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ASYMPTOTIC BEHAVIOR OF ORBITS OF HOLOMORPHIC SEMIGROUPS
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Let (φ t ) be a holomorphic semigroup of the unit disc (i.e., the flow of a semicomplete holomorphic vector field) without fixed points in the unit disc and let Ω be the starlike at infinity domain image of the Koenigs function of (φ t ). In this paper we characterize the type of convergence of the orbits of (φ t ) to the Denjoy-Wolff point in terms of the shape of Ω. In particular we prove that the convergence is non-tangential if and only if the domain Ω is "quasi-symmetric with respect to vertical axis". We also prove that such conditions are equivalent to the curve [0, ∞) t → φ t (z) being a quasigeodesic in the sense of Gromov. Also, we characterize the tangential convergence in terms of the shape of Ω.

Résumé. Soit (φ t ) un semi-groupe holomorphe du disque unité (i.e. le flot d'un champ de vecteur holomorphe semi-complet), sans point fixe dans le disque unité, et soit Ω le domaine étoilé à l'infini, image du disque unité par la fonction de Koenigs de (φ t ). Nous caractérisons le type de convergence des orbites de (φ t ) au point de Denjoy-Wolff en termes de forme de Ω. Nous démontrons notamment que la convergence est non tangentielle si et seulement si le domaine Ω est "quasi-symétrique par rapport à l'axe vertical". Nous démontrons aussi que de telles conditions sont équivalentes au fait que la courbe [0, ∞) t → φ t (z) est une quasi-géodésique au sens de Gromov. Enfin, nous caractérisons la convergence tangentielle en termes de forme de Ω.

Introduction and statements of the main results

A holomorphic vector field G on the unit disc D is (real) semicomplete if the Cauchy problem ẋ(t) = G(x(t)), x(0) = z has a solution defined for all t ≥ 0 and for all z ∈ D. The flow of a semicomplete vector field, (φ t ), is a continuous semigroup of holomorphic self-maps of D-or simply a semigroup in D. Namely, (φ t ) is a continuous homomorphism of the real semigroup [0, +∞) endowed with the Euclidean topology to the semigroup under composition of holomorphic self-maps of D endowed with the topology of uniform convergence on compacta.

It appears that semigroups in D were first considered in the 1930's by J. Wolff [START_REF] Wolff | L'équation différentielle dz/dt = w(z) = fonction holomorphe à partie réelle positive dans un demi-plan[END_REF], although it was only with a paper of E. Berkson and H. Porta [START_REF] Berkson | Semigroups of holomorphic functions and composition operators[END_REF] in the 1970's that the modern study of semigroups in D initiated. Since their work, interest in semigroups in D has expanded due to their connections with branching stochastic processes (see, e.g., [START_REF] Karlin | Embeddability of discrete time simple branching processes into continuous time branching processes[END_REF][START_REF] Karlin | Embedding iterates of analytic functions with two fixed points into continuous groups[END_REF]), biology [START_REF] Mitchison | Conformal growth of Arabidopsis leaves[END_REF] and their connections to composition operators and Loewner's theory (we refer the reader to the books [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF][START_REF] Shoikhet | Semigroups in geometrical function theory[END_REF][START_REF] Reich | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces[END_REF][START_REF] Elin | Linearization models for complex dynamical systems[END_REF] and [START_REF] Bracci | Evolution families and the Loewner equation I: the unit disc[END_REF] for more details).

In this paper we study the asymptotic behavior of semigroups in D via the Euclidean geometry of the image of an associated Koenigs function. Aside being motived by the study of the dynamics of semigroups, our main results also give a complete answer to the following question from geometric function theory.

Let f : D → C be a Riemann map such that Ω := f (D) is starlike at infinity, that is Ω + it ⊂ Ω for every t ≥ 0. Let p ∈ Ω and let {t n } be a sequence of positive real numbers converging to +∞. Looking only at the shape of Ω, how can one decide whether the sequence {f -1 (p + it n )} converges to a point τ ∈ ∂D non-tangentially or tangentially?

Starlike at infinity domains are also sometimes called "vertically invariant" (e.g. [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF]) or "convex in the positive direction of the real axis" (e.g. [START_REF] Elin | Linearization models for complex dynamical systems[END_REF]).

If (φ t ) is a semigroup in D, which is not a group of hyperbolic rotations, then there exists a unique τ ∈ D, the Denjoy-Wolff point of (φ t ), such that lim t→+∞ φ t (z) = τ , and the convergence is uniform on compacta. In case τ ∈ D, the semigroup is called elliptic.

In case the semigroup (φ t ) is non-elliptic, the action is conjugate to linear translation on an unbounded simply connected domain. More precisely, there exists an (essentially unique) univalent function h, called the Koenigs function of (φ t ), such that h(D) is starlike at infinity, h(φ t (z)) = h(z) + it for all t ≥ 0 and z ∈ D (see, e.g., [START_REF] Abate | Iteration theory of holomorphic maps on taut manifolds[END_REF][START_REF] Arosio | Canonical models for holomorphic iteration[END_REF][START_REF] Cowen | Iteration and the solution of functional equations for functions analytic in the unit disk[END_REF]).

The slope of a non-elliptic semigroup (φ t ) at z ∈ D is the cluster set of Arg(1 -τ φ t (z)) as t → +∞. The slope is a compact connected subset of [-π/2, π/2].

Given z ∈ D, we say that the orbit [0, +∞) t → φ t (z) converges non-tangentially to the Denjoy-Wolff point if the slope of (φ t ) at z is contained in (-π/2, π/2). In case the slope is {-π/2} or {π/2}, the convergence is tangential.

For one-parameter groups of automorphisms there are two possible behaviors. Either h(D) is a vertical strip (and the group is called hyperbolic) or h(D) is a vertical half-plane (and the group is called parabolic). In the hyperbolic group case, h(D) is symmetric with respect to the line of symmetry of the vertical strip, and "quasi-symmetric" with respect to any vertical line contained in the strip, and, in fact, the orbits of the group converge non-tangentially to the Denjoy-Wolff point. While, in the parabolic case, h(D) is highly non-symmetric with respect to any line contained in the half-plane and the orbits of the group converge tangentially to the Denjoy-Wolff point.

