ 1 it holds

ν F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β) = (ν F (β 2 ) (m)) F (β) . Proof. Since dβ 2 = 0 ∈ Ω 1 F (β) and Ω m F (β 2 ) = F (β 2 ) • Ω m F + F (β 2 ) • Ω m-1 F ∧ dβ 2 , it follows that (ν F (β 2 ) (m)) F (β) ⊂ ν F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β) . Conversely, let w ∈ ν F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β) be nonzero. Since w ∈ F (β 2 ) • Ω m F , it follows from Corollary 2.

and the ordering on

C that w = σ≤γ df σ(1) f σ(1) ∧ • • • ∧ df σ(m) f σ(m)
,

where γ = max(w) and f σ(i) ∈ L σ(i) = L 2 (e j ∈ B | j ≤ σ(i)) for all 1 ≤ i ≤ m. Since L σ(i) ⊂ F (β 2 ), we conclude that w ∈ (ν F (β 2 ) (m)) F (β) .
The following proposition gives a description on how the square operator acts on the group ν

F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β) . Proposition 3.3. Keep the same notations as before. Let η ∈ ν F (β) (m) ∩ (F (β 2 ).Ω m F ) F (β) .
Then, for any positive integer l there are exact differential forms

ds i ∈ F (β 2 )Ω m F and η ∈ G l L (m) such that η = η + l-1 j=0 (ds j ) [2 j ] . (3) 
Proof. By Lemma 3.2, we have η ∈ (ν

F (β 2 ) (m)) F (β)
. It suffices to prove the proposition for the case η

= df 1 f 1 ∧ • • • ∧ dfm fm with f 1 , . . . , f m ∈ F (β 2 ). Writing f i = 2 n -1 k i =0 f i,k i β 2k i for f i,k i ∈ F
, and arguing as we did before (Definition 1.3), it becomes clear that

η = (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km .
It is well known that the elements of ν F (β) (m) are invariant under the square operator modulo exact differential forms, then η ≡ η [2] (mod dΩ m-1 F (β) ), where

η [2] ≡ (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i 2 df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km (mod dΩ m-1 F (β) ).
Hence, there is ds

∈ dΩ m-1 F (β) such that η = (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i 2 df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km + ds, also notice that ds ∈ (F (β 2 ) • Ω m F ) F (β) .
Applying the square operator again, we have [2] + dt, for a suitable dt ∈ dΩ m-1 F (β) , also notice (as above) that dt ∈ (F (β 2 ) • Ω m F ) F (β) . An induction argument shows that for any positive integer l there are exact differentials ds 0 , . . . ,

η = (k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i 2 2 df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km + (ds)
ds l-1 ∈ (F (β 2 ) • Ω m F ) F (β) such that η = η + l-1 j=0 (ds j ) [2 j ] ,
where η =

(k 1 ,k 2 ,...,km) 0≤ks≤2 n -1 m i=1 β 2k i f i,k i f i 2 l df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,km ∈ G l L (m).
In order to prove our Theorem we need a description of the F -component of l-1 j=0 (ds j ) [2 j ] appearing in equation ( 3), where ds 0 , . . . ,

ds l-1 ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) (Lemmas 3.5 and 3.6). One can write Ω m F (β) = 2 n+1 -1 i=0 β i Ω m F ⊕ 2 n+1 -1 i=0 β i Ω m-1 F ∧ dβ , thus every s j ∈ Ω m F (β) can be written as s j = 2 n+1 -1 i=0 β i ξ j,i + 2 n+1 -1 i=0 β i χ j,i ∧ dβ with ξ j,i ∈ Ω m-1 F and χ j,i ∈ Ω m-2 F for all 0 ≤ i ≤ 2 n+1 -1 and 0 ≤ j ≤ n -1.
Therefore, for each j, ds j = dξ j,0

+ 2 n+1 -1 i=1 β i dξ j,i + Z ∧ dβ. Since ds j ∈ (F (β 2 ) • Ω m F ) F (β)
, we see that

ds j = dξ j,0 + 2 n -1 i=1 β 2i dξ j,2i , ξ j,2i ∈ Ω m-1 F , 1 ≤ i ≤ 2 n -1. (4) 
As an immediate consequence we have the following:

Corollary 3.4. dΩ m-1 F (β 2 ) = dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) .
To describe the F -component of l-1 j=0 (ds j ) [2 j ] from (3) we use the following lemma.

Lemma 3.5. Let l be an arbitrary positive integer, and ds 0 , . . . ,

ds l ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) . Then, the F -component of l j=0 (ds j ) [2 j ] is contained in the group l j=0 i2 j-n =t∈N 0≤i≤2 n -1 b t (dΩ m-1 F ) [2 j ] .
Proof. By equation (4), using the fact that [2 j ] is a homomorphism, we have

l j=0 (ds j ) [2 j ] = l j=0 (dξ j,0 ) [2 j ] + l j=0 2 n -1 i=1 β i2 j+1 (dξ j,2i ) [2 j ] , (5) 
where

ξ j,2i ∈ Ω m-1 F for all 0 ≤ i ≤ 2 n -1.
We are only interested in the part that is defined over F , thus we just need to consider the indices i and j such that β i2 j+1 = b t for some non-negative integer t. This is when i2 j+1 = 2 n+1 t, that is when i2 j-n ∈ N with 0 ≤ i ≤ 2 n -1.

Lemma 3.6. For any integer 0 ≤ l ≤ n, the group

l j=0 i2 j-n =t∈N 0≤i≤2 n -1 b t (dΩ m-1 F ) [2 j ] is contained in the group n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + ℘(Ω m F ) + dΩ m-1 F . Proof. Let A = b t (dλ) [2 j ] such that λ ∈ Ω m-1 F , i2 j-n = t ∈ N, 0 ≤ j ≤ l ≤ n and 0 ≤ i ≤ 2 n -1. We have to prove that A belongs to n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + ℘(Ω m F ) + dΩ m-1 F . (i) Suppose j = 0. Then i = 0 because i2 j-n = t ∈ N and 0 ≤ i ≤ 2 n -1. Therefore A = dλ. (ii) Suppose j ≥ 1. If t is even, then t = 2t where t = i2 j-n-1 . Since A ≡ b t (dλ) [2 j-1 ] (mod ℘(Ω m F )+dΩ m-1 F
), we reduce to the element b t (dλ) [2 j-1 ] . Repeating this argument, if necessary, we may suppose that t is odd.

