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ASYMPTOTIC BEHAVIOR OF ORBITS OF HOLOMORPHIC
SEMIGROUPS

FILIPPO BRACCI1, MANUEL D. CONTRERAS2, SANTIAGO DÍAZ-MADRIGAL2,
HERVÉ GAUSSIER3, AND ANDREW ZIMMER4

Abstract. Let (φt) be a holomorphic semigroup of the unit disc (i.e., the flow of a
semicomplete holomorphic vector field) without fixed points in the unit disc and let Ω
be the starlike at infinity domain image of the Koenigs function of (φt). In this paper
we characterize the type of convergence of the orbits of (φt) to the Denjoy-Wolff point
in terms of the shape of Ω. In particular we prove that the convergence is non-tangential
if and only if the domain Ω is “quasi-symmetric with respect to vertical axis”. We also
prove that such conditions are equivalent to the curve [0,∞) 3 t 7→ φt(z) being a quasi-
geodesic in the sense of Gromov. Also, we characterize the tangential convergence in
terms of the shape of Ω.

Résumé. Soit (φt) un semi-groupe holomorphe du disque unité (i.e. le flot d’un champ
de vecteur holomorphe semi-complet), sans point fixe dans le disque unité, et soit Ω
le domaine étoilé à l’infini, image du disque unité par la fonction de Koenigs de (φt).
Nous caractérisons le type de convergence des orbites de (φt) au point de Denjoy-Wolff
en termes de forme de Ω. Nous démontrons notamment que la convergence est non
tangentielle si et seulement si le domaine Ω est “quasi-symétrique par rapport à l’axe
vertical”. Nous démontrons aussi que de telles conditions sont équivalentes au fait que
la courbe [0,∞) 3 t 7→ φt(z) est une quasi-géodésique au sens de Gromov. Enfin, nous
caractérisons la convergence tangentielle en termes de forme de Ω.

1. Introduction and statements of the main results

A holomorphic vector field G on the unit disc D is (real) semicomplete if the Cauchy
problem ẋ(t) = G(x(t)), x(0) = z has a solution defined for all t ≥ 0 and for all z ∈ D.
The flow of a semicomplete vector field, (φt), is a continuous semigroup of holomorphic
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self-maps of D—or simply a semigroup in D. Namely, (φt) is a continuous homomorphism
of the real semigroup [0,+∞) endowed with the Euclidean topology to the semigroup
under composition of holomorphic self-maps of D endowed with the topology of uniform
convergence on compacta.

It appears that semigroups in D were first considered in the 1930’s by J. Wolff [21],
although it was only with a paper of E. Berkson and H. Porta [3] in the 1970’s that
the modern study of semigroups in D initiated. Since their work, interest in semigroups
in D has expanded due to their connections with branching stochastic processes (see,
e.g., [15, 16]), biology [17] and their connections to composition operators and Loewner’s
theory (we refer the reader to the books [1, 20, 19, 12] and [5] for more details).

In this paper we study the asymptotic behavior of semigroups in D via the Euclidean
geometry of the image of an associated Koenigs function. Aside being motived by the
study of the dynamics of semigroups, our main results also give a complete answer to the
following question from geometric function theory.

Let f : D → C be a Riemann map such that Ω := f(D) is starlike at infinity, that
is Ω + it ⊂ Ω for every t ≥ 0. Let p ∈ Ω and let {tn} be a sequence of positive real
numbers converging to +∞. Looking only at the shape of Ω, how can one decide whether
the sequence {f−1(p+ itn)} converges to a point τ ∈ ∂D non-tangentially or tangentially?

Starlike at infinity domains are also sometimes called “vertically invariant” (e.g. [1]) or
“convex in the positive direction of the real axis” (e.g. [12]).

If (φt) is a semigroup in D, which is not a group of hyperbolic rotations, then there
exists a unique τ ∈ D, the Denjoy-Wolff point of (φt), such that limt→+∞ φt(z) = τ , and
the convergence is uniform on compacta. In case τ ∈ D, the semigroup is called elliptic.

In case the semigroup (φt) is non-elliptic, the action is conjugate to linear translation
on an unbounded simply connected domain. More precisely, there exists an (essentially
unique) univalent function h, called the Koenigs function of (φt), such that h(D) is starlike
at infinity, h(φt(z)) = h(z) + it for all t ≥ 0 and z ∈ D (see, e.g., [1, 2, 11]).

The slope of a non-elliptic semigroup (φt) at z ∈ D is the cluster set of Arg(1− τφt(z))
as t→ +∞. The slope is a compact connected subset of [−π/2, π/2].

Given z ∈ D, we say that the orbit [0,+∞) 3 t 7→ φt(z) converges non-tangentially to
the Denjoy-Wolff point if the slope of (φt) at z is contained in (−π/2, π/2). In case the
slope is {−π/2} or {π/2}, the convergence is tangential.

For one-parameter groups of automorphisms there are two possible behaviors. Either
h(D) is a vertical strip (and the group is called hyperbolic) or h(D) is a vertical half-plane
(and the group is called parabolic). In the hyperbolic group case, h(D) is symmetric with
respect to the line of symmetry of the vertical strip, and “quasi-symmetric” with respect
to any vertical line contained in the strip, and, in fact, the orbits of the group converge
non-tangentially to the Denjoy-Wolff point. While, in the parabolic case, h(D) is highly
non-symmetric with respect to any line contained in the half-plane and the orbits of the
group converge tangentially to the Denjoy-Wolff point.
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For the general case, we will show that non-tangential convergence is equivalent to the
image of the Koenigs function being “quasi-symmetric” about a vertical line. Suppose
Ω ( C is a domain starlike at infinity and p ∈ C. Then for t ≥ 0 define

δ+
Ω,p(t) := min{t, inf{|z − (p+ it)| : z ∈ ∂Ω,Re z ≥ Re p}},

and
δ−Ω,p(t) := min{t, inf{|z − (p+ it)| : z ∈ ∂Ω,Re z ≤ Re p}}.

Then, the first main result we prove is the following:

Theorem 1.1. Let (φt) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D
and Koenigs function h and let Ω := h(D). Suppose that {tn} is a sequence converging to
+∞. Then

(1) the sequence {φtn(z)} converges non-tangentially to τ as n → ∞ for some—and
hence any—z ∈ D if and only if for some—and hence any—p ∈ Ω there exist
0 < c < C such that for all n ∈ N

cδ+
Ω,p(tn) ≤ δ−Ω,p(tn) ≤ Cδ+

Ω,p(tn).

(2) limn→∞ Arg(1 − τφtn(z)) = π
2

(in particular, {φtn(z)} converges tangentially to τ
as n→∞) for some—and hence any—z ∈ D if and only if for some—and hence
any—p ∈ Ω,

lim
n→+∞

δ+
Ω,p(tn)

δ−Ω,p(tn)
= 0,

while, limn→∞ Arg(1 − τφtn(z)) = −π
2

(in particular, {φtn(z)} converges tangen-
tially to τ as n→∞) for some—and hence any—z ∈ D if and only if for some—
and hence any—p ∈ Ω,

lim
n→+∞

δ+
Ω,p(tn)

δ−Ω,p(tn)
= +∞.