For the general case, we will show that non-tangential convergence is equivalent to the image of the Koenigs function being "quasi-symmetric" about a vertical line. Suppose Ω C is a domain starlike at infinity and p ∈ C. Then for t ≥ 0 define

δ + Ω,p (t) := min{t, inf{|z -(p + it)| : z ∈ ∂Ω, Re z ≥ Re p}}, and δ - Ω,p (t) := min{t, inf{|z -(p + it)| : z ∈ ∂Ω, Re z ≤ Re p}}.
Then, the first main result we prove is the following: Theorem 1.1. Let (φ t ) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D and Koenigs function h and let Ω := h(D). Suppose that {t n } is a sequence converging to +∞. Then (1) the sequence {φ tn (z)} converges non-tangentially to τ as n → ∞ for some-and hence any-z ∈ D if and only if for some-and hence any-p ∈ Ω there exist

0 < c < C such that for all n ∈ N cδ + Ω,p (t n ) ≤ δ - Ω,p (t n ) ≤ Cδ + Ω,p (t n ). (2) lim n→∞ Arg(1 -τ φ tn (z)) = π
2 (in particular, {φ tn (z)} converges tangentially to τ as n → ∞) for some-and hence any-z ∈ D if and only if for some-and hence any-p ∈ Ω,

lim n→+∞ δ + Ω,p (t n ) δ - Ω,p (t n ) = 0,
while, lim n→∞ Arg(1 -τ φ tn (z)) = -π 2 (in particular, {φ tn (z)} converges tangentially to τ as n → ∞) for some-and hence any-z ∈ D if and only if for someand hence any-p ∈ Ω,

lim n→+∞ δ + Ω,p (t n ) δ - Ω,p (t n ) = +∞.
The proof of this result is very involved, and it is based almost entirely on Gromov's theory of negatively curved metric spaces. In particular, let k Ω denote the hyperbolic distance on Ω. When 0 ∈ Ω and it ∈ Ω for all t > 0, we show that the 2-Lipschitz curve

σ : [1, +∞) t → δ + Ω,0 (t) -δ - Ω,0 (t) 2 + it (1.1)
can be reparametrized to be a quasi-geodesic in (Ω, k Ω ) (see Section 3 for details on quasigeodesics). Thus, by Gromov's shadowing lemma, σ always stays within a finite hyperbolic distance from a geodesic "converging to ∞." Theorem 1.1 then follows by noticing that non-tangential convergence is equivalent to staying at finite hyperbolic distance from σ (see Section 5 for details).

This argument also shows that an orbit of a semigroup converges non-tangentially if and only if it can be reparameterized to be a quasi-geodesic in the unit disc. Theorem 1.2. Let (φ t ) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D and Koenigs function h and let Ω := h(D). Then the following are equivalent:

(1) for some-and hence any-z ∈ D, the orbit [0, +∞) t → φ t (z) converges nontangentially to τ as t → +∞, (2) for some-and hence any-z ∈ D, the curve [0, +∞) t → φ t (z) can be reparametrized to be a quasi-geodesic, (3) for some-and hence any-p ∈ Ω there exist 0 < c < C such that for all t ≥ 0,

cδ + Ω,p (t) ≤ δ - Ω,p (t) ≤ Cδ + Ω,p (t) 
. The proof actually implies more: the orbit (φ t (z)) converges non-tangentially if and only if for every 0 ≤ t 1 ≤ t 2 , the hyperbolic length of the orbit of (φ t (z)) between t 1 and t 2 is, up to uniform multiplicative and additive error, the hyperbolic distance between φ t 1 (z) and φ t 2 (z). The fact that these orbits are close to length minimizing is somewhat surprising given the examples constructed in [START_REF] Betsakos | On the asymptotic behavior of the trajectories of semigroups of holomorphic functions[END_REF][START_REF] Contreras | Slope problem for trajectories of holomorphic semigroups in the unit disk[END_REF][START_REF] Bracci | Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc[END_REF]. In particular, there exist examples of parabolic semigroups whose slope is an interval [a, b] with -π/2 < a < b < π/2. Despite this oscillation, which can only increase the hyperbolic length, Theorem 1.2 implies that the orbits in these examples are almost length minimizing.

We also give a geometric characterization of when an orbit converges tangentially. Recall that a non-elliptic semigroup (φ t ) is hyperbolic if h(D) is contained in a vertical strip, it is parabolic of positive hyperbolic step if h(D) is contained in a vertical half-plane but not in a vertical strip and parabolic of zero hyperbolic step otherwise. We mention that, although our proofs do not rely on previous results about dynamics of semigroups, it was already known (see [START_REF] Contreras | Analytic flows in the unit disk: angular derivatives and boundary fixed points[END_REF][START_REF] Contreras | Some remarks on the Abel equation in the unit disk[END_REF]) that if (φ t ) is a hyperbolic semigroup then the trajectory t → φ t (z) always converges non-tangentially to its Denjoy-Wolff point as t → +∞ for every z ∈ D and the slope is a single point which depends harmonically on z, while, if it is parabolic of positive hyperbolic step then φ t (z) always converges tangentially to its Denjoy-Wolff point as t → +∞ for every z ∈ D and the slope is independent of z (and it is either {π/2} or {-π/2}).

Therefore, Theorem 1.3 gives the new information that every orbit of a hyperbolic semigroup is a quasi-geodesic, while, in the case of parabolic semigroups of positive hyperbolic step, the orbits are never quasi-geodesics.

In the case of parabolic semigroups of zero hyperbolic step, all cases can happen. In Section 2 we give some examples illustrating the possible behaviors.

The paper is organized as follows. In Section 2 we provide some examples of possible behavior of orbits. In Section 3 we state some preliminaries we need in this paper. In Section 4 we show that the curve σ defined in Equation (1.1) can indeed be reparametrized to be a quasi-geodesic and also estimate its hyperbolic distance to the vertical axis at p. Finally, in Section 5 we prove the theorems.

Acknowledgments. We thank the referee for helpful corrections and comments which improved this paper.

Examples

In this section we construct some examples of parabolic semigroups of zero hyperbolic step illustrating possible cases. We define domains Ω starlike at infinity, and, if h : D → Ω is a Riemann map, the semigroup is given by φ 1).

t (z) := h -1 (h(z) + it). Example 2.1. The model domain Ω 1 is defined by Ω 1 := {ζ ∈ C : Im (ζ) > (Re (ζ)) 2 } (see Figure
• it • • δ - Ω1,0 (t) δ + Ω1,0 (t) Ω 1 Figure 1.
Then Ω 1 is symmetric with respect to the imaginary axis, δ + Ω 1 ,0 (t) = δ - Ω 1 ,0 (t) for t > 0 and γ : [1, +∞) t → it can be reparametrized as a geodesic in Ω 1 . Hence, for every z ∈ D, the semigroup φ t (z) converges orthogonally to the Denjoy-Wolff point τ ∈ ∂D.