Let t = 2k -1 for some integer k, since 0 ≤ i ≤ 2 n -1 we have 0 ≤ t < 2 j , therefore 1 ≤ k ≤ 2 j-1 .
Then, we proved that, modulo

℘(Ω m F ) + dΩ m-1 F , the element A belongs to b 2k-1 (dΩ m-1 F ) [2 j ]
, where 1 ≤ k ≤ 2 j-1 and 1 ≤ j ≤ n.

The kernel of a simple purely inseparable extension is computed in [10, Theorem 3.1], and [START_REF] Sobiech | The behavior of differential, quadratic and bilinear forms under purely inseparable field extensions[END_REF]Corollary 3.15] for p = 2. It states the following: Theorem 3.7. Let F ( 2 n+1 √ c) for c ∈ F and n a positive integer. Then, we have

H m+1 2 (F ( 2 n+1 √ c)/F ) = n k=1 2 k-1 j=1 c 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ dc.
Now we proceed with the proof of Theorem 1.4. Recall that K = F (α) and L = F (β), where α 2 + α = a ∈ F \ ℘(F ) such that a ∈ F 2 l for some l > n, and

β 2 n+1 = b ∈ F \ F 2 .
First we characterize the elements in the kernel H m+1

2 (K • L/F ). Let w ∈ Ω m F be such that w ∈ H m+1 2 (K • L/F ). Then, w K ∈ H m+1 2 (K • L/K).
By Theorem 3.7, above, there are

λ 0 , λ k,j ∈ Ω m-1 K and u ∈ Ω m K , v ∈ Ω m-1 K such that w K = n k=1 2 k-1 j=1 b 2j-1 (dλ k,j ) [2 k ] + λ 0 ∧ db + ℘(u) + dv. ( 6 
)
Since K/F is a separable extension, we can write λ 0 = 0 + αθ 0 , λ k,j = k,j + αθ k,j with 0 , θ 0 , k,j , θ k,j ∈ Ω m-1 F , and also

u = u 1 + αu 2 , v = v 1 + αv 2 with u 1 , u 2 ∈ Ω m F , and v 1 , v 2 ∈ Ω m-1 F .
We have dλ k,j = d k,j + αdθ k,j because α is a square, and so

(dλ k,j ) [2 k ] = (d k,j ) [2 k ] + α 2 k (dθ k,j ) [2 k ] . (7) 
Now using that α 2 k = α + k-1 t=0 a 2 t , we get

α 2 k (dθ k,j ) [2 k ] = α(dθ k,j ) [2 k ] + k-1 t=0 a 2 t (dθ k,j ) [2 k ] .
Since a ∈ F 2 l with l > n, we can write

a 2 t (dθ k,j ) [2 k ] = (dθ k,j ) [2 k ] for some dθ k,j ∈ Ω m-1 F
. Therefore equation ( 7) can be written as

(dλ k,j ) [2 k ] = (dδ k,j ) [2 k ] + α(dθ k,j ) [2 k ] ,
where δ k,j , θ k,j ∈ Ω m-1

F

. Now we rewrite equation ( 6) as

w K = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + α(dθ k,j ) [2 k ] + λ 0 ∧ db + ℘(u) + dv = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + α n k=1 2 k-1 j=1 b 2j-1 (dθ k,j ) [2 k ] + 0 ∧ db + + αθ 0 ∧ db + ℘(u 1 ) + au [2] 2 + α℘(u 2 ) + dv 1 + αdv 2 = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + 0 ∧ db + ℘(u 1 ) + au [2] 2 + dv 1 + +α   n k=1 2 k-1 j=1 b 2j-1 (dθ k,j ) [2 k ] + θ 0 ∧ db + ℘(u 2 ) + dv 2   .
Since w is defined over F we have two equations:

w = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + 0 ∧ db + ℘(u 1 ) + au [2] 2 + dv 1 (8) 0 = n k=1 2 k-1 j=1 b 2j-1 (dθ k,j ) [2 k ] + θ 0 ∧ db + ℘(u 2 ) + dv 2 . (9) 
Now we consider each term b 2j-1 (dθ k,j ) [2 k ] in equation ( 9) over the field L = F (β). For k, j satisfying 1 ≤ k ≤ n and

1 ≤ j ≤ 2 k-1 , let x l,j = β 2(2j-1)2 n-l (dθ k,j ) [2 k-l ]
for each 1 ≤ l ≤ k. By applying successively the operator ℘, we get

b 2j-1 (dθ k,j ) [2 k ] = (β 2 n+1 ) 2j-1 (dθ k,j ) [2 k ] = β 2(2j-1)2 n (dθ k,j ) [2 k ] ≡ ℘(x 1,j ) + x 1,j (mod dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) ) ≡ ℘(x 1,j ) + ℘(x 2,j ) + x 2,j (mod dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) ) ≡ . . . ≡ ℘( k l=1 x l,j ) + β 2(2j-1)2 n-k dθ k,j (mod dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) ). Since β 2(2j-1)2 n-k dθ k,j = d(β 2(2j-1)2 n-k θ k,j ) ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) , it follows that n k=1 2 k-1 j=1 b 2j-1 (dθ k,j ) [2 k ] = ℘(λ) + dτ, (10) 
where

λ = n k=1 2 k-1 j=1 k l=1 x l,j ∈ F (β 2 ) • Ω m F and dτ ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) . (11) 
Since db = 0 over F (β), and inserting (10) into equation ( 9), we get

0 = ℘(u 2 + λ) + d(v 2 + τ ). (12) 
This last equation implies that there is

η w ∈ ν F (β) (m) such that u 2 + λ = η w . ( 13 
) Since u 2 ∈ Ω m F and λ ∈ (F (β 2 ) • Ω m F ) F (β) , we see that η w ∈ ν F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β)
. Hence, by Proposition 3.3, η w = η + n-2 j=0 (ds j ) [2 j ] , where η ∈ G n-1 L (m) and ds 0 , . . . ,

ds n-2 ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) .
Thus, equation ( 13) becomes u 2 = η + λ + n-2 j=0 (ds j ) [2 j ] . Inserting u 2 into equation ( 8) and working over Ω m F (β) , we get

w = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + 0 ∧ db + ℘(u 1 ) + (14) 
+a(η + λ + n-2 j=0 (ds j ) [2 j ] ) [2] + dv 1 = n k=1 2 k-1 j=1 b 2j-1 (dδ k,j ) [2 k ] + 0 ∧ db + ℘(u 1 ) + +aη + aλ [2] + a n-2 j=0 (ds j ) [2 j+1 ] + adt + dv 1 ,
for some η ∈ G n L (m) and dt coming from the squaring of η . It is clear that dt belongs to dΩ m-1

