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Abstract

For any p ∈ (0, 1) and α = 1/p − 1, let Hp(Rn) and Cα(Rn) be the
Hardy and the Campanato spaces on the n-dimensional Euclidean space
Rn, respectively. In this article, the authors find suitable Musielak–Orlicz
functions Φp, defined by setting, for any x ∈ Rn and t ∈ [0, ∞),

Φp(x, t) :=


t

1 + [t(1 + |x|)n]1−p
when n(1/p− 1) /∈ N,

t

1 + [t(1 + |x|)n]1−p[log(e+ |x|)]p
when n(1/p− 1) ∈ N,

and then establish a bilinear decomposition theorem for multiplications of
functions in Hp(Rn) and its dual space Cα(Rn). To be precise, for any f ∈
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Preprint submitted to Journal de Mathématiques Pures et Appliquées March 1, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0021782419300996
Manuscript_709fd22d7abcfe0eb0bce1e3bb354fb4

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0021782419300996
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0021782419300996


Hp(Rn) and g ∈ Cα(Rn), the authors prove that the product of f and g,
viewed as a distribution, can be decomposed into S(f, g) + T (f, g), where
S is a bilinear operator bounded from Hp(Rn) × Cα(Rn) to L1(Rn) and T
a bilinear operator bounded from Hp(Rn) × Cα(Rn) to the Musielak–Orlicz
Hardy space HΦp(Rn) associated with the above Musielak–Orlicz function
Φp. Such a bilinear decomposition is sharp when nα /∈ N, in the sense
that any other vector space Y ⊂ HΦp(Rn) adapted to the above bilinear
decomposition should satisfy (L1(Rn) + Y)∗ = (L1(Rn) + HΦp(Rn))∗. To
obtain the sharpness, the authors establish a characterization of the class
of pointwise multipliers of Cα(Rn) by means of the dual space of HΦp(Rn),
which is of independent interest. As an application, an estimate of the div-
curl product involving the space HΦp(Rn) is discussed. This article naturally
extends the known sharp bilinear decomposition of H1(Rn)× BMO(Rn).

Résumé

Etant donnés p ∈ (0, 1) et α = 1/p − 1, nous désignons par Hp(Rn) et
Cα(Rn) respectivement les espaces de Hardy et de Campanato sur Rn. Nous
définissons dans cet article une famille de fonctions de type Musielak–Orlicz
appelées Φp en posant, pour tout x ∈ Rn et t ∈ [0, ∞),

Φp(x, t) :=


t

1 + [t(1 + |x|)n]1−p
when n(1/p− 1) /∈ N,

t

1 + [t(1 + |x|)n]1−p[log(e+ |x|)]p
when n(1/p− 1) ∈ N.

Nous établissons un théorème de décomposition bilinéaire pour les multipli-
cations de fonctions qui sont respectivement dans Hp(Rn) et dans son dual
Cα(Rn). Plus précisément, quelles que soient les fonctions f ∈ Hp(Rn) et
g ∈ Cα(Rn), le produit de f et g au sens des distributions se décompose en
S(f, g)+T (f, g), où S est un opérateur bilinéaire continu deHp(Rn)×Cα(Rn)
dans L1(Rn) and T un opérateur bilinéaire continu de Hp(Rn)×Cα(Rn) dans
l’espace de Hardy de type Musielak–Orlicz HΦp(Rn) associé à la fonction
Φp. Une telle decomposition bilinéaire est critique lorsque nα /∈ N, en ce
sens que tout autre espace Y ⊂ HΦp(Rn) pour lequel une telle décomposition
serait possible serait tel que (L1(Rn) + Y)∗ = (L1(Rn) + HΦp(Rn))∗. Pour
conclure cet argument, nous montrons que l’espace des multiplicateurs de
Cα(Rn) s’identifie à l’intersection de L∞(Rn) avec le dual de HΦp(Rn), ce
qui peut présenter un intérêt séparé. Comme application nous donnons un
lemme div-curl généralisé dans lequel l’estimation est en termes de l’espace
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space HΦp(Rn). Cet article est une extension naturelle des décompositions
des produits H1(Rn)× BMO(Rn).

Keywords: bilinear decomposition, div-curl product, Hardy space,
Campanato space, Musielak–Orlicz Hardy space, pointwise multiplier,
wavelet
2000 MSC: primary 42B30, secondary 42B35, 42B15, 46E35, 42C40

1. Introduction and main results

Let p ∈ (0, 1] and α = 1/p − 1. Denote by Hp(Rn) the Hardy space on
the n-dimensional Euclidean space Rn. Denote by Cα(Rn) the Campanato
space on Rn, which is just the dual space of Hp(Rn). Certainly, when α = 0,
the space C0(Rn) turns out to be the space BMO(Rn) of bounded mean
oscillations. The main purpose of this article is to study the following problem
on the multiplication between Hp(Rn) and its dual space Cα(Rn):

For any p ∈ (0, 1] and α = 1/p − 1, find the ‘smallest’ linear
vector space Y so that Hp(Rn)× Cα(Rn) has the following bilinear
decomposition of the form:

Hp(Rn)× Cα(Rn) ⊂ L1(Rn) + Y . (1.1)

The precise interpretation of (1.1) is as follows: the product of f ∈ Hp(Rn)
and g ∈ Cα(Rn) can be written as S(f, g) + T (f, g), where

S : Hp(Rn)× Cα(Rn) → L1(Rn)

and
T : Hp(Rn)× Cα(Rn) → Y

are bounded bilinear mappings.
In (1.1), elements in the product space Hp(Rn)× Cα(Rn) are understood

as Schwartz distributions (see [8, 6]). Let us be more precise. Denote by
S(Rn) the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on Rn, equipped with the well-known topology de-
termined by a countable family of seminorms. Denote by S ′(Rn) the dual
space of S(Rn), equipped with the weak-∗ topology. For any f ∈ Hp(Rn)
with p ∈ (0, 1) and g ∈ Cα(Rn) with α = 1/p−1, the product f×g is defined

3



to be a Schwartz distribution in S ′(Rn), whose action on a Schwartz function
ϕ ∈ S(Rn) is as follows:

⟨f × g, ϕ⟩ := ⟨ϕg, f⟩, (1.2)

where the last bracket denotes the dual pair between Cα(Rn) and Hp(Rn).
Equality (1.2) is well defined because every ϕ ∈ S(Rn) is a pointwise multi-
plier on Cα(Rn) (see [3, p. 59] or Corollary 3.2 below), that is, ϕg ∈ Cα(Rn)
for any g ∈ Cα(Rn). This fact also implies the product f × g in (1.2) can be
viewed as a distribution on the class of pointwise multipliers of Cα(Rn).

It should be emphasized that, while for duality the spaces Cα(Rn) have
to be interpreted as quotient spaces modulo polynomials of degree ⌊nα⌋ (ba-
sically Hp distributions may be thought as orthogonal to such polynomials),
we speak here of functions in the Campanato space Cα(Rn). Here and here-
after, the symbol ⌊s⌋ for any s ∈ R denotes the largest integer not greater
than s.

In this sense, if the distribution f in Hp(Rn) belongs to the Schwartz
class S(Rn), then the product (1.2) coincides with the pointwise product of
f and the Campanato function g, as the dual pair in (1.2) equals to

⟨ϕg, f⟩ =
ˆ
Rn

(ϕg)(x)f(x) dx.

The study of the decomposition problems like (1.1) was initiated by
Bonami et al. [8] (in the case p = 1), motivated by developments in the
geometric function theory and nonlinear elasticity [1, 2, 39, 40]. A good
understanding of the structure of this product can help us to improve the
boundedness of many nonlinear qualities such as div-curl products and weak
Jacobians (see [16, 6, 4]) as well as the endpoint boundedness of commutators
(see [31, 36]), which are fundamental in various research areas of mathematics
such as the compensated compactness theory in nonlinear partial differential
equations and the study of the existence and regularity for solutions to par-
tial differential equations where the uniform ellipticity condition is lost (see
[41, 44, 34, 8, 28, 30] and their references).

Let us give a brief review of the progress on the study of the decomposition
problem (1.1). The following

H1(Rn)× BMO(Rn) ⊂ L1(Rn) +HΦ
w (Rn) (1.3)
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linear decomposition was proved in [8, Theorem 1.6], where HΦ
w (Rn) denotes

the weighted Orlicz–Hardy space associated to the weight function w(x) :=
1/log(e+ |x|) for any x ∈ Rn and to the Orlicz function Φ(t) := t/log(e+ t)
for any t ∈ [0,∞). Being more precise, for any given f ∈ H1(Rn), there exist
two bounded linear operators

Sf : BMO(Rn) → L1(Rn)

and
Tf : BMO(Rn) → HΦ

w (Rn)

such that, for any g ∈ BMO(Rn),

f × g = Sfg + Tfg.

Moreover, it was conjectured in [8] that one can find two bounded bilinear
operators S and T such that the aforementioned decomposition is also linear
in f .

Via wavelet multiresolution analysis, the above conjecture of [8] was
solved by Bonami et al. [6] who proved the following bilinear decomposi-
tion

H1(Rn)× BMO(Rn) ⊂ L1(Rn) +H log(Rn),

where the spaceH log(Rn) (see also [32]) denotes the Hardy space of Musielak–
Orlicz type associated to the Musielak–Orlicz function

θ(x, t) :=
t

log(e+ t) + log(e+ |x|)
, ∀x ∈ Rn, ∀ t ∈ [0,∞). (1.4)

Such a Musielak–Orlicz Hardy space H log(Rn) is smaller than HΦ
w (Rn) in

(1.3). By proving that the dual space of H log(Rn) is the generalized BMO
space that had been introduced by Nakai and Yabuta [42] to characterize
multipliers of BMO(Rn), Bonami et al. in [6] deduced that H log(Rn) is in
some sense sharp. They came back to this sharpness in further work to
prove that this is indeed the smallest space in dimension one [7, 5] and gave
a partial result in higher dimension by proving that every atom of H log(Rn)
can be written as a finite combination of products, with the required norm
estimates. In this way, problem (1.1) for the case p = 1 may be considered
as solved in [6] with Y = H log(Rn).
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The two articles [6, 8] were a source of inspiration for succeeding work on
the (bi)linear decomposition of the product functions in Hardy spaces and
their dual spaces. Partial results for Hp(Rn) were obtained in [3, 21]. Cao et
al. [12] obtained the bilinear decomposition of product functions in the local
Hardy space hp(Rn) and its dual space for p close to 1.

Motivated by the aforementioned articles, it is a very natural question to
seek suitable Hardy-type spaces Y that can give a linear or bilinear decom-
position of (1.1) when p ∈ (0, 1). This is the aim of this article. Our first
result concerns linear decompositions. It involves the weighted Hardy space
Hp
wp
(Rn), which consists of all f ∈ S ′(Rn) satisfying

∥f∥Hp
wp (Rn) := ∥f ∗∥Lp

wp (Rn) :=

{ˆ
Rn

[f∗(x)]pwp(x) dx

}1/p

<∞.

Here f ∗ denotes the grand maximal function defined in Definition 2.1 below
and wp is an A1(Rn)-weight (see Lemma 2.13) defined by setting, for any
x ∈ Rn,

wp(x) :=


1

(1 + |x|)n(1−p)
when n(1/p− 1) /∈ N,

1

(1 + |x|)n(1−p)[log(e+ |x|)]p
when n(1/p− 1) ∈ N.

(1.5)

We have the following results.

Theorem 1.1. Let p ∈ (0, 1) and α = 1/p − 1. Then, for any given f ∈
Hp(Rn), one can find two bounded linear operators

Sf : Cα(Rn) → L1(Rn)

and
Tf : Cα(Rn) → Hp

wp
(Rn)

such that, for any g ∈ Cα(Rn),

f × g = Sf (g) + Tf (g).

Moreover, there exists a positive constant C, independent of f , such that both
operators have norms bounded by C∥f∥Hp(Rn).
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We have already mentioned that what is involved here in the product
is a function of the Campanato space and not its equivalence class modulo
polynomials. So, for any α ∈ (0,∞), we need to equip Cα(Rn) with a norm
and, for any g ∈ Cα(Rn), we choose here to define

∥g∥C+
α (Rn) := ∥g∥Cα(Rn) +

1

|B(⃗0n, 1)|

ˆ
B(⃗0n,1)

|g(x)| dx.

Here and hereafter, we use 0⃗n to denote the origin of Rn and

B(⃗0n, 1) := {x ∈ Rn : |x| < 1}.

Theorem 1.1 can be interpreted as the fact that the product f × g can be
written as the sum of an integrable part and a part that keeps some of the
oscillation properties of Hp(Rn). When considering the duality ⟨g, f⟩, only
the first part gives a non zero quantity. When considering other operators,
it is the second part that plays the main role. This is why it is natural to
ask whether or not it is possible to cut bilinearly the product into two parts.

This is the aim of our main result, but the decomposition that we prove is
a little different. Instead of the weighted Hardy space Hp

wp
(Rn), we consider

the Musielak–Orlicz Hardy space HΦp(Rn) associated with the Musielak–
Orlicz function

Φp(x, t) :=



t

1 + [t(1 + |x|)n]1−p
when n(1/p− 1) /∈ N,

t

1 + [t(1 + |x|)n]1−p[log(e+ |x|)]p
when n(1/p− 1) ∈ N,

t

log(e+ t) + log(e+ |x|)
when p = 1,

(1.6)

where x ∈ Rn and t ∈ [0,∞); see Section 2.3 below. We mention that the
case p = 1, which can be treated in a unified way in some of our results,
is a source of inspiration for this article. But we concentrate on the cases
p ∈ (0, 1), which correspond to the new results obtained here. We show in
Section 2.2 below that Φp in (1.6) are Musielak–Orlicz functions satisfying
the growth conditions used in Ky [32], so that the corresponding Musielak–
Orlicz Hardy spaces HΦp(Rn) fall into the scope of Musielak–Orlicz Hardy
spaces studied in [32, 35, 47].
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When studying these particular Musielak–Orlicz Hardy spaces, simplifi-
cations are due to the fact that the growth function Φp is equivalent to the
minimum of two growth functions. Namely, for any x ∈ Rn and t ∈ [0,∞),

Φp(x, t) ∼


min

{
t,

tp

(1 + |x|)n(1−p)

}
when n(1/p− 1) /∈ N,

min

{
t,

tp

(1 + |x|)n(1−p)[log(e+ |x|)]p

}
when n(1/p− 1) ∈ N,

(1.7)

with positive equivalence constants independent of x and t. The Musielak–
Orlicz Hardy spaces that correspond to these two functions are respectively
H1(Rn) and the weighted Orlicz–Hardy spaces Hp

wp
(Rn) that we have al-

ready encountered. Moreover, it was proved in the recent work [13] that
HΦp(Rn) coincides with the sum of quasi-Banach spaces H1(Rn) +Hp

wp
(Rn).

So, obviously, we could as well replace Hp
wp
(Rn) by HΦp(Rn) in Theorem 1.1.

The main result of this article is as follows.

Theorem 1.2. Let p ∈ (0, 1), α = 1/p−1 and Φp be as in (1.6). Then there
exist two bounded bilinear operators

S : Hp(Rn)× Cα(Rn) → L1(Rn)

and
T : Hp(Rn)× Cα(Rn) → HΦp(Rn)

such that, for any (f, g) ∈ Hp(Rn)× Cα(Rn),

f × g = S(f, g) + T (f, g) in S ′(Rn).