Example 2.2. The model domain Ω 2 (see Figure 2) is defined by

Ω 2 := {ζ ∈ C : Re (ζ) > 0} ∪ {ζ ∈ C : Im (ζ) > (Re (ζ)) 2 }. Then for every t > 4, δ + Ω 2 ,0 (t) = t and δ - Ω 2 ,0 (t) = t - 1 4 . Hence lim t→∞ δ + Ω 2 ,0 (t) δ - Ω 2 ,0 (t) = +∞.
It follows from Theorem 1.3 that for every z ∈ D, the semigroup φ t (z) converges tangentially to the Denjoy-Wolff point τ ∈ ∂D.

• it • δ - Ω2,0 (t) Ω 2 Figure 2.
Example 2.3. Fix two sequence of negative numbers (a n ) and (b n ). Then consider the model domain Ω 3 (see Figure 3) defined by

Ω 3 := Ω 2 ∪ n≥1 S n , • it 1 • • is 1 • δ - Ω3,0 (s 1 ) δ - Ω3,0 (t 1 ) S 1 S 2 Ω 3 Figure 3.
where for every n ≥ 1, S n is a vertical strip

S n := {ζ ∈ C : a n < Re (ζ) < b n < 0}.
We claim that we can select the sequences (a n ) and (b n ) such that the slope of the associated semigroup

(φ t ) is [-π/2, α] for some -π/2 < α < π/2.
First notice that for any choice of (a n ) and (b n ) we can find t n → +∞ such that

δ - Ω 3 ,0 (t n ) = δ + Ω 2 ,0 (t n ) and hence δ + Ω 3 ,0 (t n ) δ - Ω 3 ,0 (t n ) = t n t n -1 4 → +∞ as n → ∞,
which, by Theorem 1.1, implies that φ tn (z) → τ with slope -π/2. On the other hand, by making the gap between a n and b n sufficiently large we can find

s n ∈ (a n , b n ) such that δ - Ω 3 ,0 (s n ) ≥ s n /2. Then δ - Ω 3 ,0 (s n ) δ + Ω 3 ,0 (s n ) ≥ s n /2 s n = 1 2
and hence for every z ∈ D the sequence {φ sn (z)} converges non-tangentially to τ . In particular, the slope of (φ t ) is [-π/2, α] for some -π/2 < α < π/2.

Preliminaries on hyperbolic and Euclidean geometry

3.1. Hyperbolic geometry of simply connected domains. Let Ω C be a simply connected domain. Recall that the hyperbolic metric κ Ω is defined for z ∈ Ω and v ∈ C by

κ Ω (z; v) := |v| f (0)
, where f : D → Ω is the Riemann map such that f (0) = z and f (0) > 0. The hyperbolic distance between z, w ∈ Ω is defined as

k Ω (z, w) := inf 1 0 κ Ω (γ(τ ); γ (τ ))dτ,
where the infimum is taken over all piecewise C 1 -smooth curves γ :

[0, 1] → Ω such that γ(0) = z and γ(1) = w. A curve γ : [a, b] → Ω is rectifiable if Ω (γ; [a, b]) := sup P N j=0 k Ω (γ(t j ), γ(t j+1 )) < +∞,
where the supremum is taken over all partitions

P of [a, b] of type a = t 0 < t 1 < . . . < t N +1 = b, N ∈ N.
The number Ω (γ; [a, b]) is the hyperbolic length of γ and, by definition,

Ω (γ; [a, b]) ≥ k Ω (γ(a), γ(b)
). Every rectifiable curve can be reparametrized by hyperbolic arc length. If γ is a Lipschitz curve then

Ω (γ; [s, t]) = t s κ Ω (γ(τ ); γ (τ ))dτ.

Geodesics and non

-tangential convergence. Let -∞ ≤ a < b ≤ +∞. A smooth curve η : (a, b) → Ω is a (unit speed) geodesic if t -s = k Ω (η(s), η(t))
for all a < s < t < b.

Given R > 0 and a geodesic η : [0, +∞) → Ω, the hyperbolic sector around η of amplitude R is given by

S Ω (η, R) := {z ∈ Ω : k Ω (z, η([0, +∞))) < R}.
We can use hyperbolic sectors to detect non-tangential convergence (see for instance [6, Proposition 4.5]):

Proposition 3.1. Let Ω
C be a simply connected domain and let f : D → Ω be a Riemann map.

(1) Suppose γ : [0, +∞) → Ω be a continuous curve such that lim t→+∞ k Ω (γ(0), γ(t)) = +∞, then f -1 (γ(t)) converges non-tangentially to a point σ ∈ ∂D if and only if there exist R > 0 and a geodesic η : [0, +∞) → Ω such that γ(t) ∈ S Ω (η, R) for all t sufficiently large. (2) Suppose {w n } ⊂ Ω be a sequence such that lim n→∞ k Ω (w 0 , w n ) = ∞, then w n converges non-tangentially to a point σ ∈ ∂D if and only if there exist R > 0 and a geodesic η : [0, +∞) → Ω such that w n ∈ S Ω (η, R) for all n sufficiently large.

3.3.

Quasi-geodesics. Given a general simply connected domain Ω C, it is essentially impossible to determine the geodesics in the hyperbolic metric. However, it is sometimes possible to find so-called quasi-geodesics which, by Gromov's shadowing lemma (also called Morse lemma, or the geodesic stability lemma), turn out to approximate geodesics.

Definition 3.2. Let -∞ < a < b ≤ +∞. Let Ω C be a simply connected domain and γ : [a, b) → Ω. Let A ≥ 1, B ≥ 0. We say that γ is a (A, B)-quasi-geodesic if for all a ≤ s ≤ t < b, 1 A (t -s) -B ≤ Ω (γ; [s, t]) ≤ A(t -s) + B.
For short, we say that γ is a quasi-geodesic if there exist A ≥ 1, B ≥ 0 such that γ is a (A, B)-quasi-geodesic.

By Gromov's shadowing lemma (see, e.g., [10, Théorème 3.1, pag. 41]) there exists M > 0 (which depends only on A, B) such that if γ : [0, +∞) → Ω is a (A, B)-quasigeodesic then there exists a geodesic η : [0, +∞) → Ω such that η(0) = γ(0) and for every t ∈ [0, +∞)

(3.1) k Ω (γ(t), η([0, +∞))) < M, k Ω (η(t), γ([0, +∞))) < M.
Remark 3.3. Let Ω C be a simply connected domain and let f : D → Ω be a Riemann map. By the previous argument and Proposition 3.1 it follows that if γ : [0, +∞) → Ω is a quasi-geodesic then f -1 (γ(t)) converges non-tangentially to a point σ ∈ ∂D as t → +∞.