The proof of this result is very involved, and it is based almost entirely on Gromov’s
theory of negatively curved metric spaces. In particular, let kΩ denote the hyperbolic
distance on Ω. When 0 6∈ Ω and it ∈ Ω for all t > 0, we show that the 2-Lipschitz curve

σ : [1,+∞) 3 t 7→
δ+

Ω,0(t)− δ−Ω,0(t)

2
+ it(1.1)

can be reparametrized to be a quasi-geodesic in (Ω, kΩ) (see Section 3 for details on quasi-
geodesics). Thus, by Gromov’s shadowing lemma, σ always stays within a finite hyperbolic
distance from a geodesic “converging to ∞.” Theorem 1.1 then follows by noticing that
non-tangential convergence is equivalent to staying at finite hyperbolic distance from σ
(see Section 5 for details).

This argument also shows that an orbit of a semigroup converges non-tangentially if
and only if it can be reparameterized to be a quasi-geodesic in the unit disc.
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Theorem 1.2. Let (φt) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D
and Koenigs function h and let Ω := h(D). Then the following are equivalent:

(1) for some—and hence any—z ∈ D, the orbit [0,+∞) 3 t 7→ φt(z) converges non-
tangentially to τ as t→ +∞,

(2) for some—and hence any—z ∈ D, the curve [0,+∞) 3 t 7→ φt(z) can be
reparametrized to be a quasi-geodesic,

(3) for some—and hence any—p ∈ Ω there exist 0 < c < C such that for all t ≥ 0,

cδ+
Ω,p(t) ≤ δ−Ω,p(t) ≤ Cδ+

Ω,p(t).

The proof actually implies more: the orbit (φt(z)) converges non-tangentially if and
only if for every 0 ≤ t1 ≤ t2, the hyperbolic length of the orbit of (φt(z)) between t1 and
t2 is, up to uniform multiplicative and additive error, the hyperbolic distance between
φt1(z) and φt2(z). The fact that these orbits are close to length minimizing is somewhat
surprising given the examples constructed in [4, 8, 6]. In particular, there exist examples
of parabolic semigroups whose slope is an interval [a, b] with −π/2 < a < b < π/2. Despite
this oscillation, which can only increase the hyperbolic length, Theorem 1.2 implies that
the orbits in these examples are almost length minimizing.

We also give a geometric characterization of when an orbit converges tangentially.

Theorem 1.3. Let (φt) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D
and Koenigs function h and let Ω := h(D). Then the following are equivalent:

(1) limt→+∞ Arg(1− φt(z)) = π/2 (respectively = −π/2) for some—and hence any—
z ∈ D, and, in particular, [0,+∞) 3 t 7→ φt(z) converges tangentially to τ as
t→ +∞,

(2) limt→+∞
δ+
Ω,p(t)

δ−Ω,p(t)
= 0 (respect. limt→+∞

δ+
Ω,p(t)

δ−Ω,p(t)
= +∞).

As we will show, Theorem 1.2 and Theorem 1.3 are consequences of Theorem 1.1 and
of its proof.

Recall that a non-elliptic semigroup (φt) is hyperbolic if h(D) is contained in a vertical
strip, it is parabolic of positive hyperbolic step if h(D) is contained in a vertical half-plane
but not in a vertical strip and parabolic of zero hyperbolic step otherwise. We mention
that, although our proofs do not rely on previous results about dynamics of semigroups,
it was already known (see [7, 9]) that if (φt) is a hyperbolic semigroup then the trajectory
t 7→ φt(z) always converges non-tangentially to its Denjoy-Wolff point as t → +∞ for
every z ∈ D and the slope is a single point which depends harmonically on z, while, if
it is parabolic of positive hyperbolic step then φt(z) always converges tangentially to its
Denjoy-Wolff point as t→ +∞ for every z ∈ D and the slope is independent of z (and it
is either {π/2} or {−π/2}).

Therefore, Theorem 1.3 gives the new information that every orbit of a hyperbolic semi-
group is a quasi-geodesic, while, in the case of parabolic semigroups of positive hyperbolic
step, the orbits are never quasi-geodesics.
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In the case of parabolic semigroups of zero hyperbolic step, all cases can happen. In
Section 2 we give some examples illustrating the possible behaviors.

The paper is organized as follows. In Section 2 we provide some examples of possible
behavior of orbits. In Section 3 we state some preliminaries we need in this paper. In
Section 4 we show that the curve σ defined in Equation (1.1) can indeed be reparametrized
to be a quasi-geodesic and also estimate its hyperbolic distance to the vertical axis at p.
Finally, in Section 5 we prove the theorems.

Acknowledgments. We thank the referee for helpful corrections and comments which
improved this paper.

2. Examples

In this section we construct some examples of parabolic semigroups of zero hyperbolic
step illustrating possible cases. We define domains Ω starlike at infinity, and, if h : D→ Ω
is a Riemann map, the semigroup is given by φt(z) := h−1(h(z) + it).

Example 2.1. The model domain Ω1 is defined by Ω1 := {ζ ∈ C : Im (ζ) > (Re (ζ))2}
(see Figure 1).

•
it• •

δ−Ω1,0
(t) δ+

Ω1,0
(t)

Ω1

Figure 1.

Then Ω1 is symmetric with respect to the imaginary axis, δ+
Ω1,0

(t) = δ−Ω1,0
(t) for t > 0

and γ : [1,+∞) 3 t 7→ it can be reparametrized as a geodesic in Ω1. Hence, for every
z ∈ D, the semigroup φt(z) converges orthogonally to the Denjoy-Wolff point τ ∈ ∂D.

Example 2.2. The model domain Ω2 (see Figure 2) is defined by

Ω2 := {ζ ∈ C : Re (ζ) > 0} ∪ {ζ ∈ C : Im (ζ) > (Re (ζ))2}.

Then for every t > 4, δ+
Ω2,0

(t) = t and δ−Ω2,0
(t) =

√
t− 1

4
. Hence

lim
t→∞

δ+
Ω2,0

(t)

δ−Ω2,0
(t)

= +∞.

It follows from Theorem 1.3 that for every z ∈ D, the semigroup φt(z) converges tangen-
tially to the Denjoy-Wolff point τ ∈ ∂D.
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•it•
δ−Ω2,0

(t)

Ω2

Figure 2.

Example 2.3. Fix two sequence of negative numbers (an) and (bn). Then consider the
model domain Ω3 (see Figure 3) defined by

Ω3 := Ω2 ∪n≥1 Sn,

• it1
•

• is1

•

δ−Ω3,0
(s1)

δ−Ω3,0
(t1)

S1

S2

Ω3

Figure 3.

where for every n ≥ 1, Sn is a vertical strip Sn := {ζ ∈ C : an < Re (ζ) < bn < 0}. We
claim that we can select the sequences (an) and (bn) such that the slope of the associated
semigroup (φt) is [−π/2, α] for some −π/2 < α < π/2.

First notice that for any choice of (an) and (bn) we can find tn → +∞ such that

δ−Ω3,0
(tn) = δ+

Ω2,0
(tn)

and hence
δ+

Ω3,0
(tn)

δ−Ω3,0
(tn)

=
tn√
tn − 1

4

→ +∞ as n→∞,
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which, by Theorem 1.1, implies that φtn(z)→ τ with slope −π/2.
On the other hand, by making the gap between an and bn sufficiently large we can find

sn ∈ (an, bn) such that

δ−Ω3,0
(sn) ≥ sn/2.