F (β) ∩ (F (β 2 ) • Ω m F ) F (β)
. Now we look for the F -components of equation [START_REF] Kato | Galois cohomology of complete of complete discrete valuation fields Algebraic Ktheory[END_REF]. Clearly, the elements w, aη , ℘(u 1 ), 0 ∧ db and dv 1 are defined over F, and according to Lemmas 3.5 and 3.6, the F -component of a n-2 j=0 (ds j ) [2 j+1 ] + adt is contained in

a n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] . (15) 
Moreover, by equation ( 11), we get

λ [2] = ( n k=1 2 k-1 j=1 k l=1 β (2j-1)2 n+2-l (dθ k,j ) [2 k-l+1 ] ) + dt (16) for a suitable dt ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β)
. The F -component of the triple sum in ( 16) is obtained for l = 1, and thus the F -component of aλ [2] is equal to

a n k=1 2 k-1 j=1 b 2j-1 (dθ k,j ) [2 k ] + adt 0 , (17) 
where dt 0 ∈ dΩ m-1

F

. Since the scalar a belongs to F 2 l with l > n, we may assume it is inside (dΩ m-1 F ) [2 k ] in the double sums [START_REF] Sobiech | The behavior of differential, quadratic and bilinear forms under purely inseparable field extensions[END_REF] and (17). Summarizing we see that

w ∈ n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + aG n L (m) + ℘(Ω m F ) + dΩ m-1 F .
Summing up, we have shown

H m+1 2 (K • L/F ) ⊆ n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + aG n L (m).
For the reverse inclusion, we know that n k=1

2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db ⊂ H m+1 2 (K • L/F ), and by Lemma 3.1 aG n L (m) ⊂ H m+1 2 (K • L/F ) because a ∈ F 2 n .

A DESCENT RESULT

Let L be a finite purely inseparable extension of F . The extension L/F is called

modular if L = F (β 1 , • • • , β s ) ∼ = F (β 1 ) ⊗ F • • • ⊗ F F (β s ) for some s ≥ 1, where for each 1 ≤ i ≤ s there exist b i ∈ F \ F 2 and non-negative integer n i such that β 2 n i i = b i . In this case, we have [L : F ] = 2 n 1 +•••+ns , which is also equivalent to the fact that b 1 , • • • , b s are 2-independent, i.e., {b 1 , • • • , b s } is a part of a 2- basis of F .
Of course not all finite purely inseparable extensions are modular, see for instance [16, Example 1.1, page 405]. We refer to [START_REF] Sweedler | Structure of inseparable extensions[END_REF] for other equivalent definitions of modularity.

The aim of this section is to give a general result (Proposition 4.4) that is needed in the proofs of Theorems 1.2 and 1.5. This result applies not only to simple purely inseparable extensions but also to modular purely inseparable extensions. Notation 4.1. Suppose that as above L = F (β 1 , . . . , β s ) is a modular purely inseparable extension. We denote by L (2) the subfield of L given by L (2) = F (β 2 1 , . . . , β 2 s ).

Let K = F (α 1 , α 2 ) be a separable biquadratic extension such that

α 2 i + α i = a i ∈ F \ ℘(F ) for 1 ≤ i ≤ 2. Without loss of generality, we may suppose that a 1 , a 2 ∈ F 2 . Set M = L (2) (α 2 ). Since L/F is modular, the set {b 1 , . . . , b s } can be completed to a 2-basis B ∪{b 1 , b 2 , . . . , b s } of F . Then, C := B ∪{β 1 , . . . , β s } is a 2-basis of L. Put C = {e i | i ∈ I}
and fix an ordering on C so that β 1 < • • • < β s and e i < β j for all e i ∈ B and 1 ≤ j ≤ s.

We will need the following Lemmas. Izhboldin in [START_REF] Izhboldin | On p-Torsion in K M * for Fields of Characteristic p[END_REF] introduced the groups Q m (F, n) for n > 1 whose definition is based on p-Witt vectors of length n. Here, we will only consider the groups Q m (F, 1) defined as follows. For any integer m ≥ 1, let Q m (F, 1) be the group F ⊗ F * ⊗m /J m,1 , where J m,1 is the subgroup generated by the elements a ⊗ x 1 ⊗ • • • ⊗ x m such that x i = x j for some i = j, and the elements a s ⊗ a ⊗ x 2 ⊗ • • • ⊗ x n such that a ∈ F * and s an integer ≥ 1. We have a well-defined Artin-Schreier homomorphism ℘ : Q m (F, 1) -→ Q m (F, 1) defined on generators by:

℘(a ⊗ x 1 ⊗ • • • ⊗ x m ) = (a 2 -a) ⊗ x 1 ⊗ • • • ⊗ x m , (18) 
and whose kernel is isomorphic to ν F (m) see [START_REF] Izhboldin | On p-Torsion in K M * for Fields of Characteristic p[END_REF]. Furthermore, Izhboldin proved that

Q m (F, 1) Ω m F /B m ∞ , where B m ∞ = ∪ r≥1 B m r F , and B m r F is the subgroup of Ω m F generated by the elements (f 1 f 1 • • • f m ) 2 k df 1 f 1 ∧ • • • ∧ dfm fm with k < r. Note that B m 0 F = 0 and B m 1 F = dΩ m-1 F .
In the computations that follow, especially those in the proof of Lemma 4.3, we will work with the quotient groups Ω m F /B m ∞ instead of the groups Q m (F, 1). For K the separable biquadratic extension as above, let us set

K 1 = F (α 1 ), K 2 = F (α 2 ) and K 3 = F (α 3 ) where α 3 = α 1 + α 2 .
We consider the trace maps

T i = Tr K i /F , Ti = Tr K/K i and i j : Q m (F, 1) → Q m (K j , 1
). Aravire and Jacob showed in [START_REF] Aravire | The graded Witt group kernel of biquadratic extensions in characteristic two[END_REF]Theorem 8] that the following sequence is exact:

Q m (F, 1) d 1 -→ Q m (K, 1) ⊕ Q m (F, 1) d 2 -→ ⊕ 3 i=1 Q m (Ki, 1) d 3 -→ Q m (F, 1) ⊕2 (19)
where the maps d 1 , d 2 and d 3 are defined as follows:

d 1 = i K/F ⊕ -2 • 1 F , d 2 = ( T1 + i 1 , T2 + i 2 , T3 + i 3 ), d 3 = (T 1 -T 3 , T 2 -T 3 ).
Additionally the same authors showed in [5, Theorem 34 and Remark 5] that the following sequence for the groups ν F (m) is exact: 

ν K (m) ⊕ ν F (m) d * 2 -→ ⊕ 3 i=1 ν K i (m) d * 3 -→ ν F (m) ⊕2 ( 
Σ m,F , w ∈ Ω m F , u = u 0 + α 1 u 1 + α 2 u 2 + α 1 α 2 u 3 with u i ∈ Ω m F and v ∈ Ω m-1 K . Suppose that max(u 1 ) < γ, max(u 3 ) < γ and w K = ℘(u) + d(v) ∈ Ω m K . ( 21 
)
Then, there exists δ ∈ ν K (m), u 0 , u 1 , u 2 ∈ Ω m F such that u = δ+u 0 +α 1 u 1 +α 2 u 2 and max(u 1 ) < γ.

Proof. Along this proof we will write [η] for the class of η ∈ Ω m F in the quotient Ω m F /B m ∞ . Accordingly, since ν F (m) is isomorphic to the kernel of the Artin-Schreier homomorphism given in (18), we may identify the elements of ν F (m) with their corresponding classes [η] in Ω m F /B m ∞ . Applying the trace maps T1 , T2 and T3 to equation (21) and using [1, Proposition 2.8], we get

℘( T1 (u)) = ℘(u 2 + α 1 u 3 ) ∈ dΩ m-1 F (α 1 ) ℘( T2 (u)) = ℘(u 1 + α 2 u 3 ) ∈ dΩ m-1 F (α 2 ) ℘( T3 (u)) = ℘(u 1 + u 2 + u 3 + α 3 u 3 ) ∈ dΩ m-1 F (α 3 ) .
Hence,

η 1 := u 2 + α 1 u 3 ∈ ν F (α 1 ) (m), η 2 := u 1 + α 2 u 3 ∈ ν F (α 2 ) (m) and η 3 := u 1 + u 2 + u 3 + α 3 u 3 ∈ ν F (α 3 ) (m). Clearly, ([η 1 ], [η 2 ], [η 3 ]) ∈ Kerd 3 . On the one hand, for η = α 1 u 1 + α 2 u 2 + α 1 α 2 u 3 , the el- ement [η] = [α 1 u 1 + α 2 u 2 + α 1 α 2 u 3 ] ∈ Q m (K, 1) satisfies d 2 ([η], 0) = ([η 1 ], [η 2 ], [η 3 ]
). On the other hand, by sequence (20), there exists

([δ], [ ]) ∈ ν K (m) ⊕ ν F (m) such that d * 2 ([δ], [ ]) = ([η 1 ], [η 2 ], [η 3 ]). Hence, ([η + δ], [ ]) ∈ Kerd 2 . Consequently, by sequence (19), there exists [ ] ∈ Q m (F, 1) such that ([η + δ], [ ]) = ([ ], 0). Since [δ] ∈ ν K (m), it follows that ℘(η) + ℘( ) ∈ B m ∞ and thus ℘(η) + ℘( ) ∈ B m r K for some r ≥ 1. One has ℘(η) = η + d(z), where η = a 1 u [2] 1 + a 2 u [2] 2 + a 1 a 2 u 3 + α 1 (℘(u 1 ) + a 2 u 3 ) + α 2 (℘(u 2 ) + a 1 u 3 ) and z ∈ Ω m-1 K . Hence, η + ℘( ) ∈ B m r K. We write K = F (α 2 r 1 , α 2 r 2 ). It follows from [6, Lemma 1] that η + ℘( ) = w 0 + α 2 r 1 w 1 + α 2 r 2 w 2 + α 2 r 1 α 2 r 2 w 3 , (22) 
for suitable w 0 , w 1 , w 2 , w 3 ∈ B m r F . Since η + ℘( ) has no factor of α 1 α 2 , it follows that w 3 = 0. Moreover, since the factor of α 1 in the left hand side of (22) has multi-index smaller that γ, then the maximal multi-index of w 1 must be smaller than γ.

Notice that for the generators of the group B m r F , the following equality holds for each s < r:

α 2 r i (f 1 f 2 • • • f m ) 2 s df 1 f 1 ∧• • •∧ df m f m = α 2 r-s i f 1 f 2 • • • f m 2 s d(α 2 r-s i f 1 ) (α 2 r-s i f 1 ) ∧• • •∧ df m f m .
Now, applying several times the Artin-Schreier operator to the right hand side of (22), it is easy to see that there exists

S ∈ Ω m K such that η + ℘( ) ≡ ℘(S) (mod dΩ m-1 K ). Hence, ℘(η + S + ) ∈ dΩ m-1
K , which implies that δ := η + S + ∈ ν K (m). Notice that the factor of α 1 in S comes from α 2 r 1 w 1 , and thus it has maximal multiindex smaller than γ. Hence, the maximal multi-index of δ is also smaller than γ. Now to conclude we have T1 (u) = η 1 = T1 (η), and thus Tr K/F (u+η) = 0, which implies that u = η + x 0 + α 1 x 1 + α 2 x 2 for some x 0 , x 1 , x 2 ∈ Ω m F . Consequently,

u = δ+S + +x 0 +α 1 x 1 +α 2 x 2 .
The maximal multi-index of x 1 is smaller than γ because the factors of α 1 in the terms u, δ and S + are also smaller than γ. Since S + has no factor of α 1 α 2 , we get S + +x 0 +α 1 x 1 +α 2 x 2 = u 0 +α 1 u 1 +α 2 u 2 for suitable u 0 , u 1 , u 2 ∈ Ω m F and max(u 1 ) < γ.

Now we give a crucial result for the proof of Theorem 1.5.

Proposition 4.4. Let w ∈ Ω m L (2) , λ 1 , λ 2 ∈ ν L (m), u ∈ Ω m L and v ∈ Ω m-1 L be such that w L + a 1 λ 1 + a 2 λ 2 = ℘(u) + dv in Ω m L . (23) 
Then, there exist

δ 1 , δ 2 ∈ ν L (2) (m), u 1 ∈ Ω m L (2) and v 1 ∈ Ω m-1 L (2) such that w L (2) + a 1 δ 1 + a 2 δ 2 = ℘(u 1 ) + dv 1 in Ω m L . Proof. Let M = L (2) (α 2 ) as before and L = L(α 2 ). Since F (α 2 )/F is separable, it follows that B ∪{b 1 , . . . , b s } (resp. C ∪{β 1 , . . . , β s }) remains a 2-basis of F (α 2 ) (resp. a 2-basis of L(α 2 )).
For our proof we proceed in two steps.