From the previous discussion, we have the following result which allows to detect quasigeodesics: Proposition 3.4. Suppose that Ω C is a simply connected domain and γ : [0, +∞) → Ω is a Lipschitz curve. If there exists A ≥ 1 and B ≥ 0 such that Ω (γ; [s, t]) ≤ Ak Ω (γ(s), γ(t)) + B for all 0 ≤ s ≤ t, then γ can be reparametrized to be a (A, B)-quasi-geodesic.

3.4.

Estimates on the hyperbolic distance. As customary, for p ∈ Ω we let

δ Ω (p) = inf{|z -p| : z ∈ C \ Ω}.
In this paper we will use the following estimates for the hyperbolic metric and distance (see [START_REF] Bracci | Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc[END_REF]Section 3] for details):

Theorem 3.5 (Distance Lemma). Let Ω C be a simply connected domain. Then for every z ∈ Ω and v ∈ C, |v| 4δ Ω (z) ≤ κ Ω (z; v) ≤ |v| δ Ω (z)
.

Moreover, for every w 1 , w 2 ∈ Ω,

1 4 log 1 + |w 1 -w 2 | min{δ Ω (w 1 ), δ Ω (w 2 )} ≤ k Ω (w 1 , w 2 ) ≤ Γ |dw| δ Ω (w) ,
where Γ is any absolutely continuous curve in Ω joining w 1 to w 2 .

Note that Theorem 3.5 implies immediately that for all z, w ∈ Ω,

(3.2) k Ω (z, w) ≥ sup ζ∈C\Ω 1 4 log |z -ζ| |w -ζ| .

Euclidean geometry of domains starlike at infinity.

Let Ω be a simply connected domain which is starlike at infinity and p ∈ C.

For t > 0, let δ+ Ω,p (t) := inf{|z -(p + it)| : Re z ≥ Re p, z ∈ C \ Ω}, δ- Ω,p (t) := inf{|z -(p + it)| : Re z ≤ Re p, z ∈ C \ Ω}. Note that, if p + it ∈ C \ Ω then δ+ Ω,p (t) = δ- Ω,p ( 
t) = 0. While, for p ∈ Ω and t > 0, δ Ω (p + it) = min{ δ+ Ω,p (t), δ-Ω,p (t)}. Moreover, for t > 0 we let δ + Ω,p (t) := min{ δ+ Ω,p (t), t}, δ - Ω,p (t) := min{ δ-Ω,p (t), t}. Note that, since Ω is starlike at infinity, then (0, +∞) t → δ ± Ω,p (t) is non-decreasing. Simple geometric considerations allow to prove the following lemma: Lemma 3.6. Let Ω be a simply connected domain starlike at infinity. For all p, q ∈ Ω there exist 0 < c < C such that for all t > 0 cδ ± Ω,p (t) ≤ δ ± Ω,q (t) ≤ Cδ ± Ω,p (t). 4. Quasi-geodesics in starlike at infinity domains The aim of this section is to construct a quasi-geodesic in a domain Ω C starlike at infinity which converges in the Carathéodory topology to "+∞" and to get useful estimates on the hyperbolic distance from this curve to a vertical axis.

In all this section, we assume that Ω ⊂ C is a domain starlike at infinity such that 0 ∈ Ω and it ∈ Ω for all t > 0.

We Proof. For all s, t ≥ 1, using the triangle inequality we have δ ± Ω,0 (t) ≤ |t -s| + δ ± Ω,0 (s) and

δ ± Ω,0 (t) ≥ -|t -s| + δ ± Ω,0 (s). Therefore, |δ ± Ω,0 (t) -δ ± Ω,0 (s)| ≤ |t -s|.
From this it follows immediately that σ is 2-Lipschitz.

4.1.

The curve σ is up to reparametrization a quasi-geodesic. The aim of this subsection is to prove the following result: Theorem 4.2. The curve [1, +∞) t → σ(t) can be reparametrized to be a quasi-geodesic in Ω.

The proof is rather long and technical and requires many lemmas. Let

ω(t) := δ + Ω,0 (t) + δ - Ω,0 (t). Lemma 4.3. For t ≥ 1 δ Ω (σ(t)) ≥ 1 2 √ 2 ω(t).
Proof. Fix t ≥ 1. First consider the case δ + Ω,0 (t) ≥ δ - Ω,0 (t), which implies that Re σ(t) ≥ 0. If z ∈ ∂Ω and Re (z) > 0, then

|z -σ(t)| ≥ |z -it| -|it -σ(t)| ≥ δ + Ω,0 (t) - δ + Ω,0 (t) -δ - Ω,0 (t) 2 = ω(t) 2 .
Now, for z ∈ C define

z 1 = |Re z| + |Im z| . Then |z| ≤ z 1 ≤ √ 2 |z| If z ∈ ∂Ω and Re z ≤ 0, then |z -σ(t)| ≥ 1 √ 2 z -σ(t) 1 .
Further, since Re z ≤ 0 ≤ Re σ(t) we have

z -σ(t) 1 = |Re z -Re σ(t)| + |Im z -Im σ(t)| = Re σ(t) -Re z + |Im z -t| = Re σ(t) + z -it 1 ≥ Re σ(t) + |z -it| ≥ Re σ(t) + δ - Ω,0 (t) = δ + Ω,0 (t) -δ - Ω,0 (t) 2 + δ - Ω,0 (t) = 1 2 ω(t). Hence |z -σ(t)| ≥ 1 2 √ 2 ω(t).
The case when δ + Ω,0 (t) ≤ δ - Ω,0 (t) is similar. As a direct consequence of the previous lemma, Lemma 4.1 and Theorem 3.5, we have:

Lemma 4.4. If 1 ≤ a < b < ∞, then Ω (σ; [a, b]) ≤ 4 √ 2 b a 1 ω(t)
dt.

We can now prove Theorem 4.2 in a simple case.

Proposition 4.5. Suppose that there exist α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 . Then σ can be reparametrized to be a quasi-geodesic in Ω.