Then
δ−Ω3,0

(sn)

δ+
Ω3,0

(sn)
≥ sn/2

sn
=

1

2

and hence for every z ∈ D the sequence {φsn(z)} converges non-tangentially to τ . In
particular, the slope of (φt) is [−π/2, α] for some −π/2 < α < π/2.

3. Preliminaries on hyperbolic and Euclidean geometry

3.1. Hyperbolic geometry of simply connected domains. Let Ω ( C be a simply
connected domain. Recall that the hyperbolic metric κΩ is defined for z ∈ Ω and v ∈ C
by

κΩ(z; v) :=
|v|
f ′(0)

,

where f : D→ Ω is the Riemann map such that f(0) = z and f ′(0) > 0. The hyperbolic
distance between z, w ∈ Ω is defined as

kΩ(z, w) := inf

∫ 1

0

κΩ(γ(τ); γ′(τ))dτ,

where the infimum is taken over all piecewise C1-smooth curves γ : [0, 1] → Ω such that
γ(0) = z and γ(1) = w.

A curve γ : [a, b]→ Ω is rectifiable if

`Ω(γ; [a, b]) := sup
P

N∑
j=0

kΩ(γ(tj), γ(tj+1)) < +∞,

where the supremum is taken over all partitions P of [a, b] of type a = t0 < t1 < . . . <
tN+1 = b, N ∈ N.

The number `Ω(γ; [a, b]) is the hyperbolic length of γ and, by definition,

`Ω(γ; [a, b]) ≥ kΩ(γ(a), γ(b)).

Every rectifiable curve can be reparametrized by hyperbolic arc length. If γ is a Lipschitz
curve then

`Ω(γ; [s, t]) =

∫ t

s

κΩ(γ(τ); γ′(τ))dτ.
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3.2. Geodesics and non-tangential convergence. Let−∞ ≤ a < b ≤ +∞. A smooth
curve η : (a, b)→ Ω is a (unit speed) geodesic if

t− s = kΩ(η(s), η(t))

for all a < s < t < b.
Given R > 0 and a geodesic η : [0,+∞) → Ω, the hyperbolic sector around η of

amplitude R is given by

SΩ(η,R) := {z ∈ Ω : kΩ (z, η([0,+∞))) < R}.
We can use hyperbolic sectors to detect non-tangential convergence (see for instance [6,

Proposition 4.5]):

Proposition 3.1. Let Ω ( C be a simply connected domain and let f : D → Ω be a
Riemann map.

(1) Suppose γ : [0,+∞)→ Ω be a continuous curve such that limt→+∞ kΩ(γ(0), γ(t)) =
+∞, then f−1(γ(t)) converges non-tangentially to a point σ ∈ ∂D if and only if
there exist R > 0 and a geodesic η : [0,+∞) → Ω such that γ(t) ∈ SΩ(η,R) for
all t sufficiently large.

(2) Suppose {wn} ⊂ Ω be a sequence such that limn→∞ kΩ(w0, wn) = ∞, then wn
converges non-tangentially to a point σ ∈ ∂D if and only if there exist R > 0 and
a geodesic η : [0,+∞)→ Ω such that wn ∈ SΩ(η,R) for all n sufficiently large.

3.3. Quasi-geodesics. Given a general simply connected domain Ω ( C, it is essentially
impossible to determine the geodesics in the hyperbolic metric. However, it is sometimes
possible to find so-called quasi-geodesics which, by Gromov’s shadowing lemma (also
called Morse lemma, or the geodesic stability lemma), turn out to approximate geodesics.

Definition 3.2. Let −∞ < a < b ≤ +∞. Let Ω ( C be a simply connected domain
and γ : [a, b) → Ω. Let A ≥ 1, B ≥ 0. We say that γ is a (A,B)-quasi-geodesic if for all
a ≤ s ≤ t < b,

1

A
(t− s)−B ≤ `Ω(γ; [s, t]) ≤ A(t− s) +B.

For short, we say that γ is a quasi-geodesic if there exist A ≥ 1, B ≥ 0 such that γ is a
(A,B)-quasi-geodesic.

By Gromov’s shadowing lemma (see, e.g., [10, Théorème 3.1, pag. 41]) there exists
M > 0 (which depends only on A,B) such that if γ : [0,+∞) → Ω is a (A,B)-quasi-
geodesic then there exists a geodesic η : [0,+∞)→ Ω such that η(0) = γ(0) and for every
t ∈ [0,+∞)

(3.1) kΩ(γ(t), η([0,+∞))) < M, kΩ(η(t), γ([0,+∞))) < M.

Remark 3.3. Let Ω ( C be a simply connected domain and let f : D→ Ω be a Riemann
map. By the previous argument and Proposition 3.1 it follows that if γ : [0,+∞)→ Ω is a
quasi-geodesic then f−1(γ(t)) converges non-tangentially to a point σ ∈ ∂D as t→ +∞.
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From the previous discussion, we have the following result which allows to detect quasi-
geodesics:

Proposition 3.4. Suppose that Ω ( C is a simply connected domain and γ : [0,+∞)→ Ω
is a Lipschitz curve. If there exists A ≥ 1 and B ≥ 0 such that

`Ω(γ; [s, t]) ≤ AkΩ(γ(s), γ(t)) +B

for all 0 ≤ s ≤ t, then γ can be reparametrized to be a (A,B)-quasi-geodesic.

3.4. Estimates on the hyperbolic distance. As customary, for p ∈ Ω we let

δΩ(p) = inf{|z − p| : z ∈ C \ Ω}.
In this paper we will use the following estimates for the hyperbolic metric and distance
(see [6, Section 3] for details):

Theorem 3.5 (Distance Lemma). Let Ω ( C be a simply connected domain. Then for
every z ∈ Ω and v ∈ C,

|v|
4δΩ(z)

≤ κΩ(z; v) ≤ |v|
δΩ(z)

.

Moreover, for every w1, w2 ∈ Ω,

1

4
log

(
1 +

|w1 − w2|
min{δΩ(w1), δΩ(w2)}

)
≤ kΩ(w1, w2) ≤

∫
Γ

|dw|
δΩ(w)

,

where Γ is any absolutely continuous curve in Ω joining w1 to w2.

Note that Theorem 3.5 implies immediately that for all z, w ∈ Ω,

(3.2) kΩ(z, w) ≥ sup
ζ∈C\Ω

1

4

∣∣∣∣log
|z − ζ|
|w − ζ|

∣∣∣∣ .
3.5. Euclidean geometry of domains starlike at infinity.

Let Ω be a simply connected domain which is starlike at infinity and p ∈ C. For t > 0,
let

δ̃+
Ω,p(t) := inf{|z − (p+ it)| : Re z ≥ Re p, z ∈ C \ Ω},

δ̃−Ω,p(t) := inf{|z − (p+ it)| : Re z ≤ Re p, z ∈ C \ Ω}.

Note that, if p + it ∈ C \ Ω then δ̃+
Ω,p(t) = δ̃−Ω,p(t) = 0. While, for p ∈ Ω and t > 0,

δΩ(p+ it) = min{δ̃+
Ω,p(t), δ̃

−
Ω,p(t)}.

Moreover, for t > 0 we let

δ+
Ω,p(t) := min{δ̃+

Ω,p(t), t}, δ−Ω,p(t) := min{δ̃−Ω,p(t), t}.