Step 1. We will prove the existence of

λ 1 ∈ ν L (2) (m), u ∈ Ω m M and v ∈ Ω m-1 M such that w M + a 1 λ 1 = ℘( u) + d( v) in Ω m L . (24) 
Since (a

2 λ 2 ) L ≡ ℘(α 2 λ 2 ) (mod dΩ m-1 L
), equation (23) becomes

w L + (a 1 λ 1 ) L = ℘(θ) + d(v ) in Ω m L , (25) 
where v ∈ Ω m-1 L and θ = u + α 2 λ 2 .

Our aim is to descend λ 1 to the field L (2) , and θ and v to M . In fact, as in equation ( 23), let γ, τ ∈ Σ m,L be such that γ = max(w L + a 1 (λ 1 ) L ) and τ = max(θ). By Lemma 2.5, we may suppose that τ ≤ γ in the three cases that we consider below.

(1) Suppose that max(w L ) > max((λ 1 ) L ). Then, γ = max(w L ), and by Lemma 4.2 we have w 1) , . . . , e γ(m) ∈ B, it follows that s 1 , . . . , s m ∈ M . We deduce from Lemma 2.6 that s

L = l deγ eγ + w such that l ∈ M , e γ(i) ∈ B and w ∈ (Ω m M ) L ,<γ . We write θ = r deγ eγ + θ and d(v ) = s deγ eγ + v such that r, s ∈ L and θ , v ∈ Ω m L ,<γ . Moreover, by Lemma 2.2, s = m i=1 s i e γ(i) such that s i ∈ L <γ(i) = L 2 (e j | j < γ(i)) for all 1 ≤ i ≤ m. Since e γ(
deγ eγ = d(v 0 ) + v 1 , where v 0 ∈ (Ω m-1 M ) L and v 1 ∈ Ω m L ,<γ . Hence, d(v) = d(v 0 ) L + d(v 2 ), where d(v 2 ) = v + d(v 1 ) ∈ dΩ m-1 L ,<γ .
Taking coefficients of deγ eγ from equation ( 23) yields l = ℘(r)+s. Since l, s ∈ M , it follows that r ∈ M . Equation ( 23) becomes (w +℘(r

deγ eγ )+d(v 0 )) L +(a 1 λ 1 ) L = ℘(θ ) + d(v 2 )
, and thus the multi-index max(w L ) reduces after changing w L modulo the group ℘((

Ω m M ) L ) + d((Ω m-1 M ) L ). (2) Suppose that max(w L ) = max((λ 1 ) L ). Since w ∈ Ω m
M and γ is given by w L , we get e γ(1) , . . . , e γ(n) ∈ B (Lemma 4.2). As the extension L /L is separable, this implies that the maximal multi-index of λ 1 over L is also γ. By Kato's decomposition over L, we get

λ 1 = df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) + λ 1 such that f γ(i) ∈ L γ(i)
and λ 1 ∈ ν L,<γ (m). We have f γ(i) ∈ L (2) because e γ(1) , • • • , e γ(m) ∈ B, and 

thus dfγ fγ := df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) ∈ ν L (2) (m).
e i = e i if i = γ(1), . . . , γ(m) f i if i ∈ {γ(1), . . . , γ(m)},
without changing the ordering of I (Proposition 2.1). Note that C is a 2-basis of L .

We write w = l 

= m i=1 s i f γ(i) such that s i ∈ L 2 (e j | j < γ(i))
. Because e j ∈ L (2) for all j ≤ γ(i), we deduce that s 

1 (ν L (2) (m)) L + ℘((Ω m M ) L ) + d((Ω m-1 M ) L ).
Note that for this reduction we use the group a 1 (ν L (2) (m)) L instead of a 1 (ν M (m)) L , and λ 1 ∈ ν L 2 (m).

(3) Suppose that max((λ 1 ) L ) > max(w L ). Then, as in Case (2), λ 1 has maximal multi-index γ over L. By Kato's decomposition we have 

λ 1 = dfγ fγ + λ 1 , where dfγ fγ = df γ(1) f γ(1) ∧ • • • ∧ df γ(m) f γ(m) , f γ(i) ∈ L γ(i) and λ 1 ∈ ν L,<γ (m).
℘((r + α 1 ) df γ f γ ) ∈ dΩ m-1 L (α 1 ) + Ω m L (α 1 ),<γ . (26) 
Lemma 2.3 implies that

(r + α 1 ) df γ f γ = dg γ g γ + η, (27) 
where g γ(i) ∈ L 2 (α 2 1 )(f j | j ≤ γ(i)), for any 1 ≤ i ≤ m, and η ∈ Ω m L (α 1 ),<γ .

Applying ℘ to equation (27) yields

a 1 df γ f γ = ℘ r df γ f γ + η + dz in Ω m-1 L (α 1 ) , (28) 
where z ∈ dΩ m-1 L (α 1 ) .

Since the multi-indices of the factors of α 1 and α 1 α 2 in r dfγ fγ + η are smaller than γ (because these factors come from η ∈ Ω m L (α 1 ),<γ ), we apply Lemma 4.3 to the biquadratic separable extension

L (α 1 ) to get δ ∈ ν L (α 1 ) (m) and v 0 , v 1 , v 2 ∈ Ω m L such that r dfγ fγ + η = δ + v 0 + α 1 v 1 + α 2 v 2 and v 1 ∈ Ω m L,<γ .
Hence, it follows from equation (28) that

a 1 df γ f γ + ℘(v 0 + α 1 v 1 + α 2 v 2 ) ∈ dΩ m-1 L (α 1 ) .
Consequently, equation ( 25) becomes

w M + a 1 λ 1 = ℘(θ + v 0 + α 1 v 1 + α 2 v 2 ) + d(z ) in Ω m L (α 1 ) (29) 
where z ∈ Ω m-1 L (α 1 ) . Now using the decomposition Ω m L (α 1 ) = Ω m L + α 1 Ω m L , and the fact that w, a 1 λ 1 and θ are defined over L , we deduce the following equations in Ω m L :

w M + a 1 λ 1 = a 1 v [2] 1 + ℘(θ + v 0 + α 2 v 2 ) + d(t) (30) ℘(v 1 ) = d(t ) (31) 
for suitable t, t ∈ Ω m-1 L .