Proof. We have δ ± Ω,0 (t) ≤ t for all t ≥ 1, hence,

|δ + Ω,0 (t) -δ - Ω,0 (t)| t ≤ |δ + Ω,0 (t)| t + |δ - Ω,0 (t)| t ≤ 2.
Therefore, for all t ≥ 1,

t ≤ |σ(t)| ≤ 2t.
So, by (3.2), for all 1 ≤ a ≤ b,

(4.2) k Ω (σ(a), σ(b)) ≥ 1 4 log |σ(b)| |σ(a)| ≥ 1 4 log b a - 1 4 log 2.
On the other hand, if T 0 ≤ a ≤ b, then by Lemma 4.4,

(4.3) Ω (σ; [a, b]) ≤ 4 √ 2 b a dt ω(t) ≤ 4 √ 2 α b a dt t = 4 √ 2 α log b a .
From this last inequality, (4.2), and Proposition 3.4 it follows at once that σ can be reparametrized to be a quasi-geodesic in Ω.

Remark 4.6. For future reference, we make the following observations. If there exist α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 , then (1) by the same token we obtained (4.2), we have

max{k Ω (ia, σ(b)), k Ω (σ(a), ib)} ≥ 1 4 log b a - 1 4 log 2.
Hence, by (4.3), there exist constants A, B > 0 such that for every T 0 ≤ a ≤ b we have

(4.4) k Ω (σ(a), σ(b)) ≤ Ω (σ; [a, b]) ≤ A min{k Ω (ia, σ(b)), k Ω (σ(a), ib)} + B.
(2) Also, again arguing as in (4.2), we have 

Now we make the following assumption:

Assumption: there does not exist α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 .

Assuming this condition, there exists T 0 > 0 such that ω(T 0 ) < T 0 . In particular, max{δ + Ω,0 (T 0 ), δ - Ω,0 (T 0 )} < T 0 . Hence, for every t ≥ T 0 we have

δ ± Ω,0 (t) ≤ t -T 0 + δ ± Ω,0 (T 0 ) < t -T 0 + T 0 = t. Therefore, for every t ≥ T 0 , (4.6) δ ± Ω,0 (t) < t. 4.1.1. Step 1: constructing sequences. Fix a, b ∈ [T 0 , ∞) with a < b. We define a sequence of positive numbers {t n } a = t 0 < t 1 < t 2 < . . . and complex numbers {z ± n } ⊂ C \ Ω such that for all n ≥ 0 (0) Im z + n = Im z - n , (1) Re z - n < 0 < Re z + n , (2) |Re z ± n | ≤ δ ± Ω,0 (t n ), (3) y n ≤ t n , (4) max{|σ(t n ) -z + n |, |σ(t n ) -z - n |} ≤ 2ω(t n ), and for all n ≥ 1, (5) min{|σ(t n ) -z + n-1 |, |σ(t n ) -z - n-1 |} = 6ω(t n ).
We first explain the construction of these sequences and then verify that they have the desired properties.

We define t n , z + n , and z - n sequentially as follows. If n = 0, then define t 0 := a. Otherwise, define (4.7)

t n := max t ≥ t n-1 : ω(s) ≥ 1 6 min{ σ(s) -z + n-1 , σ(s) -z - n-1 } for all s ∈ [t n-1 , t] . Next pick a n , b n ∈ C \ Ω such that Re(a n ) ≤ 0 ≤ Re(b n ), |a n -it n | = δ - Ω,0 (t n ), and |b n -it n | = δ + Ω,0 (t n ). Since t n ≥ T 0 , by (4.6) we have Re (a n ) < 0 < Re (b n ). Then let y n := min{Im(a n ), Im(b n )}.
Since Ω is starlike at infinity, max{Im(a n ), Im(b n )} ≤ t n , hence y n ≤ t n . Then define z + n := Re (b n ) + iy n , z - n := Re (a n ) + iy n . We now verify that the resulting sequences have the desired properties.

Claim: a = t 0 < t 1 < t 2 < . . . Proof. First, note that Property (4) implies that the set in (4.7) is non-empty. Hence each t n exists. We next show that t n < +∞. If n = 0, then

t n = a < +∞. If n > 1, then the definition of σ implies that min{ σ(t) -z + n-1 , σ(t) -z - n-1 } ≥ t -t n-1 for all t ≥ t n-1 .
Then, since we assume that there does not exist α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 , we see that t n < +∞. Finally, we show that if n > 0, then t n-1 < t n . By Property (4)

min σ(t n-1 ) -z + n-1 , σ(t n-1 ) -z - n-1 ≤ 2ω(t n-1 ).
So by the continuity of ω we see that t n > t n-1 .

Now Properties (0)-( 3) and ( 5) hold by the construction. So we only have to verify Property (4).

Claim: max{|σ(t n ) -z + n |, |σ(t n ) -z - n |} ≤ 2ω(t n ) for all n ≥ 0. Proof. We first argue that (4.8) max{|it n -z + n |, |it n -z - n |} ≤ ω(t n ). Indeed, assume that y n = Im b n (a similar argument works in case y n = Im a n ). Then, |it n -z + n | = δ + Ω,0 (t n ), while |it n -z - n | ≤ |it n -a n | + |a n -(Re a n + iy n )| = δ - Ω,0 (t n ) + (Im a n -y n ) ≤ δ - Ω,0 (t n ) + (t n -y n ) ≤ δ - Ω,0 (t n ) + |it n -b n | = δ - Ω,0 (t n ) + δ + Ω,0 (t n ) = ω(t n ). Also, clearly |σ(t n ) -it n | ≤ ω(t n ).
This last inequality, together with (4.8), implies

|σ(t n ) -z ± n | ≤ |σ(t n ) -it n | + |it n -z ± n | ≤ 2ω(t n ).
This completes the construction of the sequences.

4.1.2.

Step 2: key estimates. We now establish key estimates on the sequences constructed in the previous step. Lemma 4.7. For n ≥ 1 we have

3ω(t n ) ≤ y n -t n-1 ≤ min{t n -t n-1 , y n -y n-1 }.
In particular,

t 0 < y 1 ≤ t 1 < y 2 ≤ t 2 < . . . and lim n→∞ y n = ∞. Proof. Fix n ≥ 1. By property (5), min{|σ(t n ) -z + n-1 |, |σ(t n ) -z - n-1 |} = 6ω(t n ). First assume that |σ(t n ) -z + n-1 | = 6ω(t n ).
Then, by (4.8) and taking into account that ω(t n ) ≥ ω(t n-1 ), we have

y n -t n-1 = |iy n -it n-1 | ≥ |σ(t n ) -z + n-1 | -|σ(t n ) -iy n | -|it n-1 -z + n-1 | ≥ 6ω(t n ) -2ω(t n ) -ω(t n-1 ) ≥ (6 -3) ω(t n ) = 3ω(t n ). By property (3), y n -t n-1 ≤ min{t n -t n-1 , y n -y n-1 }. The case when |σ(t n ) -z - n-1 | = 6ω(t n ) is essentially the same.
Finally, the previous estimates show that {y n } is an increasing sequence and

0 < 3ω(t 0 ) ≤ 3 lim n→∞ ω(t n ) ≤ lim n→∞ (y n -y n-1 ).
Hence lim n→∞ y n = ∞.