Note that, since Ω is starlike at infinity, then (0,+∞) 3 t 7→ δ±Ω,p(t) is non-decreasing.
Simple geometric considerations allow to prove the following lemma:
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Lemma 3.6. Let Ω be a simply connected domain starlike at infinity. For all p, q ∈ Ω
there exist 0 < c < C such that for all t > 0

cδ±Ω,p(t) ≤ δ±Ω,q(t) ≤ Cδ±Ω,p(t).

4. Quasi-geodesics in starlike at infinity domains

The aim of this section is to construct a quasi-geodesic in a domain Ω ( C starlike
at infinity which converges in the Carathéodory topology to “+∞” and to get useful
estimates on the hyperbolic distance from this curve to a vertical axis.

In all this section, we assume that Ω ⊂ C is a domain starlike at infinity such that
0 6∈ Ω and it ∈ Ω for all t > 0.

We define σ : [1,+∞)→ Ω by

(4.1) σ(t) :=
δ+

Ω,0(t)− δ−Ω,0(t)

2
+ it.

Lemma 4.1. The curve σ is 2-Lipschitz. In particular, |σ′(t)| ≤ 2 for almost every t ≥ 1.

Proof. For all s, t ≥ 1, using the triangle inequality we have δ±Ω,0(t) ≤ |t− s|+ δ±Ω,0(s) and

δ±Ω,0(t) ≥ −|t− s|+ δ±Ω,0(s). Therefore,

|δ±Ω,0(t)− δ±Ω,0(s)| ≤ |t− s|.
From this it follows immediately that σ is 2-Lipschitz. �

4.1. The curve σ is up to reparametrization a quasi-geodesic. The aim of this
subsection is to prove the following result:

Theorem 4.2. The curve [1,+∞) 3 t 7→ σ(t) can be reparametrized to be a quasi-geodesic
in Ω.

The proof is rather long and technical and requires many lemmas.
Let

ω(t) := δ+
Ω,0(t) + δ−Ω,0(t).

Lemma 4.3. For t ≥ 1

δΩ(σ(t)) ≥ 1

2
√

2
ω(t).

Proof. Fix t ≥ 1. First consider the case δ+
Ω,0(t) ≥ δ−Ω,0(t), which implies that Reσ(t) ≥ 0.

If z ∈ ∂Ω and Re (z) > 0, then

|z − σ(t)| ≥ |z − it| − |it− σ(t)| ≥ δ+
Ω,0(t)−

δ+
Ω,0(t)− δ−Ω,0(t)

2
=
ω(t)

2
.

Now, for z ∈ C define

‖z‖1 = |Re z|+ |Im z| .
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Then

|z| ≤ ‖z‖1 ≤
√

2 |z|

If z ∈ ∂Ω and Re z ≤ 0, then

|z − σ(t)| ≥ 1√
2
‖z − σ(t)‖1.

Further, since Re z ≤ 0 ≤ Reσ(t) we have

‖z − σ(t)‖1 = |Re z − Reσ(t)|+ |Im z − Imσ(t)| = Reσ(t)− Re z + |Im z − t|
= Reσ(t) + ‖z − it‖1 ≥ Reσ(t) + |z − it| ≥ Reσ(t) + δ−Ω,0(t)

=
δ+

Ω,0(t)− δ−Ω,0(t)

2
+ δ−Ω,0(t) =

1

2
ω(t).

Hence

|z − σ(t)| ≥ 1

2
√

2
ω(t).

The case when δ+
Ω,0(t) ≤ δ−Ω,0(t) is similar. �

As a direct consequence of the previous lemma, Lemma 4.1 and Theorem 3.5, we have:

Lemma 4.4. If 1 ≤ a < b <∞, then

`Ω (σ; [a, b]) ≤ 4
√

2

∫ b

a

1

ω(t)
dt.

We can now prove Theorem 4.2 in a simple case.

Proposition 4.5. Suppose that there exist α, T0 > 0 such that

ω(t) ≥ αt

for all t ≥ T0. Then σ can be reparametrized to be a quasi-geodesic in Ω.

Proof. We have δ±Ω,0(t) ≤ t for all t ≥ 1, hence,

|δ+
Ω,0(t)− δ−Ω,0(t)|

t
≤
|δ+

Ω,0(t)|
t

+
|δ−Ω,0(t)|

t
≤ 2.

Therefore, for all t ≥ 1,

t ≤ |σ(t)| ≤ 2t.

So, by (3.2), for all 1 ≤ a ≤ b,

(4.2) kΩ(σ(a), σ(b)) ≥ 1

4

∣∣∣∣log
|σ(b)|
|σ(a)|

∣∣∣∣ ≥ 1

4
log

b

a
− 1

4
log 2.
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On the other hand, if T0 ≤ a ≤ b, then by Lemma 4.4,

(4.3) `Ω(σ; [a, b]) ≤ 4
√

2

∫ b

a

dt

ω(t)
≤ 4
√

2

α

∫ b

a

dt

t
=

4
√

2

α
log

b

a
.

From this last inequality, (4.2), and Proposition 3.4 it follows at once that σ can be
reparametrized to be a quasi-geodesic in Ω. �

Remark 4.6. For future reference, we make the following observations. If there exist α, T0 >
0 such that

ω(t) ≥ αt

for all t ≥ T0, then

(1) by the same token we obtained (4.2), we have

max{kΩ(ia, σ(b)), kΩ(σ(a), ib)} ≥ 1

4
log

b

a
− 1

4
log 2.

Hence, by (4.3), there exist constants A,B > 0 such that for every T0 ≤ a ≤ b we
have

(4.4) kΩ(σ(a), σ(b)) ≤ `Ω(σ; [a, b]) ≤ Amin{kΩ(ia, σ(b)), kΩ(σ(a), ib)}+B.

(2) Also, again arguing as in (4.2), we have

(4.5)

∫ b

a

dt

ω(t)
≤ 4

α
kΩ(ia, ib).

Now we make the following assumption:

Assumption: there does not exist α, T0 > 0 such that ω(t) ≥ αt for all t ≥ T0.

Assuming this condition, there exists T0 > 0 such that ω(T0) < T0. In particular,
max{δ+

Ω,0(T0), δ−Ω,0(T0)} < T0. Hence, for every t ≥ T0 we have

δ±Ω,0(t) ≤ t− T0 + δ±Ω,0(T0) < t− T0 + T0 = t.

Therefore, for every t ≥ T0,

(4.6) δ±Ω,0(t) < t.

4.1.1. Step 1: constructing sequences. Fix a, b ∈ [T0,∞) with a < b. We define a sequence
of positive numbers {tn}

a = t0 < t1 < t2 < . . .

and complex numbers {z±n } ⊂ C \ Ω such that for all n ≥ 0

(0) Im z+
n = Im z−n ,

(1) Re z−n < 0 < Re z+
n ,
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(2) |Re z±n | ≤ δ±Ω,0(tn),
(3) yn ≤ tn,
(4) max{|σ(tn)− z+

n |, |σ(tn)− z−n |} ≤ 2ω(tn),

and for all n ≥ 1,

(5) min{|σ(tn)− z+
n−1|, |σ(tn)− z−n−1|} = 6ω(tn).

We first explain the construction of these sequences and then verify that they have the
desired properties.

We define tn, z+
n , and z−n sequentially as follows. If n = 0, then define t0 := a. Otherwise,

define
(4.7)

tn := max

{
t ≥ tn−1 : ω(s) ≥ 1

6
min{

∣∣σ(s)− z+
n−1

∣∣ , ∣∣σ(s)− z−n−1

∣∣} for all s ∈ [tn−1, t]

}
.