From equation (31) we get v 1 ∈ ν L (m), and inserting it in equation (30) we obtain

w M + a 1 (λ 1 + v 1 ) = ℘(θ + v 0 + α 2 v 2 ) + d(t ) in Ω m L for some t ∈ Ω m-1 L .
Thus the multi-index reduces because max(λ 1 + v 1 ) < γ.

Step 2. Suppose we have

λ 1 ∈ ν L (2) (m), u ∈ Ω m M and v ∈ Ω m-1 M such that w M + a 1 λ 1 = ℘( u) + d( v) ∈ Ω m L . (32) 
We will derive from equation (32

) elements δ 1 , δ 2 ∈ ν L (2) (m), u 1 ∈ Ω m L (2) and v 1 ∈ Ω m-1 L (2) satisfying: w L (2) + a 1 δ 1 + a 2 δ 2 = ℘(u 1 ) + dv 1 ∈ Ω m L . Recall that Ω m M = Ω m L (2) + α 2 Ω m L (2) and dΩ m-1 M = dΩ m-1 L (2) + α 2 dΩ m-1 L (2)
. Hence, we put

u = u 1 + α 2 u 2 d( v) = dv 1 + α 2 dv 2 , (33) 
where

u 1 , u 2 ∈ Ω m L (2) and dv 1 , dv 2 ∈ dΩ m-1 L (2) .
We have

℘( u) = ℘(u 1 ) + α 2 ℘(u 2 ) + a 2 u [2]
2 . Inserting this expression and the second line of equation (33) into equation (32) gives: 2 into equation (34) yields

w L + a 1 λ 1 = ℘(u 1 ) + α 2 ℘(u 2 ) + a 2 u [2] 2 + dv 1 + α 2 dv 2 . Consequently, w L + a 1 λ 1 = ℘(u 1 ) + a 2 u [2] 2 + dv 1 (34) 0 = ℘(u 2 ) + dv 2 . ( 35 
) Equation (35) implies that u 2 ∈ ν L (m) ∩ (L (2) • Ω m F ) L . Lemma 3.2 implies that u 2 ∈ (ν L (2) (m)) L . Thus, u [2] 2 = u 2 + dt for some dt ∈ (L (2) • Ω m F ) L ∩ dΩ m-1 L . Hence, dt ∈ dΩ m-1 L ( 
w L + a 1 δ 1 + a 2 δ 2 = ℘(u 1 ) + dz, for suitable dz ∈ dΩ m-1 L (2) and δ 1 , δ 2 ∈ ν L (2) (m)
. This proves the proposition. Corollary 4.5. Let L be a purely inseparable multiquadratic extension of

F . Let w ∈ Ω m F , λ 1 , λ 2 ∈ ν L (m), u ∈ Ω m L and v ∈ Ω m-1 L be such that w L + a 1 λ 1 + a 2 λ 2 = ℘(u) + dv ∈ Ω m L .
Then, there exist

δ 1 , δ 2 ∈ ν F (m), u 1 ∈ Ω m F and v 1 ∈ Ω m-1 F such that w + a 1 δ 1 + a 2 δ 2 = ℘(u 1 ) + dv 1 ∈ Ω m L .
Proof. This is a direct consequence of Proposition 4.4 because L (2) = F when L is a multiquadratic purely inseparable extension of F .

5. PROOF OF THEOREMS 1.2 AND 1.5 5.1. Proof of Theorem 1.2. Let L/F be a finite purely inseparable multiquadratic extension and K/F a biquadratic separable extension. Obviously L

(2) = F . Let us write K = F (α 1 , α 2 ) such that α 2 i + α i = a i ∈ F for 1 ≤ i ≤ 2. Clearly H m+1 2 (L/F ) + H m+1 2 (K/F ) ⊂ H m+1 2 (K • L/F ). Conversely, let w ∈ Ω m F be such that w ∈ H m+1 2 (K • L/F ), then, w L ∈ H m+1 2 (K • L/L) and thus by [6], there exist λ 1 , λ 2 ∈ ν L (m), u ∈ Ω m L and v ∈ Ω m-1 L such that w L + a 1 λ 1 + a 2 λ 2 = ℘(u) + d(v) ∈ Ω m L .
By Corollary 4.5 we may suppose that λ

1 , λ 2 ∈ ν F (m), u ∈ Ω m F and v ∈ Ω m-1 F . Hence, w + a 1 λ 1 + a 2 λ 2 ∈ H m+1 2 (L/F ), i.e., w ∈ H m+1 2 (K/F ) + H m+1 2 (L/F ).
This proves the theorem. 5.2. Proof of Theorem 1.5. Let K = F (α 1 , α 2 ) be a biquadratic separable extension of F such that α 2 i + α i = a i ∈ F for 1 ≤ i ≤ 2, and L = F (β) a simple purely inseparable extension of F such that β 2 n+1 = b ∈ F \ F 2 . We assume that a 1 , a 2 ∈ F 2 l for some l > n.

Let w ∈ Ω m F be such that w ∈ H m+1 2 (K • L/F ). Then, w L ∈ H m+1 2 (K • L/L). It follows from [6] that there exist λ 1 , λ 2 ∈ ν L (m), u ∈ Ω m L and v ∈ Ω m-1 L such that w L + a 1 λ 1 + a 2 λ 2 = ℘(u) + d(v) ∈ Ω m L . (36) 
By Proposition 4.4, we may suppose that λ