Moreover, there exists a positive constant C such that, for any (f, g) ∈
Hp(Rn)× Cα(Rn),

∥S(f, g)∥L1(Rn) ≤ C∥f∥Hp(Rn)∥g∥Cα(Rn)

and
∥T (f, g)∥HΦp (Rn) ≤ C∥f∥Hp(Rn)∥g∥C+

α (Rn).

Again, we mention here that the corresponding conclusion of Theorem
1.2 for the case p = 1 was proved in [6]. Theorem 1.2 is proved in Section
4. As in [6], the main strategy we used to prove Theorem 1.2 is based on a
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technique of renormalization of products of functions (or distributions) via
wavelets introduced by Coifman et al. [14, 18], which enables us to write

f × g =
4∑
i=1

Πi(f, g);

see (4.7) through (4.10) below for the precise definitions of bilinear operators
{Πi}4i=1. Then the problem can be reduced to the study of each Πi(f, g),
with f being an atom a which has a finite wavelet expansion. The main
obstacle is the treatment of Π2. Recall that the study of Π2 in [6] utilized the
following fact: if a is an H1(Rn)-atom supported on some dyadic cube I and
a has a finite wavelet expansion, then aϕI satisfies only a zero order moment
condition by the orthogonality of wavelet basis. This is enough to make aϕI a
harmlessly constant multiple of an Hp(Rn)-atom when p ∈ (n/(n+1), 1], but
insufficient when p ∈ (0, n/(n + 1)]. To overcome this obstacle, we borrow
some ideas from [22]. We reduce the estimation of the bilinear operator
Π2(a, g) to that of aPB,sg, where PB,sg denotes the minimizing polynomial
of g on the ball B with degree ≤ ⌊n(1/p− 1)⌋. As PB,sg is a polynomial, the
term aPB,sg can still enjoy the higher order moment condition by requiring
the wavelets ψλI to have the sufficiently higher order moment conditions.
Proving that aPB,sg ∈ HΦp(Rn) is done in Proposition 2.24, by using some
growth estimates of PB,sg established in Proposition 2.22. Let us mention
that all these estimates involving PB,sg are delicate.

Another contribution of this article is the following characterization of
the pointwise multipliers on Cα(Rn) for a general α ∈ (0,∞) satisfying nα /∈
N, by means of the dual space of HΦp(Rn) (see Section 2.3 below), where
α = 1/p − 1. Recall that, for any quasi-Banach space X equipped with a
quasi-norm ∥ · ∥X , a function g defined on Rn is called a pointwise multiplier
on X if there exists a positive constant C such that ∥gf∥X ≤ C∥f∥X for any
f ∈ X.

Theorem 1.3. Let p ∈ (0, 1), α = 1/p − 1 satisfy nα /∈ N and Φp be as in
(1.6). Denote by CΦp(Rn) the dual space of HΦp(Rn). For any function g on
Rn, the following assertions are equivalent:

(i) g ∈ L∞(Rn) ∩ CΦp(Rn);

(ii) g is a pointwise multiplier of Cα(Rn) and, for any f ∈ Cα(Rn),

∥gf∥Cα(Rn) ≤ C∥f∥C+
α (Rn)[∥g∥L∞(Rn) + ∥g∥CΦp (Rn)],
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where C is a positive constant independent of f and g.

When p = 1, the corresponding conclusion of Theorem 1.3 was already
known in [42, 32, 6]. We mention here that the class of pointwise multiplies
of Cα(Rn) for any nα ∈ (0, 1) was characterized by [42]. However, the results
of [42] were not connected with the dual of HΦp(Rn).

The proof of Theorem 1.3 needs some intrinsic properties of Campanato
spaces. Proposition 2.22 proves that a function g ∈ Cα(Rn) (so does PB,⌊nα⌋g)
on the ball B has a polynomial growth of order nα when nα /∈ N, but can
have an extra logarithm growth factor when nα ∈ N. In contrast to the
Cα(Rn)-functions constructed in Propositions 3.3 and 3.7, we know that the
estimates in Proposition 2.22 are best possible. By Proposition 2.22, the
proof that (ii) implies (i) of Theorem 1.3 is given in Theorem 3.1 below, and
the proof that (i) implies (ii) of Theorem 1.3 is given in Theorem 3.6 below.

Theorem 1.3 for the case nα ∈ N is still unsolved. Indeed, when nα ∈ N,
the proof of the non-integer case shows that (i) of Theorem 1.3 implies (ii)
of Theorem 1.3 and that a pointwise multiplier on Cα(Rn) is also bounded;
the difficulty lies in proving that a pointwise multiplier on Cα(Rn) belongs
to the space CΦp(Rn). See Section 3.3 for more on this problem.

Remark 1.4. Theorem 1.3 implies that the bilinear decomposition in Theo-
rem 1.2 is in some sense sharp when nα /∈ N. Being more precise, if Theorem
1.2 holds true with HΦp(Rn) therein replaced by any other linear vector space
Y ⊂ HΦp(Rn), then (L1(Rn)+Y)∗ = (L1(Rn)+HΦp(Rn))∗; see Remark 4.12
below. In analogy, the sharpness of Theorem 1.2 for the case nα ∈ N follows
directly if one could show Theorem 1.3 for the case nα ∈ N.

Notice that there exists no contradiction between Theorems 1.1 and 1.2:
it is known that HΦp(Rn) and Hp

wp
(Rn) have the same dual (see, for instance,

[13, Remark 3.1]). Contrarily to what happens in Orlicz–Hardy spaces,
Musielak–Orlicz Hardy spaces may have the same dual, but they may actu-
ally differ. However, inspired by the fact that HΦp(Rn) = H1(Rn)+Hp

wp
(Rn)

in [13], one may ask whether or not the Musielak–Orlicz Hardy space in
Theorem 1.2 can be replaced by Hp

wp
(Rn), which is still unknown.

Theorem 1.2 can be applied to study the div-curl product. Denote by
C∞
c (Rn) the set of all infinitely differentiable functions on Rn with compact

supports. For a vector field F := (F1, . . . , Fn) of locally integrable functions
on Rn, we define its divergence divF as a distribution, whose action on
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φ ∈ C∞
c (Rn) is defined by setting

⟨divF, φ⟩ := −
ˆ
Rn

F(x) · ∇φ(x) dx,

and define its curl curlF as a matrix {(curlF)i, j}i, j∈{1, ..., n} of distributions,
with the action of each entry (curlF)i, j on φ ∈ C∞

c (Rn) being defined by
setting

⟨(curlF)i, j, φ⟩ :=
ˆ
Rn

[
Fj(x)

∂φ

∂xi
(x)− Fi(x)

∂φ

∂xj
(x)

]
dx;

see, for instance, [15, p. 507]. Notice that div-curl estimates have been inves-
tigated in [4, 6, 16].

For any p ∈ (0, 1), let

Hp(Rn; Rn) := {F := (F1, . . . , Fn) : for any i ∈ {1, . . . , n}, Fi ∈ Hp(Rn)}
(1.8)

equipped with the quasi-norm

∥F∥Hp(Rn;Rn) :=

[
n∑
i=1

∥Fi∥2Hp(Rn)

] 1
2

.

In a similar way, we define L2(Rn; Rn) and the vector-valued Campanato
space Cα(Rn; Rn) as well as the norms ∥ · ∥L2(Rn;Rn), ∥ · ∥Cα(Rn;Rn) and ∥ ·
∥C+

α (Rn;Rn), where α ∈ (0,∞).
Applying Theorem 1.2, we are able to prove the following a priori estimate

of the div-curl product involving the space HΦp(Rn).

Theorem 1.5. Let p ∈ (0, 1), α = 1/p − 1, Φp be as in (1.6) and F ∈
L2(Rn; Rn). Assume further that F ∈ Hp(Rn; Rn) with curlF ≡ 0 and
G ∈ Cα(Rn; Rn) with divG ≡ 0 (both of the equalities hold true in the sense
of distributions). Then the inner product F ·G ∈ HΦp(Rn) and

∥F ·G∥HΦp (Rn) ≤ C∥F∥Hp(Rn;Rn)∥G∥C+
α (Rn;Rn),

where C is a positive constant independent of F and G.
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Theorem 1.5 extends the result of [6, Theorem 1.2], while the latter proved
that F · G ∈ H log(Rn) whenever F ∈ H1(Rn; Rn) satisfies curlF ≡ 0 and
G ∈ BMO(Rn; Rn) satisfies divG ≡ 0.

This article is organized as follows.
Section 2 concerns some basic properties of the function spaces involved

in this article. In Section 2.1, we recall the definitions of the Hardy space
Hp(Rn) and the Campanato space Cα(Rn). Section 2.2 shows that Φp defined
in (1.6) is a Musielak–Orlicz function satisfying some growth conditions as
in [32], so that it makes sense for us to introduce the Musielak–Orlicz Hardy
space HΦp(Rn) and its dual space CΦp(Rn) as in [32, 35, 47] (see Section
2.3). Moreover, an equivalent characterization of CΦp(Rn) is given in Section
2.3 (see Proposition 2.18 below). In Section 2.4, we establish the pointwise
growth estimates for functions in the Campanato space Cα(Rn) (see Propo-
sition 2.22 below), which ensures that aPB,sg, with a being an Hp(Rn)-atom
and PB,sg the minimizing polynomial of g on B with degree ≤ s = ⌊nα⌋, is
an element of HΦp(Rn) (see Proposition 2.24 below).

It should be mentioned that estimates in Section 2.4 play an important
role in the proofs of Theorems 1.1, 1.2 and 1.3.

Section 3 is devoted to the proof of Theorem 1.3. We prove the necessary
part (including also the case nα ∈ N) in Section 3.1, and the sufficient part
in Section 3.2, with also a comment on the sufficient part when nα ∈ N given
in Section 3.3. As a consequence of Theorem 1.3, we show that functions in
S(Rn) belong to the class of pointwise multipliers of Cα(Rn). Applying this
and Proposition 2.24, we give the proof of Theorem 1.1 in Section 3.4.

The aim of Section 4 is to establish Theorem 1.2. We begin with some
basic definitions of the multiresolution analysis (for short, MRA) in Section
4.1. In Section 4.2, we then recall the renormalization of the products in
L2(Rn)×L2(Rn) from [14, 18]. Later, in Section 4.3, we give three auxiliary
lemmas on the atomic decomposition of the Hardy space Hp(Rn) and the
wavelet characterization of Hp(Rn) and its dual Cα(Rn). In Section 4.4, we
prove Theorem 1.2 based on the boundedness results of the four bilinear
operators introduced in Section 4.2.

Theorem 1.5 is proved in Section 5 as an application of Theorem 1.2.
Finally, we make some conventions on notation. Let N := {1, 2, . . .},

Z+ := N ∪ {0} and Z := {0,±1,±2, . . . }. For any x ∈ Rn and r ∈ (0,∞),
denote by B(x, r) the ball with center x and radius r, that is,

B(x, r) := {y ∈ Rn : |x− y| < r}.
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For any ball B ⊂ Rn, we always denote by cB its center and rB its radius.
We use 0⃗n to denote the origin of Rn. For any λ ∈ (0,∞) and any ball B,
denote by λB the ball with center cB and radius λrB. For any set E ⊂ Rn,
1E denotes its characteristic function and

 
E

:=
1

|E|

ˆ
E

.

We use C to denote a positive constant that is independent of the main
parameters involved, whose value may differ from line to line. Constants with
subscripts, such as C1, do not change in different occurrences. If f ≤ Cg, we
also write f . g and, if f . g . f , we then write f ∼ g. We also use the
following convention: If f ≤ Cg and g = h or g ≤ h, we then write f . g ∼ h
or f . g . h, rather than f . g = h or f . g ≤ h. For any s ∈ R, let
⌊s⌋ (resp., ⌈s⌉) be the largest integer not greater than s (resp., the smallest
integer not smaller than s). For any multi-index α = (α1, . . . , αn) ∈ Zn+,
define Dα := ∂α1

x1
· · · ∂αn

xn with ∂xj :=
∂
∂xj

for any j ∈ {1, . . . , n}.

2. Hardy-type spaces and their dual spaces

This section concerns some basic properties of the Hardy space Hp(Rn),
the Campanato space Cα(Rn), the Musielak–Orlicz Hardy space HΦp(Rn)
and its dual space CΦp(Rn). The main results of this section are Propositions
2.22 and 2.24, which play key roles in the proofs of Theorems 1.1 and 1.2.

2.1. Hardy and Campanato spaces

In this section, we recall the notions of Hardy and Campanato spaces.

Definition 2.1. Let p ∈ (0,∞) and m ∈ Z+ satisfy m ≥ ⌊n(1/p− 1)⌋.

(i) For any f ∈ S ′(Rn), its non-tangential grand maximal function f ∗
m is

defined by setting, for any x ∈ Rn

f ∗
m(x) := sup

φ∈Sm(Rn)

sup
|y−x|<t, t∈(0,∞)

|f ∗ φt(y)| , (2.1)

where φt(z) := t−nφ(t−1z) for any t ∈ (0,∞) and z ∈ Rn, and

Sm(Rn) :=

{
φ ∈ S(Rn) : sup

|α|≤m+1

sup
x∈Rn

(1 + |x|)(m+2)(n+1) |Dαφ(x)| ≤ 1

}
.
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(ii) If m = ⌊n(1/p− 1)⌋, then we write f∗
m simply as f ∗. The Hardy space

Hp(Rn) is defined to be the collection of all Schwartz distributions
f ∈ S ′(Rn) such that

∥f∥Hp(Rn) := ∥f∗∥Lp(Rn) <∞.

Note that, if p ∈ (0,∞) and m ≥ ⌊n(1/p − 1)⌋, then Hp(Rn) can be
equivalently defined by using the (quasi-)norm ∥f ∗

m∥Lp(Rn) (see, for instance,
[37, Chapter 1] or [47, Chapter 1]). Moreover, when p ∈ (1,∞), the Hardy
space Hp(Rn) coincides to the Lebesgue space Lp(Rn) with equivalent norms.
We refer the reader to [20, 25, 43, 37] for more properties on Hp(Rn).

The dual of the Hardy space turns out to be the Campanato space, which
was first introduced by Campanato in [10, 11]. For any s ∈ Z+, denote by
Ps(Rn) the space of all polynomials on Rn with degree ≤ s.

Definition 2.2. Let α ∈ [0, ∞), q ∈ [1, ∞] and s ∈ Z+ be such that
s ≥ ⌊nα⌋. The Campanato space Cα,q,s(Rn) is defined to be the collection of
all locally integrable functions g such that

∥g∥Cα,q,s(Rn) :=



sup
B⊂Rn

1

|B|α

{ 
B

|g(x)− PB,sg(x)|q dx
}1/q

when q ∈ [1,∞),

sup
B⊂Rn

ess sup
x∈B

|g(x)− PB,sg(x)|
|B|α

when q = ∞ and α ̸= 0

is finite, where the suprema are taken over all balls B of Rn. Here and
hereafter, PB,sg denotes the minimizing polynomial of g on B with degree
≤ s, that is, PB,sg is the unique polynomial with degree ≤ s such that, for
any polynomial Q ∈ Ps(Rn),

ˆ
B

[g(x)− PB,sg(x)]Q(x) dx = 0. (2.2)

In particular, when s = ⌊nα⌋ and q = 1, we simply write Cα,q,s(Rn) as
Cα(Rn).

With all the notation as in Definition 2.2, then a function g satisfies
∥g∥Cα,q,s(Rn) = 0 if and only if g coincides almost everywhere with a polyno-
mial in Ps(Rn). Moreover, for any function g ∈ Cα,q,s(Rn), we introduce the
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following inhomogeneous norm

∥g∥C+
α,q,s(Rn) := ∥g∥Cα,q,s(Rn) +

 
B(⃗0n,1)

|g(x)| dx. (2.3)

Also, when q ∈ [1,∞), an equivalent definition of the Campanato norm is as
follows (see, for instance, [25, p. 292]):

∥g∥Cα,q,s(Rn) ∼ sup
B⊂Rn

inf
P∈Ps(Rn)

1

|B|α

{ 
B

|g(x)− P (x)|q dx
}1/q

, (2.4)

where the supremum is taken over all balls B of Rn and the positive equiva-
lence constants are independent of g.

We give several remarks on the relations between Campanato spaces and
some other related function spaces.

Remark 2.3. Let α, q and s be as in Definition 2.2.

(i) When p ∈ (0, 1] is such that α = 1/p − 1, we deduce from [25, Theo-
rem 5.30] or [37, p. 55, Theorem 4.1] that

(Hp(Rn))∗ = Cα,q,s(Rn)/Ps(Rn).

This implies that the quotient spaces

Cα,q,s(Rn)/Ps(Rn) and Cα(Rn)/P⌊nα⌋(Rn)

are consistent, and

∥ · ∥Cα,q,s(Rn) ∼ ∥ · ∥Cα,1,s(Rn).

(ii) If α = s = 0 and q ∈ [1, ∞), then C0(Rn) = C0,q,0(Rn) is just the space
BMO(Rn) (see [25, p. 292]), where BMO(Rn) denotes the space of all
locally integrable functions g on Rn such that

∥g∥BMO(Rn) := sup
B⊂Rn

 
B

|g(x)− gB| dx <∞,

where the supremum is taken over all balls B in Rn and

gB :=

 
B

g(y) dy.
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The additional term
ffl
B(⃗0n,1)

|g(x)| dx in the expression of the norm ∥ ·
∥C+

α,q,s(Rn) in (2.3) has certain degree of freedom and can be replaced by many

quantities adapted to the ball B(⃗0n, 1). The following lemma expresses this
possibility.

Lemma 2.4. Let α ∈ (0, ∞), q ∈ [1, ∞] and s ∈ Z+ be such that s ≥ ⌊nα⌋.
Then, for any g ∈ C+

α,q,s(Rn),

∥g∥C+
α,q,s(Rn) ∼ ∥g∥Cα,q,s(Rn) +

ˆ
B(⃗0n,1)

∣∣∣PB(⃗0n,1),s
g(x)

∣∣∣ dx
∼ ∥g∥Cα,q,s(Rn) +

∑
|γ|≤s

∣∣∣∣ˆ
B(⃗0n,1)

xγg(x) dx

∣∣∣∣
∼ ∥g∥Cα,q,s(Rn) + sup

x∈B(⃗0n,1)

|g(x)|,

where the positive equivalence constants are independent of g.

Proof. The first estimate of this lemma follows immediately from the fact
that the integral average of g − PB(⃗0n,1),s

g over the ball B(⃗0n, 1) is bounded
by ∥g∥Cα,q,s(Rn). But all norms are equivalent on the finite dimensional vector
space Ps(Rn), so that we can as well replace

´
B(⃗0n,1)

|PB(⃗0n,1),s
g(x)| dx in the

first estimate by supx∈B(⃗0n,1)
|PB(⃗0n,1),s

g(x)| or by

∑
|γ|≤s

∣∣∣∣ˆ
B(⃗0n,1)

xγPB(⃗0n,1),s
g(x) dx

∣∣∣∣ .
From this and (2.2), the second estimate follows. Noticing that

sup
x∈B(0, 1)

∣∣∣g(x)− PB(⃗0n,1),s
g(x)

∣∣∣ . ∥g∥Cα,∞,s(Rn) ∼ ∥g∥Cα,q,s(Rn),

we obtain the equivalence of the third estimate, which concludes the proof.

Finally it is classical that, when α ∈ (0, ∞), the space Cα(Rn) reduces
to the homogeneous Lipschitz space Λ̇nα(Rn) with equivalent norms (see [25,
26, 27]). Let us recall its definition.
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Definition 2.5. (i) Let σ ∈ (0, 1). The homogeneous Lipschitz space
Λ̇σ(Rn) is defined to be the collection of (equivalent classes of) con-
tinuous functions g such that

∥g∥Λ̇σ(Rn) := sup
x,y∈Rn,x ̸=y

|g(x)− g(y)|
|x− y|σ

<∞.

(ii) Let σ = 1. The homogeneous Lipschitz space Λ̇σ(Rn), which is also
called the homogeneous Zygmund space, is defined to be the collection
of (equivalent classes of) continuous functions g such that

∥g∥Λ̇1(Rn) := sup
x,t∈Rn,t̸=0

|g(x+ t) + g(x− t)− 2g(x)|
|t|

<∞.

(iii) Let σ ∈ (1,∞). The homogeneous Lipschitz space Λ̇σ(Rn) is defined
to be the collection of Cσ0(Rn) such that all its derivatives of order σ0
belong to Λ̇σ−σ0(Rn), where σ0 denotes the largest integer strictly less
than σ (hence σ0 < σ). Moreover, let

∥g∥Λ̇σ(Rn) :=
∑

|β|=σ0

∥∥Dβg
∥∥
Λ̇σ−σ0

(Rn).

Observe that the semi-norm ∥·∥Λ̇σ(Rn) vanishes precisely over the space
P⌊σ⌋(Rn).

Notice that, when σ ∈ N, a function in Λ̇σ(Rn) may not be in Cσ(Rn).
We will see an example later on.

We state the identification of Campanato and Lipschitz spaces in the next
lemma; see [25, pp. 301-302].

Lemma 2.6. Let α ∈ (0,∞) and q ∈ [1,∞]. Then any function g ∈ Λ̇nα(Rn)
if and only if g ∈ Cα,q,⌊nα⌋(Rn) after modifying g, if necessary, on a set of
measure 0. Moreover,

∥g∥Λ̇nα(Rn) ∼ ∥g∥Cα,q,⌊nα⌋(Rn),

with positive equivalence constants independent of g.
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2.2. The Musielak–Orlicz growth function Φp

In this section, we show that the function Φp as in (1.6) is a Musielak–
Orlicz function as in [32]. To this end, we first recall some notions from Ky
[32] (see also [47]).

Definition 2.7. A nondecreasing function ϕ : [0,∞) → [0,∞) is called an
Orlicz function if ϕ(0) = 0, ϕ(t) > 0 for any t ∈ (0,∞) and limt→∞ ϕ(t) = ∞.
For any given p ∈ (0,∞), an Orlicz function ϕ is said to be of positive lower
(resp., upper) type p if there exists a positive constant C such that, for any
t ∈ [0,∞) and s ∈ (0, 1] (resp., s ∈ [1,∞)), ϕ(st) ≤ Cspϕ(t).

Definition 2.8. Let ϕ : Rn×[0,∞) → [0,∞) be such that ϕ(x, ·) : [0,∞) →
[0,∞) is an Orlicz function for any x ∈ Rn. For any given p ∈ (0,∞), the
function ϕ is said to be of positive uniformly lower (resp., upper) type p if
there exists a positive constant C such that, for any x ∈ Rn, t ∈ [0,∞) and
s ∈ (0, 1] (resp., s ∈ [1,∞)),

ϕ(x, st) ≤ Cspϕ(x, t).

Let

i(ϕ) := sup{p ∈ (0,∞) : ϕ is of positive uniformly lower type p}

and

I(ϕ) := inf{p ∈ (0,∞) : ϕ is of positive uniformly upper type p}.

Definition 2.9. Let ϕ : Rn × [0,∞) → [0,∞) satisfy that ϕ(·, t) : Rn →
[0,∞) is a measurable function for any t ∈ [0, ∞). For any given q ∈ [1,∞),
the function ϕ is said to satisfy the uniformly Muckenhoupt Aq(Rn) condition,
denoted by ϕ ∈ Aq(Rn), if

[ϕ]Aq(Rn) :=



sup
t∈(0,∞)

sup
B⊂Rn

[
1

|B|

ˆ
B

ϕ(z, t) dz

]
×
[

1

|B|

ˆ
B

{ϕ(z, t)}−
1

q−1 dz

]q−1

when q ∈ (1,∞),

sup
t∈(0,∞)

sup
B⊂Rn

sup
x∈B

[
1

|B|

ˆ
B

ϕ(z, t) dz

]
[ϕ(x, t)]−1 when q = 1

18



is finite, where the second suprema are taken over all balls B of Rn. Let

A∞(Rn) :=
∪

q∈[1,∞)

Aq(Rn).

Equivalently, ϕ ∈ A∞(Rn) if and only if there exist 0 < δ, γ < 1 such that

|E| ≥ γ|B| implies ϕ(E, t) ≥ δϕ(B, t),

for any t ∈ (0,∞), ball B ⊂ Rn and E ⊂ B, where ϕ(F, t) :=
´
F
ϕ(x, t) dx

for any measurable set F ⊂ Rn. Define the critical weight index q(ϕ) of
ϕ ∈ A∞(Rn) by setting

q(ϕ) := inf {q ∈ [1,∞) : ϕ ∈ Aq(Rn)} .

Definition 2.10. A function ϕ : Rn× [0,∞) → [0,∞) is called a Musielak–
Orlicz function if the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function
for any x ∈ Rn, and the function ϕ(·, t) is a measurable function for any
t ∈ [0,∞).

Definition 2.11. A Musielak–Orlicz function ϕ : Rn × [0,∞) → [0,∞) is
called a growth function if ϕ ∈ A∞(Rn), ϕ is of uniformly lower type p for
some p ∈ (0, 1] and of uniformly upper type 1.

The following proposition shows that the function Φp in (1.6) is a growth
function.

Proposition 2.12. Let p ∈ (0, 1]. Then Φp in (1.6) is a Musielak–Orlicz
function satisfying that

(i) Φp is of uniformly lower type p and uniformly upper type 1;

(ii) Φp ∈ A1(Rn).

In particular, Φp is a growth function as in Definition 2.11.

The main argument for the proof of Proposition 2.12 is contained in the
following lemma which will also be useful in the remainder of this article; see
also [19, Lemma 2.3(iv)] for another proof of (2.5).
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Lemma 2.13. Let γ ∈ [0, 1) and β ∈ [0,∞). Then, for any R ∈ (0,∞), 
B(0,R)

(1 + |x|)−nγ[log(e+ |x|)]−β dx ∼ (1 +R)−nγ[log(e+R)]−β. (2.5)

Moreover, the function (1 + |x|)−nγ[log(e + |x|)]−β is in the classical Muck-
enhoupt class A1(Rn), that is, for any ball B ⊂ Rn, 

B

(1 + |x|)−nγ[log(e+ |x|)]−β dx . inf
z∈B

[
(1 + |z|)−nγ[log(e+ |z|)]−β

]
. (2.6)

In particular, for any ball B ⊂ Rn, 
B

(1 + |x|)−nγ[log(e+ |x|)]−β dx ∼ (1 + |cB|+ rB)
−nγ[log(e+ |cB|+ rB)]

−β.

(2.7)

Here, in (2.5) through (2.7), the positive equivalence constants are indepen-
dent of R and B.

Proof. Let us first show (2.5). For any R ∈ (0,∞), the bound below comes
directly from the integral in {x ∈ Rn : R/2 < |x| < R}. So let us concentrate
on the bound above. Taking radial coordinates and making a change of
variables, to show (2.5), we only need to prove that

ˆ 1

0

tn(1−γ)

[log(e+Rt)]β
dt

t
. [log(e+R)]−β.

This inequality is straightforward for R ≤ 4. So let us assume that R > 4.
When we integrate on the interval 0 < Rt < 4, the integral is bounded by a
power of R−1, which is smaller than the right hand side. Finally, we observe
that, for Rt ≥ 4, we have the inequality

logR

log(Rt)
≤ 1 + log(t−1),

which, together with the assumptions R > 4 and γ ∈ [0, 1), implies that
ˆ 1

4/R

tn(1−γ)

[log(e+Rt)]β
dt

t
≤
ˆ 1

4/R

tn(1−γ)

[log(Rt)]β
dt

t

≤ (logR)−β
ˆ 1

0

tn(1−γ) (1− log t)β
dt

t

∼ [log(e+R)]−β.
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This allows us to conclude the proof of (2.5).
In order to show (1+ |x|)−nγ[log(e+ |x|)]−β ∈ A1(Rn), let us come to the

proof of (2.6). To this end, we fix a ball B with center cB ∈ Rn and radius
rB ∈ (0,∞). If |cB| ≥ 2rB, then the distance from any point in B to the
origin is at least rB, which implies that |x| ∼ |z| for any x, z ∈ B, and hence
(2.6) holds true. If |cB| < 2rB, we directly obtain (2.6) by using (2.5) for
the ball centered at 0⃗n with radius 3rB, which contains B. This finishes the
proof of (2.6).

Observe that the fact (1 + |x|)−nγ[log(e + |x|)]−β for any x ∈ Rn is in
A1(Rn) implies directly (2.7). We have completed the proof of this lemma.

Proof of Proposition 2.12. Notice that this proposition was known when p =
1 (see [32]). It remains to consider the case p ∈ (0, 1). By (1.6) and Definition
2.10, it is easy to see that Φp is a Musielak–Orlicz function. Next, we observe
that the function Φp is, for any given p ∈ (0, 1), equivalent to the minimum
of two functions that are Orlicz functions with weights. Indeed, as we said
in the introduction, for any x ∈ Rn and t ∈ [0, ∞),

Φp(x, t) ∼


min

{
t,

tp

(1 + |x|)n(1−p)

}
when n(1/p− 1) /∈ N,

min

{
t,

tp

(1 + |x|)n(1−p)[log(e+ |x|)]p

}
when n(1/p− 1) ∈ N ∪ {0}.

(2.8)

It is easy to see that all Orlicz functions involved in these expressions are
of lower type p and upper type 1. From this, we directly deduce that
the minimum is also of uniformly lower type p and uniformly upper type
1. Also, it is easily seen that the minimum of two growth functions in
A1(Rn) is still a growth function in A1(Rn) (see, for instance, [19, Lemma
2.3 (i)]). So, it suffices to prove that the functions (1 + |x|)−n(1−p) and
(1 + |x|)−n(1−p)[log(e + |x|)]−p are in A1(Rn). But these are already proved
in Lemma 2.13. Altogether, we have completed the proof of Proposition
2.12.

2.3. Musielak–Orlicz Hardy spaces HΦp(Rn) and their dual spaces

Given any Musielak–Orlicz function ϕ that satisfies the growth condition
in Definition 2.11, it was built in [32, 35] a real-variable theory of Musielak–
Orlicz Hardy and Musielak–Orlicz Campanato spaces associated with ϕ.
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Definition 2.14. Let ϕ be a growth function andm(ϕ) := ⌊n[q(ϕ)/i(ϕ)−1]⌋.
The Musielak–Orlicz–Lebesgue space Lϕ(Rn) is defined to be the collection
of all measurable functions f on Rn such that

∥f∥Lϕ(Rn) := inf

{
λ ∈ (0,∞) :

ˆ
Rn

ϕ(x, |f(x)|/λ) dx ≤ 1

}
<∞. (2.9)

The Musielak–Orlicz Hardy space Hϕ(Rn) is defined to be the collection of
all f ∈ S ′(Rn) such that f ∗

m(ϕ) belongs to L
ϕ(Rn), where f∗

m(ϕ) is as in (2.1)

with m replaced by m(ϕ). For any f ∈ Hϕ(Rn), its quasi-norm ∥f∥Hϕ(Rn) is
defined by setting

∥f∥Hϕ(Rn) :=
∥∥f ∗

m(ϕ)

∥∥
Lϕ(Rn)

.

Definition 2.15. Let ϕ be a growth function and s ∈ Z+. The Musielak–
Orlicz Campanato space Cϕ,1,s(Rn) is defined to be the collection of all locally
integrable functions g on Rn such that

∥g∥Cϕ,1,s(Rn) := sup
B⊂Rn

1

∥1B∥Lϕ(Rn)

ˆ
B

|g(x)− PB,sg(x)| dx <∞,

where the supremum is taken over all balls B in Rn. The semi-norm ∥ ·
∥Cϕ,1,s(Rn) vanishes precisely over the space Ps(Rn).

The following duality result was established by Liang and Yang [35, The-
orem 3.5] (see also [47, Theorem 5.2.1]), whose special case when nq(ϕ) <
(n + 1)i(ϕ), that is, ⌊n[q(ϕ)/i(ϕ)−])⌋ = 0, was obtained by Ky [32, Theo-
rem 3.2].

Lemma 2.16. Let ϕ be a growth function and s ∈ Z+ such that s ≥
⌊n[q(ϕ)/i(ϕ)− 1]⌋. Then (Hϕ(Rn))∗ = Cϕ,1,s(Rn)/Ps(Rn).

Remark 2.17. Let p ∈ (0, 1] and s ∈ Z+ be such that s ≥ ⌊n(1/p− 1)⌋.

(i) According to Proposition 2.12, every Φp in (1.6) is a growth function
with indices q(Φp) = 1 and i(Φp) = p (both are not attainable), and
hence the index m(Φp) is equal to ⌊n(1/p − 1)⌋. This indicates that
the Musielak–Orlicz Hardy space HΦp(Rn) and the Musielak–Orlicz
Campanato space CΦp,1,s(Rn) with s ≥ ⌊n(1/p − 1)⌋ are well defined,
with the function ϕ in Definitions 2.14 and 2.15 therein replaced by Φp.
Further, we deduce from Lemma 2.16 that the dual space of HΦp(Rn)
is CΦp,1,s(Rn)/Ps(Rn).
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(ii) When s = ⌊n(1/p−1)⌋, we simply write CΦp,1,s(Rn) as CΦp(Rn). More-
over,

∥g∥CΦp (Rn) = sup
B⊂Rn

inf
P∈Ps(Rn)

1

∥1B∥LΦp (Rn)

ˆ
B

|g(x)− P (x)| dx <∞.

(iii) Based on the equivalent expression of Φp in (1.7), we easily observe
that H1(Rn) ⊂ HΦp(Rn) and Hp

wp
(Rn) ⊂ HΦp(Rn). Moreover,

∥ · ∥HΦp (Rn) . min
{
∥ · ∥H1(Rn), ∥ · ∥Hp

wp (Rn)

}
. (2.10)

Next, we give an equivalent characterization of the Musielak–Orlicz Cam-
panato space CΦp(Rn), where p ∈ (0, 1).

Proposition 2.18. Let p ∈ (0, 1), α = 1/p − 1 and Φp be as in (1.6). For
any ball B ⊂ Rn, let

Ψα(B) :=


|B|α

(1 + |cB|+ rB)nα
when nα /∈ N,

|B|α

(1 + |cB|+ rB)nα log(e+ |cB|+ rB)
when nα ∈ N.

(2.11)

Then

∥1B∥LΦp (Rn) ∼ ∥1B∥Lp
wp (Rn) ∼ Ψα(B)|B|. (2.12)

Consequently, for any locally integrable function g on Rn,

∥g∥CΦp (Rn) ∼ sup
B⊂Rn

1

Ψα(B)

 
B

|g(x)− PB,⌊nα⌋g(x)| dx (2.13)

whenever either side of (2.13) is finite. Here, the positive equivalence con-
stants in (2.12) and (2.13) are independent of g and B.

The proof of Proposition 2.18 is a consequence of the following proposi-
tion, which is of independent interest.

Proposition 2.19. Assume that the growth function ϕ may be written as
min{ϕ1, ϕ2}, where ϕ1 and ϕ2 are two growth functions. Then

∥1B∥Lϕ(Rn) ∼ min
{
∥1B∥Lϕ1 (Rn), ∥1B∥Lϕ2 (Rn)

}
, (2.14)

where the positive equivalence constants are independent of B ⊂ Rn.
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Proof. The fact that

∥1B∥Lϕ(Rn) . min
{
∥1B∥Lϕ1 (Rn), ∥1B∥Lϕ2 (Rn)

}
comes from the definition of the norm. Let us prove the converse inequality,
that is,

min
{
ϕ1(B, λ

−1), ϕ2(B, λ
−1)
}
≤ C

for some uniform constant C that is dependent of B. Here λ = ∥1B∥Lϕ(Rn)

and, for any i ∈ {1, 2},

ϕi(B, λ
−1) :=

ˆ
B

ϕi(x, λ
−1) dx.

Without loss of generality, we may assume that the set E := {x ∈ B :
ϕ1(x, λ

−1) ≤ ϕ2(x, λ
−1)} has Lebesgue measure larger than |B|/2 (otherwise,

we may consider instead the set F := {x ∈ B : ϕ1(x, λ
−1) ≥ ϕ2(x, λ

−1)}).
By assumption, we have

ϕ1(E, λ
−1) =

ˆ
E

ϕ1(x, 1B(x)/λ) dx ≤ 1.

Because of the facts that ϕ1 is in A∞(Rn) and |B| ≤ 2|E|, we conclude from
the definition of A∞(Rn) that ϕ1(B, λ

−1) ≤ C, which proves Proposition
2.19.

Proof of Proposition 2.18. Notice that (2.13) follows from (2.12) and the def-
inition of ∥ · ∥CΦp (Rn). Thus, to finish the proof of Proposition 2.18, it suffices
to prove (2.12).

Apply Proposition 2.19 with ϕ1(x, t) := t and ϕ2(x, t) := tpwp(x) for any
x ∈ Rn and t ∈ [0, ∞), where wp is as in (1.5). Notice that ∥1B∥Lϕ1 (Rn) = |B|.
Also, the estimate (2.7) implies that

∥1B∥Lϕ2 (Rn) = ∥1B∥Lp
wp (Rn) ∼ |B|Ψα(B),

where Ψα(B) is as in (2.11). Then, invoking the fact that min{1,Ψα(B)} ∼
Ψα(B) and Proposition 2.19, we obtain (2.12). This concludes the proof of
Proposition 2.18.
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Remark 2.20. Let all the notation be as in Proposition 2.18. Notice that

Ψα(B) ∼


min

{
1,

(
rB

1 + |cB|

)nα}
when nα /∈ N,

min

{
1,

(
rB

1 + |cB|

)nα}
1

log(e+ |cB|+ rB)
when nα ∈ N,

with the positive equivalence constants independent of B, where Ψα(B) is as
in (2.11). As a consequence of the fact that Ψα is given by the minimum of
two quantities, it follows that CΦp(Rn) is the intersection of two spaces. For
instance, when αn /∈ N, it is the intersection of the space BMO(Rn) with the
space of all functions g such that

sup
B

(1 + |cB|)nα

|B|α

 
B

|g(x)− PB,⌊nα⌋g(x)|dx <∞.

In particular, g belongs to Cα(Rn). So g is in particular of class C⌈nα⌉−1(Rn)
in view of Definition 2.5. The same inclusion is valid for nα ∈ N.

A first example of functions in CΦp(Rn) is given by the Schwartz functions.
We state it as a lemma.

Lemma 2.21. If p ∈ (0, 1), then S(Rn) embeds continuously into CΦp(Rn).

Proof. Let p ∈ (0, 1), α = 1/p − 1 and g ∈ S(Rn). We need to prove that,
for any ball B = B(cB, rB) ⊂ Rn with cB ∈ Rn and rB ∈ (0, ∞), there exists
a polynomial P ∈ Ps(Rn) with s = ⌊nα⌋ such that

1

Ψα(B)

 
B

|g(x)− P (x)| dx . 1,

where Ψα(B) is as in (2.11). As before, we can reduce to two cases: either
rB ≤ |cB|/2 or rB > |cB|/2. In the first case, we take P to be the Taylor
polynomial of g at the point cB with degree s. Then, for any integer N larger
than s+ 1, we have

sup
x∈B

|g(x)− P (x)| . rs+1
B

(1 + |cB|)N
,

which is uniformly bounded when divided by Ψα(B).
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Let us consider the case rB > |cB|/2. When rB ≤ 1, again we take P to
be the Taylor polynomial of g at the point cB with degree s, so that

|g(x)− P (x)| . |x− cB|s+1 . rs+1
B . rnαB ∼ Ψα(B)

inside the ball B and we conclude again directly. When rB > 1, by taking
P = 0 and using the fact that g ∈ L1(Rn), we find that

 
B

|g(x)− P (x)| dx . |B|−1 . Ψα(B).

When tracking constants it is easy to see that the embedding is continu-
ous, which completes the proof of Lemma 2.21.

2.4. The growth of Campanato functions

The first result of this section is the following pointwise estimate, which
indicates that a function g ∈ Cα(Rn) has polynomial growth of order nα
when nα /∈ N, but can have an extra logarithm growth factor when nα ∈ N.

Proposition 2.22. Let α ∈ (0, ∞) and s = ⌊nα⌋. Then there exists a
positive constant C such that, for any g ∈ Cα(Rn) and any ball B ⊂ Rn,

sup
x∈B

|g(x)| ≤


C(1 + |cB|+ rB)

nα∥g∥C+
α (Rn) when nα /∈ N,

C(1 + |cB|+ rB)
nα log(e+ |cB|+ rB)∥g∥C+

α (Rn)

when nα ∈ N.
(2.15)

Moreover, the same estimates hold true for supx∈B |PB,sg(x)|.

Proof. Recall that Cα(Rn) = Cα,1,s(Rn) with s = ⌊nα⌋. Once we have proved
(2.15), then the projection PB,sg satisfies the same estimates as those of g,
because Lemma 2.6 implies that

sup
x∈B

|g(x)− PB,sg(x)| ≤ ∥g∥Cα,∞,s(Rn) ∼ ∥g∥Cα,1,s(Rn).

So we only need to prove (2.15). To this end, it suffices to prove that, for
any x ∈ Rn,

|g(x)| .
{
(1 + |x|)nα∥g∥C+

α (Rn) when nα /∈ N,
(1 + |x|)nα log(e+ |x|)∥g∥C+

α (Rn) when nα ∈ N
(2.16)
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uniformly in g and x. The proof of this inequality is standard even if one
has to be careful with the norm ∥ · ∥C+

α (Rn). One can restrict to the case when
nα ≤ 1 by using an induction argument. Under this restriction, the proof is
classical.

To be precise, we first prove that it suffices to show this inequality for
nα ≤ 1. Indeed, assume that nα > 1. By Definition 2.5(iii) and Lemma
2.6, we know that g is in Cα(Rn) if and only if ∂xjg ∈ Cα− 1

n
(Rn) for any j ∈

{1, . . . , n}, after modifying g on a set of measure zero if necessary. Moreover,
we have

∥∂xjg∥Cα− 1
n
(Rn) ∼ ∥g∥Cα(Rn).

Let us show that we have as well

∥∂xjg∥C+
α−1/n

(Rn) . ∥g∥C+
α (Rn).

We use Lemma 2.4 for this. It follows from integration by parts that∑
|γ|≤s−1

∣∣∣∣ˆ
B(⃗0n,1)

xγ∂xjg(x)dx

∣∣∣∣ . ∑
|γ|≤s−1

∣∣∣∣ˆ
x∈B(⃗0n,1)

xγg(x)dx

∣∣∣∣+ sup
x∈B(⃗0n,1)

|g(x)|

. ∥g∥C+
α (Rn),

where we have used Lemma 2.4 to prove the last inequality.
So, assuming that (2.16) holds true for αn ≤ k and wanting to prove it

for k < nα ≤ k + 1, we have the required inequality with α − 1
n
in place of

α and ∂xjg in place of g. The inequality for g is obtained by integration.
It remains to prove (2.16) for nα ≤ 1. This is straightforward for nα < 1.

Indeed, we deduce from Lemma 2.6 that, for any x, y ∈ Rn,

|g(x)− g(y)| . ∥g∥Cα(Rn)|x− y|nα,

and integrate in y inside the ball B(⃗0n, 1) to obtain the required estimate.
Assume now that αn = 1. It suffices to prove that, for any x ∈ Rn,

|g(x)| .
[

sup
x∈B(⃗0n,1)

|g(y)|+ ∥g∥Cα(Rn)

]
(1 + |x|) log(e+ |x|). (2.17)

Indeed, if |x| < 1, then (2.17) follows directly from

|g(x)| ≤ sup
x∈B(⃗0n, 1)

|g(x)|.
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If |x| ≥ 1, then Definition 2.5(ii) implies that

|g(x)| ≤ |g(x)− 2g(2−1x) + g(⃗0n)|+ 2|g(2−1x)|+ |g(⃗0n)|
≤ 2−1|x|∥g∥Λ̇1(Rn) + 2|g(2−1x)|+ |g(⃗0n)|

and an inductive argument further gives that

|g(x)| ≤ k2−1|x|∥g∥Λ̇1(Rn) + 2k|g(2−kx)|+ |g(⃗0n)|
k∑
j=1

2j−1

whenever k ∈ N. In particular, choose k = n0 satisfying 2n0−1 ≤ |x| < 2n0 .
Then, using 2−n0x ∈ B(⃗0n, 1) and n0 ∼ log(e+ |x|), we conclude that |g(x)|
has the desired estimate as in the right hand side of (2.17). This finishes the
proof of Proposition 2.22.

2.5. A first decomposition

We apply these bounds above to find a first decomposition of products,
which is an analog for any given p ∈ (0, 1) of the one obtained in [8]. Let
us first recall the definition of atoms (see, for instance, [20, 25, 37] for more
details).

Definition 2.23. Let p ∈ (0, 1) and l ∈ Z+. A function a ∈ L2(Rn) is called
a (p, l)-atom if

(i) there exists a ball B such that supp a ⊂ B;

(ii) ∥a∥L2(Rn) ≤ |B|1/2−1/p;

(iii)
´
Rn x

αa(x) dx = 0 for any multi-index α := (α1, . . . , αn) ∈ Zn+ satisfying
|α| :=

∑n
i=1 αi ≤ l.

Observe that, if the ball B in Definition 2.23 is replaced by a cubeQ ⊂ Rn,
we obtain an alternative equivalent definition of (p, l)-atoms supported on
cubes. By an abuse of terminology, we still call the latter case a (p, l)-atom
(see Sections 4.3 and 4.4 below).

We recall that, as soon as p ∈ (0, 1) and l ≥ s with s = ⌊n(1/p−1)⌋, these
(p, l)-atoms have uniformly bounded Hp(Rn)-norms. Moreover, one has an
atomic decomposition, that is, distributions in Hp(Rn) may be obtained as
limits of finite linear combinations of atoms. We will go back to this later on
but at this point we want to have a first estimate on the product ag, where
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a is an atom related to a ball B and g is in Cα(Rn) with α = 1/p− 1. If we
write

ag = a(g − PB,sg) + aPB,sg,

we know at once that the first term is in L1(Rn). The next proposition states
that the product aPB,sg lies in the Musielak–Orlicz Hardy space HΦp(Rn)
under the condition that the order l is large enough. This result plays a
crucial role in the proof of Theorems 1.1 and 1.2.

Proposition 2.24. Let p ∈ (0, 1), α = 1/p − 1, s = ⌊n(1/p − 1)⌋ and
l ∈ Z+ ∩ [2s, ∞). Assume that g ∈ Cα(Rn) and a is a (p, l)-atom supported
in a ball B ⊂ Rn. Then

∥aPB,sg∥HΦp (Rn) ≤ C∥g∥C+
α (Rn),

where C is a positive constant independent of a and g.

Proof. Without loss of generality, we may assume that ∥g∥C+
α (Rn) = 1. Let

h := aPB,sg and h∗ be the non-tangential maximal function of h as in (2.1).
Using (2.10), we only need to show that

∥h∥p
Hp

wp (Rn)
=

ˆ
Rn

[h∗(x)]pwp(x) dx . 1, (2.18)

where the weight wp is given in (1.5). Since the weight wp is radial, we let
wp be the function on (0,∞) such that wp(|x|) = wp(x) for any x ∈ Rn.

Because a has vanishing moments up to order l ≥ 2s and PB,sg is a
polynomial of order s, we have

´
Rn x

βh(x) dx = 0 for any multi-index β
satisfying |β| ≤ s. Moreover, from Proposition 2.22, we deduce the estimate
that, for any x ∈ B = B(cB, rB) with cB ∈ Rn and rB ∈ (0, ∞),

[wp(|cB|+ rB)]
1/p |PB,sg(x)| . 1.

Thus, in particular, ã := [wp(|cB| + rB)]
1/ph is, up to a uniform constant, a

(p, s)-atom. Now, the proof of (2.18) falls into the following estimate:

J :=

ˆ
Rn

[( ã )∗(x)]pwp(x) dx . wp(|cB|+ rB).

Applying first the Hölder inequality and then (2.7) to the function

[wp]
1

1−p/2 =


(1 + |x|)−n(1−p)/(1−p/2) when n(1/p− 1) /∈ N,
(1 + |x|)−n(1−p)/(1−p/2)[log(e+ |x|)]−p/(1−p/2)

when n(1/p− 1) ∈ N,
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we obtain

ˆ
4B

[( ã )∗(x)]pwp(x) dx ≤ ∥( ã )∗∥pL2(Rn)

[ˆ
4B

[wp(x)]
1

1−p/2 dx

]1−p/2
. ∥a∥pL2(Rn)|B|1−p/2wp(|cB|+ rB) . wp(|cB|+ rB).

According to [43, p. 106], we have

( ã )∗(x) . 1

|B|1/p

(
rB

|x− cB|

)n+s+1

, ∀x ∈ Rn \ 4B

and hence, by (2.7) and the fact s+1 > n(1/p−1), we further conclude that

ˆ
Rn\(4B)

[( ã )∗(x)]pwp(x) dx =
∞∑
j=1

ˆ
(4j+1B)\(4jB)

[( ã )∗(x)]pwp(x) dx

.
∞∑
j=1

2−j[(n+s+1)p−n]
 
4j+1B

wp(x) dx

. wp(|cB|+ rB).

Thus, we obtain the desired estimate for J .
This finishes the proof of Proposition 2.24.

3. Pointwise multipliers of Campanato spaces

The main aim of this section is to prove Theorems 1.1 and 1.3. We begin
with the proof of Theorem 1.3 by dividing it into two steps: the necessary
part and the sufficient part.

3.1. Necessary part of Theorem 1.3

Theorem 3.1. Let p ∈ (0, 1), α = 1/p − 1 and Φp be as in (1.6). Then
there exists a positive constant C such that, for any g ∈ L∞(Rn) ∩ CΦp(Rn)
and f ∈ Cα(Rn),

∥gf∥C+
α (Rn) ≤ C∥f∥C+

α (Rn)[∥g∥L∞(Rn) + ∥g∥CΦp (Rn)].
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Proof. Let g ∈ L∞(Rn) ∩ CΦp(Rn). Recall that Cα(Rn) = Cα,1,s(Rn) with
s = ⌊nα⌋. Then, for any f ∈ Cα(Rn), we have

 
B(⃗0n,1)

|g(x)f(x)| dx ≤ ∥g∥L∞(Rn)

 
B(⃗0n,1)

|f(x)| dx ≤ ∥g∥L∞(Rn)∥f∥C+
α (Rn).

For any ball B ⊂ Rn and x ∈ B, we write

|g(x)f(x)− PB,sf(x)PB,sg(x)| ≤ |f(x)− PB,sf(x)| |g(x)|
+ |PB,sf(x)| |g(x)− PB,sg(x)| .

From Proposition 2.22 and (2.11), it follows that

sup
x∈B

|PB,sf(x)| .
|B|α

Ψα(B)
∥f∥C+

α (Rn),

here and hereafter, Ψα(B) is as in (2.11). By this and (2.13), we conclude
that  

B

|g(x)f(x)− PB,sf(x)PB,sg(x)| dx

.
 
B

|f(x)− PB,sf(x)| dx ∥g∥L∞(Rn)

+ ∥f∥C+
α,1,s(Rn)

|B|α

Ψα(B)

 
B

|g(x)− PB,sg(x)| dx

. |B|α
[
∥f∥Cα,1,s(Rn)∥g∥L∞(Rn) + ∥f∥C+

α,1,s(Rn)∥g∥CΦp (Rn)

]
. |B|α∥f∥C+

α (Rn)[∥g∥L∞(Rn) + ∥g∥CΦp (Rn)].

As PB,sf PB,sg ∈ P2s(Rn), then we utilize (2.4) to obtain gf ∈ Cα,1,2s(Rn)
with

∥gf∥Cα,1,2s(Rn) . ∥f∥C+
α (Rn)[∥g∥L∞(Rn) + ∥g∥CΦp (Rn)].

Further, by the equivalence Cα,1,2s(Rn)/P2s(Rn) = Cα,1,s(Rn)/Ps(Rn) in
Remark 2.3(i), we know that there exists Q ∈ P2s(Rn) such that gf − Q ∈
Cα,1,s(Rn). Due to (2.16), the function gf−Q has at most polynomial growth
of order nα (with an extra logarithm growth factor for the integer case) at
infinity, so does gf because g ∈ L∞(Rn) and f ∈ Cα(Rn). This forces Q
to be a polynomial of order no more than nα. In other words, we have
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Q ∈ Ps(Rn). Then the previous fact gf − Q ∈ Cα,1,s(Rn) implies that gf
itself is in Cα,1,s(Rn). Moreover, noticing that

∥gf∥Cα(Rn) = ∥gf∥Cα,1,s(Rn) = ∥gf −Q∥Cα,1,s(Rn) = ∥gf∥Cα,1,2s(Rn),

we conclude the proof of Theorem 3.1.

As an application of Theorem 3.1 and Lemma 2.21, we prove in the fol-
lowing corollary that any Schwartz function is a pointwise multiplier of the
Campanato space Cα(Rn), with α ∈ (0,∞), which hence justifies the defini-
tion of the product in (1.2). Recall that this fact has also been pointed out
in [3, p. 59].

Corollary 3.2. Let α ∈ (0,∞). Then, for any g ∈ S(Rn), g is a pointwise
multiplier of Cα(Rn).

Proof. By Theorem 3.1, it suffices to prove that g ∈ L∞(Rn)∩CΦp(Rn), where
the number p satisfies that α = 1/p − 1 > 0. It is obvious that Schwartz
functions are bounded. The fact that they are in CΦp(Rn) has been proved
in Lemma 2.21, which completes the proof of Corollary 3.2.

3.2. Sufficient part of Theorem 1.3 for the non-integer case

In this section, for the non-integer case nα /∈ N, we discuss the sufficient
part of Theorem 1.3 by constructing two examples of functions in Cα(Rn).

Proposition 3.3. Let α ∈ (0,∞) and nα /∈ N. Let f be a continuous func-
tion on Rn, which is homogeneous of degree nα and has continuous deriva-
tives on Rn \ {⃗0n} up to order 1 + ⌊nα⌋. Then f is in the space Cα(Rn). In
particular, |x|nα ∈ Cα(Rn).

Proof. Let f be as in the proposition. Then, if nα > 1, all its derivatives
satisfy the same assumptions as f , except that they are now homogeneous
of degree nα − 1. So an easy induction shows that it suffices to prove the
proposition for 0 < nα < 1. By the homogeneity assumption, we have
|f(x)| ≤ C|x|nα for any x ∈ Rn, as well as |∇f(x)| ≤ C|x|nα−1 for any
x ∈ Rn \ {⃗0n}.

We want to prove that |f(x) − f(y)| . |x − y|nα for any x, y ∈ Rn.

By symmetry, we consider only the case |x| ≤ |y|. When |y − x| ≤ |y|
2
, we
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conclude that the whole segment joining x to y lies in the complement of the
ball centered at 0⃗n and of radius |y|/2. By Taylor’s theorem, we obtain

|f(x)− f(y)| . |x− y| |y|nα−1,

from which we deduce the desired conclusion. Assume now that |y−x| ≥ |y|
2
.

We then conclude the desired conclusion by the estimate |f(x) − f(y)| .
(|x|+ |y|)nα.

This finishes the proof of Proposition 3.3.

Proposition 3.4. Let α ∈ (0,∞). Let φ ∈ C∞
c (Rn) be such that 0 ≤ φ ≤ 1,

suppφ ⊂ B(⃗0n, 2) and φ ≡ 1 on B(⃗0n, 1). Given a ball B = B(cB, rB) ⊂ Rn

with cB ∈ Rn and rB ∈ (0, ∞) satisfying |cB| > max{2, 4rB}, define

f (B)(x) := |cB|nαφ
(
4(x− cB)

|cB|

)
, ∀x ∈ Rn. (3.1)

Then f (B) has the following properties:

(i) f (B) ≡ |cB|nα on B, and f (B) ≡ 0 on B(⃗0n, 1)

(ii) f (B) ∈ Cα(Rn) and ∥f (B)∥C+
α (Rn) = ∥f (B)∥Cα(Rn) ≤ C, where C is a

positive constant independent of B.

Proof. Notice that (i) follows directly from the assumptions of φ and |cB| >
max{2, 4rB}. From (i), the equality ∥f (B)∥C+

α (Rn) = ∥f (B)∥Cα(Rn) in (ii) fol-
lows immediately.

Now we show that ∥f (B)∥Cα(Rn) . 1 uniformly in B. Since the semi-norm
in (2.4) is invariant by rotation and translation, and is homogeneous of order
nα, we deduce immediately from the fact that φ is in Cα(Rn) that∥∥∥∥φ(4(· − cB)

|cB|

)∥∥∥∥
Cα(Rn)

∼ |cB|−nα∥φ∥Cα(Rn) ∼ |cB|−nα.

The result ∥f (B)∥Cα(Rn) . 1 follows directly.
This finishes the proof of Proposition 3.4.

Also, we need the following lemma, which we can find in [11] and [37,
p. 54, Lemma 4.1].
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Lemma 3.5. Let s ∈ Z+. Then there exists a positive constant C such that,
for any locally integrable function g and for any ball B ⊂ Rn,

sup
x∈B

|PB,sg(x)| ≤ C

 
B

|g(y)| dy.

Theorem 3.6. Let p ∈ (0, 1), α = 1/p − 1 and assume that nα /∈ N. If a
function g is a pointwise multiplier of Cα(Rn) with operator norm

∥|g∥| := sup
f ̸=0

∥gf∥C+
α (Rn)

∥f∥C+
α (Rn)

,

where the supremum is taken over all f ∈ Cα(Rn) satisfying f ̸= 0, then g ∈
L∞(Rn)∩CΦp(Rn). Moreover, there exists a positive constant C, independent
of g, such that

∥g∥L∞(Rn) + ∥g∥CΦp (Rn) ≤ C∥|g∥|. (3.2)

Proof. Let g be a pointwise multiplier of Cα(Rn), which we can assume of
norm 1. Then, for any f ∈ Cα(Rn), we have

∥gf∥C+
α (Rn) ≤ ∥f∥C+

α (Rn). (3.3)

Let us first point out that, by testing on the function 1, we find that g itself
is in Cα(Rn) and ∥g∥C+

α (Rn) ≤ 1. We now prove that g is bounded. As a
consequence of Proposition 3.3, the function

f(x) := 1 + |x|nα, ∀x ∈ Rn

belongs to Cα(Rn). So ∥gf∥C+
α (Rn) ≤ ∥f∥C+

α (Rn) . 1. Applying (2.16), we
obtain, for any x ∈ Rn,

|g(x)f(x)| . (1 + |x|)nα,

which further implies that g ∈ L∞(Rn).
It remains to prove ∥g∥CΦp (Rn) . 1. Let s = ⌊nα⌋. We need to prove that,

for any ball B ⊂ Rn,

 
B

|g(x)− PB,sg(x)| dx . Ψα(B) ∼
(

rB
1 + |cB|+ rB

)nα
, (3.4)
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where Ψα(B) is as in (2.11). We already know that the left hand side is
uniformly bounded in terms of rnαB because g ∈ Cα(Rn). So it suffices to
consider balls B = B(cB, rB) with cB ∈ Rn and rB ∈ (0, ∞) satisfying
|cB|+ rB > 4.

For the case |cB| ≤ 4rB, we apply g ∈ L∞(Rn) and Lemma 3.5 to derive
that  

B

|g(x)− PB,sg(x)| dx .
 
B

|g(x)| dx . ∥g∥L∞(Rn) . 1 ∼ Ψα(B).

For the case |cB| > 4rB, we have |cB| > max{2, 4rB}. Let f (B) be as in
Proposition 3.4. Notice that, for any x ∈ B,∣∣g(x)f (B)(x)− PB,s(f

(B)g)(x)
∣∣ = |cB|nα|g(x)− PBg(x)|.

From this and (3.3), it follows that
 
B

|g(x)− PB,sg(x)| dx = |cB|−nα
 
B

∣∣g(x)f (B)(x)− PB,s(f
(B)g)(x)

∣∣ dx
. |cB|−nα|B|α

∥∥gf (B)
∥∥
Cα(Rn)

.
[
rB
|cB|

]nα ∥∥f (B)
∥∥
C+
α (Rn)

.
[

rB
1 + |cB|+ rB

]nα
.

Combining all the estimates, we obtain (3.4), which completes the proof of
Proposition 3.6.

3.3. Comments on the sufficient part of Theorem 1.3 for the integer case

We will give here partial results on the sufficient part of Theorem 1.3
when nα = k is an integer. Let us first give examples of functions in Cα(Rn)
under this assumption.

Proposition 3.7. Let α ∈ (0,∞) be such that nα ∈ N and let k = nα. For
any j ∈ {1, . . . , n} and x ∈ Rn, define fj(x) := xkj log |xj|. Then the function
fj is in Cα(Rn).

Proof. Let j ∈ {1, . . . , n}. It is well known that log |xj| belongs to the space
BMO(Rn). All derivatives of order k of f are 0, except for the derivative

∂kfj
∂xkj

(x) = k! log |xj|+
k−1∑
i=0

(
k

i

)
k!(−1)k−i, ∀x ∈ Rn,
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where
(
k
i

)
denotes the binomial coefficient. Thus, all the k-th order deriva-

tives of fj belong to BMO(Rn).
For any θ ∈ R and p, q ∈ (0,∞], denote by Ḟ θ

p,q(Rn) the homogeneous
Triebel-Lizorkin space (see Frazier and Jawerth [23] or Triebel [45] for its pre-
cise definition). We know by [45, p. 244, Theorem] the following continuous
embedding

BMO(Rn) = Ḟ0
∞,2(Rn) ⊂ Ḟ0

∞,∞(Rn).

Also, for any k ∈ N, it follows from [46, Theorem 1.5] and [48, Proposi-
tion 3.1(viii)] that ∑

|ν|=k

∥Dνf∥Ḟ 0
∞,∞(Rn) ∼ ∥f∥Ḟk

∞,∞(Rn)

whenever either side is finite. This implies that fj ∈ Ḟ k
∞,∞(Rn).

With the number p taken to satisfy α = 1/p − 1, we know that Hp(Rn)
and Ḟ 0

p,2(Rn) coincide with equivalent (quasi)-norms (see [45, p. 244, Theo-
rem]), while the dual spaces of these two spaces are Cα(Rn)/P⌊nα⌋(Rn) and

Ḟ k
∞,∞(Rn) (see [23, p.79, (5.14)]), respectively. Therefore, we conclude that
fj ∈ Cα(Rn). This finishes the proof of Proposition 3.7.

Assume that k = nα ∈ N and g is a pointwise multiplier of Cα(Rn), which
we still assume of norm 1. We test the multiplication by g the functions
hj = 1 + fj, with each fj as in Proposition 3.7 and j ∈ {1, . . . , n}. Using
inequality (2.16), we find that

sup
j∈{1,...,n}

|g(x)hj(x)| ≤ C(1 + |x|)k log(e+ |x|), ∀x ∈ Rn,

where C is a positive constant independent of x, which implies that g ∈
L∞(Rn).

The unsolved part is the proof of g ∈ CΦp(Rn) with p satisfying α =
1/p − 1. At this point, for the case nα = k ∈ N, using the same proof
as that for the case nα /∈ N, we can prove that a pointwise multiplier g of
Cα(Rn) is bounded and satisfies the condition: for any ball B = B(cB, rB)
with cB ∈ Rn and rB ∈ (0, ∞),

 
B

|g(x)− PB,kg(x)| dx ≤ C
rkB

(1 + |cB|+ rB)k
, (3.5)
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where C is a positive constant independent of B. This is not critical, as
seen from below. One may conjecture that one has the following necessary
condition: for any ball B = B(cB, rB) with cB ∈ Rn and rB ∈ (0, ∞), 

B

|g(x)− PB,kg(x)| dx ≤ C
rkB

(1 + |cB|+ rB)k log(e+ |cB|+ rB)
, (3.6)

where C is a positive constant independent of B. We can not prove this but
show that the condition (3.5) is not sufficient. We do this when n = 1 and
k = 1. Observe that, whenever g is a multiplier, the same holds true for the
function g(−x), so that we can assume that g is odd or even. If we assume
that g is odd, testing the corresponding multiplier of the function x log |x|
and taking the second difference at 0, we find that |xg(x)| log |x| ≤ C|x|
for any x ∈ R \ {0}, where C is a positive constant independent of x. We
conclude that there exists a positive constant C such that, for any x ∈ R,

|g(x)| ≤ C

log(e+ |x|)
.

But the function x
(1+x2)1/2

for any x ∈ R does not satisfy this last property

while it satisfies (3.5). To show (3.6), it seems that one needs to find more
intrinsic properties of pointwise multipliers of Cα(Rn) when nα ∈ N.

3.4. The linear decomposition: proof of Theorem 1.1

Notice that Corollary 3.2 shows that the definition (1.2) makes sense.
Then, with the help of Proposition 2.24, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let f ∈ Hp(Rn) and g ∈ Cα(Rn), where α = 1/p −
1 ∈ (0,∞). From the atomic characterization of Hp(Rn) (see, for instance,
[25, 37]), it follows that there exist {λj}j∈N ⊂ C and a sequence {aj}j∈N of
(p, l)-atoms with l ∈ Z+ ∩ [2s, ∞) and s = ⌊nα⌋ such that

f =
∑
j∈N

λjaj in Hp(Rn) and
∑
j∈N

|λj|p ∼ ∥f∥pHp(Rn).

By (1.2) and the duality theory between Hp(Rn) and Cα(Rn), we write,
for any ϕ ∈ S(Rn),

⟨f × g, ϕ⟩ = ⟨ϕg, f⟩ =
∑
j∈N

λj⟨ϕg, aj⟩ =
∑
j∈N

λj⟨ajg, ϕ⟩

=
∑
j∈N

λj
[
⟨aj(g − PBj ,sg), ϕ⟩+ ⟨ajPBj ,sg, ϕ⟩

]
,
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where Bj denotes the ball of Rn such that supp aj ⊂ Bj for any j ∈ N.
Now let Sf (g) :=

∑
j∈N λjaj(g − PBj ,sg) and Tf (g) :=

∑
j∈N λjajPBj ,sg.

By Definition 2.2, we have

∥Sf (g)∥L1(Rn) .
∑
j∈N

|λj|
∥∥aj(g − PBj ,sg)

∥∥
L1(Rn)

.
∑
j∈N

|λj|∥aj∥L2(Rn)

∥∥g − PBj ,sg
∥∥
L2(Rn)

.
∑
j∈N

|λj|∥g∥Cα,2,s(Rn) . ∥f∥Hp(Rn)∥g∥Cα(Rn),

which further implies that Sf (g) converges in L1(Rn) and hence in S ′(Rn).
By (2.18) in the proof of Proposition 2.24, we know that

∥Tf (g)∥pHp
wp (Rn)

≤
∑
j∈N

|λj|p
∥∥ajPBj ,sg

∥∥p
Hp

wp (Rn)
.
∑
j∈N

|λj|p∥g∥pC+
α (Rn)

. ∥f∥pHp(Rn) ∥g∥
p

C+
α (Rn)

,

which implies that Tf (g) converges in H
p
wp
(Rn) and hence in S ′(Rn). There-

fore, we know that Sf and Tf are well defined linear operators on the space
Cα(Rn). In particular, for any ϕ ∈ S(Rn), both

∑
j∈N λj⟨aj(g − PBj ,sg), ϕ⟩

and
∑

j∈N λj⟨ajPBj ,sg, ϕ⟩ converge. Altogether, we conclude the desired lin-
ear decomposition

⟨f × g, ϕ⟩ = ⟨Sf (g) + Tf (g), ϕ⟩, ∀ϕ ∈ S(Rn).

This finishes the proof of Theorem 1.1.

4. Bilinear decomposition for Hp(Rn) × Cα(Rn)

In this section, we show Theorem 1.2 by using the renormalization tech-
nique based on wavelet multiresolution analysis (for short, MRA).

4.1. A few prerequisites on the MRA

Let us begin with the following definition of multiresolution analysis (for
short, MRA) of L2(Rn) (see, for instance, [38, p. 21]).

Definition 4.1. Let {Vj}j∈Z be an increasing sequence of closed linear sub-
spaces in L2(Rn). Then {Vj}j∈Z is called a multiresolution analysis (for short,
MRA) of L2(Rn) if it has the following properties:
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(a)
∩
j∈Z Vj = {0} and

∪
j∈Z Vj = L2(Rn), where 0 denotes the zero element

of L2(Rn);

(b) for any j ∈ Z and f ∈ L2(Rn), f(·) ∈ Vj if and only if f(2·) ∈ Vj+1;

(c) for any f ∈ L2(Rn) and k ∈ Zn, f(·) ∈ V0 if and only if f(· − k) ∈ V0;

(d) there exists a function ϕ ∈ L2(Rn) (called a scaling function or father
wavelet) such that {ϕ(·−k)}k∈Zn is a Riesz basis of V0, that is, for every
sequence {αk}k∈Zn of scalars,∥∥∥∥∥∑

k∈Zn

αkϕ(· − k)

∥∥∥∥∥
L2(Rn)

∼

(∑
k∈Zn

|αk|2
)1/2

,

where the positive equivalence constants are independent of {αk}k∈Zn .

In the literature, the definition of MRA is usually restricted to the one-
dimensional case. However, the extension from one dimension to higher
dimension is classical via the tensor product method (see [17, p. 921] or [38,
Section 3.9]). As was pointed out in [38, Section 2.3], we can construct an
orthonormal basis of V0 based on the Riesz basis in Definition 4.1(d).

For any j ∈ Z, let {Vj}j∈Z be as in Definition 4.1 and Wj the orthogonal
complement of Vj in Vj+1. It is easy to see that

Vj+1 =

j⊕
i=−∞

Wi and L2(Rn) =
∞⊕

i=−∞

Wi, (4.1)

where
⊕

denotes the orthogonal direct sum in L2(Rn). Let D be the class of
all dyadic cubes I := {x ∈ Rn : 2jx− k ∈ [0, 1)n} with j ∈ Z and k ∈ Zn in
Rn, and

E := {0, 1}n \ {(
n times︷ ︸︸ ︷

0, . . . , 0)}.
Fix r ∈ N. According to [38, Sections 3.8 and 3.9], there exist families of fa-
ther wavelets {ϕI}I∈D and mother wavelets {ψλI }I∈D, λ∈E having the following
properties:

(P1) for any j ∈ Z, the family {ϕI}|I|=2−jn forms an orthonormal basis of Vj
and the family {ψλI }|I|=2−jn,λ∈E an orthonormal basis of Wj. In partic-
ular, the family {ψλI }I∈D, λ∈E forms an orthonormal basis of L2(Rn);
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(P2) there exists a large positive constant m, independent of the main pa-
rameters included in the whole article, such that, for any I ∈ D and
λ ∈ E,

suppϕI ⊂ mI and suppψλI ⊂ mI,

where mI denotes the m dilation of I with the same center as I;

(P3) for any multi-index α of order |α| ≤ r, there exists a positive constant
C such that, for any I ∈ D, λ ∈ E and x ∈ Rn, it holds true that

|DαϕI(x)|+
∣∣DαψλI (x)

∣∣ ≤ Cℓ
−n/2−|α|
I ,

where ℓI denotes the side length of I;

(P4) for any I ∈ D, λ ∈ E and any multi-index ν of order |ν| ≤ r, it holds
true that ˆ

Rn

xνψλI (x) dx = 0

and, for any I ∈ D, ˆ
Rn

ϕI(x) dx ̸= 0;

(P5) For any I, I ′ ∈ D satisfying |I| ≤ |I ′| and λ ∈ E,ˆ
Rn

ψλI (x)ϕI′(x) dx = 0. (4.2)

Indeed, let Wj and Vj′ be the linear subspaces of L2(Rn) defined as
in (4.1) with |I| = 2−jn and |I ′| = 2−j

′n. Since |I| ≤ |I ′|, we deduce
j′ ≤ j, which, combined with (4.1), shows that Wj ⊥ Vj′ . By this and
the above property (P1), we conclude the validity of (4.2).

Let us point out that the constants m and C in the above properties (P2)
and (P3) depend on the regularity constant r (see [17] or [38, p.96]). Note
that, even in the one-dimensional case, there does not exist a wavelet basis
in L2(R) whose elements are both infinitely differentiable and have compact
supports (see, for instance, [29, Theorem 3.8]).

As the family {ψλI }I∈D, λ∈E forms an orthonormal basis of L2(Rn), we
know that any function f ∈ L2(Rn) has the following wavelet expansion

f =
∑
I∈D

∑
λ∈E

⟨f, ψλI ⟩ψλI , (4.3)
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where the equality holds true in L2(Rn) and ⟨·, ·⟩ denotes the inner product
in L2(Rn). A function f in L2(Rn) is said to have a finite wavelet expansion
if the coefficients {⟨f, ψλI ⟩}I∈D,λ∈E in (4.3) have only finite non-zero terms.

4.2. Renormalization of functions in the product L2(Rn)× L2(Rn)

Applying the wavelet theory, Coifman et al. [14] and Dobyinsky [18]
studied the renormalization of functions in the product L2(Rn) × L2(Rn).
Below we briefly recall the main results of Dobyinsky [18], which was also
nicely summarized in [6, Section 4].

For any j ∈ Z, let Pj and Qj be the orthogonal projectors of L
2(Rn) onto

Vj and Wj, respectively. In other words, for any j ∈ Z and f ∈ L2(Rn), we
have

Pjf =
∑
I∈D

|I|=2−jn

⟨f, ϕI⟩ϕI (4.4)

and

Qjf =
∑
I∈D

|I|=2−jn

∑
λ∈E

⟨f, ψλI ⟩ψλI . (4.5)

Assume that f , g ∈ L2(Rn) have finite wavelet expansions. Then Dobyin-
sky [18] proved that

fg =
∑
j∈Z

(Pjf)(Qjg) +
∑
j∈Z

(Qjf)(Pjg) +
∑
j∈Z

(Qjf)(Qjg) in L1(Rn).

Further, using the properties (P1) through (P5) of {ϕI}I∈D and {ψλI }I∈D, λ∈E
stated in the previous section, as well as (4.4) and (4.5), we write

fg =
4∑
i=1

Πi(f, g) in L1(Rn), (4.6)

where

Π1(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨f, ϕI⟩⟨g, ψλI′⟩ϕIψλI′ , (4.7)
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Π2(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨f, ψλI ⟩⟨g, ϕI′⟩ψλI ϕI′ , (4.8)

Π3(f, g) :=
∑

I, I′∈D
|I|=|I′|

∑
λ, λ′∈E

(I, λ) ̸=(I′, λ′)

⟨f, ψλI ⟩⟨g, ψλ
′

I′ ⟩ψλIψλ
′

I′ (4.9)

and

Π4(f, g) :=
∑
I∈D

∑
λ∈E

⟨f, ψλI ⟩⟨g, ψλI ⟩
(
ψλI
)2
. (4.10)

From their definitions in (4.7) through (4.10), it follows easily that the four
operators {Πi}4i=1 are bilinear operators for any f , g ∈ L2(Rn) having finite
wavelet expansions. Moreover, by [6, Lemmas 4.1 and 4.2] (see also [18,
Proposition 1.1]), we have the following lemma.

Lemma 4.2. Let {Πi}4i=1 be as in (4.7) through (4.10), which are well de-
fined whenever f and g have finite wavelet expansions. Then {Πi}3i=1 can be
extended to bounded bilinear operators from L2(Rn)×L2(Rn) to H1(Rn) and
Π4 to a bounded bilinear operator from L2(Rn)× L2(Rn) to L1(Rn).

Proof. It was proved in [6, Lemma 4.2] that Π1 and Π2 can both be extended
to bounded bilinear operators from L2(Rn)× L2(Rn) to H1(Rn). Moreover,
using [18, Proposition 1.1] and (4.6) through (4.10), we conclude that

∑3
i=1 Πi

can be extended to a bounded bilinear operator from L2(Rn) × L2(Rn) to
H1(Rn), which further implies that Π3 can also be extended to a bounded
bilinear operator from L2(Rn)× L2(Rn) to H1(Rn).

Similarly to the proof of [6, Lemma 4.1], by the Hölder inequality and
∥(ψλI )2∥L1(Rn) = 1, we know that

∥Π4(f, g)∥L1(Rn) ≤
∑
I∈D

∑
λ∈E

|⟨f, ψλI ⟩| |⟨g, ψλI ⟩|∥(ψλI )2∥L1(Rn)

≤

(∑
I∈D

∑
λ∈E

|⟨f, ψλI ⟩|2
)1/2(∑

I∈D

∑
λ∈E

|⟨g, ψλI ⟩|2
)1/2

. ∥f∥L2(Rn)∥g∥L2(Rn).

This implies that Π4 can be extended to a bounded bilinear operator from
L2(Rn)× L2(Rn) to L1(Rn), which completes the proof of Lemma 4.2.
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Remark 4.3. If we assume that only f has a finite wavelet expansion and g
is a general L2(Rn) function, then (4.6) remains true by passing to the limit
in its both sides. Consequently, the equations {Πi}4i=1 in (4.7) through (4.10)
are well defined whenever g ∈ L2(Rn) and f has a finite wavelet expansion.

In what follows, we use the symbol L2
loc (Rn) to denote the collection of

all measurable functions which are locally in L2(Rn).

Remark 4.4. Assume that f has a finite wavelet expansion as in (4.3) and
g ∈ L2

loc (Rn). Then we may as well assume that f is supported on a cube R
large enough such that, for any I as in (4.3), I ⊂ R. Take η to be a smooth
cut-off function such that supp η ⊂ 9mR and η ≡ 1 on 5mR, where m is
as in property (P2) in Section 4.1. Though g may not belong to L2(Rn), it
makes sense to understand the formal expression of each Πi(f, g) as

Πi(f, g) = Πi(f, ηg), i ∈ {1, 2, 3, 4}. (4.11)

Let us take i = 1 for example to illustrate (4.11). Since f has a finite
wavelet expansion and ηg ∈ L2(Rn), it follows from Remark 4.3 that

Π1(f, ηg) =
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨f, ϕI⟩⟨ηg, ψλI′⟩ϕIψλI′ in L1(Rn).

Based on the above properties (P2) and (P5) in Section 4.1, the factor
⟨f, ϕI⟩ϕIψλI′ in the above summation is non-zero only when (mI)∩(mI ′) ̸= ∅,
(mI) ∩ R ̸= ∅ and |I| ≤ |R|, which automatically gives that mI ′ ⊂ 5mR so
that η(x) ≡ 1 on suppψλI′ . Consequently, we can remove the function η in
the pairing ⟨ηg, ψλI′⟩ and hence obtain

Π1(f, ηg) =
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨f, ϕI⟩⟨g, ψλI′⟩ϕIψλI′ in L1(Rn),

while the right hand side of the above equality is just the formal expression
of Π1(f, g). Thus, (4.11) makes sense when i = 1.

Since f ∈ L2(Rn) has a finite wavelet expansion and ηg ∈ L2(Rn), it
follows from Lemma 4.2 and Remark 4.3 that every Πi(f, g) is well defined
in L1(Rn). In particular, (4.11) holds true in L1(Rn) and also in S ′(Rn).
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4.3. Three auxiliary lemmas

From now on, we assume that the regularity parameter r appearing in
(P3) and (P4) of Section 4.1 satisfies that

r > ⌊nα⌋ = ⌊n(1/p− 1)⌋, (4.12)

whenever the Hardy space Hp(Rn) or the Campanato space Cα(Rn) with
α = 1/p− 1 is involved.

The next first lemma gives a finite atomic decomposition of elements in
Hardy spaces that have finite wavelet expansions. Indeed, Lemma 4.5 below
for the case p = 1 = n was essentially proved in [29, Theorem 5.12 of
Section 6.5], while the case 0 < p < 1 = n was discussed in item 7 of [29,
Section 6.8]. For any p ∈ (0, 1] and general dimension n ∈ N, we easily derive
Lemma 4.5 by following the proof of Theorem 5.12 in [29, Section 6.5], with
the details being omitted here.

Lemma 4.5. Let p ∈ (0, 1] and s ∈ Z+ with s ≥ ⌊n(1/p− 1)⌋. Assume that
f ∈ Hp(Rn) has a finite wavelet expansion, namely,

f =
∑
I∈D

∑
λ∈E

⟨f, ψλI ⟩ψλI , (4.13)

where the coefficient ⟨f, ψλI ⟩ ̸= 0 only for a finite number of (I, λ) ∈ D ×E.
Then f has a finite atomic decomposition satisfying f =

∑L
l=1 µlal, where

L ∈ N and the following properties hold true:

(i) there exists a positive constant C, independent of {µl}Ll=1, {al}Ll=1 and
f , such that {

L∑
l=1

|µl|p
} 1

p

≤ C∥f∥Hp(Rn);

(ii) for any l ∈ {1, . . . , L}, al is a (p, s)-atom supported on some dyadic
cube Rl, which can be written into the following form:

al =
∑

I∈D, I⊂Rl

∑
λ∈E

c(I, λ, l)ψ
λ
I (4.14)

with {c(I, λ, l)}I⊂Rl, λ∈E, l∈{1, ..., L} being positive constants independent of
{al}Ll=1;
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(iii) for each l ∈ {1, . . . , L}, al in (4.14) has a finite wavelet expansion,
whose non-zero terms are extracted from the finite wavelet expansion
of f in (4.13).

The next lemma concerns the wavelet characterizations of Hardy spaces
on Rn. Its proof when n = 1 was given in [24, Theorem 4.2] and a similar
discussion also works for any n ∈ N. We omit the details here.

Lemma 4.6. Let p ∈ (0, 1]. Then f ∈ Hp(Rn) if and only if

∥Wψf∥Lp(Rn) :=

∥∥∥∥∥∥
{∑
I∈D

∑
λ∈E

∣∣⟨f, ψλI ⟩∣∣2 |I|−11I

} 1
2

∥∥∥∥∥∥
Lp(Rn)

<∞.

Moreover, it holds true that ∥f∥Hp(Rn) ∼ ∥Wψf∥Lp(Rn) with positive equiva-
lence constants independent of f .

The following lemma is on the wavelet characterization of Campanato
spaces on Rn. We refer the reader to [33, Corollary 2] for the case n = 1,
while the proof for any n ∈ N is similar and the details are omitted.

Lemma 4.7. Let α ∈ [0, ∞). Then g ∈ Cα(Rn) if and only if its wavelet
coefficients {sI, λ}I∈D, λ∈E := {⟨g, ψλI ⟩}I∈D, λ∈E satisfy that

∥{sI, λ}I∈D, λ∈E∥Cα(Rn) := sup
I∈D

 1

|I|2α+1

∑
J∈D
J⊂I

∑
λ∈E

|sJ, λ|2


1
2

<∞.

Moreover, ∥g∥Cα(Rn) ∼ ∥{sI, λ}I∈D, λ∈E∥Cα(Rn) with positive equivalence con-
stants independent of g.

4.4. Proof of Theorem 1.2

In this section, we still assume (4.12). Applying Lemmas 4.5, 4.6 and 4.7,
we now prove the following four propositions.

Proposition 4.8. Let p ∈ (0, 1) and α = 1/p−1. Then the bilinear operator
Π1, defined as in (4.7), can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to H1(Rn).
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Proof. Assume that f ∈ Hp(Rn) has a finite wavelet expansion and g ∈
Cα(Rn). Note that g ∈ L2

loc (Rn). Let s ∈ Z+ be such that s ≥ ⌊n(1/p− 1)⌋.
In this case, by Lemma 4.5, we know that f =

∑L
l=1 µlal has a finite atomic

decomposition with the same notation as therein. Assume that every (p, s)-
atom al is supported on a dyadic cube Rl. For each l ∈ {1, . . . , L}, define

bl :=
∑
I∈D

I⊂5mRl

∑
λ∈E

⟨g, ψλI ⟩ψλI .

Applying property (P1) in Section 4.1 and Lemma 4.7, one easily has

∥bl∥L2(Rn) .

 ∑
I∈D

I⊂5mRl

∑
λ∈E

∣∣⟨g, ψλI ⟩∣∣2


1
2

. |Rl|α+1/2∥g∥Cα(Rn).

Moreover, according to Lemma 4.5(iii), the wavelet expansion of al has only
finite terms. By this, bl ∈ L2(Rn), Lemma 4.2 and Remark 4.3, we know
that Π1(al, bl) is well defined and

∥Π1(al, bl)∥H1(Rn) . ∥al∥L2(Rn)∥bl∥L2(Rn) . ∥g∥Cα(Rn). (4.15)

Observe that

Π1(al, bl) =
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨al, ϕI⟩⟨bl, ψλI′⟩ϕIψλI′

=
∑

I, I′∈D
|I|=|I′|, I′⊂5mRl

∑
λ∈E

⟨al, ϕI⟩⟨g, ψλI′⟩ϕIψλI′ . (4.16)

By properties (P2) and (P5) in Section 4.1, together with the expression of
al in (4.14), we know that ⟨al, ϕI⟩ ≠ 0 only for these I satisfying |I| ≤ |Rl|
and Rl ∩ (mI) ̸= ∅. Again, property (P2) in Section 4.1 implies that ϕIψ

λ
I′ is

a non-zero function only if (mI) ∩ (mI ′) ̸= ∅. From this, one easily deduces
that I ′ ⊂ 5mRl. Therefore, the restriction in the last term of (4.16) can be
removed and hence we then have

Π1(al, bl) =
∑

I, I′∈D
|I|=|I′|

∑
λ∈E

⟨al, ϕI⟩⟨g, ψλI′⟩ϕIψλI′ = Π1(al, g)
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pointwisely. Consequently, by the fact that Π1 is bilinear, we obtain

Π1(f, g) =
L∑
l=1

µlΠ1(al, g) =
L∑
l=1

µlΠ1(al, bl),

where all the equalities hold true pointwisely. Moreover, by (4.15), we have
Π1(f, g) ∈ H1(Rn) and

∥Π1(f, g)∥H1(Rn) =

∥∥∥∥∥
L∑
l=1

µlΠ1(al, bl)

∥∥∥∥∥
H1(Rn)

≤
L∑
l=1

|µl|∥Π1(al, bl)∥H1(Rn) .
(

L∑
l=1

|µl|p
)1/p

∥g∥Cα(Rn)

. ∥f∥Hp(Rn)∥g∥Cα(Rn). (4.17)

For a general f ∈ Hp(Rn), under (4.12), since the family {ψλI }I∈D, λ∈E of
wavelets is an unconditional basis of Hp(Rn) (see, for instance, [9, Theorem
5.8]), it follows that there exists a sequence {fk}k∈N ⊂ Hp(Rn) having finite
wavelet expansions such that limk→∞ fk = f in Hp(Rn). Thus, we extend
the definition of Π1 by setting, for any f ∈ Hp(Rn) and g ∈ Cα(Rn),

Π1(f, g) := lim
k→∞

Π1(fk, g) in H1(Rn).

Estimate (4.17) ensures that the above definition is independent of the choice
of the sequence {fk}k∈N and hence is well defined. Based on this extension,
we derive from (4.17) that

∥Π1(f, g)∥H1(Rn) = lim
k→∞

∥Π1(fk, g)∥H1(Rn) . ∥f∥Hp(Rn)∥g∥Cα(Rn).

This implies that Π1 can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to H1(Rn). This finishes the proof of Proposition 4.8.

Proposition 4.9. Let p ∈ (0, 1) and α = 1/p−1. Then the bilinear operator
Π2, defined as in (4.8), can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to HΦp(Rn).

Proof. Let g ∈ Cα(Rn) and s = ⌊nα⌋. Assume that a is a (p, 2s)-atom
supported on a dyadic cubeR and a has a finite wavelet expansion. Denote by
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B the smallest ball in Rn containing R and PB,sg the minimizing polynomial
of g on B with degree ≤ s as in (2.2).

Let η be a smooth cut-off function such that supp η ⊂ 9mR and η ≡ 1 on
5mR, where m is as in property (P2) in Section 4.1. Applying Remark 4.4
and property (P4) in Section 4.1 with r therein satisfying (4.12), together
with the expressions (4.7) through (4.10), we know that

aPB,sg = a(ηPB,sg) =
4∑
i=1

Πi(a, ηPB,sg) = Π2(a, ηPB,sg) = Π2(a, PB,sg).

Again, by Remark 4.4, we write

Π2(a, g) = Π2(a, ηg) = Π2(a, η[g − PB,sg]) + Π2(a, ηPB,sg)

= Π2(a, η[g − PB,sg]) + aPB,sg.

Notice that the expression of the function Φp easily implies that H1(Rn) ⊂
HΦp(Rn). Moreover, by the fact that Π2 is bounded from L2(Rn)×L2(Rn) to
H1(Rn) (see Lemma 4.2), a is a (p, 2s)-atom, supp η ⊂ 9mR and Cα(Rn) =
Cα,2,s(Rn), we conclude that

∥Π2(a, η[g − PB,sg])∥HΦp (Rn) . ∥Π2(a, η[g − PB,sg])∥H1(Rn)

. ∥a∥L2(Rn)∥η(g − PB,sg)∥L2(Rn) . ∥g∥Cα(Rn).

From this and Proposition 2.24, we deduce that

∥Π2(a, g)∥HΦp (Rn) . ∥Π2(a, g − PB,sg)∥HΦp (Rn) + ∥aPB,sg∥HΦp (Rn)

. ∥g∥C+
α (Rn). (4.18)

We now extend the above boundedness from an atom a to a general
f ∈ Hp(Rn) with a finite wavelet expansion. Such f has a finite atomic
decomposition f =

∑L
l=1 µlal, with the same notation as in Lemma 4.5. By

the definition of ∥ · ∥HΦp (Rn), it suffices to show that there exists a positive
constant C such that

ˆ
Rn

Φp

(
x,

(Π2(f, g))
∗ (x)

C∥f∥Hp(Rn)∥g∥C+
α (Rn)

)
dx ≤ 1, (4.19)

where (Π2(f, g))
∗ denotes the non-tangential maximal function of Π2(f, g) as

in (2.1) with m = ⌊n(1/p− 1)⌋. Without loss of generality, we may assume
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that ∥f∥Hp(Rn) = 1 and ∥g∥C+
α (Rn) = 1. Otherwise, we use f̃ := f/∥f∥Hp(Rn)

and g̃ := g/∥g∥C+
α (Rn) in the argument below.

Now, we prove (4.19). Lemma 4.5 implies that(
L∑
l=1

|µl|p
)1/p

≤ C̃∥f∥Hp(Rn) = C̃

for some positive constant C̃. Without loss of generality, we may as well
assume that C̃ ≥ 1. By the expression of Φp in (1.6), it is easy to see that
Φp(·, t) is strictly increasing in t. Observe that

(Π2(f, g))
∗ ≤

L∑
l=1

|µl| (Π2(al, g))
∗ .

Notice that Lemma 4.5 implies that every al has a finite wavelet expansion,
so that (4.18) holds true with the atom a therein replaced by al. By this,
∥g∥C+

α (Rn) = 1 and the definition of ∥ · ∥HΦp (Rn), we conclude that there exists
a positive constant C1, independent of al and g, such thatˆ

Rn

Φp

(
x,

(Π2(al, g))
∗ (x)

C1

)
dx ≤ 1, (4.20)

where (Π2(al, g))
∗ denotes the non-tangential maximal function of Π2(al, g)

as in (2.1) with m = ⌊n(1/p−1)⌋. As was proved in Proposition 2.12(i) that
Φp is of uniformly upper type 1, we conclude that, for any x ∈ Rn and any
sequence {tj}j∈N ⊂ [0, ∞),

Φp

(
x,
∑
j∈N

tj

)
=
∑
i∈N

[
ti∑
j∈N tj

Φp

(
x,
∑
j∈N

tj

)]
≤
∑
i∈N

Φp(x, ti).

Let M := 21/pC̃. Then M ≥ 1 and
ˆ
Rn

Φp

(
x,

(Π2(f, g))
∗(x)

MC1

)
dx ≤

ˆ
Rn

Φp

(
x,

∑L
l=1 |µl| (Π2(al, g))

∗ (x)

MC1

)
dx

≤
L∑
l=1

ˆ
Rn

Φp

(
x,

|µl| (Π2(al, g))
∗ (x)

MC1

)
dx

=:
L∑
l=1

Dl.
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If |µl| ≤M , then (4.20) and the fact that Φp is of uniformly lower type p [see
Proposition 2.12(i)] imply that

Dl ≤
|µl|p

Mp

ˆ
Rn

Φp

(
x,

(Π2(al, g))
∗(x)

C1

)
dx ≤ |µl|p

Mp
.

If |µl| > M , then (4.20) and the fact that Φp is of uniformly upper type 1
[see Proposition 2.12(i) again] imply that

Dl ≤
|µl|
M

ˆ
Rn

Φp

(
x,

(Π2(al, g))
∗(x)

C1

)
dx ≤ |µl|

M
.

Combining the last three formulae, we obtain

ˆ
Rn

Φp

(
x,

(Π2(f, g))
∗(x)

MC1

)
dx

≤ 1

Mp

∑
{1≤l≤L: |µl|≤M}

|µl|p +
1

M

∑
{1≤l≤L: |µl|>M}

|µl|

≤ C̃p

Mp
+
C̃

M
< 1,

which implies that (4.19) holds true with the constant C therein taken as
MC1. Thus, we arrive at the conclusion that

∥Π2(f, g)∥HΦp (Rn) . ∥f∥Hp(Rn)∥g∥C+
α (Rn)

whenever f ∈ Hp(Rn) has a finite wavelet expansion.
As in Proposition 4.8, from the fact that {ψλI }I∈D, λ∈E is an unconditional

basis of Hp(Rn) and a standard argument, we can deduce that the definition
of Π2(f, g) can be extended to general f ∈ Hp(Rn) and g ∈ Cα(Rn) with the
desired boundedness estimate, the details being omitted. This finishes the
proof of Proposition 4.9.

Similarly to the proof of Proposition 4.8, we deduce the following results
on the boundedness of the bilinear operators Π3 and Π4.

Proposition 4.10. Let p ∈ (0, 1) and α = 1/p−1. Then the bilinear operator
Π3, defined as in (4.9), can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to H1(Rn).
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Proof. According to Lemma 4.2 and Remark 4.3, the operator Π3(f, g) is
well defined whenever g ∈ L2(Rn) and f has a finite wavelet expansion, and
can be extended to a bounded bilinear operator from L2(Rn) × L2(Rn) to
H1(Rn). With this, we follow the same lines as in the proof of Proposition
4.8 and can obtain the desired conclusion, the details being omitted.

Proposition 4.11. Let p ∈ (0, 1) and α = 1/p−1. Then the bilinear operator
Π4, defined as in (4.10), can be extended to a bilinear operator bounded from
Hp(Rn)× Cα(Rn) to L1(Rn).

Proof. The proof of this proposition is similar to that of Proposition 4.8, but
now we use the boundedness of Π4 from L2(Rn) × L2(Rn) to L1(Rn) (see
Lemma 4.2). The details are omitted.

Proof of Theorem 1.2. Let f ∈ Hp(Rn) and g ∈ Cα(Rn). By (4.12), we know
that the wavelet system {ψλI }I∈D, λ∈E is an unconditional basis ofHp(Rn) (see,
for instance, [9, Theorem 5.8]), so there exists a sequence {fk}k∈N ⊂ Hp(Rn),
with finite wavelet expansions, satisfying limk→∞ fk = f in Hp(Rn). By the
definition of f × g in (1.2) and Corollary 3.2, we conclude that

f × g = lim
k→∞

fk g in S ′(Rn),

where fk g denotes the usual pointwise product of fk and g. Since fk has
a finite wavelet expansion, it follows that fk ∈ L2(Rn) and fk is supported
on a ball B(⃗0n, Rk) for some Rk ∈ (0,∞). Let ηk be a cut-off function
satisfying supp ηk ⊂ B(⃗0n, 9mRk) and ηk ≡ 1 on B(⃗0n, 5mRk), where m is
as in property (P2) in Section 4.1. By Remark 4.4, we find that, for any
k ∈ N and i ∈ {1, 2, 3, 4},

Πi(fk, ηkg) = Πi(fk, g) in S ′(Rn),

so that

fkg = fk(ηkg) =
4∑
i=1

Πi(fk, ηkg) =
4∑
i=1

Πi(fk, g) in S ′(Rn).

Notice that the convergence of a sequence in Hp(Rn) or HΦp(Rn) implies its
convergence in S ′(Rn); see [26, Proposition 6.4.10] and [32, Proposition 5.1].
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By this, limk→∞ fk = f in Hp(Rn) and Propositions 4.8 through 4.11, we
know that, for any i ∈ {1, 2, 3, 4},

lim
k→∞

Πi(fk, g) = Πi(f, g) in S ′(Rn).

Therefore, we have

f × g = lim
k→∞

fk g =
4∑
i=1

lim
k→∞

Πi(fk, g) =
4∑
i=1

Πi(f, g) in S ′(Rn).

Thus, if we define

S(f, g) := Π4(f, g) ∈ L1(Rn) (4.21)

and

T (f, g) :=
3∑
i=1

Πi(f, g) ∈ H1(Rn) +HΦp(Rn) ⊂ HΦp(Rn), (4.22)

then, applying Propositions 4.8 through 4.11, we obtain the desired conclu-
sion of Theorem 1.2.

Remark 4.12. Let p ∈ (0, 1), α = 1/p − 1 and nα /∈ N. Assume that
(f, g) ∈ Hp(Rn) × Cα(Rn). Since L∞(Rn) ∩ CΦp(Rn) characterizes the class
of pointwise multipliers of Cα(Rn), it follows that the largest range of φ that
makes

⟨f × g, φ⟩ = ⟨gφ, f⟩
meaningful is φ ∈ L∞(Rn)∩CΦp(Rn). For any i ∈ {1, 2, 3, 4}, by Propositions
4.8 through 4.11 and (HΦp(Rn))∗ = CΦp(Rn), we know that ⟨Πi(f, g), φ⟩
makes sense whenever φ ∈ L∞(Rn) ∩ CΦp(Rn). Then the proof of Theorem
1.2 implies that the bilinear decomposition holds true in the following sense:

⟨f × g, φ⟩ = ⟨S(f, g) + T (f, g), φ⟩, ∀φ ∈ L∞(Rn) ∩ CΦp(Rn).

Now we consider the sharpness of Theorem 1.2 when nα /∈ N. Suppose
that Theorem 1.2 holds true with HΦp(Rn) therein replaced by a smaller
vector space Y . Then, for any φ ∈ (L1(Rn) + Y)∗, the pairing ⟨f × g, φ⟩
is meaningful whenever (f, g) ∈ Hp(Rn) × Cα(Rn), so that φ is a pointwise
multiplier of Cα(Rn) and hence φ ∈ L∞(Rn)∩ CΦp(Rn). We therefore obtain
(L1(Rn)+Y)∗ ⊂ L∞(Rn)∩CΦp(Rn). From this and Y ⊂ HΦp(Rn), we deduce
that

(L1(Rn) + Y)∗ = L∞(Rn) ∩ CΦp(Rn) = (L1(Rn) +HΦp(Rn))∗.

In this sense, Theorem 1.2 when nα /∈ N is sharp.
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5. The div-curl estimate

In this section, we utilize Theorem 1.2 to prove Theorem 1.5. We first
recall the following Helmholtz decomposition for vector fields in L2(Rn; Rn)
(see, for instance, [8, p. 1421]).

Lemma 5.1. Let F := (F1, . . . , Fn) ∈ L2(Rn; Rn). Then there exists a
unique decomposition

F = H+K

in L2(Rn; Rn) with H := (H1, . . . , Hn) ∈ L2(Rn; Rn), K := (K1, . . . , Kn) ∈
L2(Rn; Rn), curl H ≡ 0 and div K ≡ 0. Moreover, for any j ∈ {1, . . . , n},

Hj = −
n∑
i=1

RjRi(Fi) and Kj = Fj +
n∑
i=1

RjRi(Fi),

where Rj := ∂xj(−∆)−1/2, with ∆ := −
∑n

j=1 ∂
2
xj
, denotes the j-th Riesz

transform.

Let p ∈ (0, 1] and α ∈ [0,∞). For any sequence {aI}I∈D of complex
numbers that is indexed by the set D of dyadic cubes, we define

∥{aI}I∈D∥Cα(Rn) := sup
I∈D

{
1

|I|2α+1

∑
J∈D, J⊂I

|aJ |2
} 1

2

and

∥{aI}I∈D∥ḟ0p, 2(Rn) :=

∥∥∥∥∥∥
[∑
I∈D

(
|aI | |I|−

1
21I

)2] 1
2

∥∥∥∥∥∥
Lp(Rn)

,

which induce suitable norms for the Carleson sequence space Cα(Rn) and
the homogeneous Triebel-Lizorkin sequence space ḟ 0

p, 2(Rn) (see [23]), respec-
tively. We also need the following duality conclusion for sequence spaces,
whose proof is similar to that of [12, (2.32)] and hence the details are omit-
ted.

Lemma 5.2. Let p ∈ (0, 1]. Then there exists a positive constant C such
that, for any sequences of complex numbers {aI}I∈D and {bI}I∈D,∣∣∣∣∣∑

I∈D

aIbI

∣∣∣∣∣ ≤ C ∥{aI}I∈D∥ḟ0p, 2(Rn) ∥{bI}I∈D∥C1/p−1(Rn)

whenever the right hand side of the above inequality is finite.
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Using Theorem 1.2 and Lemmas 5.1 and 5.2, we now turn to the proof of
Theorem 1.5.

Proof of Theorem 1.5. Let F ∈ Hp(Rn; Rn) ∩ L2(Rn; Rn) with curlF ≡ 0
and G ∈ Cα(Rn; Rn) with divG ≡ 0. With bilinear operators S and T
defined as in (4.21) and (4.22), we write

F ·G =
n∑
i=1

Fi ×Gi =
n∑
i=1

S(Fi, Gi) +
n∑
i=1

T (Fi, Gi)

=: A(F, G) + B(F, G).

By Theorem 1.2, we know that B(F, G) ∈ HΦp(Rn) and

∥B(F, G)∥HΦp (Rn) . ∥F∥Hp(Rn;Rn)∥G∥C+
α (Rn;Rn).

To estimate A(F, G), by the assumption F ∈ Hp(Rn; Rn) ∩ L2(Rn; Rn)
and Lemma 5.1, we find that there exists

f := −
n∑
i=1

Ri(Fi) ∈ Hp(Rn) ∩ L2(Rn)

such that F = ∇(−∆)−1/2f , where Ri, for any i ∈ {1, . . . , n}, denotes the i-
th Riesz transform. Since divG ≡ 0, it follows that

∑n
i=1Ri(Gi) ≡ 0. Thus,

we can write

A(F, G) =
n∑
i=1

S(Fi, Gi) =
n∑
i=1

[S(Ri(f), Gi) + S(f, Ri(Gi))] .

Using (4.10) and the fact that Ri is a Calderón-Zygmund operator with odd
kernel, we further find that, for each i ∈ {1, . . . , n},

S(Ri(f), Gi) + S(f, Ri(Gi))

=
∑
I, I′∈D

∑
λ, λ′∈E

⟨f, ψλI ⟩⟨Gi, ψ
λ′

I′ ⟩⟨Riψ
λ
I , ψ

λ′

I′ ⟩
[(
ψλ

′

I′

)2
−
(
ψλI
)2]

.

By a similar calculation to that used in the proof of [6, Lemma 6.1], we obtain

∥S(Ri(f), Gi) + S(f, Ri(Gi))∥H1(Rn)

.
∑
I, I′∈D

∑
λ, λ′∈E

∣∣⟨f, ψλI ⟩∣∣ ∣∣∣⟨Gi, ψ
λ′

I′ ⟩
∣∣∣ pδ(I, I ′),

54



where, for any δ ∈ (0, 1
2
], |I| = 2−jn with center at xI , and |I ′| = 2−j

′n with
center xI′ ,

pδ(I, I
′) := 2−|j−j′|(δ+n/2)

(
2−j + 2−j

′

2−j + 2−j′ + |xI − xI′|

)n+δ
.

This shows that the coefficient matrix {pδ(I, I ′)}I,I′∈D is almost diagonal (see
[23, p. 53] for the precise definition). Furthermore, from Lemma 5.2 and [23,
Theorem 3.3], together with Lemmas 4.6 and 4.7, we deduce that

∥S(Ri(f), Gi) + S(f, Ri(Gi))∥H1(Rn)

.
∑
I′∈D

∑
λ′∈E

[∑
I∈D

∑
λ∈E

∣∣⟨f, ψλI ⟩∣∣ pδ(I, I ′)
] ∣∣∣⟨Gi, ψ

λ′

I′ ⟩
∣∣∣

.

∥∥∥∥∥∥
{∑
I∈D

∑
λ∈E

∣∣⟨f, ψλI ⟩∣∣ pδ(I, I ′)
}
I′∈D, λ′∈E

∥∥∥∥∥∥
ḟ0p, 2(Rn)

×
∥∥∥∥{⟨Gi, ψ

λ′

I′ ⟩
}
I′∈D, λ′∈E

∥∥∥∥
C1/p−1(Rn)

.
∥∥∥{⟨f, ψλI ⟩}I∈D, λ∈E∥∥∥ḟ0p, 2(Rn)

∥∥∥∥{⟨Gi, ψ
λ′

I′ ⟩
}
I′∈D, λ′∈E

∥∥∥∥
C1/p−1(Rn)

. ∥F∥Hp(Rn;Rn)∥G∥C1/p−1(Rn;Rn),

which implies A(F, G) ∈ H1(Rn) and

∥A(F, G)∥H1(Rn) . ∥F∥Hp(Rn;Rn)∥G∥C1/p−1(Rn;Rn).

This, combined with the fact H1(Rn) ⊂ HΦp(Rn), shows that A(F, G) ∈
HΦp(Rn) and hence finishes the proof of Theorem 1.5.
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malisation, in: Essays on Fourier Analysis in Honor of Elias M. Stein
(Princeton, NJ, 1991) 146–161, Princeton Math. Ser. 42, Princeton Univ.
Press, Princeton, NJ, 1995.

[15] G. Dafni, Nonhomogeneous div-curl lemmas and local Hardy spaces,
Adv. Differential Equations 10 (2005) 505–526.

[16] R. R. Coifman, P.-L. Lions, Y. Meyer, S. Semmes, Compensated com-
pactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993) 247–286.

[17] I. Daubechies, Orthonormal bases of compactly supported wavelets,
Comm. Pure Appl. Math. 41 (1988) 909–996.

[18] S. Dobyinsky, La “version ondelettes” du théoréme du Jacobien, Rev.
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Birkhäuser Verlag, Basel, 1983.

[46] S. Wu, D. Yang, W. Yuan, Equivalent quasi-norms of Besov–Triebel–
Lizorkin-type spaces via derivatives, Results Math. 72 (2017) 813–841.

[47] D. Yang, Y. Liang, L. D. Ky, Real-Variable Theory of Musielak–Orlicz
Hardy Spaces, Lecture Notes in Mathematics 2182, Springer-Verlag,
Cham, 2017.

[48] D. Yang, W. Yuan, New Besov-type spaces and Triebel–Lizorkin-type
spaces including Q spaces, Math. Z. 265 (2010) 451–480.

59