As straightforward consequence of the previous lemma and taking into account that ω(t n ) ≥ ω(t n-1 ), we see that

(4.9) log y n -y n-1 ω(t n-1 ) ≥ log 3 > 1 for every n ≥ 1. Lemma 4.8. If n ≥ 1 and t ∈ [y n , t n ], then ω(t) ≤ ω(t n ) ≤ 2ω(t).
Proof. The first inequality follows from the fact that Ω is starlike at infinity. Since t n-1 < y n ≤ t n it follows from (4.7) and the fact that σ is 2-Lipschitz (see Lemma 4.1) that

ω(t) ≥ 1 6 min{ σ(t) -z + n-1 , σ(t) -z - n-1 } ≥ 1 6 min{ σ(t n ) -z + n-1 , σ(t n ) -z - n-1 } - 1 6 |σ(t n ) -σ(t)| ≥ ω(t n ) -2 1 6 (t n -t) ≥ ω(t n ) - 1 3 |it n -iy n | ≥ 1 - 1 3 ω(t n ) ≥ 1 2 ω(t n ),
and the proof is completed.

4.1.3.

Step 3: A lower bound on distance. Define

δ n := Re(z + n ) -Re(z - n ). By property (2) in the definition of the sequence {z ± n }, δ n ≤ δ + Ω,0 (t n ) + δ - Ω,0 (t n ) = ω(t n ).
Recall that we fixed a, b ∈ [T 0 , ∞) with a < b. Lemma 4.7 implies that lim n→∞ y n = ∞ and y 0 ≤ t 0 = a < b, so there exists a unique N ≥ 0 such that 

y N ≤ b < y N +1 . Lemma 4.9. Suppose u ∈ {ia, σ(a)} and v ∈ {ib, σ(b)}. If N = 0, then k Ω (u, v) ≥ - 1 4 log (2) + 1 4 log max 1, b -y 0 ω(a) . If N ≥ 1, then k Ω (u, v) ≥ 1 4 -log 2 + log y 1 -y 0 ω(a) + N -1 k=1 log y k+1 -y k δ k + log max 1, b -y N δ N .
k Ω (u, v) ≥ 1 4 log v -z + 0 u -z + 0 ≥ - 1 4 log (2) + 1 4 log b -y 0 ω(a) .
Next suppose that N > 0. Let γ : [0, T ] → Ω be a unit speed geodesic with γ(0) = u and γ(T ) = v. For k = 1, . . . , N define

τ k := min{t ≥ 0 : Im(γ(t)) = y k }. Note that a < τ 1 < τ 2 < • • • < τ N < b.
Then, since Ω is starlike at infinity, (4.12) 

Re (z - k ) < Re (γ(τ k )) < Re (z + k ). Also, since |γ(τ k+1 ) -z ± k | ≥ |Im γ(τ k+1 ) -Im z ± k | = y k+1 -y k , we have (4.13) min |γ(τ k+1 ) -z + k |, |γ(τ k+1 ) -z - k | ≥ y k+1 -y k . Moreover, by (4.12) we have |γ(τ k ) -z ± k | = |Re γ(τ k ) -Re z ± k | ≤ δ k , hence (4.14) max |γ(τ k ) -z + k |, |γ(τ k ) -z - k | ≤ δ k . Now,
k Ω (γ(τ k+1 ), γ(τ k )) ≥ 1 4 log γ(τ k+1 ) -z + k γ(τ k ) -z + k ≥ 1 4 log y k+1 -y k δ k .
Finally, (3.2), (4.14) implies that

k Ω (γ(τ N ), v) ≥ 1 4 log v -z + N γ(τ N ) -z + N ≥ 1 4 log b -y N δ N ,
and hence (4.17)

k Ω (γ(τ N ), v) ≥ 1 4 log max 1, b -y N δ N .
Since γ is a geodesic, we have

k Ω (u, v) = k Ω (u, γ(τ 1 )) + N -1 k=1 k Ω (γ(τ k ), γ(τ k+1 )) + k Ω (γ(τ N ), v).
The statement then follows from (4.15), (4.16), (4.17). while if N > 0, then Lemma 4.11 and Lemma 4.12 imply

ω(t) ≥ 1 6 min{ σ(t) -z + 0 , σ(t) -z - 0 } ≥ 1 6 (t -y 0 ). So if T ≥ y 0 + ω(a), then
Ω (σ; [a, b]) ≤ 12 √ 2 + 24 √ 2 log y 1 -y 0 ω(a) + 32 √ 2 N -1 k=1 log y k+1 -y k ω(t k ) + 24 √ 2 log max 1, b -y N ω(t N ) . (4.21) 
Then Lemma 4.9 and the fact that δ k ≤ ω(t k ) imply that there exist A > 1 and B > 0 such that for every T 0 ≤ a ≤ b,

Ω (σ; [a, b]) ≤ Ak Ω (σ(a), σ(b)) + B. Now, since σ([1, T 0 ]
) is compact, possibly taking a larger B, the previous estimate holds for every 1 ≤ a ≤ b, and Theorem 4.2 is finally proved. Remark 4.13. We also notice that by (4.20), (4.21) and Lemma 4.9, there exist constants A, B > 0 such that for every 1 ≤ a ≤ b,

(4.22) k Ω (σ(a), σ(b)) ≤ Ω (σ; [a, b]) ≤ A min{k Ω (σ(a), ib), k Ω (σ(b), ia)} + B.
As a consequence of the previous results, we have the following:

Proposition 4.14. Assume there exist c, C > 0 such that cδ - Ω,0 (t) ≤ δ + Ω,0 (t) ≤ Cδ - Ω,0 (t) for all t ≥ 1. Then β i : [0, +∞) t → i + it can be reparametrized to be a quasi-geodesic.

Proof. Since δ Ω (it) = min{δ - Ω,0 (t), δ + Ω,0 (t)} and δ - Ω,0 (t) is comparable to δ + Ω,0 (t), there exists C > 1 such that for every t ≥ 1,

ω(t) ≤ C δ Ω (it).
In particular, by Theorem 3.5, we have for every 0 ≤ a ≤ b,

Ω (β i ; [a, b]) ≤ b a dτ δ Ω (iτ ) ≤ 1 C b a dτ ω(τ ) .
Therefore, in case there exist α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 , equation (4.5) implies that β i can be reparametrized to be a quasi-geodesic.

On the other hand, if there exist no α, T 0 > 0 such that ω(t) ≥ αt for all t ≥ T 0 , Lemmas 4.9, 4.10, 4.11, 4.12 imply again that β i can be reparametrized to be a quasi-geodesic.

4.2.

Estimates on the distance between σ and the vertical axis. For t ≥ 1, let

s t ∈ [1, +∞) be such that (4.23) k Ω (σ(s t ), it) = min r∈[1,+∞)
k Ω (σ(r), it).

Proposition 4.15. There exist α > 1, β > 0 such that for every t ≥ 1,

k Ω (σ(t), it) ≤ αk Ω (σ(s t ), it) + β.

Lemma 5.4. For every t ≥ 1 and for every r ∈ [0, 1] we have δ Ω (η t (r)) ≥ δ Ω (it).

Proof. Fix t ≥ 1 and assume that δ + Ω,0 (t) ≥ δ - Ω,0 (t) (the case δ + Ω,0 (t) ≤ δ - Ω,0 (t) is similar and we omit it).

Fix r ∈ [0, 1]. Notice that Re η t (r) ≥ 0. Therefore, if z ∈ C \ Ω and Re z ≤ 0, then

|η t (r) -z| ≥ |it -z| ≥ δ - Ω,0 (t) = δ Ω (it). On the other hand, if z ∈ C \ Ω and Re z > 0, then |it -z| ≥ δ + Ω,0 (t). Therefore, |η t (r) -z| ≥ inf |w-it|=δ + Ω,0 (t),Re w>0 |η t (r) -w| = δ + Ω,0 (t) -Re η t (r) ≥ δ + Ω,0 (t) -Re σ(t) = 1 2 δ + Ω,0 (t) + δ - Ω,0 ( 
t) ≥ δ Ω (it), and we are done. By Lemma 5.4 and the Distance Lemma (Theorem 3.5), we have for every t ≥ 1,

Ω (η t ; [0, 1]) = 1 0 κ Ω (η t (r); η t (r))dr ≤ |δ + Ω,0 (t) -δ - Ω,0 (t)| 2 1 0 dr δ Ω (η t (r)) ≤ |δ + Ω,0 (t) -δ - Ω,0 (t)| 2δ Ω (it)
.

This latter equation together with (5.2) and (5.1) implies that for every t ≥ 1, To this aim, we extend σ to all of (0, ∞) in the obvious way:

σ(t) = δ + Ω,0 (t) -δ - Ω,0 (t) 2 + it.
Since 0 ∈ Ω and it ∈ Ω for all t > 0, lim t→0 + σ(t) = 0. Then σ((0, ∞)) divides Ω into the connected domains U + = {x + iy ∈ Ω : x > Re σ(y)} and U -= {x + iy ∈ Ω : x < Re σ(y)}.

Hence, Γ := h -1 (σ(0, +∞)) divides D into two connected components D + := h -1 (U + ) and D -:= h -1 (U -). Also, there exists τ ∈ ∂D, τ = τ such that lim t→0 -h -1 (σ(t)) = τ (see, e.g., [14, Theorem 1, p. 37]).

By Remark 3.3 and Lemma 5.2, h -1 (σ(t)) converges to τ non-tangentially as t → +∞. This implies that Γ is contained in the set {z ∈ D : |Arg(1 -τ z)| ≤ θ} ∪ {τ, τ } for some θ ∈ (0, π/2). Notice that the last set is an angular sector of amplitude 2θ with vertex τ symmetric with respect to segment joining -τ with τ .

Since h preserves orientation, it follows that D + contains all the sequences converging tangentially to τ with slope π/2 while D -contains all the sequences converging tangentially to τ with slope -π/2. Therefore, if (5.4) holds, then it n ∈ U -for n sufficiently big, hence, φ tn (z) ∈ D - eventually and (5.5) holds. Conversely, if (5.5) holds then φ tn (z) ∈ D -eventually, hence, it n ∈ U -eventually and (5.4) holds.

This concludes the proof of the theorem.

5.2. Proof of Theorem 1.2. The part "(1) if and only if (3)" follows immediately from Theorem 1.1. By Remark 3.3 it is clear that (2) implies (1) in Theorem 1.2. In order to end the proof, we show that (3) implies [START_REF] Arosio | Canonical models for holomorphic iteration[END_REF]. We need to prove that the orbit [0, +∞) t → φ t (z) can be reparametrized to be a quasi-geodesic for every z ∈ D. Since h is an isometry between k D and k Ω , the latter statement is equivalent to proving that, setting p = h(z), the curve β p : [0, +∞) t → p + it can be reparametrized to be a quasi-geodesic in Ω.

As before, we can assume 0 ∈ Ω and it ∈ Ω for all t > 0. Hence, by Proposition 4.14, the curve β i can be reparametrized to be a quasi-geodesic in Ω.

In order to complete the proof, we will prove the following:

Lemma 5.5. For every p ∈ Ω, there exists A p > 1 and B p > 0 such that Ω (β p ; [s, t]) ≤ A p k Ω (β p (s), β p (t)) + B p , for all 0 ≤ s ≤ t. Hence, by Proposition 3.4, β p can be reparametrized to be a quasi-geodesic in Ω.

Proof.

  First suppose that N = 0. If b -y 0 ≤ ω(a) there is nothing to prove. So suppose that b -y 0 ω(a) ≥ 1. By (4.8) and property (4) in Step 1, (4.10) max |u -z + 0 |, |u -z - 0 | ≤ 2ω(a). Next, since |v -z ± 0 | ≥ |Im v -Im z ± 0 | = b -y 0 , we have (4.11) min |v -z + 0 |, |v -z - 0 | ≥ b -y 0 . Putting together (3.2) with (4.10) and (4.11), we have

≤ 1 .

 1 Notice that by(4.8), (a-y 0 ) = (t 0 -y 0 ) ≤ |it 0 -z ± 0 | ≤ ω(t 0 ), hence, y 0 ≤ a ≤ y 0 + ω(a)and if a ≤ t, then ω(a) ≤ ω(t). Soy 0 +ω(a)Now if t ∈ [a, y 1 ], then by (4.7),

Lemma 4 . 11 .

 411 For k ≥ 1, y k+1 y k dt ω(t) ≤ 8 log y k+1 -y k ω(t k ) .

5 Arg( 1 -

 51 (t) -δ - Ω,0 (t)| 2δ Ω (it) -B ≤ k Ω (it, σ([1, +∞))) ≤ |δ + Ω,0 (t) -δ - Ω,0 (t)| 2δ Ω (it).The first part (the "non-tangential part") of Theorem 1.1 follows now directly from Corollary 5.3 and (5.3). Also, by the same token, we see that φ tn (z) → τ tangentially if and only ifδ + Ω,0 (tn) δ - Ω,0(tn)converges either to 0 or +∞ as n → ∞.We are left to show that (τ φ tn (z)) = -π 2 .

  Theorem 1.3. Let (φ t ) be a non-elliptic semigroup in D with Denjoy-Wolff point τ ∈ ∂D and Koenigs function h and let Ω := h(D).

		Then the following are equivalent:
	(1) lim t→+∞ Arg(1 -φ t (z)) = π/2 (respectively = -π/2) for some-and hence any-
	z ∈ D, and, in particular, [0, +∞)	t → φ t (z) converges tangentially to τ as
	t → +∞,	
	(2) lim t→+∞	δ + Ω,p (t) δ -Ω,p (t) = 0 (respect. lim t→+∞	δ + Ω,p (t) δ -Ω,p (t) = +∞).
	As we will show, Theorem 1.2 and Theorem 1.3 are consequences of Theorem 1.1 and
	of its proof.		

  4.1.4. Proof of Theorem 4.2. By Lemma 4.4 we have Lemma 4.10. If T ∈ [a, y 1 ], then

	Ω (σ; [a, b]) ≤ 4 √	2	a	b	1 ω(t)	dt.
	Hence to prove Theorem 4.2 it is enough to show that	b a ω(t) -1 dt is comparable to the
	lower bounds in Lemma 4.9.					
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Proof. By Lemma 4.7 and the fact that ω is an increasing function,

Further, by Lemma 4.8, if t ∈ [y k , t k ], then ω(t) ≥ ω(t k )/2 and, since Ω is starlike at infinity, if t ≥ t k , then ω(t) ≥ ω(t k ). Therefore, ω(t) ≥ ω(t k )/2 when t ≥ y k . Thus (4.18)

Next consider t ∈ [y k + ω(t k ), y k+1 ]. By (4.8), we have

and y k+1 ≤ t k+1 . Hence, by (4.7),

Therefore, (4.19)

Thus by (4.18) and (4. [START_REF] Reich | Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces[END_REF]) and (4.9),

and we are done.

Repeating the proof of the previous lemma one can prove:

Combining the estimates in the previous three lemmas we can estimate Therefore

and we are done. We can suppose that (φ t ) is not a group of automorphisms of D, for otherwise the result is clear.

In this case, there exists p ∈ C such that p ∈ Ω and p + it ∈ Ω for all t > 0. Up to a translation, we can assume p = 0. In particular, this implies that δ± Ω,0 (t) = δ ± Ω,0 (t) for every t > 0.

Lemma 5.1. The sequence {φ tn (h -1 (i))} converges to τ as n → +∞ non-tangentially (respectively, tangentially) if and only if for every z ∈ D the sequence {φ tn (z)} converges to τ as n → +∞ non-tangentially (respect., tangentially).

is contained in a fixed hyperbolic neighborhood of {φ tm (h -1 (i)) : m ∈ N} for all n ∈ N. Therefore the result follows at once from the triangle inequality and from Proposition 3.1.

Let σ be the curve defined in (4.1).

Lemma 5.2. lim

Proof. By Remark 3.3, the limit x := lim t→+∞ h -1 (σ(t)) exists. Suppose for a contradiction that x = τ .

For n ∈ N consider the segments Cn (s) := in + s

Moreover, for every sequence

Therefore, (C n ) is a sequence of Koebe's arcs for h, contradicting the no Koebe arcs theorem (see, e.g., [18, Corollary 9.1]).

Corollary 5.3. The sequence {φ tn (z 0 )} converges non-tangentially to τ as n → +∞ for all z 0 ∈ D if and only if there exists C > 0 such that for every n ∈ N

Conversely, the sequence {φ tn (z 0 )} converges tangentially to τ as n → +∞ for all z 0 ∈ D if and only if for every M > 0 there exists n M ≥ 1 such that for all n ≥ n M ,

Proof. By Theorem 4.2 the curve σ can be reparametrized to be a quasi-geodesic in Ω, hence by (3.1), it is "shadowed" by a geodesic γ in Ω. The curve h -1 (γ) is then a geodesic in D and by Lemma 5.2 it converges to τ . Hence, by the triangle inequality and Proposition 3.1, the sequence {φ tn (h -1 (i))} converges non-tangentially to τ as n → +∞ if and only if it is contained in a hyperbolic neighborhood of h -1 (σ[1, ∞)). Since h is an isometry for the hyperbolic distance, it follows that {φ tn (h -1 (i))} converges non-tangentially to τ as n → +∞ if and only if there exists C > 0 such that for every n ∈ N

Conversely, since (again by Proposition 3.1) {φ tn (h -1 (i))} converges tangentially to τ as n → +∞ if and only if it is eventually outside any hyperbolic sector around h -1 (γ), by the same token as before, we get that {φ tn (h -1 (i))} converges tangentially to τ as n → +∞ if and only if for every M > 0 there exists n M ∈ N such that for all n ≥ n M ,

and we are done. Now, for t ≥ 1 let s t be defined as in (4.23). Notice that

Then, by Proposition 4.15 and the Distance Lemma (see Theorem 3.5), we have for all t ≥ 1,

In other words, there exist A, B > 0 such that for every t ≥ 1,

Now, for t ≥ 1 let η t : [0, 1] → Ω be defined as

For all t ≥ 1 we have

We compute Ω (η t ; [0, 1]). In order to do so, we need a lemma:

Proof. Fix p ∈ Ω. By Proposition 4.14, there exists A ≥ 1 and B ≥ 0 such that (5.6)

where the last inequality follows from the fact that Ω z → z + it is a holomorphic self-map of Ω. Therefore, there exists B 1 > 0 such that for all s, t ≥ 0, (5.7) k

By Lemma 3.6 there exists c > 0 such that δ Ω (i + it) ≤ cδ Ω (p + it) for all t ≥ 0. Hence, by the Distance Lemma (Theorem 3.5), for 0 ≤ s ≤ t, Ω (β p ; [s, t]) = Therefore, by (5.6) and (5.7) Ω (β p ; [s, t]) ≤ 4c Ω (β i ; [s, t]) ≤ 4cAk Ω (i + is, i + it) + 4cB ≤ 4cAk Ω (p + is, p + it) + 4cAB 1 + 4cB, for all 0 ≤ s ≤ t.