1 , λ 2 ∈ ν F (β 2 ) (m), u ∈ Ω m F (β 2 ) and v ∈ Ω m-1 F (β 2 ) . Hence, λ 1 , λ 2 ∈ ν F (β) (m) ∩ (F (β 2 ) • Ω m F ) F (β) , u ∈ F (β 2 ) • Ω m F and v ∈ F (β 2 ) • Ω m-1 F . By Proposition 3.3, we have λ i = λ i + n-1 j=0 (dθ i,j ) [2 j ] where λ i ∈ G n L (m) and θ i,j ∈ Ω m-1 L , for 1 ≤ i ≤ 2. Writing u = 2 n -1 i=0 β 2i η i where η i ∈ Ω m F , 0 ≤ i ≤ 2 n -1 we see that ℘(u) = 2 n -1 i=0 (β 2i η i + β 4i η [2] i ) + dt for a suitable dt ∈ dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β) . Using the description of differen- tials in dΩ m-1 F (β) ∩ (F (β 2 ) • Ω m F ) F (β)
given by equation ( 4), we write

d(v) + dt = 2 n -1 i=0 β 2i dv i with v i ∈ Ω m-1 F , 0 ≤ i ≤ 2 n -1.
Inserting the expressions of λ i , 1 ≤ i ≤ 2, d(v) + dt and ℘(u) in equation (36), we get in Ω m L the following:

w L + a 1 λ 1 + a 2 λ 2 = a 1 n-1 j=0 (dθ 1,j ) [2 j ] + a 2 n-1 j=0 (dθ 2,j ) [2 j ] (37) 
+ 2 n -1 i=0 (β 2i η i + β 4i η [2] i ) + 2 n -1 i=0 β 2i dv i .
Furthermore, by equation ( 5), we have

a 1 n-1 j=0 (dθ 1,j ) [2 j ] + a 2 n-1 j=0 (dθ 2,j ) [2 j ] = n-1 j=0 (dξ j0 ) [2 j ] + (38) + n-1 j=0 2 n -1 i=1 β i2 j+1 (dξ j,2i ) [2 j ] ,
where dξ j,i ∈ dΩ m-1 F for 0 ≤ j ≤ n -1 and 0 ≤ i ≤ 2 n -1 (of course we may put a i inside (dθ i,j ) [2 j ] because a i ∈ F 2 l with l > n).

The left hand side of (37) is defined over F . For the right hand side, we compute the F -component of each term composing it. As a matter of fact:

(i) By Lemmas (3.5) and (3.6), and equation (38), the F -component of a

1 n-1 j=0 (dθ 1,j ) [2 j ] + a 2 n-1 j=0 (dθ 2,j ) [2 j ] is contained in n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F ) [2 k ] + Ω m-1 F ∧ db + ℘(Ω m F ) + dΩ m-1 F . (ii) The F -component of 2 n -1 i=0 (β 2i η i + β 4i η [2]
i ) is obtained from the terms in the sum for which (2 n+1 divides 2i) or (2 n+1 divides 4i but does not divide 2i). In the first case, we collect elements of the shape b s η i + b 2s η [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] i that belong to ℘(Ω m F ) + dΩ m-1 F . In the second case, we necessarily have i = 2 n-1 (because 0 ≤ i ≤ 2 n -1), and thus we collect the element β 4i η [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] i = bη [START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] i . For the other term in that sum, namely β 2i η i , we see that this must cancel out with terms from the expression a

1 n-1 j=0 (dθ 1,j ) [2 j ] + a 2 n-1 j=0 (dθ 2,j ) [2 j ] + 2 n -1 i=0 β 2i dv i . Thus, η i belongs to n-1 j=0 (dΩ m-1 F
) [2 j ] using equation [START_REF] Aravire | Cohomology and graded Witt group kernels for extensions of degree four in characteristic two[END_REF]. Therefore, β 4i η

[2] i = bη ) [2 k ] + Ω m-1 F ∧ db. This completes our proof.

EXAMPLES ABOUT KERNEL SPLITTING PROPERTY

In this section we discuss the kernel splitting property when considering the compositum of purely inseparable extensions. The following proposition shows that purely inseparable multiquadratic extensions behave well with this property. More precisely we have: Proposition 6.1. Let L/F be a finite purely inseparable extension (modular or not), and K/F a multiquadratic purely inseparable extension of finite degree. Then 

k=1 li2 n i -k-1 ∈N 0≤li≤2 k -1 c l 1 1 • • • c l r+s r+s (dΩ m-1 F ) [2 k ] .
Since n i = 1 for any i ∈ {s + 1, . . . , s + r}, then l i satisfies both conditions: 0 ≤ l i ≤ 2 k -1 and l i 2 -k ∈ N. Consequently, l i = 0. This means that S ⊂ H m+1 We finish this section by constructing an example which shows that the kernel splitting property depends on the subfields of the compositum.

Let k be a field of characteristic 2. We assume we can choose That is, we have a kernel splitting with respect to the subfields E 1 and E 2 . ] not all zero such that

Now define E 3 = F ( 4 √ b 1 , √ b 
A 2 + AB + βtB 2 + b 1 C 2 + tRD 2 = 0. (44) 
Multiplying equation (44) by t -1 and substuting t -1 to 0, we deduce that t -1 divides B and D, otherwise β would be in F , which is not possible because b 1 , b 2 are 2-independent. Writing B = t -1 B and D = t -1 D for suitable B , D ∈ k(β)[t -1 ], and substituting in (44) we deduce

A 2 + t -1 AB + βt -1 B 2 + b 1 C 2 + t -1 RD 2 = 0. ( 45 
)
Now substituting t -1 to 0 in (45) and using the fact that 1, b 1 is anisotropic over k(β) (because b 1 , b 2 are 2-independent), we deduce that A and B are divisible by t -1 , which is a contradiction with the hypothesis that A, B, C, D are coprime as polynomials of k(β)[t -1 ].

F 1 F 1 F

 11 induced by the Artin-Schreier map℘ : F -→ F , x → x 2 -x.Here Ω m F is the space of m-differential forms over F and d : Ω m--→ Ω m F is the differential operator. For x ∈ Ω m F , we denote by x the class of x in the quotient group Ω m F /(℘(Ω m F ) + dΩ m-

F

  and the next definition arises from the following observations.Assume that L = F ( 2 n+1 √ b) and let df f ∈ ν L (1) ∩ (E • Ω 1 F ) L , where E = F ( 2 n √ b).

Lemma 4 . 2 .

 42 Keep the same notations and hypotheses as before.Let L = L(α 2 ), γ ∈ Σ m,L and u ∈ (Ω m M ) L nonzero such that γ = max(u). Then, there exist x ∈ M , e γ(1) , • • • , e γ(m) ∈ B and u ∈ (Ω m M ) L ,<γ such that u L = x deγ eγ + u . Proof. Since u ∈ (Ω m M ) L , it is clear that u ∈ (M • Ω m F ) L . Moreover, B ∪ {b 1 , b 2 , . . . , b s } is a 2-basis ofF and b 1 , . . . , b s are squares in L, it follows that the expression of u contains only terms of the form (c deγ eγ ) L , where e γ(1) , . . . , e γ(m) ∈ B and c ∈ M . Hence the lemma.

  20) where the maps d * 1 , d * 2 and d * 3 are defined in the same way as d 1 , d 2 and d 3 . We have the following.