Next pick an, bn ∈ C \ Ω such that

Re(an) ≤ 0 ≤ Re(bn),

|an − itn| = δ−Ω,0(tn), and

|bn − itn| = δ+
Ω,0(tn).

Since tn ≥ T0, by (4.6) we have Re (an) < 0 < Re (bn). Then let

yn := min{Im(an), Im(bn)}.

Since Ω is starlike at infinity, max{Im(an), Im(bn)} ≤ tn, hence yn ≤ tn. Then define

z+
n := Re (bn) + iyn, z−n := Re (an) + iyn.

We now verify that the resulting sequences have the desired properties.

Claim: a = t0 < t1 < t2 < . . .

Proof. First, note that Property (4) implies that the set in (4.7) is non-empty. Hence each
tn exists. We next show that tn < +∞. If n = 0, then tn = a < +∞. If n > 1, then the
definition of σ implies that

min{
∣∣σ(t)− z+

n−1

∣∣ , ∣∣σ(t)− z−n−1

∣∣} ≥ t− tn−1

for all t ≥ tn−1. Then, since we assume that there does not exist α, T0 > 0 such that
ω(t) ≥ αt for all t ≥ T0, we see that tn < +∞. Finally, we show that if n > 0, then
tn−1 < tn. By Property (4)

min
{∣∣σ(tn−1)− z+

n−1

∣∣ , ∣∣σ(tn−1)− z−n−1

∣∣} ≤ 2ω(tn−1).

So by the continuity of ω we see that tn > tn−1.
�
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Now Properties (0)-(3) and (5) hold by the construction. So we only have to verify
Property (4).

Claim: max{|σ(tn)− z+
n |, |σ(tn)− z−n |} ≤ 2ω(tn) for all n ≥ 0.

Proof. We first argue that

(4.8) max{|itn − z+
n |, |itn − z−n |} ≤ ω(tn).

Indeed, assume that yn = Im bn (a similar argument works in case yn = Im an). Then,
|itn − z+

n | = δ+
Ω,0(tn), while

|itn − z−n | ≤ |itn − an|+ |an − (Re an + iyn)| = δ−Ω,0(tn) + (Im an − yn)

≤ δ−Ω,0(tn) + (tn − yn) ≤ δ−Ω,0(tn) + |itn − bn| = δ−Ω,0(tn) + δ+
Ω,0(tn) = ω(tn).

Also, clearly |σ(tn)− itn| ≤ ω(tn). This last inequality, together with (4.8), implies

|σ(tn)− z±n | ≤ |σ(tn)− itn|+ |itn − z±n | ≤ 2ω(tn). �

This completes the construction of the sequences.

4.1.2. Step 2: key estimates. We now establish key estimates on the sequences constructed
in the previous step.

Lemma 4.7. For n ≥ 1 we have

3ω(tn) ≤ yn − tn−1 ≤ min{tn − tn−1, yn − yn−1}.
In particular,

t0 < y1 ≤ t1 < y2 ≤ t2 < . . .

and limn→∞ yn =∞.

Proof. Fix n ≥ 1. By property (5),

min{|σ(tn)− z+
n−1|, |σ(tn)− z−n−1|} = 6ω(tn).

First assume that |σ(tn) − z+
n−1| = 6ω(tn). Then, by (4.8) and taking into account that

ω(tn) ≥ ω(tn−1), we have

yn − tn−1 = |iyn − itn−1|
≥ |σ(tn)− z+

n−1| − |σ(tn)− iyn| − |itn−1 − z+
n−1|

≥ 6ω(tn)− 2ω(tn)− ω(tn−1) ≥ (6− 3)ω(tn) = 3ω(tn).

By property (3), yn − tn−1 ≤ min{tn − tn−1, yn − yn−1}. The case when |σ(tn) − z−n−1| =
6ω(tn) is essentially the same.

Finally, the previous estimates show that {yn} is an increasing sequence and

0 < 3ω(t0) ≤ 3 lim
n→∞

ω(tn) ≤ lim
n→∞

(yn − yn−1).

Hence limn→∞ yn =∞. �
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As straightforward consequence of the previous lemma and taking into account that
ω(tn) ≥ ω(tn−1), we see that

(4.9) log

(
yn − yn−1

ω(tn−1)

)
≥ log 3 > 1

for every n ≥ 1.

Lemma 4.8. If n ≥ 1 and t ∈ [yn, tn], then

ω(t) ≤ ω(tn) ≤ 2ω(t).

Proof. The first inequality follows from the fact that Ω is starlike at infinity.
Since tn−1 < yn ≤ tn it follows from (4.7) and the fact that σ is 2-Lipschitz (see Lemma

4.1) that

ω(t) ≥ 1

6
min{

∣∣σ(t)− z+
n−1

∣∣ , ∣∣σ(t)− z−n−1

∣∣}
≥ 1

6
min{

∣∣σ(tn)− z+
n−1

∣∣ , ∣∣σ(tn)− z−n−1

∣∣} − 1

6
|σ(tn)− σ(t)|

≥ ω(tn)− 2
1

6
(tn − t) ≥ ω(tn)− 1

3
|itn − iyn| ≥

(
1− 1

3

)
ω(tn) ≥ 1

2
ω(tn),

and the proof is completed. �

4.1.3. Step 3: A lower bound on distance. Define

δn := Re(z+
n )− Re(z−n ).

By property (2) in the definition of the sequence {z±n },

δn ≤ δ+
Ω,0(tn) + δ−Ω,0(tn) = ω(tn).

Recall that we fixed a, b ∈ [T0,∞) with a < b. Lemma 4.7 implies that limn→∞ yn =∞
and y0 ≤ t0 = a < b, so there exists a unique N ≥ 0 such that

yN ≤ b < yN+1.

Lemma 4.9. Suppose u ∈ {ia, σ(a)} and v ∈ {ib, σ(b)}. If N = 0, then

kΩ(u, v) ≥ −1

4
log (2) +

1

4
log

(
max

{
1,
b− y0

ω(a)

})
.

If N ≥ 1, then

kΩ(u, v) ≥ 1

4

(
− log 2 + log

(
y1 − y0

ω(a)

)
+

N−1∑
k=1

log

(
yk+1 − yk

δk

)
+ log

(
max

{
1,
b− yN
δN

}))
.
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Proof. First suppose that N = 0. If b − y0 ≤ ω(a) there is nothing to prove. So suppose
that

b− y0

ω(a)
≥ 1.

By (4.8) and property (4) in Step 1,

(4.10) max
{
|u− z+

0 |, |u− z−0 |
}
≤ 2ω(a).

Next, since |v − z±0 | ≥ |Im v − Im z±0 | = b− y0, we have

(4.11) min
{
|v − z+

0 |, |v − z−0 |
}
≥ b− y0.

Putting together (3.2) with (4.10) and (4.11), we have

kΩ(u, v) ≥ 1

4
log

∣∣∣∣v − z+
0

u− z+
0

∣∣∣∣ ≥ −1

4
log (2) +

1

4
log

(
b− y0

ω(a)

)
.

Next suppose that N > 0. Let γ : [0, T ] → Ω be a unit speed geodesic with γ(0) = u
and γ(T ) = v. For k = 1, . . . , N define

τk := min{t ≥ 0 : Im(γ(t)) = yk}.

Note that a < τ1 < τ2 < · · · < τN < b.
Then, since Ω is starlike at infinity,

(4.12) Re (z−k ) < Re (γ(τk)) < Re (z+
k ).

Also, since |γ(τk+1)− z±k | ≥ |Im γ(τk+1)− Im z±k | = yk+1 − yk, we have

(4.13) min
{
|γ(τk+1)− z+

k |, |γ(τk+1)− z−k |
}
≥ yk+1 − yk.

Moreover, by (4.12) we have |γ(τk)− z±k | = |Re γ(τk)− Re z±k | ≤ δk, hence

(4.14) max
{
|γ(τk)− z+

k |, |γ(τk)− z−k |
}
≤ δk.

Now, by (3.2), (4.13) and (4.10) we have

(4.15) kΩ(u, γ(τ1)) ≥ 1

4
log

∣∣∣∣γ(τ1)− z+
0

u− z+
0

∣∣∣∣ ≥ −1

4
log (2) +

1

4
log

(
y1 − y0

ω(a)

)
.

For k ≥ 1, (3.2), (4.13) and (4.14) imply that

(4.16) kΩ(γ(τk+1), γ(τk)) ≥
1

4
log

∣∣∣∣γ(τk+1)− z+
k

γ(τk)− z+
k

∣∣∣∣ ≥ 1

4
log

(
yk+1 − yk

δk

)
.

Finally, (3.2), (4.14) implies that

kΩ(γ(τN), v) ≥ 1

4
log

∣∣∣∣ v − z+
N

γ(τN)− z+
N

∣∣∣∣ ≥ 1

4
log

(
b− yN
δN

)
,
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and hence

(4.17) kΩ(γ(τN), v) ≥ 1

4
log

(
max

{
1,
b− yN
δN

})
.

Since γ is a geodesic, we have

kΩ(u, v) = kΩ(u, γ(τ1)) +
N−1∑
k=1

kΩ(γ(τk), γ(τk+1)) + kΩ(γ(τN), v).

The statement then follows from (4.15), (4.16), (4.17). �

4.1.4. Proof of Theorem 4.2. By Lemma 4.4 we have

`Ω (σ; [a, b]) ≤ 4
√

2

∫ b

a

1

ω(t)
dt.

Hence to prove Theorem 4.2 it is enough to show that
∫ b
a
ω(t)−1dt is comparable to the

lower bounds in Lemma 4.9.

Lemma 4.10. If T ∈ [a, y1], then∫ T

a

dt

ω(t)
≤ 1 + 6 log

(
max

{
1,
T − y0

ω(a)

})
Proof. Notice that by (4.8), (a− y0) = (t0 − y0) ≤ |it0 − z±0 | ≤ ω(t0), hence,

y0 ≤ a ≤ y0 + ω(a)

and if a ≤ t, then ω(a) ≤ ω(t). So∫ y0+ω(a)

a

dt

ω(t)
≤
∫ y0+ω(a)

a

dt

ω(a)
≤ 1.

Now if t ∈ [a, y1], then by (4.7),

ω(t) ≥ 1

6
min{

∣∣σ(t)− z+
0

∣∣ , ∣∣σ(t)− z−0
∣∣} ≥ 1

6
(t− y0).

So if T ≥ y0 + ω(a), then∫ T

y0+ω(a)

dt

ω(t)
≤ 6

∫ T

y0+ω(a)

dt

t− y0

= 6 log

(
T − y0

ω(a)

)
.

�

Lemma 4.11. For k ≥ 1, ∫ yk+1

yk

dt

ω(t)
≤ 8 log

(
yk+1 − yk
ω(tk)

)
.
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Proof. By Lemma 4.7 and the fact that ω is an increasing function,

yk + ω(tk) ≤ yk + 3ω(tk) ≤ yk + 3ω(tk+1) ≤ tk + 3ω(tk+1) ≤ yk+1.

Further, by Lemma 4.8, if t ∈ [yk, tk], then

ω(t) ≥ ω(tk)/2

and, since Ω is starlike at infinity, if t ≥ tk, then ω(t) ≥ ω(tk). Therefore, ω(t) ≥ ω(tk)/2
when t ≥ yk. Thus

(4.18)

∫ yk+ω(tk)

yk

dt

ω(t)
≤
∫ yk+ω(tk)

yk

2dt

ω(tk)
= 2.

Next consider t ∈ [yk + ω(tk), yk+1]. By (4.8), we have

tk − yk = |itk − iyk| ≤ |itk − z±k | ≤ ω(tk).

Then yk + ω(tk) ≥ tk. So t ∈ [tk, yk+1] and yk+1 ≤ tk+1. Hence, by (4.7),

ω(t) ≥ 1

6
min{|σ(t)− z+

k |, |σ(t)− z−k |} ≥
1

6
(t− yk).

Therefore,

(4.19)

∫ yk+1

yk+ω(tk)

dt

ω(t)
≤ 6

∫ yk+1

yk+ω(tk)

dt

t− yk
= 6 log

(
yk+1 − yk
ω(tk)

)
.

Thus by (4.18) and (4.19) and (4.9),∫ yk+1

yk

dt

ω(t)
≤ 2 + 6 log

(
yk+1 − yk
ω(tk)

)
≤ 8 log

(
yk+1 − yk
ω(tk)

)
,

and we are done. �

Repeating the proof of the previous lemma one can prove:

Lemma 4.12. If N ≥ 1, then∫ b

yN

dt

ω(t)
≤ 2 + 6 log

(
max

{
1,
b− yN
ω(tN)

})
.

Combining the estimates in the previous three lemmas we can estimate
∫ b
a
ω(t)−1dt.

Recall that a, b ∈ [T0,∞) with a < b and N ≥ 0 is a natural number such that
yN ≤ b < yN+1.

If N = 0, then Lemma 4.10 implies

(4.20) `Ω(σ; [a, b]) ≤ 4
√

2 + 24
√

2 log

(
max

{
1,
b− y0

ω(a)

})
,
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while if N > 0, then Lemma 4.11 and Lemma 4.12 imply

`Ω(σ; [a, b]) ≤ 12
√

2 + 24
√

2 log

(
y1 − y0

ω(a)

)
+ 32
√

2
N−1∑
k=1

log

(
yk+1 − yk
ω(tk)

)
+ 24
√

2 log

(
max

{
1,
b− yN
ω(tN)

})
.

(4.21)

Then Lemma 4.9 and the fact that δk ≤ ω(tk) imply that there exist A > 1 and B > 0
such that for every T0 ≤ a ≤ b,

`Ω(σ; [a, b]) ≤ AkΩ(σ(a), σ(b)) +B.

Now, since σ([1, T0]) is compact, possibly taking a larger B, the previous estimate holds
for every 1 ≤ a ≤ b, and Theorem 4.2 is finally proved.

Remark 4.13. We also notice that by (4.20), (4.21) and Lemma 4.9, there exist constants
A,B > 0 such that for every 1 ≤ a ≤ b,

(4.22) kΩ(σ(a), σ(b)) ≤ `Ω(σ; [a, b]) ≤ Amin{kΩ(σ(a), ib), kΩ(σ(b), ia)}+B.

As a consequence of the previous results, we have the following:

Proposition 4.14. Assume there exist c, C > 0 such that cδ−Ω,0(t) ≤ δ+
Ω,0(t) ≤ Cδ−Ω,0(t)

for all t ≥ 1. Then βi : [0,+∞) 3 t 7→ i+ it can be reparametrized to be a quasi-geodesic.

Proof. Since δΩ(it) = min{δ−Ω,0(t), δ+
Ω,0(t)} and δ−Ω,0(t) is comparable to δ+

Ω,0(t), there exists
C ′ > 1 such that for every t ≥ 1,

ω(t) ≤ C ′δΩ(it).

In particular, by Theorem 3.5, we have for every 0 ≤ a ≤ b,

`Ω(βi; [a, b]) ≤
∫ b

a

dτ

δΩ(iτ)
≤ 1

C ′

∫ b

a

dτ

ω(τ)
.

Therefore, in case there exist α, T0 > 0 such that ω(t) ≥ αt for all t ≥ T0, equation (4.5)
implies that βi can be reparametrized to be a quasi-geodesic.

On the other hand, if there exist no α, T0 > 0 such that ω(t) ≥ αt for all t ≥ T0, Lemmas
4.9, 4.10, 4.11, 4.12 imply again that βi can be reparametrized to be a quasi-geodesic. �

4.2. Estimates on the distance between σ and the vertical axis. For t ≥ 1, let
st ∈ [1,+∞) be such that

(4.23) kΩ(σ(st), it) = min
r∈[1,+∞)

kΩ(σ(r), it).

Proposition 4.15. There exist α > 1, β > 0 such that for every t ≥ 1,

kΩ(σ(t), it) ≤ αkΩ(σ(st), it) + β.
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Proof. Either by (4.4), or by (4.22), for t ≥ 1, we have

kΩ(σ(t), σ(st)) ≤ AkΩ(it, σ(st)) +B.

Therefore

kΩ(it, σ(t)) ≤ kΩ(it, σ(st)) + kΩ(σ(st), σ(t)) ≤ (A+ 1)kΩ(it, σ(st)) +B,

and we are done. �

5. Proof of Theorem 1.1, Theorem 1.2 and Theorem 1.3

5.1. Proof of Theorem 1.1. Let (φt), τ, h,Ω, {tn} be as in Theorem 1.1.
We can suppose that (φt) is not a group of automorphisms of D, for otherwise the result

is clear.
In this case, there exists p ∈ C such that p 6∈ Ω and p + it ∈ Ω for all t > 0. Up to

a translation, we can assume p = 0. In particular, this implies that δ̃±Ω,0(t) = δ±Ω,0(t) for
every t > 0.

Lemma 5.1. The sequence {φtn(h−1(i))} converges to τ as n → +∞ non-tangentially
(respectively, tangentially) if and only if for every z ∈ D the sequence {φtn(z)} converges
to τ as n→ +∞ non-tangentially (respect., tangentially).

Proof. Since kD(φtn(h−1(i)), φtn(z))) ≤ kD(h−1(i), z) < +∞ for every n ∈ N, it follows
that φtn(z) is contained in a fixed hyperbolic neighborhood of {φtm(h−1(i)) : m ∈ N}
for all n ∈ N. Therefore the result follows at once from the triangle inequality and from
Proposition 3.1. �

Let σ be the curve defined in (4.1).

Lemma 5.2. limt→+∞ h
−1(σ(t)) = τ .

Proof. By Remark 3.3, the limit x := limt→+∞ h
−1(σ(t)) exists. Suppose for a contradic-

tion that x 6= τ .

For n ∈ N consider the segments C̃n(s) := in + s
δ+
Ω,0(n)−δ−Ω,0(n)

2
, 0 ≤ s ≤ 1. Note that

C̃n ⊂ Ω for all n ∈ N.
Let Cn := h−1(C̃n), n ∈ N. Since x 6= τ , the Euclidean diameter of (Cn) is bounded

from below by a constant K > 0.
Moreover, for every sequence {zn} such that zn ∈ Cn, it holds limn→+∞ |h(zn)| =∞.
Therefore, (Cn) is a sequence of Koebe’s arcs for h, contradicting the no Koebe arcs

theorem (see, e.g., [18, Corollary 9.1]). �

Corollary 5.3. The sequence {φtn(z0)} converges non-tangentially to τ as n→ +∞ for
all z0 ∈ D if and only if there exists C > 0 such that for every n ∈ N

kΩ(itn, σ([1,+∞))) ≤ C.
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Conversely, the sequence {φtn(z0)} converges tangentially to τ as n→ +∞ for all z0 ∈ D
if and only if for every M > 0 there exists nM ≥ 1 such that for all n ≥ nM ,

kΩ(itn, σ([1,+∞))) > M.

Proof. By Theorem 4.2 the curve σ can be reparametrized to be a quasi-geodesic in Ω,
hence by (3.1), it is “shadowed” by a geodesic γ in Ω. The curve h−1(γ) is then a geodesic
in D and by Lemma 5.2 it converges to τ . Hence, by the triangle inequality and Proposition
3.1, the sequence {φtn(h−1(i))} converges non-tangentially to τ as n→ +∞ if and only if
it is contained in a hyperbolic neighborhood of h−1(σ[1,∞)). Since h is an isometry for
the hyperbolic distance, it follows that {φtn(h−1(i))} converges non-tangentially to τ as
n→ +∞ if and only if there exists C > 0 such that for every n ∈ N

kΩ(itn, σ([1,+∞))) ≤ C.

Conversely, since (again by Proposition 3.1) {φtn(h−1(i))} converges tangentially to τ as
n→ +∞ if and only if it is eventually outside any hyperbolic sector around h−1(γ), by the
same token as before, we get that {φtn(h−1(i))} converges tangentially to τ as n → +∞
if and only if for every M > 0 there exists nM ∈ N such that for all n ≥ nM ,

kΩ(itn, σ([1,+∞))) > M,

and we are done. �

Now, for t ≥ 1 let st be defined as in (4.23). Notice that

kΩ(it, σ([1,+∞))) = kΩ(it, σ(st))).

Then, by Proposition 4.15 and the Distance Lemma (see Theorem 3.5), we have for all
t ≥ 1,

kΩ(it, σ([1,+∞))) ≥ 1

α
kΩ(it, σ(t))− β

α
≥ 1

4α
log

(
|δ+

Ω,0(t)− δ−Ω,0(t)|
2 min{δΩ(it), δΩ(σ(t))}

)
− β

α
.

In other words, there exist A,B > 0 such that for every t ≥ 1,

(5.1) kΩ(it, σ([1,+∞)) ≥ A log

(
|δ+

Ω,0(t)− δ−Ω,0(t)|
2δΩ(it)

)
−B.

Now, for t ≥ 1 let ηt : [0, 1]→ Ω be defined as

ηt(r) := it+ r
δ+

Ω,0(t)− δ−Ω,0(t)

2
.

For all t ≥ 1 we have

(5.2) kΩ(σ(st), it) ≤ kΩ(it, σ(t)) ≤ `Ω(ηt; [0, 1]).

We compute `Ω(ηt; [0, 1]). In order to do so, we need a lemma:
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Lemma 5.4. For every t ≥ 1 and for every r ∈ [0, 1] we have

δΩ(ηt(r)) ≥ δΩ(it).

Proof. Fix t ≥ 1 and assume that δ+
Ω,0(t) ≥ δ−Ω,0(t) (the case δ+

Ω,0(t) ≤ δ−Ω,0(t) is similar
and we omit it).

Fix r ∈ [0, 1]. Notice that Re ηt(r) ≥ 0. Therefore, if z ∈ C \ Ω and Re z ≤ 0, then

|ηt(r)− z| ≥ |it− z| ≥ δ−Ω,0(t) = δΩ(it).

On the other hand, if z ∈ C \ Ω and Re z > 0, then |it− z| ≥ δ+
Ω,0(t). Therefore,

|ηt(r)− z| ≥ inf
|w−it|=δ+

Ω,0(t),Rew>0
|ηt(r)− w| = δ+

Ω,0(t)− Re ηt(r)

≥ δ+
Ω,0(t)− Reσ(t) =

1

2

(
δ+

Ω,0(t) + δ−Ω,0(t)
)
≥ δΩ(it),

and we are done. �

By Lemma 5.4 and the Distance Lemma (Theorem 3.5), we have for every t ≥ 1,

`Ω(ηt; [0, 1]) =

∫ 1

0

κΩ(ηt(r); η
′
t(r))dr ≤

|δ+
Ω,0(t)− δ−Ω,0(t)|

2

∫ 1

0

dr

δΩ(ηt(r))

≤
|δ+

Ω,0(t)− δ−Ω,0(t)|
2δΩ(it)

.

This latter equation together with (5.2) and (5.1) implies that for every t ≥ 1,

(5.3) A log

(
|δ+

Ω,0(t)− δ−Ω,0(t)|
2δΩ(it)

)
−B ≤ kΩ(it, σ([1,+∞))) ≤

|δ+
Ω,0(t)− δ−Ω,0(t)|

2δΩ(it)
.

The first part (the “non-tangential part”) of Theorem 1.1 follows now directly from
Corollary 5.3 and (5.3).

Also, by the same token, we see that φtn(z) → τ tangentially if and only if
δ+
Ω,0(tn)

δ−Ω,0(tn)

converges either to 0 or +∞ as n→∞.
We are left to show that

(5.4) lim
n→∞

δ+
Ω,0(tn)

δ−Ω,0(tn)
= +∞

if and only if

(5.5) lim
n→∞

Arg(1− τφtn(z)) = −π
2
.

To this aim, we extend σ to all of (0,∞) in the obvious way:

σ(t) =
δ+

Ω,0(t)− δ−Ω,0(t)

2
+ it.
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Since 0 6∈ Ω and it ∈ Ω for all t > 0, limt→0+ σ(t) = 0. Then σ((0,∞)) divides Ω into the
connected domains

U+ = {x+ iy ∈ Ω : x > Reσ(y)}

and

U− = {x+ iy ∈ Ω : x < Reσ(y)}.

Hence, Γ := h−1(σ(0,+∞)) divides D into two connected components D+ := h−1(U+)
and D− := h−1(U−).

Also, there exists τ̃ ∈ ∂D, τ̃ 6= τ such that limt→0− h
−1(σ(t)) = τ̃ (see, e.g., [14, Theorem

1, p. 37]).
By Remark 3.3 and Lemma 5.2, h−1(σ(t)) converges to τ non-tangentially as t→ +∞.

This implies that Γ is contained in the set

{z ∈ D : |Arg(1− τz)| ≤ θ} ∪ {τ, τ̃}

for some θ ∈ (0, π/2). Notice that the last set is an angular sector of amplitude 2θ with
vertex τ symmetric with respect to segment joining −τ with τ .

Since h preserves orientation, it follows that D+ contains all the sequences converging
tangentially to τ with slope π/2 while D− contains all the sequences converging tangen-
tially to τ with slope −π/2.

Therefore, if (5.4) holds, then itn ∈ U− for n sufficiently big, hence, φtn(z) ∈ D−

eventually and (5.5) holds. Conversely, if (5.5) holds then φtn(z) ∈ D− eventually, hence,
itn ∈ U− eventually and (5.4) holds.

This concludes the proof of the theorem.

5.2. Proof of Theorem 1.2. The part “(1) if and only if (3)” follows immediately from
Theorem 1.1. By Remark 3.3 it is clear that (2) implies (1) in Theorem 1.2. In order to
end the proof, we show that (3) implies (2).

We need to prove that the orbit [0,+∞) 3 t 7→ φt(z) can be reparametrized to be
a quasi-geodesic for every z ∈ D. Since h is an isometry between kD and kΩ, the latter
statement is equivalent to proving that, setting p = h(z), the curve βp : [0,+∞) 3 t 7→
p+ it can be reparametrized to be a quasi-geodesic in Ω.

As before, we can assume 0 6∈ Ω and it ∈ Ω for all t > 0. Hence, by Proposition 4.14,
the curve βi can be reparametrized to be a quasi-geodesic in Ω.

In order to complete the proof, we will prove the following:

Lemma 5.5. For every p ∈ Ω, there exists Ap > 1 and Bp > 0 such that

`Ω(βp; [s, t]) ≤ ApkΩ(βp(s), βp(t)) +Bp,

for all 0 ≤ s ≤ t. Hence, by Proposition 3.4, βp can be reparametrized to be a quasi-geodesic
in Ω.
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Proof. Fix p ∈ Ω. By Proposition 4.14, there exists A ≥ 1 and B ≥ 0 such that

(5.6) `Ω(βi; [s, t]) ≤ AkΩ(βi(s), βi(t)) +B,

for all 0 ≤ s ≤ t. Now, for 0 ≤ s ≤ t,

kΩ(i+ is, i+ it) ≤ kΩ(p+ is, i+ is) + kΩ(p+ is, p+ it) + kΩ(i+ it, p+ it)

≤ kΩ(p+ is, p+ it) + 2kΩ(p, i),

where the last inequality follows from the fact that Ω 3 z 7→ z + it is a holomorphic
self-map of Ω. Therefore, there exists B1 > 0 such that for all s, t ≥ 0,

(5.7) kΩ(i+ is, i+ it) ≤ kΩ(p+ is, p+ it) +B1.

By Lemma 3.6 there exists c > 0 such that δΩ(i+ it) ≤ cδΩ(p+ it) for all t ≥ 0. Hence,
by the Distance Lemma (Theorem 3.5), for 0 ≤ s ≤ t,

`Ω(βp; [s, t]) =

∫ t

s

κΩ(βp(r); β
′
p(r))dr ≤

∫ t

s

dr

δΩ(p+ ir)

≤ c

∫ t

s

dr

δΩ(i+ ir)
≤ 4c

∫ t

s

κΩ(βi(r); β
′
i(r))dr = 4c`Ω(βi; [s, t]).

Therefore, by (5.6) and (5.7)

`Ω(βp; [s, t]) ≤ 4c`Ω(βi; [s, t]) ≤ 4cAkΩ(i+ is, i+ it) + 4cB

≤ 4cAkΩ(p+ is, p+ it) + 4cAB1 + 4cB,

for all 0 ≤ s ≤ t. �

5.3. Proof of Theorem 1.3. It follows directly from Theorem 1.1.
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de Matemática Aplicada II and IMUS, Universidad de Sevilla, Sevilla, 41092, Spain.

E-mail address: contreras@us.es
E-mail address: madrigal@us.es

H. Gaussier: Univ. Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
E-mail address: herve.gaussier@univ-grenoble-alpes.fr

A. Zimmer: Department of Mathematics, Louisiana State University, Baton Rouge, LA
USA

E-mail address: amzimmer@lsu.edu