Lemma 4 . 3 .

 43 Let K/F be the separable biquadratic extension as before, γ ∈

  Now we consider the new 2-basis C = {e i | i ∈ I} of L defined as follows:

  dfγ fγ + w , θ = r dfγ fγ + θ and d(v ) = s dfγ fγ + v such that l, r, s ∈ L and w , θ , v ∈ Ω m L ,<γ . Since w, ( dfγ fγ ) M ∈ Ω m M , it follows that l ∈ M and thus w ∈ (Ω m M ) L ,<γ . Moreover, by Lemma 2.2, we have s

  1 , . . . , s m ∈ M , and thus s ∈ M . As in case (1.1) we write d(v ) = d(v 0 ) L + d(v 1 ) such that d(v 0 ) L ∈ (dΩ m-1 M ) L and d(v 1 ) ∈ dΩ m-1 L ,<γ . Comparing coefficients of dfγ fγ from equation (23) yields l + a 1 = ℘(r) + s. Note that r ∈ M because l, a 1 , s ∈ M . Now equation (23) becomes (w + a 1 dfγ fγ + ℘(r dfγ fγ ) + d(v 0 )) L + a 1 λ 1 = ℘(θ ) + d(v 1 ), and thus the multi-index max(w L ) reduces after changing w L modulo the group a

  Similarly, we have θ = r dfγ fγ + θ for some r ∈ L and θ ∈ Ω m L . It follows from equation (25) that over the field L (α 1 ) we have

2 )

 2 by Corollary 3.4. Replacing this expression for u[START_REF] Aravire | The behavior of quadratic and differential forms under function field extensions in characteristic two[END_REF] 

1 F) [ 2 1 F.(2 k- 1 j=1 b 2j- 1 (dΩ m- 1 F) [ 2 k ] +Ω m- 1 F 1 F 1 L∧

 1211112111 j+1 ] + dΩ m-iii) Finally, it is clear that the F -component of2 n -1 i=0 β 2i dv i is contained in dΩ m-1 F .Hence, we have proved that w L belongs to the groupJ := a 1 G n L (m) + a 2 G n L (m)+ n k=1 ∧db+℘(Ω m F )+dΩ m-. Since Ker(Ω m F -→ Ω m L ) = Ω m-db, we conclude that w ∈ J .Conversely, Lemma 3.1 implies that the groupa 1 G n L (m) + a 2 G n L (m) is contained in the kernel H m+1 2 (K • L/F ),and this kernel also contains the group n k=1 2 k-1 j=1 b 2j-1 (dΩ m-1 F

H m+1 2 ( 2 ( 2 (

 222 K • L/F ) = H m+1 2 (K/F ) + H m+1 2 (L/F ). Proof. Let L = F ( 2 n 1 √ c 1 , . . . ,2 ns √ c s ) be a finite purely inseparable extension of F , where c 1 , . . . , c s ∈ F \ F 2 and n 1 , . . . , n s positive integers. Let K = F ( √ c s+1 , . . . , √ c s+r ) be a multiquadratic purely inseparable extension of F , where c s+1 , . . . , c s+r ∈ F \ F 2 . We have to prove that H m+1 Let ρ = max{n 1 , . . . , n s } and n s+1 = • • • = n s+r = 1. According to the computation of the kernel H m+1 K • L/F ) [10], we know:

2 ( 2 ( 2 (

 222 L/F ). Therefore, H m+1 K • L/F ) = H m+1

4 √ b 1 , 4 √ b 2 , √ b 3 ). 1 H m+1 2 (K/F ) = H m+1 2 (E 1 /F ) + H m+1 2 (E 2

 41423122122 b 1 , b 2 , b 3 ∈ k that are 2-independent over k and let F = k(t) be the rational function field in one indeterminate over k, and K = F ( Note that K is a modular extension of F because the elements b 1 , b 2 , b 3 are 2-independent over F as they are 2-independent over k.We consider B ⊂ F a 2-basis of k containing b 1 , b 2 , b 3 and so B ∪ {t} is an ordered 2-basis of F in such a way that t is the maximal element of it.Defining E 1 = F ( 4 √ b 1 , 4 √ b 2 ) and E 2 = F ( √ b 3 ) then K = E 1 •E 2. By Proposition 6./F ), all m ≥ 1.

H 2 2 (

 2 E 3 /F ) = b 1 (dF )[2] + F db 1 + F db 3 , Now the isotropy of [1, βt] ⊥ b 1 , tR over L means the existence of coprime polynomials A, B, C, D ∈ k(β)[t -1

  [START_REF] Aravire | Annihilators of quadratic and bilinear forms over fields of characteristic two[END_REF] ) andE 4 = F ( 4 √ b 2 ), clearly K = E 3 • E 4 .We claim the following:

	Example 6.2.	
	H 2 2 (K/F ) = H 2 2 (E 3 /F ) + H 2 2 (E 4 /F ).	(39)

Proof. By [10, Theorems 4.1 and 3.1] we have

l df 1,k 1 f 1,k 1 ∧ • • • ∧ df m,km f m,kmwheref i = 2 n -1 k i =0 f i,k i β 2k i and f i,k i ∈ F for each 1 ≤ i ≤ m.This definition easily generalizes when the extension L/F is finite purely inseparable.

and H 2 2 (E 4 /F ) = b 2 (dF ) [2] + F db 2 .

Assume we have an equality in (39). Since b 1 b 2 (dF ) [2] ⊂ H 2 2 (K/F ), then b 1 b 2 (dF ) [2] ⊂ H 2 2 (E 3 /F ) + H 2 2 (E 4 /F ). Thus, for any 0 = λ ∈ F we must have b 1 b 2 (dλ) [2] ∈ F db 1 +F db 2 +F db 3 +b 1 (dF ) [2] +b 2 (dF ) [2] 

for some h ∈ F (that takes care of the squaring process), here D t denotes the partial derivative with respect to t. Note that for x ∈ F = k(t), D t (x) is a rational function on even powers of t.

Hence, we get from equation the relation

Consequently, the 2-dimensional quadratic form

is isotropic since its Arf invariant is trivial by (41). In particular, this implies that the quadratic form

Moreover, in equation ( 42), and modulo isometry, we may replace

] not divisible by t -2 . Consequently, the form b 1 , b 2 , tR is anisotropic because b 1 , b 2 is also anisotropic and t -1 does not divide R.

Now the isotropy of ρ and the uniqueness of the quasilinear part means the following isometry: