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Abstract

For any p € (0,1) and o = 1/p — 1, let H?(R") and €,(R™) be the
Hardy and the Campanato spaces on the m-dimensional Euclidean space
R", respectively. In this article, the authors find suitable Musielak—Orlicz
functions ®,,, defined by setting, for any x € R™ and ¢ € [0, 00),

t

TR+ T when n1/p =1 £

O, (z, t) =
when n(1/p —1) € N,

L4 [t(1 + [a])m]t=Pllog(e + |=[)]P

and then establish a bilinear decomposition theorem for multiplications of
functions in H?(R") and its dual space €,(R"™). To be precise, for any f €
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HP(R™) and g € €,(R"), the authors prove that the product of f and g,
viewed as a distribution, can be decomposed into S(f,g) + T'(f,g), where
S is a bilinear operator bounded from HP(R") x €,(R") to L'(R") and T
a bilinear operator bounded from H?(R"™) x €,(R") to the Musielak—Orlicz
Hardy space H®»(R™) associated with the above Musielak—Orlicz function
®,. Such a bilinear decomposition is sharp when na ¢ N, in the sense
that any other vector space Y C H® (R") adapted to the above bilinear
decomposition should satisfy (L'(R™) + V)* = (LY(R") + H®**(R™))*. To
obtain the sharpness, the authors establish a characterization of the class
of pointwise multipliers of €,(R") by means of the dual space of H®»(R"),
which is of independent interest. As an application, an estimate of the div-
curl product involving the space H® (R") is discussed. This article naturally
extends the known sharp bilinear decomposition of H'(R") x BMO (R").

Résumé

Etant donnés p € (0,1) et & = 1/p — 1, nous désignons par HP(R") et
¢ (R™) respectivement les espaces de Hardy et de Campanato sur R™. Nous
définissons dans cet article une famille de fonctions de type Musielak-Orlicz
appelées ®, en posant, pour tout z € R" et t € [0, 00),

t
14 [t(1+ |x|)"];—1)

when n(1/p—1) ¢ N,
Q,(z, t) =
when n(1/p—1) € N.

L4 [t(1 + [a])»]' =P llog(e + |=[)]P

Nous établissons un théoreme de décomposition bilinéaire pour les multipli-
cations de fonctions qui sont respectivement dans HP(R") et dans son dual
Co(R™). Plus précisément, quelles que soient les fonctions f € HP(R™) et
g € €,(R™), le produit de f et g au sens des distributions se décompose en
S(f,9)+T(f,g),ou S est un opérateur bilinéaire continu de H?(R") x &, (R")
dans L'(R™) and T un opérateur bilinéaire continu de H?(R") x €,(R") dans
I'espace de Hardy de type Musielak—Orlicz H*»(R") associé a la fonction
®,. Une telle decomposition bilinéaire est critique lorsque no ¢ N, en ce
sens que tout autre espace Y C H® (R") pour lequel une telle décomposition
serait possible serait tel que (L'(R™) + Y)* = (LY(R") + H**(R"))*. Pour
conclure cet argument, nous montrons que l'espace des multiplicateurs de
€, (R") s’identifie & l'intersection de L>°(R") avec le dual de H*»(R"), ce
qui peut présenter un intérét séparé. Comme application nous donnons un
lemme div-curl généralisé dans lequel I'estimation est en termes de 1’espace
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space H®?(R™). Cet article est une extension naturelle des décompositions
des produits H*(R™) x BMO (R").

Keywords: bilinear decomposition, div-curl product, Hardy space,
Campanato space, Musielak-Orlicz Hardy space, pointwise multiplier,
wavelet

2000 MSC: primary 42B30, secondary 42B35, 42B15, 46E35, 42C40

1. Introduction and main results

Let p € (0,1] and aw = 1/p — 1. Denote by HP(R") the Hardy space on
the n-dimensional Euclidean space R". Denote by €,(R™) the Campanato
space on R™, which is just the dual space of H?(R™). Certainly, when o = 0,
the space €y(R"™) turns out to be the space BMO(R") of bounded mean
oscillations. The main purpose of this article is to study the following problem
on the multiplication between H?(R") and its dual space €, (R"):

For any p € (0,1] and o« = 1/p — 1, find the ‘smallest’ linear
vector space ) so that HP(R"™) x €,(R™) has the following bilinear
decomposition of the form:

HP(R™) x €,(R™) € L (R") + V. (1.1)

The precise interpretation of (1.1) is as follows: the product of f € HP(R")
and g € €,(R") can be written as S(f,g) + T'(f, g), where

S HP(R™) x €o(R™) — L'(R™)

and
T: HP(R") x €,(R") = Y

are bounded bilinear mappings.

In (1.1), elements in the product space H?(R™) x €, (R") are understood
as Schwartz distributions (see [8, 6]). Let us be more precise. Denote by
S(R™) the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R", equipped with the well-known topology de-
termined by a countable family of seminorms. Denote by S'(R") the dual
space of S(R™), equipped with the weak-* topology. For any f € HP(R")
with p € (0, 1) and g € €,(R") with o = 1/p—1, the product f x g is defined
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to be a Schwartz distribution in §’'(R™), whose action on a Schwartz function
¢ € S(R™) is as follows:

(f xg,9) =09, f), (1.2)

where the last bracket denotes the dual pair between €,(R"™) and HP(R™).
Equality (1.2) is well defined because every ¢ € S(R") is a pointwise multi-
plier on €,(R") (see [3, p.59] or Corollary 3.2 below), that is, ¢pg € €,(R")
for any g € €,(R"). This fact also implies the product f x g in (1.2) can be
viewed as a distribution on the class of pointwise multipliers of &, (R").

It should be emphasized that, while for duality the spaces €,(R") have
to be interpreted as quotient spaces modulo polynomials of degree |na] (ba-
sically H? distributions may be thought as orthogonal to such polynomials),
we speak here of functions in the Campanato space €,(R"). Here and here-
after, the symbol |s| for any s € R denotes the largest integer not greater
than s.

In this sense, if the distribution f in HP(R™) belongs to the Schwartz
class S(R"), then the product (1.2) coincides with the pointwise product of
f and the Campanato function g, as the dual pair in (1.2) equals to

(69, f) = / (60)() ) .

The study of the decomposition problems like (1.1) was initiated by
Bonami et al. [8] (in the case p = 1), motivated by developments in the
geometric function theory and nonlinear elasticity [1, 2, 39, 40]. A good
understanding of the structure of this product can help us to improve the
boundedness of many nonlinear qualities such as div-curl products and weak
Jacobians (see [16, 6, 4]) as well as the endpoint boundedness of commutators
(see [31, 36]), which are fundamental in various research areas of mathematics
such as the compensated compactness theory in nonlinear partial differential
equations and the study of the existence and regularity for solutions to par-
tial differential equations where the uniform ellipticity condition is lost (see
[41, 44, 34, 8, 28, 30] and their references).

Let us give a brief review of the progress on the study of the decomposition
problem (1.1). The following

H'(R™) x BMO(R") C L*(R™) + H2(R") (1.3)



linear decomposition was proved in [8, Theorem 1.6], where H®(R") denotes
the weighted Orlicz—Hardy space associated to the weight function w(x) :=
1/log(e + |z|) for any = € R™ and to the Orlicz function ®(t) := t/log(e + t)
for any ¢ € [0, 00). Being more precise, for any given f € H'(R"), there exist
two bounded linear operators

Sy BMO(R") — L'(R")
and

Ty : BMO(R") — H2(R™)
such that, for any g € BMO(R"),

[ xg=>Srg+Tsg.

Moreover, it was conjectured in [8] that one can find two bounded bilinear
operators S and T such that the aforementioned decomposition is also linear
in f.

Via wavelet multiresolution analysis, the above conjecture of [8] was
solved by Bonami et al. [6] who proved the following bilinear decomposi-
tion

H'(R") x BMO(R") C L'(R") + H"*#(R"),

where the space H'°8(R") (see also [32]) denotes the Hardy space of Musielak—
Orlicz type associated to the Musielak—Orlicz function

t
~ log(e +t) +log(e + |z|)’

0(x,t) - Ve eR" Vtel0,00). (1.4)

Such a Musielak-Orlicz Hardy space H'°8(R") is smaller than HZ(R") in
(1.3). By proving that the dual space of H'°5(R") is the generalized BMO
space that had been introduced by Nakai and Yabuta [42] to characterize
multipliers of BMO(R"), Bonami et al. in [6] deduced that H'“&(R") is in
some sense sharp. They came back to this sharpness in further work to
prove that this is indeed the smallest space in dimension one [7, 5] and gave
a partial result in higher dimension by proving that every atom of H28(R")
can be written as a finite combination of products, with the required norm

estimates. In this way, problem (1.1) for the case p = 1 may be considered
as solved in [6] with Y = H'"%(R").



The two articles [6, 8] were a source of inspiration for succeeding work on
the (bi)linear decomposition of the product functions in Hardy spaces and
their dual spaces. Partial results for H?(R™) were obtained in [3, 21]. Cao et
al. [12] obtained the bilinear decomposition of product functions in the local
Hardy space hP(R") and its dual space for p close to 1.

Motivated by the aforementioned articles, it is a very natural question to
seek suitable Hardy-type spaces ) that can give a linear or bilinear decom-
position of (1.1) when p € (0,1). This is the aim of this article. Our first
result concerns linear decompositions. It involves the weighted Hardy space
HY, (R™), which consists of all f € S'(R") satisfying

1/p
1l ey o= 1 g ey = { [ @ dx} < o,
Here f* denotes the grand maximal function defined in Definition 2.1 below
and w, is an A;(R™)-weight (see Lemma 2.13) defined by setting, for any
r € R",

n

1

W when TL(]_/p—]_> ¢N,
1

(1.5)

wy(z) =

(1+ |z[)"0-P)[log(e + |z[)]7 when n(1/p—1) € N.

We have the following results.

Theorem 1.1. Let p € (0,1) and a« = 1/p — 1. Then, for any given f €
HP(R™), one can find two bounded linear operators

Sp: €u(R") — LY(R™)

and
Ty : Co(R") — ng(R")

such that, for any g € €,(R"),
fxg=25¢9)+T(9)

Moreover, there exists a positive constant C, independent of f, such that both
operators have norms bounded by C/|| 1| gro@n)-



We have already mentioned that what is involved here in the product
is a function of the Campanato space and not its equivalence class modulo
polynomials. So, for any a € (0, 00), we need to equip €,(R") with a norm
and, for any g € €,(R"™), we choose here to define

1
L /  lg@)) de.
|B(0p, 1) JB(@G.,1)

Here and hereafter, we use 0,, to denote the origin of R™ and

||9||¢;(1Rn) = [|g]len®n) +

—

B(0,,1) :=={z e R": |z| < 1}.

Theorem 1.1 can be interpreted as the fact that the product f x g can be
written as the sum of an integrable part and a part that keeps some of the
oscillation properties of H?(R™). When considering the duality (g, f), only
the first part gives a non zero quantity. When considering other operators,
it is the second part that plays the main role. This is why it is natural to
ask whether or not it is possible to cut bilinearly the product into two parts.

This is the aim of our main result, but the decomposition that we prove is
a little different. Instead of the weighted Hardy space Hf, (R"), we consider
the Musielak—Orlicz Hardy space H®»(R™) associated with the Musielak—
Orlicz function

( t
L e+ )

P TR T ol + e P T ER

when n(1/p—1) ¢ N,

when p = 1,
( log(e + t) + log(e + |x|) p

(1.6)

where z € R" and ¢ € [0,00); see Section 2.3 below. We mention that the
case p = 1, which can be treated in a unified way in some of our results,
is a source of inspiration for this article. But we concentrate on the cases
p € (0,1), which correspond to the new results obtained here. We show in
Section 2.2 below that ®, in (1.6) are Musielak-Orlicz functions satisfying
the growth conditions used in Ky [32], so that the corresponding Musielak—
Orlicz Hardy spaces H®(R™) fall into the scope of Musielak—Orlicz Hardy
spaces studied in [32, 35, 47].



When studying these particular Musielak—Orlicz Hardy spaces, simplifi-
cations are due to the fact that the growth function ®, is equivalent to the
minimum of two growth functions. Namely, for any z € R™ and ¢ € [0, o0),

1P

min< t, —————— when n(1/p—1) ¢ N
(14 n(lp)} ’

Dy(x, t) ~ ( =1 tP

(1 + |z)"=P)[log(e + |=[)]?

min 1 ¢,

} when n(1/p—1) € N,
(1.7)

with positive equivalence constants independent of x and ¢. The Musielak—

Orlicz Hardy spaces that correspond to these two functions are respectively

H'(R"™) and the weighted Orlicz-Hardy spaces H% (R") that we have al-

ready encountered. Moreover, it was proved in the recent work [13] that

H®(R") coincides with the sum of quasi-Banach spaces H'(R") + HE (R").

So, obviously, we could as well replace Hf, (R") by H ®»(R"™) in Theorem 1.1.
The main result of this article is as follows.

Theorem 1.2. Letp € (0,1), a =1/p—1 and ®, be as in (1.6). Then there
exist two bounded bilinear operators

S HP(R") x €,(R") — L}(R")

and
T : HP(R") x €,(R") — H*(R")

such that, for any (f,g) € HP(R™) x €,(R"),

fxg=5(f9)+T(f g9) inSR").

Moreover, there exists a positive constant C' such that, for any (f,g) €
HP(R™) x €,(R"™),

ISCs 9 @y < ClF @) ll gl ny

and
IT(f ) gon @ny < Cllf e @) 9]l et @n)-

Again, we mention here that the corresponding conclusion of Theorem
1.2 for the case p = 1 was proved in [6]. Theorem 1.2 is proved in Section
4. As in [6], the main strategy we used to prove Theorem 1.2 is based on a
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technique of renormalization of products of functions (or distributions) via
wavelets introduced by Coifman et al. [14, 18], which enables us to write

4
fxg=> T(f.9);
i=1

see (4.7) through (4.10) below for the precise definitions of bilinear operators
{II;}i_,. Then the problem can be reduced to the study of each IL(f,g),
with f being an atom a which has a finite wavelet expansion. The main
obstacle is the treatment of II,. Recall that the study of Il in [6] utilized the
following fact: if a is an H'(R™)-atom supported on some dyadic cube I and
a has a finite wavelet expansion, then a¢; satisfies only a zero order moment
condition by the orthogonality of wavelet basis. This is enough to make a¢; a
harmlessly constant multiple of an H?(R")-atom when p € (n/(n+1), 1], but
insufficient when p € (0, n/(n + 1)]. To overcome this obstacle, we borrow
some ideas from [22]. We reduce the estimation of the bilinear operator
II5(a, g) to that of aPp g, where Pp g denotes the minimizing polynomial
of g on the ball B with degree < [n(1/p—1)]|. As Pp g is a polynomial, the
term aPp sg can still enjoy the higher order moment condition by requiring
the wavelets 17 to have the sufficiently higher order moment conditions.
Proving that aPp g € H**(R") is done in Proposition 2.24, by using some
growth estimates of Pp g established in Proposition 2.22. Let us mention
that all these estimates involving Pp ;g are delicate.

Another contribution of this article is the following characterization of
the pointwise multipliers on €, (R™) for a general a € (0, co) satisfying na ¢
N, by means of the dual space of H® (R") (see Section 2.3 below), where
a = 1/p — 1. Recall that, for any quasi-Banach space X equipped with a
quasi-norm || - || x, a function g defined on R™ is called a pointwise multiplier
on X if there exists a positive constant C' such that ||gf||x < C| f||x for any
feX.

Theorem 1.3. Let p € (0, 1), a = 1/p — 1 satisfy na ¢ N and @, be as in
(1.6). Denote by € (R™) the dual space of H*»(R™). For any function g on
R™, the following assertions are equivalent:

(i) g € L®(R") N &, (R™);
(i) g is a pointwise multiplier of €,(R™) and, for any f € €,(R"),
19 lew@ny < Cllfleg @ llgll oo @) + llglles, @],
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where C' 1s a positive constant independent of f and g.

When p = 1, the corresponding conclusion of Theorem 1.3 was already
known in [42, 32, 6]. We mention here that the class of pointwise multiplies
of €,(R™) for any na € (0,1) was characterized by [42]. However, the results
of [42] were not connected with the dual of H®»(R™).

The proof of Theorem 1.3 needs some intrinsic properties of Campanato
spaces. Proposition 2.22 proves that a function g € €,(R"™) (so does Pg |na|9)
on the ball B has a polynomial growth of order naw when na ¢ N, but can
have an extra logarithm growth factor when na € N. In contrast to the
¢, (R™)-functions constructed in Propositions 3.3 and 3.7, we know that the
estimates in Proposition 2.22 are best possible. By Proposition 2.22, the
proof that (ii) implies (i) of Theorem 1.3 is given in Theorem 3.1 below, and
the proof that (i) implies (ii) of Theorem 1.3 is given in Theorem 3.6 below.

Theorem 1.3 for the case na € N is still unsolved. Indeed, when na € N,
the proof of the non-integer case shows that (i) of Theorem 1.3 implies (ii)
of Theorem 1.3 and that a pointwise multiplier on €,(R") is also bounded;
the difficulty lies in proving that a pointwise multiplier on €, (R"™) belongs
to the space g, (R"). See Section 3.3 for more on this problem.

Remark 1.4. Theorem 1.3 implies that the bilinear decomposition in Theo-
rem 1.2 is in some sense sharp when na ¢ N. Being more precise, if Theorem
1.2 holds true with H®»(R™) therein replaced by any other linear vector space
Y C H%(R"), then (L*(R™) + Y)* = (LY(R") + H® (R"))*; see Remark 4.12
below. In analogy, the sharpness of Theorem 1.2 for the case na € N follows
directly if one could show Theorem 1.3 for the case na € N.

Notice that there exists no contradiction between Theorems 1.1 and 1.2:
it is known that H®(R") and H% (R") have the same dual (see, for instance,
[13, Remark 3.1]). Contrarily to what happens in Orlicz—Hardy spaces,
Musielak—Orlicz Hardy spaces may have the same dual, but they may actu-
ally differ. However, inspired by the fact that H*»(R") = H'(R") + HE, (R")
in [13], one may ask whether or not the Musielak-Orlicz Hardy space in
Theorem 1.2 can be replaced by HY (R"), which is still unknown.

Theorem 1.2 can be applied to study the div-curl product. Denote by
C2°(R™) the set of all infinitely differentiable functions on R™ with compact
supports. For a vector field F := ([, ..., F},) of locally integrable functions
on R”, we define its divergence divF as a distribution, whose action on

10



p € CP(R") is defined by setting

(divE, ) = — / F(z) - V() da,

and define its curl curl F as a matrix {(curl F); ;}; jeq1,..,ny of distributions,
with the action of each entry (curlF); ; on ¢ € C®(R") being defined by
setting

(cutP 0= [ [F@5E @ - R 5 @) s

see, for instance, [15, p. 507]. Notice that div-curl estimates have been inves-
tigated in [4, 6, 16].
For any p € (0, 1), let

HP(R™ R") :={F := (Fy, ..., F,): foranyie{l,...,n}, F; € H'(R")}
(1.8)

equipped with the quasi-norm

2

1Bl 210 s meny =

znﬂ-uzm]
=1

In a similar way, we define L*(R™; R™) and the vector-valued Campanato
space € (R"; R™) as well as the norms || - [|L2®n;rny, || - [Jea@n:re) and || -
¢t Rn, gy, Where a € (0,00).

Applying Theorem 1.2, we are able to prove the following a priori estimate
of the div-curl product involving the space H®»(R").

Theorem 1.5. Let p € (0,1), a = 1/p—1, ®, be as in (1.6) and F €
L*(R™; R"). Assume further that F € HP(R™; R") with curlF = 0 and
G € €, (R™; R™) with div G = 0 (both of the equalities hold true in the sense
of distributions). Then the inner product F - G € H®»(R") and

||F ’ G”H%(Rn) < CHF”HP(R";R")||G||¢a+(Rn;Rn)v

where C' is a positive constant independent of F and G.

11



Theorem 1.5 extends the result of [6, Theorem 1.2], while the latter proved
that F - G € H"“8(R") whenever F € H!(R"; R") satisfies curl F = 0 and
G € BMO(R"; R") satisfies div G = 0.

This article is organized as follows.

Section 2 concerns some basic properties of the function spaces involved
in this article. In Section 2.1, we recall the definitions of the Hardy space
HP(R") and the Campanato space €,(R"). Section 2.2 shows that ®, defined
in (1.6) is a Musielak—Orlicz function satisfying some growth conditions as
in [32], so that it makes sense for us to introduce the Musielak—Orlicz Hardy
space H®7(R™) and its dual space €p,(R") as in [32, 35, 47] (see Section
2.3). Moreover, an equivalent characterization of Cg,(R") is given in Section
2.3 (see Proposition 2.18 below). In Section 2.4, we establish the pointwise
growth estimates for functions in the Campanato space €,(R") (see Propo-
sition 2.22 below), which ensures that aPp g, with a being an H?(R")-atom
and Pp ;¢ the minimizing polynomial of g on B with degree < s = |na], is
an element of H®»(R™) (see Proposition 2.24 below).

It should be mentioned that estimates in Section 2.4 play an important
role in the proofs of Theorems 1.1, 1.2 and 1.3.

Section 3 is devoted to the proof of Theorem 1.3. We prove the necessary
part (including also the case na € N) in Section 3.1, and the sufficient part
in Section 3.2, with also a comment on the sufficient part when na € N given
in Section 3.3. As a consequence of Theorem 1.3, we show that functions in
S(R™) belong to the class of pointwise multipliers of €,(R"™). Applying this
and Proposition 2.24, we give the proof of Theorem 1.1 in Section 3.4.

The aim of Section 4 is to establish Theorem 1.2. We begin with some
basic definitions of the multiresolution analysis (for short, MRA) in Section
4.1. In Section 4.2, we then recall the renormalization of the products in
L*(R™) x L*(R™) from [14, 18]. Later, in Section 4.3, we give three auxiliary
lemmas on the atomic decomposition of the Hardy space HP(R") and the
wavelet characterization of H?(R") and its dual €,(R™). In Section 4.4, we
prove Theorem 1.2 based on the boundedness results of the four bilinear
operators introduced in Section 4.2.

Theorem 1.5 is proved in Section 5 as an application of Theorem 1.2.

Finally, we make some conventions on notation. Let N := {1,2,...},
Z, :=NU{0} and Z := {0,+1,42,...}. For any z € R" and r € (0, 00),
denote by B(z,r) the ball with center z and radius r, that is,

B(z,r)={yeR": |z —y| <r}.

12



For any ball B C R", we always denote by cp its center and rp its radius.
We use 0, to denote the origin of R”. For any A € (0,00) and any ball B,
denote by AB the ball with center cg and radius Arg. For any set £ C R",
15 denotes its characteristic function and

feml

We use C' to denote a positive constant that is independent of the main
parameters involved, whose value may differ from line to line. Constants with
subscripts, such as €', do not change in different occurrences. If f < Cg, we
also write f < g and, if f < g < f, we then write f ~ g. We also use the
following convention: If f < C'g and g = h or g < h, we then write f < g~ h
or f < g < h, rather than f < g=hor f < g < h. For any s € R, let
|s| (resp., [s]) be the largest integer not greater than s (resp., the smallest
integer not smaller than s). For any multi-index a = (a1,...,0,) € Z7,
define D := g1 - -- 09 with 0, := % for any j € {1,...,n}.

2. Hardy-type spaces and their dual spaces

This section concerns some basic properties of the Hardy space HP(R"),
the Campanato space €,(R"), the Musielak-Orlicz Hardy space H®»(R")
and its dual space €4 (R™). The main results of this section are Propositions
2.22 and 2.24, which play key roles in the proofs of Theorems 1.1 and 1.2.

2.1. Hardy and Campanato spaces
In this section, we recall the notions of Hardy and Campanato spaces.

Definition 2.1. Let p € (0,00) and m € Z, satisty m > [n(1/p —1)].

(i) For any f € S'(R"™), its non-tangential grand mazimal function f is
defined by setting, for any z € R”

fom(z) == sup sup |f*w:(y)] (2.1)

PESmM (R™) |y—z|<t, t€(0,00)

where ¢;(2) := t "p(t"12) for any ¢ € (0,00) and z € R", and

S (R™) = {g& e SR™): sup sup (1+ |z ™20 | Doy(z) < 1} :

|| <m+1 z€eR™

13



(ii) If m = |n(1/p —1)], then we write f simply as f*. The Hardy space
HP(R") is defined to be the collection of all Schwartz distributions
f € 8’'(R") such that

I fll e @ny = [|f* ]| zr@ny < 00

Note that, if p € (0,00) and m > |[n(1/p — 1)], then HP(R™) can be
equivalently defined by using the (quasi-)norm || f;; || »@n) (see, for instance,
[37, Chapter 1] or [47, Chapter 1]). Moreover, when p € (1,00), the Hardy
space HP(R™) coincides to the Lebesgue space LP(R™) with equivalent norms.
We refer the reader to [20, 25, 43, 37] for more properties on HP(R™).

The dual of the Hardy space turns out to be the Campanato space, which
was first introduced by Campanato in [10, 11]. For any s € Z,, denote by
Ps(R™) the space of all polynomials on R" with degree < s.

Definition 2.2. Let a € [0, 00), ¢ € [1, 00| and s € Z, be such that
s > |na|. The Campanato space €, 4 5(R") is defined to be the collection of
all locally integrable functions g such that

1 1/q
sup e { f o)~ Pasgtolr e}
52218 Ly

when ¢ € [1, 00),

19/leaqorny = l9(z) — Ppsg(2)|
Sup esssup
BCR™ z€B |B|a

(

\ when ¢ = co and o # 0

is finite, where the suprema are taken over all balls B of R". Here and
hereafter, Pp,g denotes the minimizing polynomial of g on B with degree
< s, that is, Pp g is the unique polynomial with degree < s such that, for
any polynomial @ € Ps(R"),

/B (9(z) — Pp1g(2)] Q(x) dix = 0, (2.2)

In particular, when s = |na| and ¢ = 1, we simply write €, ,(R") as
o (R™).

With all the notation as in Definition 2.2, then a function g satisfies
l9]l¢a ..y = 0 if and only if g coincides almost everywhere with a polyno-
mial in Ps(R™). Moreover, for any function g € €, ,(R"), we introduce the

14



following inhomogeneous norm

90ty 1= sl + f ool da (2.3)
B(0n,1)

Also, when ¢ € [1,00), an equivalent definition of the Campanato norm is as
follows (see, for instance, [25, p.292]):

1 1/q
ny ~ Su inf —— x)— P(z)|?dx , 2.4
oles ey~ sp it A o) - Py L 2a)

where the supremum is taken over all balls B of R™ and the positive equiva-
lence constants are independent of g.

We give several remarks on the relations between Campanato spaces and
some other related function spaces.

Remark 2.3. Let a, ¢ and s be as in Definition 2.2.

(i) When p € (0, 1] is such that a = 1/p — 1, we deduce from [25, Theo-
rem 5.30] or [37, p. 55, Theorem 4.1] that

(HP(R"))" = €a,q,s(R")/Ps(R").
This implies that the quotient spaces
Cogs(R")/Ps(R") and  €o(R™)/Plpaj(R")

are consistent, and

H ' ||€a,q,s(Rn) ~ H ' ‘|¢a,1,5(Rn)'

(ii) f a =s=0and g € [1, 00), then €(R"™) = &, 0(R") is just the space
BMO(R™) (see [25, p.292]), where BMO(R") denotes the space of all
locally integrable functions g on R™ such that

MMwm:ﬂmfw@—mM<w7
BCR™ JB

where the supremum is taken over all balls B in R™ and

9B = ]ig(y) dy.
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The additional term JCB(Gn 0 |g(x)| dz in the expression of the norm || -
||¢§7q,s (Rn I (2.3) has certain degree of freedom and can be replaced by many

quantities adapted to the ball B(0,,1). The following lemma expresses this
possibility.

Lemma 2.4. Let a € (0, ), q € [1, o0] and s € Zy be such that s > |na].
Then, for any g € €1, (R™),

«,q,S
||9||¢;q,5(Rn) ~ [1gllen,qs @) +/ . ‘PB(ﬁn,l),sg(x>‘ dx
B(0n,1)

~ llenyy + 3 / () de
B(0n,1)

Iv|<s

~ lgllen, . @y + sup |g(x)],
x€B(0n,1)

where the positive equivalence constants are independent of g.

Proof. The first estimate of this lemma follows immediately from the fact
that the integral average of g — PB(Gn,1),sg over the ball B(0,, 1) is bounded
by [|9le, ..y But all norms are equivalent on the finite dimensional vector
space Ps(R™), so that we can as well replace fB(ﬁn N |Pp,.1),s9(%)| dz in the
first estimate by sup,cp @, 1) | Pp(@,,1),:9(%)| or by

/ﬂ "LNPB(Gn,l),sg(m)dx
B(0n,1)

[v1<s

From this and (2.2), the second estimate follows. Noticing that

s [g(2) = Pag, 1),9()| S 19w @) ~ N9 lewen)

z€B(0,1)

we obtain the equivalence of the third estimate, which concludes the proof.
]

Finally it is classical that, when a € (0, c0), the space €,(R") reduces
to the homogeneous Lipschitz space A, (R™) with equivalent norms (see [25,
26, 27]). Let us recall its definition.
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Definition 2.5. (i) Let o € (0,1). The homogeneous Lipschitz space

Ay (R™) is defined to be the collection of (equivalent classes of) con-
tinuous functions g such that

l9(x) — g(y)|
lglli @ny = sup —————""2 < 00.
Wi =, P o=yl

(ii)) Let 0 = 1. The homogeneous Lipschitz space AU(R"), which is also
called the homogeneous Zygmund space, is defined to be the collection
of (equivalent classes of) continuous functions g such that

lg(z +1) +g(x —t) — 2g9(2)|
9]l 4, gny = zt:ﬂgﬂp#o i < 00.

(iii) Let 0 € (1,00). The homogeneous Lipschitz space A, (R™) is defined
to be the collection of C°(R™) such that all its derivatives of order oy
belong to Ag_oo (R™), where oy denotes the largest integer strictly less
than o (hence oy < ). Moreover, let

lolls,@n == D D%y, (B
|Bl=00

Observe that the semi-norm |- ||;_gny vanishes precisely over the space

Notice that, when o € N, a function in A,(R"™) may not be in C?(R").
We will see an example later on.

We state the identification of Campanato and Lipschitz spaces in the next
lemma; see [25, pp. 301-302].

Lemma 2.6. Let o € (0,00) and q € [1,00]. Then any function g € Ao (R™)
if and only if g € € gna)(R™) after modifying g, if necessary, on a set of
measure 0. Moreover,

1914y ~ N9l g, ey @)

with positive equivalence constants independent of g.
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2.2. The Musielak—Orlicz growth function ®,

In this section, we show that the function ®, as in (1.6) is a Musielak—
Orlicz function as in [32]. To this end, we first recall some notions from Ky

[32] (see also [47]).

Definition 2.7. A nondecreasing function ¢ : [0,00) — [0,00) is called an
Orlicz function if $(0) = 0, ¢(t) > 0 for any t € (0, 00) and lim;_, ¢(t) = 0.
For any given p € (0,00), an Orlicz function ¢ is said to be of positive lower
(resp., upper) type p if there exists a positive constant C' such that, for any
t €10,00) and s € (0,1] (resp., s € [1,00)), ¢(st) < CsPp(t).

Definition 2.8. Let ¢ : R"x[0,00) — [0, 00) be such that ¢(z,-) : [0,00) —

[0,00) is an Orlicz function for any x € R™. For any given p € (0,00), the

function ¢ is said to be of positive uniformly lower (resp., upper) type p if

there exists a positive constant C' such that, for any z € R™, ¢t € [0, 00) and
€ (0,1] (resp., s € [1,00)),

o(x, st) < CsPo(x,t).
Let
i(¢) :=sup{p € (0,00) : ¢is of positive uniformly lower type p}
and
I(¢) :=inf{p € (0,00) : ¢is of positive uniformly upper typep}.
Definition 2.9. Let ¢ : R" x [0,00) — [0, 00) satisfy that ¢(-,¢) : R* —
[0, 00) is a measurable function for any ¢ € [0, co). For any given ¢ € [1, 00),

the function ¢ is said to satisfy the uniformly Muckenhoupt A,(R™) condition,
denoted by ¢ € A, (R™), if

s s (g [ o]
q—1
o= x| [(o0rTas] when g € (1, 0),

sup sup sup [|;| / o(z,1) dz} [¢(z,1)] " when ¢ =1

| t€(0,00) BCR™ z€B
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is finite, where the second suprema are taken over all balls B of R”. Let
A(R™) = ] A R).
q€[1,00)
Equivalently, ¢ € A (R") if and only if there exist 0 < d,v < 1 such that
|E| = ~|B| implies ¢(E,t) = dp(B,1),

for any ¢ € (0,00), ball B C R* and E C B, where ¢(F,t) := [, ¢(z, t)dx
for any measurable set F' C R". Define the critical weight index q(¢) of
¢ € A (R™) by setting

q(¢) = nf{g € [1,00) : ¢ € Ay(R")}.

Definition 2.10. A function ¢ : R™ x [0,00) — [0, 00) is called a Musielak—
Orlicz function if the function ¢(z,-) : [0,00) — [0,00) is an Orlicz function
for any x € R", and the function ¢(-,t) is a measurable function for any
t €10, 00).

Definition 2.11. A Musielak—Orlicz function ¢ : R™ x [0,00) — [0, 00) is
called a growth function if ¢ € A (R"), ¢ is of uniformly lower type p for
some p € (0, 1] and of uniformly upper type 1.

The following proposition shows that the function @, in (1.6) is a growth
function.

Proposition 2.12. Let p € (0,1]. Then ®, in (1.6) is a Musielak-Orlicz
function satisfying that

(i) ®, is of uniformly lower type p and uniformly upper type 1;
(ii) @, € Ai(R™).
In particular, ®, is a growth function as in Definition 2.11.

The main argument for the proof of Proposition 2.12 is contained in the
following lemma which will also be useful in the remainder of this article; see
also [19, Lemma 2.3(iv)] for another proof of (2.5).
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Lemma 2.13. Let v € [0,1) and § € [0,00). Then, for any R € (0, 00),
][ (1+ |2]) " [log(e + [z)] # dz ~ (1+ R) ™ [log(e + R)] .  (2.5)
B(0,R)

Moreover, the function (1 + |z|)~™[log(e + |x|)]=" is in the classical Muck-
enhoupt class A;(R™), that is, for any ball B C R™,

][(1 + |l) 7" flog(e + )] da S inf [(1+]2])" [log(e + [2)] "] (2.6)
B z
In particular, for any ball B C R",

]iu ) [log(e + |2)] 7 dx ~ (1 + |en] + r5) "™ [log(e + |es| +r5)] .
2.7)

Here, in (2.5) through (2.7), the positive equivalence constants are indepen-

dent of R and B.

Proof. Let us first show (2.5). For any R € (0,00), the bound below comes
directly from the integral in {x € R": R/2 < |z| < R}. So let us concentrate
on the bound above. Taking radial coordinates and making a change of
variables, to show (2.5), we only need to prove that

boopl=n gt
—— — <l R)] ",
/0 Tog(e + ROP ¢ ~ Logle T 1)
This inequality is straightforward for R < 4. So let us assume that R > 4.
When we integrate on the interval 0 < Rt < 4, the integral is bounded by a

power of R~!, which is smaller than the right hand side. Finally, we observe
that, for Rt > 4, we have the inequality

log R
< 1+log(t™?
log(Rt) — +log(t™),

which, together with the assumptions R > 4 and v € [0, 1), implies that

/1 =7 gt /1 =7 gt
- @ < -
a/r [log(e + RU)JP t = Jy g [log(Rt))7 t

-8 ' n(1—7) B dt
< (log R) " (1 — log't) n

~ [log(e + R)] .
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This allows us to conclude the proof of (2.5).

In order to show (1 + |z]|)™™[log(e + |z])]™* € A;(R"), let us come to the
proof of (2.6). To this end, we fix a ball B with center ¢z € R" and radius
rg € (0,00). If |eg| > 2rp, then the distance from any point in B to the
origin is at least 7, which implies that |x| ~ |z| for any z, z € B, and hence
(2.6) holds true. If |cp| < 2rp, we directly obtain (2.6) by using (2.5) for
the ball centered at 6n with radius 3rg, which contains B. This finishes the
proof of (2.6).

Observe that the fact (1 + |z|)~™[log(e + |z|)]™? for any x € R"™ is in
A;(R™) implies directly (2.7). We have completed the proof of this lemma.

O]

Proof of Proposition 2.12. Notice that this proposition was known when p =
1 (see [32]). It remains to consider the case p € (0,1). By (1.6) and Definition
2.10, it is easy to see that @, is a Musielak—Orlicz function. Next, we observe
that the function @, is, for any given p € (0,1), equivalent to the minimum
of two functions that are Orlicz functions with weights. Indeed, as we said
in the introduction, for any x € R™ and ¢ € [0, 00),

W} when n(1/p— 1) ¢ N,
(. 1) ~ min § ¢ tp } (2.8)
" (14 [a])*0=P)log(e + |z|)J?

when n(1/p — 1) € NU{0}.

min < ¢,

It is easy to see that all Orlicz functions involved in these expressions are
of lower type p and upper type 1. From this, we directly deduce that
the minimum is also of uniformly lower type p and uniformly upper type
1. Also, it is easily seen that the minimum of two growth functions in
A;(R™) is still a growth function in A;(R") (see, for instance, [19, Lemma
2.3 (i)]). So, it suffices to prove that the functions (1 + |z|)™"0~?) and
(14 |z|)™=P)log(e + |=|)] P are in A;(R™). But these are already proved
in Lemma 2.13. Altogether, we have completed the proof of Proposition
2.12. O

2.8. Musielak—Orlicz Hardy spaces H®*(R™) and their dual spaces

Given any Musielak-Orlicz function ¢ that satisfies the growth condition
in Definition 2.11, it was built in [32, 35] a real-variable theory of Musielak—
Orlicz Hardy and Musielak—Orlicz Campanato spaces associated with ¢.
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Definition 2.14. Let ¢ be a growth function and m(¢) := [n[q¢(¢)/i(¢)—1]].
The Musielak—Orlicz—Lebesgque space L?(R™) is defined to be the collection
of all measurable functions f on R” such that

[ £l o (gny = inf {)\ € (0,00) : . o(z, | f(z)] /M) dx < 1} <oo. (2.9

The Musielak—Orlicz Hardy space H?(R™) is defined to be the collection of
all f € S'(R") such that f, ) belongs to L?(R™), where Son(g) 18 as in (2.1)
with m replaced by m(¢). For any f € H*(R"), its quasi-norm || f|| gogny is
defined by setting

£l o eny = Hf;1(¢>)||L¢(Rn)'

Definition 2.15. Let ¢ be a growth function and s € Z,. The Musielak—
Orlicz Campanato space €41 s(R™) is defined to be the collection of all locally
integrable functions g on R” such that

1
[9les . = sup i [ lgle) = Pa.gla)] do < .
Bern |18l Ls@n) Ji

where the supremum is taken over all balls B in R". The semi-norm || -
lle, . .(rny vanishes precisely over the space Py(R™).

The following duality result was established by Liang and Yang [35, The-
orem 3.5 (see also [47, Theorem 5.2.1]), whose special case when ng(¢) <
(n + 1)i(¢), that is, [n[q(¢)/i(¢)—])] = 0, was obtained by Ky [32, Theo-
rem 3.2].

Lemma 2.16. Let ¢ be a growth function and s € Z, such that s >
[nla(¢)/i(¢) — 1]). Then (H?(R"))* = €41 5(R")/Ps(R").

Remark 2.17. Let p € (0,1] and s € Z, be such that s > [n(1/p—1)].

(i) According to Proposition 2.12, every @, in (1.6) is a growth function
with indices ¢(®,) = 1 and i(®,) = p (both are not attainable), and
hence the index m(®,) is equal to [n(1/p — 1)|. This indicates that
the Musielak-Orlicz Hardy space H®»(R") and the Musielak—Orlicz
Campanato space €, 1,s(R") with s > [n(1/p — 1)] are well defined,
with the function ¢ in Definitions 2.14 and 2.15 therein replaced by ®,,.
Further, we deduce from Lemma 2.16 that the dual space of H®»(R")
is Q:@wl,s(Rn)//Ps(Rn).
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(i) When s = [n(1/p—1)], we simply write €g,1(R") as Cg,(R™). More-
over,

ny = sup inf dz < 0o.
I9lle, @) = sup  inf \|1B||L¢p R") /’g g

(iii) Based on the equivalent expression of ®, in (1.7), we easily observe
that H'(R") C H**(R") and Hf, (R") C H*»(R"). Moreover,

I Narooany S min - ey, 1 gy} - (2:10)
Next, we give an equivalent characterization of the Musielak—Orlicz Cam-
panato space €, (R"), where p € (0,1).

Proposition 2.18. Letp € (0, 1), a = 1/p— 1 and ¥, be as in (1.6). For
any ball B C R™, let

|BJ*

11 Jen] - rp)™
W (B) = { (LTIl TB)|B|“

(14 |cg| +rp)"log(e + |cp| +7B)

when na ¢ N,

when na € N.

(2.11)
Then
sl e @ny ~ [18]lL7, @n) ~ Val(B)[ Bl (2.12)
Consequently, for any locally z'ntegmble function g on R™,
I9llea, e ~ sip G-z o lofa) = Posuwsg(@lde (213)

whenever either side of (2.13) 18 ﬁm'te. Here, the positive equivalence con-
stants in (2.12) and (2.13) are independent of g and B.

The proof of Proposition 2.18 is a consequence of the following proposi-
tion, which is of independent interest.

Proposition 2.19. Assume that the growth function ¢ may be written as
min{ ¢y, @2}, where ¢y and ¢y are two growth functions. Then

1151 oy ~ min {15 po1 @n): 115 oz n | (2.14)

where the positive equivalence constants are independent of B C R™.
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Proof. The fact that

||1B||L¢(Rn) < min {||1B||L¢1 (R7)> ||1B||L¢2(R”)}

comes from the definition of the norm. Let us prove the converse inequality,
that is,
min {¢1(B7 Ail)? ¢2<B, Ail)} <C

for some uniform constant C' that is dependent of B. Here A\ = || 1| s(rn)
and, for any i € {1, 2},

¢i(B, A7) ::/qui(x,)\_l)dx.

Without loss of generality, we may assume that the set £ := {z € B :
é1(x, A7) < oz, A71)} has Lebesgue measure larger than | B|/2 (otherwise,
we may consider instead the set F' := {x € B : ¢1(x, \7!) > ¢o(x, A\71)}).
By assumption, we have

pr(E N = /Eqbl(x, 1p(x)/A) de < 1.

Because of the facts that ¢; is in A, (R") and |B| < 2|E|, we conclude from
the definition of A, (R") that ¢(B,A\™') < C, which proves Proposition
2.19. O]

Proof of Proposition 2.18. Notice that (2.13) follows from (2.12) and the def-
inition of || - [[eg, (rn). Thus, to finish the proof of Proposition 2.18, it suffices
to prove (2.12).

Apply Proposition 2.19 with ¢y (x,t) :=t and ¢o(x,t) := tPw,(z) for any
z € R"and t € [0, 00), where w), is as in (1.5). Notice that [|15]| 161 &n) = | B|.
Also, the estimate (2.7) implies that

115l o2 @ny = 1Bz, @y ~ |B[¥a(B),

where U, (B) is as in (2.11). Then, invoking the fact that min{l, ¥, (B)} ~
U, (B) and Proposition 2.19, we obtain (2.12). This concludes the proof of
Proposition 2.18. O
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Remark 2.20. Let all the notation be as in Proposition 2.18. Notice that

min {1, < ' ) } when na ¢ N,
Vo (B) ~ L+ lesl/ '
min {1, < "5 ) } when na € N,
1+ |eB| log(e + |cg| + 7B)

with the positive equivalence constants independent of B, where ¥, (B) is as
n (2.11). As a consequence of the fact that ¥, is given by the minimum of
two quantities, it follows that €g,(R") is the intersection of two spaces. For
instance, when an ¢ N, it is the intersection of the space BMO(R") with the
space of all functions g such that

1+ |CB|

sup — PB |na dx < o0.
w2 f lo(o) = Poasgle)

In particular, g belongs to €,(R"). So g is in particular of class C"*1=1(R")
in view of Definition 2.5. The same inclusion is valid for na € N.

A first example of functions in €4, (R™) is given by the Schwartz functions.
We state it as a lemma.

Lemma 2.21. If p € (0, 1), then S(R™) embeds continuously into €5, (R™).

Proof. Let p € (0, 1), « =1/p—1 and g € S(R™). We need to prove that,
for any ball B = B(cp, rg) C R™ with cg € R" and rg € (0, 00), there exists
a polynomial P € P,(R") with s = |n«] such that

x)| dx <1,

where U, (B) is as in (2.11). As before, we can reduce to two cases: either
rg < |cg|/2 or rg > |cp|/2. In the first case, we take P to be the Taylor
polynomial of g at the point cg with degree s. Then, for any integer N larger
than s + 1, we have

7’?_1
_Pp <_B
ilelglg(fc) ()] S 0 o™

which is uniformly bounded when divided by ¥, (B).
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Let us consider the case rg > |cg|/2. When rg < 1, again we take P to
be the Taylor polynomial of g at the point cg with degree s, so that

l9(2) = P(2)| S |z —cal™ Srg™ St ~ Wa(B)

inside the ball B and we conclude again directly. When r5 > 1, by taking
P = 0 and using the fact that g € L'(R"), we find that

]fg 9(x) — P(x)| dz < |B|™ < U (B).

When tracking constants it is easy to see that the embedding is continu-
ous, which completes the proof of Lemma 2.21. n

2.4. The growth of Campanato functions

The first result of this section is the following pointwise estimate, which
indicates that a function g € €,(R") has polynomial growth of order na
when na ¢ N, but can have an extra logarithm growth factor when na € N.

Proposition 2.22. Let a € (0, 00) and s = |na]. Then there exists a
positive constant C' such that, for any g € €,(R™) and any ball B C R,

C(1+ el +78)"gllet ®n) when na ¢ N,
sup [g(x)| < { C(1 + |ea| + )" log(e + [cg| +18) glles @ (2.15)

eB
’ when no € N.

Moreover, the same estimates hold true for sup,cp |Ppsg(z)]|.

Proof. Recall that €,(R") = €, s(R™) with s = [na|. Once we have proved
(2.15), then the projection Pp g satisfies the same estimates as those of g,
because Lemma 2.6 implies that

sup l9(7) — Ppsg(7)] < [|9lleq @) ~ I9lleq . @n-

So we only need to prove (2.15). To this end, it suffices to prove that, for
any x € R",

o)) < {0 ol o whenna ¢ N, o
~ @+ el log(e + o) glles gy When na € N
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uniformly in g and z. The proof of this inequality is standard even if one
has to be careful with the norm || - Hcg(Rn). One can restrict to the case when
na < 1 by using an induction argument. Under this restriction, the proof is
classical.

To be precise, we first prove that it suffices to show this inequality for
na < 1. Indeed, assume that na > 1. By Definition 2.5(iii) and Lemma
2.6, we know that g is in &€,(R") if and only if 0,,9 € €,_1(R") for any j €
{1,...,n}, after modifying ¢ on a set of measure zero if nec%ssary. Moreover,
we have

||axj9||¢a7%(n§n) ~ ||g]leqmny-

Let us show that we have as well
||ax]-9||¢;1/n(n§n) S |’9|’¢§(Rn)-

We use Lemma 2.4 for this. It follows from integration by parts that

Z / 270, 9(v)dr| Z / 2V g(x)dx
B(0n,1) 2€B(0n,1)

[v]<s—1 lv|<s—1
S ||9||¢§(Rn)>

+ sup  [g(z)]
x€B(0n,1)

where we have used Lemma 2.4 to prove the last inequality.

So, assuming that (2.16) holds true for an < k and wanting to prove it
for £ < na < k + 1, we have the required inequality with a — % in place of
« and J,,¢g in place of g. The inequality for g is obtained by integration.

It remains to prove (2.16) for na < 1. This is straightforward for na < 1.
Indeed, we deduce from Lemma 2.6 that, for any x, y € R”,

19(z) = 9| S 9lleaiemlz —yl™,

and integrate in y inside the ball B(@n, 1) to obtain the required estimate.
Assume now that an = 1. It suffices to prove that, for any x € R,

lg(@)| S | sup |g()] + llglle.@n | (1+ |2])log(e + |2]). (2.17)
2€B(0r,1)

Indeed, if |z| < 1, then (2.17) follows directly from

lg(z)] < sup  |g(z)].
2€B(0n,1)
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If || > 1, then Definition 2.5(ii) implies that

l9(2)] < lg(w) = 29(27"2) + 9(0,)] + 2|92~ "2)| + |9(0,)]
< 27 lgll, gy + 21927 2)] + 19(0,)]

and an inductive argument further gives that

l9(@)] < k27 2llgl4, @y + 2"19(27")] + 19(0, 22‘7 '

whenever k£ € N. In particular, choose k = ng satisfying 2"~ < |z| < 270,
Then, using 2"z € B(0,,1) and ng ~ log(e + |z|), we conclude that |g(z)|
has the desired estimate as in the right hand side of (2.17). This finishes the
proof of Proposition 2.22. O

2.5. A first decomposition

We apply these bounds above to find a first decomposition of products,
which is an analog for any given p € (0, 1) of the one obtained in [8]. Let
us first recall the definition of atoms (see, for instance, [20, 25, 37] for more
details).

Definition 2.23. Let p € (0, 1) and [ € Z,. A function a € L*(R") is called
a (p, l)-atom if

(i) there exists a ball B such that suppa C B;
(ii) [lallz2@ny < B[V,
(iil) [gn 2%a(z) dz = 0 for any multi-index o :== (ay, ..., o,) € Z satisfying
ol =300 o <

Observe that, if the ball B in Definition 2.23 is replaced by a cube ) C R",
we obtain an alternative equivalent definition of (p,[)-atoms supported on
cubes. By an abuse of terminology, we still call the latter case a (p,[)-atom
(see Sections 4.3 and 4.4 below).

We recall that, as soon as p € (0,1) and [ > s with s = [n(1/p—1)], these
(p, 1)-atoms have uniformly bounded H?(R"™)-norms. Moreover, one has an
atomic decomposition, that is, distributions in H?(R") may be obtained as
limits of finite linear combinations of atoms. We will go back to this later on
but at this point we want to have a first estimate on the product ag, where
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a is an atom related to a ball B and g is in €,(R") with a = 1/p — 1. If we
write

ag = a(g - PB,sg) + aPB,Sga

we know at once that the first term is in L'(R"). The next proposition states
that the product aPp g lies in the Musielak—Orlicz Hardy space H® (R")
under the condition that the order [ is large enough. This result plays a
crucial role in the proof of Theorems 1.1 and 1.2.

Proposition 2.24. Let p € (0,1), a = 1/p—1, s = |[n(1/p — 1)] and
l € Zy N [2s, ). Assume that g € €,(R™) and a is a (p, l)-atom supported
in a ball B C R". Then

laPBsgllzor @y < Cllglles @n);
where C' 1s a positive constant independent of a and g.
Proof. Without loss of generality, we may assume that [|g[lo+g.y = 1. Let

h := aPg g and h* be the non-tangential maximal function of h as in (2.1).
Using (2.10), we only need to show that

||h||Hp ) = /Rn[h*(g;)]ljwp(x) dr <1, (2.18)

where the weight w, is given in (1.5). Since the weight w, is radial, we let
W, be the function on (0, co) such that w,(|z|) = w,(z) for any z € R".

Because a has vanishing moments up to order [ > 2s and Pp,g is a
polynomial of order s, we have fR” 2’h(r)dz = 0 for any multi-index 3
satisfying |3| < s. Moreover, from Proposition 2.22; we deduce the estimate
that, for any x € B = B(cp,rg) with ¢g € R" and rp € (0, 00),

(@, (|cs| +75)]"" [P ag()] S 1.
Thus, in particular, @ := [w,(|cp| + 75)]/Ph is, up to a uniform constant, a

(p, s)-atom. Now, the proof of (2.18) falls into the following estimate:

J = Rn[(fi)*(x)]pwp(x) dz S wy(|ep| + 7).

Applying first the Holder inequality and then (2.7) to the function

(1 + [y 0=/ 0=/ when n(1/p— 1) ¢ N,
1
) 95 = & (1 ) 0P/ + o] 7/ 0912
when n(1/p—1) € N,
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we obtain

L 1-p/2
/4 (@) @) up(a) do < (@) e [ / ()] 7 dx}
S llallz. 1er)|B|1 Pwy(|es| + r8) SWy(|cs| + 7).

According to [43, p. 106], we have

B 1 g n+s+1
* < 4 R"\ 4B
OO () e

and hence, by (2.7) and the fact s+1 > n(1/p—1), we further conclude that

a)*(x)]Pwy(x) de = SV ()P () doe
[ @@= [ @yl

o0

Z 9—il(n+s+1)p—n ][ wy(z) da
= 4+
S Wy(les| + 7).
Thus, we obtain the desired estimate for 7.
This finishes the proof of Proposition 2.24. ]

3. Pointwise multipliers of Campanato spaces

The main aim of this section is to prove Theorems 1.1 and 1.3. We begin
with the proof of Theorem 1.3 by dividing it into two steps: the necessary
part and the sufficient part.

3.1. Necessary part of Theorem 1.3

Theorem 3.1. Let p € (0,1), a« = 1/p—1 and ¥, be as in (1.6). Then
there exists a positive constant C' such that, for any g € L>*(R™) N Cq,(R™)
and f € €,(R™),

9/ et @ny < Cll et @em llgll oo @y + 19 llea, @]
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Proof. Let g € L™®(R") N €, (R™). Recall that €,(R") = €41 (R") with
s = |na]. Then, for any f € €,(R"), we have

][ - g(@)f(@)|de < HQHLOO(R”)][ @ de < gl @l fll et mny-
B(0n,1) B

On,1

For any ball B C R" and = € B, we write

9(2) f(z) = Ppsf(2)Ppsg(x)] < [f(z) = Ppsf(2)] [9(z)|
+ [Ppsf(2)]|g(x) — Ppsg(x)].

From Proposition 2.22 and (2.11), it follows that

| B|*

P s < S nY)y

here and hereafter, W, (B) is as in (2.11). By this and (2.13), we conclude
that

]é 19(2)f(2) — Pp.of(2)Ppag(a)| da
< ][ £(@) = Paof(@)] de |gllsegn

BJ°
1y, g 1, 1960) = Prag(@)] de

S IBI [ llewn 9]z + 11 lles , o9l o]
< 1B et g 19l ey + lglles, )

As Ppf Pgsg € Pas(R"), then we utilize (2.4) to obtain gf € €,12:,(R")
with
19 lean2a@n) S 1 leg @ lgllzoe @) + llglles, @m]-

Further, by the equivalence €, 1 95(R")/Pas(R") = €41 s(R™)/Ps(R") in
Remark 2.3(i), we know that there exists @ € Pos(R™) such that gf — @ €
Co1s(R™). Due to (2.16), the function ¢ f — @ has at most polynomial growth
of order na (with an extra logarithm growth factor for the integer case) at
infinity, so does gf because g € L*(R") and f € €,(R"™). This forces @
to be a polynomial of order no more than na. In other words, we have
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Q) € Ps(R™). Then the previous fact gf — @ € €, (R") implies that gf
itself is in €, 1 s(R™). Moreover, noticing that

19 flleam) = 119 lenr@m) = 19 = Qllen s@) = |9 lear2a@n);
we conclude the proof of Theorem 3.1. n

As an application of Theorem 3.1 and Lemma 2.21, we prove in the fol-
lowing corollary that any Schwartz function is a pointwise multiplier of the
Campanato space €,(R™), with « € (0, 00), which hence justifies the defini-
tion of the product in (1.2). Recall that this fact has also been pointed out
in [3, p.59].

Corollary 3.2. Let a € (0,00). Then, for any g € S(R™), g is a pointwise
multiplier of €,(R™).

Proof. By Theorem 3.1, it suffices to prove that g € L*(R")N¢&s,(R"), where
the number p satisfies that « = 1/p — 1 > 0. It is obvious that Schwartz
functions are bounded. The fact that they are in €g,(R") has been proved
in Lemma 2.21, which completes the proof of Corollary 3.2. O

3.2. Sufficient part of Theorem 1.3 for the non-integer case

In this section, for the non-integer case na ¢ N, we discuss the sufficient
part of Theorem 1.3 by constructing two examples of functions in €, (R").

Proposition 3.3. Let o € (0,00) and na ¢ N. Let f be a continuous func-
tion on R™, which is homogeneous of degree na and has continuous deriva-
tives on R™\ {0,} up to order 1 + |na|. Then f is in the space €o(R™). In
particular, |x|™* € €, (R™).

Proof. Let f be as in the proposition. Then, if na > 1, all its derivatives
satisfy the same assumptions as f, except that they are now homogeneous
of degree nav — 1. So an easy induction shows that it suffices to prove the
proposition for 0 < na < 1. By the homogeneity assumption, we have
|f(x)] < Clz|™ for any x € R", as well as |V f(z)] < Clz|"*~! for any
z e R\ {0,}.

We want to prove that |f(x) — f(y)] < |z — y|™ for any z, y € R™.
By symmetry, we consider only the case |z| < |y|. When |y — x| < %, we
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conclude that the whole segment joining = to y lies in the complement of the
ball centered at 0,, and of radius |y|/2. By Taylor’s theorem, we obtain

1f(x) = f)] S lo—yl ly",

from which we deduce the desired conclusion. Assume now that |y — x| > lul

o
We then conclude the desired conclusion by the estimate |f(z) — f(y)| <

(el + [yl)™.
This finishes the proof of Proposition 3.3. O

Proposition 3.4. Let o € (0,00). Let o € C(R™) be such that 0 < p <1,
supp ¢ C B(0,,2) and ¢ =1 on B(0,,1). Given a ball B = B(cp, rg) C R"
with cg € R™ and rg € (0, 00) satisfying |cg| > max{2, 4rp}, define

4(x —cp)
19

FB () = |ep[™p < ) : Vo eR"™ (3.1)

Then fB) has the following properties:

(i) f®B) = g™ on B, and fB) =0 on B(0,, 1)
(i) £ € CalR") and [/ gziany = I/ Plleuer) < C. where O is o
positive constant independent of B.

Proof. Notice that (i) follows directly from the assumptions of ¢ and |cg| >
max{2, 4rp}. From (i), the equality Hf(B)HQ‘g:(R") = lF® e, @n in (ii) fol-
lows immediately.

Now we show that || f®||¢, &) < 1 uniformly in B. Since the semi-norm
in (2.4) is invariant by rotation and translation, and is homogeneous of order
na, we deduce immediately from the fact that ¢ is in €,(R™) that

4(- —c¢
()
[
The result || fP]|e,@n) S 1 follows directly.
This finishes the proof of Proposition 3.4. O

~ le] " @lleamny ~ ] T
QQ(R”)

Also, we need the following lemma, which we can find in [11] and [37,
p.54, Lemma 4.1].
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Lemma 3.5. Let s € Z,. Then there exists a positive constant C such that,
for any locally integrable function g and for any ball B C R™,

sup | Pa.g(o)] < C f loto)] dy
B

zeB

Theorem 3.6. Let p € (0, 1), « = 1/p — 1 and assume that na ¢ N. If a
function g is a pointwise multiplier of €,(R™) with operator norm

gl = sup 19 et ey
f#0 Hf”@g(]Rn)

where the supremum is taken over all f € €,(R™) satisfying f # 0, then g €
L>(R")N€q,(R™). Moreover, there exists a positive constant C', independent
of g, such that

191l oo ®my + Nl glles, @y < Clllgll] (3-2)

Proof. Let g be a pointwise multiplier of €,(R"), which we can assume of
norm 1. Then, for any f € €,(R"), we have

||9f||¢;(Rn) < ||f||¢§(Rn)‘ (3.3)

Let us first point out that, by testing on the function 1, we find that g itself
is in & (R") and ||glet@ny < 1. We now prove that g is bounded. As a
consequence of Proposition 3.3, the function

f(z) =14 |z|™, Ve eR"

belongs to €4 (R"). So [|gfl|let@ny < [[fllet@ny < 1. Applying (2.16), we
obtain, for any z € R",

lg(@) f ()] S (T + =)™,

which further implies that g € L>®(R").
It remains to prove |[g[le,, ) < 1. Let s = [na]. We need to prove that,
for any ball B C R",

Flsto) - Prgas swam~ (2 ) 6
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where W, (B) is as in (2.11). We already know that the left hand side is
uniformly bounded in terms of r* because g € €,(R"). So it suffices to
consider balls B = B(cg, rg) with ¢cg € R" and rg € (0, co) satisfying
|CB| +rg > 4.

For the case |cg| < 4rp, we apply g € L>®(R") and Lemma 3.5 to derive
that

][ 19() — Po.g(a)| dz < ][ ()| dx < Igllimgn S 1~ Ta(B).
B B

For the case |cg| > 4rp, we have |cg| > max{2, 4rp}. Let f® be as in
Proposition 3.4. Notice that, for any =z € B,

|9(2) P (2) — Pps(fPg)(x)| = |es|"|g(z) — Ppg(z)|.

From this and (3.3), it follows that
£ 196) = Paa(@lde = lesl ™ f |o() (@) = Pa.(/Pg)(a)] da
B B

—noa « r "
S lesl 1] Hgf<B>H¢a<Rn>5ﬁ] 17 e e

~ |1+ |cgl+ 7B
Combining all the estimates, we obtain (3.4), which completes the proof of
Proposition 3.6. O

3.3. Comments on the sufficient part of Theorem 1.3 for the integer case

We will give here partial results on the sufficient part of Theorem 1.3
when na = k is an integer. Let us first give examples of functions in €, (R")
under this assumption.

Proposition 3.7. Let a € (0,00) be such that na € N and let k = na. For
any j € {1,...,n} and x € R, define f;(x) := z¥log|xz;|. Then the function
1 is in €, (R™).

Proof. Let j € {1,...,n}. It is well known that log |x;| belongs to the space
BMO(R™). All derivatives of order k of f are 0, except for the derivative

0" f; — (K i
Sk (x)—k!log\xﬂ—l-;(i)k!(—l) , VzeR",

J
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where (l:) denotes the binomial coefficient. Thus, all the k-th order deriva-
tives of f; belong to BMO(R").

For any 6 € R and p, ¢ € (0,00], denote by Fg ,(R™) the homogeneous
Triebel-Lizorkin space (see Frazier and Jawerth [23] or Triebel [45] for its pre-
cise definition). We know by [45, p. 244, Theorem| the following continuous
embedding

BMO(R") = FY_,(R") C F2, (R).

Also, for any k € N, it follows from [46, Theorem 1.5] and [48, Proposi-
tion 3.1(viii)] that

> D" Fllss, gy ~ Il e

lv|=k

whenever either side is finite. This implies that f; € Ffo’oo(R").

With the number p taken to satisfy a = 1/p — 1, we know that H?(R™)
and FEQ(R”) coincide with equivalent (quasi)-norms (see [45, p. 244, Theo-
rem]), while the dual spaces of these two spaces are €, (R™)/P|nq)(R™) and
Ffopo(R”) (see [23, p.79, (5.14)]), respectively. Therefore, we conclude that
fj € €4(R™). This finishes the proof of Proposition 3.7. O

Assume that £ = na € N and g is a pointwise multiplier of &, (R™), which
we still assume of norm 1. We test the multiplication by ¢ the functions
h; = 1+ f;, with each f; as in Proposition 3.7 and j € {1,...,n}. Using
inequality (2.16), we find that

sup |g(z)hj(z)] < C(1+ \x|)klog(e + |z]), VreR",

where C' is a positive constant independent of x, which implies that g €
L>(R™).

The unsolved part is the proof of g € €4, (R") with p satisfying o =
1/p — 1. At this point, for the case na = k € N, using the same proof
as that for the case na ¢ N, we can prove that a pointwise multiplier g of
¢, (R™) is bounded and satisfies the condition: for any ball B = B(cg, 5)
with cg € R™" and rp € (0, 00),

k

1 l9(0) = Posg(@)] e < O, (35
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where C' is a positive constant independent of B. This is not critical, as
seen from below. One may conjecture that one has the following necessary
condition: for any ball B = B(cpg, rg) with cg € R" and rp € (0, 00),

k
,

r)— P, )| de < C B , 3.6
]i'g() mk9(2)| dv < (1+ |ep| +rp)Flog(e + [ea| + 75) 30

where C'is a positive constant independent of B. We can not prove this but
show that the condition (3.5) is not sufficient. We do this when n = 1 and
k = 1. Observe that, whenever ¢ is a multiplier, the same holds true for the
function g(—x), so that we can assume that g is odd or even. If we assume
that ¢ is odd, testing the corresponding multiplier of the function zlog|z|
and taking the second difference at 0, we find that |zg(z)|log|z| < C|z|
for any x € R\ {0}, where C is a positive constant independent of x. We
conclude that there exists a positive constant C' such that, for any z € R,

9@ < "
x _
P> Togle + 1al)
But the function W for any x € R does not satisfy this last property

while it satisfies (3.5). To show (3.6), it seems that one needs to find more
intrinsic properties of pointwise multipliers of €, (R") when na € N.

3.4. The linear decomposition: proof of Theorem 1.1
Notice that Corollary 3.2 shows that the definition (1.2) makes sense.
Then, with the help of Proposition 2.24, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Let f € HP(R") and g € €,(R"), where a = 1/p —

€ (0,00). From the atomic characterization of HP(R") (see, for instance,
25, 37]), it follows that there exist {\;};en C C and a sequence {a;} ey of
(p, )-atoms with | € Z, N[2s, c0) and s = |na] such that

f:Z)\]a,] n HP Rn and Z|>\ |p ||f||Hp R™)
JjeN JEN

By (1.2) and the duality theory between HP(R") and €,(R™), we write,
for any ¢ € S(R"),

(f % g.0) = (09, [) =D Nlbg, aj) = > Nilasg. 6)

JEN JEN

= Z)\J [(aj(g - PBj,sg)> ¢> + <ajPijsg’ ¢>] !

jeN
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where B; denotes the ball of R™ such that suppa; C B; for any j € N.

Now let St(g) := > jenAjaj(9 — Pp;s9) and Ty(g) := Doy Aja; Pp; 59
By Definition 2.2, we have

1S5 (g S D 1Nl llas(9 = Prys9)]] 1 gny

jeN
S Z | Ajlllag 2 Hg - PijSgHH(Rn)
jeN
D Iilllgllens.@y S I llae@ellglle @),
jeN

which further implies that S;(g) converges in L'(R") and hence in S'(R").
By (2.18) in the proof of Proposition 2.24, we know that

1Ty (g )H L (R™) < Z’)‘ P ’“JPB ng L (R7) S ZP\ d ’g”U(Rn
JEN jeN
SN ey 191t ey
which implies that T(g) converges in H} (R") and hence in S'(R"). There-
fore, we know that Sy and T are well defined linear operators on the space
Co(R"). In particular, for any ¢ € S(R"), both >, Aj(a;(g — P, 59), ¢)

and .y Aj(a; Pp; 59, ¢) converge. Altogether, we conclude the desired lin-
ear decompos1t10n

(fxg,0)=(51(9) +Ty(9), &), Vo eSR").
This finishes the proof of Theorem 1.1. O]

4. Bilinear decomposition for HP(R™) x €,(R")

In this section, we show Theorem 1.2 by using the renormalization tech-
nique based on wavelet multiresolution analysis (for short, MRA).

4.1. A few prerequisites on the MRA

Let us begin with the following definition of multiresolution analysis (for
short, MRA) of L?(R") (see, for instance, [38, p.21]).

Definition 4.1. Let {V;},cz be an increasing sequence of closed linear sub-

spaces in L*(R™). Then {V;},cz is called a multiresolution analysis (for short,
MRA) of L*(R") if it has the following properties:
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(a) Njez Vj = {0} and {J;, Vi = L*(R™), where 0 denotes the zero element
of L?(R");

(b) for any j € Z and f € L*(R"), f(-) € V; if and only if f(2-) € Vj41;
(c) for any f € L*(R") and k € Z", f(-) € V; if and only if f(- — k) € Vj;

(d) there exists a function ¢ € L?(R™) (called a scaling function or father
wavelet) such that {G(- — k) }rezn is a Riesz basis of Vj, that is, for every

sequence {ay }rezn of scalars,
1/2
} : 2
L2(R") keZm

where the positive equivalence constants are independent of {ay }rezn.

In the literature, the definition of MRA is usually restricted to the one-
dimensional case. However, the extension from one dimension to higher
dimension is classical via the tensor product method (see [17, p.921] or [38,
Section 3.9]). As was pointed out in [38, Section 2.3|, we can construct an
orthonormal basis of Vi based on the Riesz basis in Definition 4.1(d).

For any j € Z, let {V;};ez be as in Definition 4.1 and W; the orthogonal
complement of V; in V. It is easy to see that

J 00
Via=@ W, ad L*R")=H W, (4.1)

1=—00 1=—00

where € denotes the orthogonal direct sum in L*(R™). Let D be the class of
all dyadic cubes I :={z € R": 27z — k € [0,1)"} with j € Z and k € Z" in
R™, and

n times

——
E:={0, 1}"\ {0, ..., 0)}.
Fix r € N. According to [38, Sections 3.8 and 3.9], there exist families of fa-

ther wavelets {¢1} rep and mother wavelets {17} rep, xer having the following
properties:

(P1) for any j € Z, the family {¢;}=2-i» forms an orthonormal basis of V;
and the family {17} 722-in rep an orthonormal basis of W;. In partic-
ular, the family {17} ep, xer forms an orthonormal basis of L*(R");
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(P2) there exists a large positive constant m, independent of the main pa-
rameters included in the whole article, such that, for any I € D and
ANEFE,

supp¢; C mI and  suppe; C ml,

where mI denotes the m dilation of I with the same center as I;
(P3) for any multi-index « of order |a| < r, there exists a positive constant
C such that, for any I € D, A € E and z € R", it holds true that

DGy ()| + | D2 ()| < 6>,

where ¢; denotes the side length of [;
(P4) for any I € D, A € E and any multi-index v of order |v| < r, it holds
true that

/ ' x) dr =0

and, for any I € D,
¢1(x) dx # 0;
R
(P5) For any I, I’ € D satistying |I| < |I'| and A € E,

U (2)op (x) de = 0. (4.2)
Rn
Indeed, let W; and Vj: be the linear subspaces of L*(R") defined as
in (4.1) with |[I| = 279" and |I’| = 277, Since |I| < |I’|, we deduce
j' < j, which, combined with (4.1), shows that W; L Vj,. By this and
the above property (P1), we conclude the validity of (4.2).

Let us point out that the constants m and C' in the above properties (P2)
and (P3) depend on the regularity constant r (see [17] or [38, p.96]). Note
that, even in the one-dimensional case, there does not exist a wavelet basis
in L?(R) whose elements are both infinitely differentiable and have compact
supports (see, for instance, [29, Theorem 3.8]).

As the family {¥?}7ep aer forms an orthonormal basis of L*(R"), we
know that any function f € L*(R") has the following wavelet expansion

F=>3 0 eer, (4.3)

1€D \eE
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where the equality holds true in L?(R") and (-, -) denotes the inner product
in L?(R"). A function f in L*(R"™) is said to have a finite wavelet expansion
if the coefficients {(f, 17)}repace in (4.3) have only finite non-zero terms.

4.2. Renormalization of functions in the product L?*(R") x L*(R™)

Applying the wavelet theory, Coifman et al. [14] and Dobyinsky [18]
studied the renormalization of functions in the product L*(R™) x L*(R™).
Below we briefly recall the main results of Dobyinsky [18], which was also
nicely summarized in [6, Section 4].

For any j € Z, let P; and Q; be the orthogonal projectors of L?(R™) onto
V; and W}, respectively. In other words, for any j € Z and f € L*(R"), we
have

bif = Z (f,on)r (4.4)

I€D
|1]=2—Jn

and

Qif = > D (funr. (4.5)

IeD \eE
|1|=2—7n

Assume that f, g € L?(R") have finite wavelet expansions. Then Dobyin-
sky [18] proved that

F9=>Y _(Pif)(@Q9) + > _(Qif)(Pig) + > (Q;f)(Qsg)  in L'(R").

JEZ JEZ JEZ

Further, using the properties (P1) through (P5) of {¢r}rep and {17} rep. rer
stated in the previous section, as well as (4.4) and (4.5), we write

4

fg=> _M(f,g) inLR"), (4.6)

=1

where

= > ) {f o), vp)ertr, (4.7)

I,I'eD A\eE
\H:HW
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= > > (v g, dr)erér, (4.8)

I,I'eD A\eE
II|=|1/I

=5 3 (e ey (4.9)

I,I'eD M NEE
[T|=IT"] (I, \)#I', )

and

=D (g, o) (07) (4.10)

1€eD \eE

From their definitions in (4.7) through (4.10), it follows easily that the four
operators {II;}{_, are bilinear operators for any f, g € L?(R") having finite
wavelet expansions. Moreover, by [6, Lemmas 4.1 and 4.2] (see also [18,
Proposition 1.1]), we have the following lemma.

Lemma 4.2. Let {II;}}_, be as in (4.7) through (4.10), which are well de-
fined whenever f and g h(we finite wavelet expansions. Then {IL;}3_, can be
extended to bounded bilinear operators from L*(R™) x L*(R™) to H'(R™) and
Iy to a bounded bilinear operator from L*(R™) x L*(R™) to L'(R™).

Proof. 1t was proved in [6, Lemma 4.2] that II; and II; can both be extended
to bounded bilinear operators from L*(R") x L?(R") to H'(R"). Moreover,
using [18, Proposition 1.1] and (4.6) through (4.10), we conclude that 3> | TI;
can be extended to a bounded bilinear operator from L*(R™) x L*(R") to
H'(R™), which further implies that II3 can also be extended to a bounded
bilinear operator from L*(R") x L?(R") to H'(R™).

Similarly to the proof of [6, Lemma 4.1], by the Holder inequality and
| (¥7)*]| L1y = 1, we know that

T (f, )@y < 0D 1 U g, e @) o e

I1eD \eF
1/2 1/2
. (zzw, w) (zzug, w)
IeD \eF IeD \eF

S 12 @y ll9l] 22y

This implies that II; can be extended to a bounded bilinear operator from
L*(R") x L*(R") to L'(R™), which completes the proof of Lemma 4.2.  [J
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Remark 4.3. If we assume that only f has a finite wavelet expansion and g
is a general L?(R™) function, then (4.6) remains true by passing to the limit
in its both sides. Consequently, the equations {II;}}_; in (4.7) through (4.10)
are well defined whenever g € L?(R") and f has a finite wavelet expansion.

In what follows, we use the symbol L2 (R™) to denote the collection of
all measurable functions which are locally in L*(R™).

Remark 4.4. Assume that f has a finite wavelet expansion as in (4.3) and
g € L} _(R™). Then we may as well assume that f is supported on a cube R
large enough such that, for any [ as in (4.3), I C R. Take 1 to be a smooth
cut-off function such that suppn C 9mR and n = 1 on bmR, where m is
as in property (P2) in Section 4.1. Though g may not belong to L*(R"), it
makes sense to understand the formal expression of each II;(f, g) as

IL(f,9) =1L(f,ng),  i€{1,2,3,4}. (4.11)

Let us take i = 1 for example to illustrate (4.11). Since f has a finite
wavelet expansion and ng € L*(R"), it follows from Remark 4.3 that

I(f,ng) = Y > (f é)ng, vi)erdy  in L'(R).

I,I'eD A\€E

|11=17]
Based on the above properties (P2) and (P5) in Section 4.1, the factor
(f, d1)ér1y in the above summation is non-zero only when (mI)N(ml") # (),
(mI)N R # () and |I| < |R|, which automatically gives that mI’” C 5mR so
that n(z) = 1 on supp;. Consequently, we can remove the function 7 in
the pairing (ng, 17,) and hence obtain

mi(fng) = > > (s én)lg, vp)gry  in LR,

1,I'eD A\€E
=11]
while the right hand side of the above equality is just the formal expression
of II1(f, g). Thus, (4.11) makes sense when i = 1.
Since f € L*(R") has a finite wavelet expansion and ng € L*(R"), it
follows from Lemma 4.2 and Remark 4.3 that every IL;(f, g) is well defined
in L'(R™). In particular, (4.11) holds true in L*(R™) and also in &'(R™).
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4.3. Three auziliary lemmas

From now on, we assume that the regularity parameter r appearing in
(P3) and (P4) of Section 4.1 satisfies that

r> |nal = |n(l/p—1)], (4.12)

whenever the Hardy space HP(R") or the Campanato space €,(R") with
a=1/p—1is involved.

The next first lemma gives a finite atomic decomposition of elements in
Hardy spaces that have finite wavelet expansions. Indeed, Lemma 4.5 below
for the case p = 1 = n was essentially proved in [29, Theorem 5.12 of
Section 6.5], while the case 0 < p < 1 = n was discussed in item 7 of [29,
Section 6.8]. For any p € (0, 1] and general dimension n € N, we easily derive
Lemma 4.5 by following the proof of Theorem 5.12 in [29, Section 6.5, with
the details being omitted here.

Lemma 4.5. Letp € (0, 1] and s € Zy with s > [n(1/p—1)|. Assume that
f € HP(R™) has a finite wavelet expansion, namely,

F=Y) v, (4.13)

I1€D \eE

where the coefficient (f, 17) # 0 only for a finite number of (I, \) € D x E.
Then f has a finite atomic decomposition satisfying f = Zle way, where
L € N and the following properties hold true:

(i) there exists a positive constant C, independent of {u}F,, {m}-, and
f, such that

3 =

L
{Z |Ml|p} < Ol fll e ey
=1

(ii) for anyl € {1, ..., L}, a; is a (p, s)-atom supported on some dyadic
cube Ry, which can be written into the following form:

w= Yy Y curndn (4.14)

1€D,ICR; A\eE

with {c(, a0} icr, xeB, 11, ..., 1} being positive constants independent of
{al}lel;
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(iii) for each l € {1, ..., L}, a; in (4.14) has a finite wavelet expansion,
whose non-zero terms are extracted from the finite wavelet expansion

of f in (4.13).

The next lemma concerns the wavelet characterizations of Hardy spaces
on R™. Its proof when n = 1 was given in [24, Theorem 4.2] and a similar
discussion also works for any n € N. We omit the details here.

Lemma 4.6. Let p € (0, 1]. Then f € HP(R") if and only if

W Nl ogeeny = {ZZUa ¢?>|2’[’111} < 00.

I€D \eE L@

Moreover, it holds true that || f||ge@ny ~ [[Wy fllLr@n) with positive equiva-
lence constants independent of f.

The following lemma is on the wavelet characterization of Campanato
spaces on R™. We refer the reader to [33, Corollary 2] for the case n = 1,
while the proof for any n € N is similar and the details are omitted.

Lemma 4.7. Let o € [0, 00). Then g € €,(R™) if and only if its wavelet
coefficients {s1.x}rep.ack := {{9, V1) }1ep. rcr satisfy that

1 2
{s1.a}repncele,any = $Up | frers 2 D lsual’ - < o0

€D JED \eE
JCI

Moreover, |\glle.wny ~ [{s1,x}1ep,rcE e, @ny with positive equivalence con-
stants independent of g.

4.4. Proof of Theorem 1.2

In this section, we still assume (4.12). Applying Lemmas 4.5, 4.6 and 4.7,
we now prove the following four propositions.

Proposition 4.8. Letp € (0,1) and « = 1/p—1. Then the bilinear operator
1y, defined as in (4.7), can be extended to a bilinear operator bounded from
HP(R") x €,(R") to H(R™).
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Proof. Assume that f € HP(R™) has a finite wavelet expansion and g €
¢,(R"). Note that g € LZ_(R™). Let s € Z, be such that s > [n(1/p —1)].
In this case, by Lemma 4.5, we know that f = Zlel a; has a finite atomic
decomposition with the same notation as therein. Assume that every (p, s)-

atom ¢, is supported on a dyadic cube R;. For each [ € {1,..., L}, define

b= Z Z<ga V)7

IED  \cE
IC5mR,

Applying property (P1) in Section 4.1 and Lemma 4.7, one easily has

2

2 o
ol ST D0 D HgvD | S IR glle. -

1€D \eE
IC5mR;

Moreover, according to Lemma 4.5(iii), the wavelet expansion of ¢; has only
finite terms. By this, b, € L*(R"), Lemma 4.2 and Remark 4.3, we know
that Iy (a, by) is well defined and

MLy (ar, o)l @ny S Nl 2@ llbll 2 @ny S 119l ea @) (4.15)

Observe that

M(a, b) = D> > {a, én) (b, ¥3) 617,

I,I'eD \eE

|T1=|1"|

= > D {a, ¢y v ervr (4.16)
I,1'eD AEE

[I|=|I"|, I'C5mR,

By properties (P2) and (P5) in Section 4.1, together with the expression of
a; in (4.14), we know that (a;, ¢;) # 0 only for these I satisfying |I| < |R|
and R; N (mI) # 0. Again, property (P2) in Section 4.1 implies that ¢y, is
a non-zero function only if (mI) N (mI’) # (). From this, one easily deduces
that I’ C 5mR;. Therefore, the restriction in the last term of (4.16) can be
removed and hence we then have

M(a, b) = > > {a, ér){g, ¥3)ordy = Mi(ar, g)

I1,I'eD \eFE
[I|=|1"]
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pointwisely. Consequently, by the fact that II; is bilinear, we obtain

L L
g) = Zﬂl Iy (ar, g) = Zﬂl Iy (a, b)),
=1 =1

where all the equalities hold true pointwisely. Moreover, by (4.15), we have
I (f, g) € H'(R") and

WL (f, 9)llarrny = ZMZH1 a, by)
HY(RP)
1/p
Z’MZH\H ar, )| eny S (ZWVD) 9]l eamn
=1 =1
S llae @y | 9llen @n)- (4.17)

For a general f € HP(R™), under (4.12), since the family {17 }ep rep of
wavelets is an unconditional basis of H?(R™) (see, for instance, [9, Theorem
5.8]), it follows that there exists a sequence { fxtreny C HP(R™) having finite
wavelet expansions such that limy_, fr = f in HP(R™). Thus, we extend
the definition of II; by setting, for any f € HP(R") and g € €,(R"),

M(f, g) = Jim Ih(fi, g)  in H'(RY)

Estimate (4.17) ensures that the above definition is independent of the choice
of the sequence {fi}ren and hence is well defined. Based on this extension,
we derive from (4.17) that

1T (fs 9l @ny = Jim 1L (fry D eny S N fllar@a)llglleqn)-

This implies that II; can be extended to a bilinear operator bounded from
H?(R™) x €,(R™) to H'(R™). This finishes the proof of Proposition 4.8. [J

Proposition 4.9. Letp € (0,1) and « = 1/p—1. Then the bilinear operator

Il,, defined as in (4.8), can be extended to a bilinear operator bounded from
HP(R") x €,(R") to H® (R").

Proof. Let g € €,(R™) and s = |naJ. Assume that a is a (p,2s)-atom
supported on a dyadic cube R and a has a finite wavelet expansion. Denote by
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B the smallest ball in R” containing R and Pp ;g the minimizing polynomial
of g on B with degree < s as in (2.2).

Let n be a smooth cut-off function such that suppn C 9mR and n = 1 on
5mR, where m is as in property (P2) in Section 4.1. Applying Remark 4.4
and property (P4) in Section 4.1 with r therein satisfying (4.12), together
with the expressions (4.7) through (4.10), we know that

4
aPpsg = a(nPpsg) = Z IL;(a, nPpsg) = Ua(a, nPpsg) = llz(a, Ppsg).

i=1

Again, by Remark 4.4, we write

y(a, g) = y(a, ng) = Ila(a, nlg — Pssg]) + a(a,nPp s9)
= Ily(a, n[g — Ppsg]) + aPp.sg.

Notice that the expression of the function ®, easily implies that H'(R")

N

H® (R™). Moreover, by the fact that IIy is bounded from L?(R"™) x L*(R") to
HY(R™) (see Lemma 4.2), a is a (p, 2s)-atom, suppn C 9mR and €,(R") =
Ca2s(R™), we conclude that
M2 (a, nlg — Prsg)lges®ny S M2(a, nlg — Pp sg])| @)
S llallze@nlin(g = Prsg)llrz@ey < 9lleamn.-
From this and Proposition 2.24, we deduce that
112 (a, 9)HH¢’p(Rn) S Mx(a, g — PB,sg)HH%(Rn) + HCLPB,SQHH%(R”)
S Ngllet @ny- (4.18)

We now extend the above boundedness from an atom a to a general
f € HP(R") with a finite wavelet expansion. Such f has a finite atomic
decomposition f = Ele ag, with the same notation as in Lemma 4.5. By
the definition of || - [| ye, gny, it suffices to show that there exists a positive
constant C' such that

/ o (m (Ia(f.9))" () ) et (419)

Ol @ 19les @)

where (II5(f, ¢))* denotes the non-tangential maximal function of Ilx(f, g) as
in (2.1) with m = [n(1/p — 1)]. Without loss of generality, we may assume
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that || f[|gr@e) = 1 and [|g[|¢sgn) = 1. Otherwise, we use f= WARIEES
and g := g/||gll¢+ gny in the argument below.
Now, we prove (4.19). Lemma 4.5 implies that

L 1/p
(Z !m!”) < Clflur@n =C
=1

for some positive constant C. Without loss of generality, we may as well
assume that C' > 1. By the expression of ®, in (1.6), it is easy to see that
P, (-, t) is strictly increasing in ¢. Observe that

(Ia(f, 9) <Z|,Ul | (Ha(az, g

Notice that Lemma 4.5 implies that every a; has a finite wavelet expansion,
so that (4.18) holds true with the atom a therein replaced by a;. By this,
9ll¢x gy = 1 and the definition of [| - || o, gy, We conclude that there exists
a positive constant '}, independent of a; and g, such that

/n o, (:c (HZ(“”C?)* (x)) dr < 1, (4.20)

where (IIy(a;, g))* denotes the non-tangential maximal function of Ily(a;, g)
as in (2.1) with m = |[n(1/p—1)]. As was proved in Proposition 2.12(i) that
®,, is of uniformly upper type 1, we conclude that, for any z € R" and any
sequence {t;}jen C [0, 00),

jGN

Let M := 2Y/?C. Then M > 1 and

/n 5, ( <n2<%1>*<x>) o < / ¢p< Py 1'“1‘%1&” 9))’ <x>> "

( |ul Hz]f/?lélg)) (l’)) de

I IA
M= I+
o \

N
Il
—
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If |py| < M, then (4.20) and the fact that @, is of uniformly lower type p [see
Proposition 2.12(i)] imply that

D, < \Ml|p/ o, (:p, (Hz(al,g))*(ﬂﬁ))d <|Ml’p

MP Ch MP

If || > M, then (4.20) and the fact that ®, is of uniformly upper type 1
[see Proposition 2.12(i) again| imply that

|l (Ix(ar, 9))* () |l
D, < o <
PEM oo P\ de < 3

Ch

Combining the last three formulae, we obtain

(Hs(f, 9))" ()
/n o, (:v, M—Cl) dx
< ﬁ oo lmlP+ % > lul

{1<I<L: || <M} {1<I<L: > M}
< Cr + C <1,
- Mr M
which implies that (4.19) holds true with the constant C' therein taken as
MC;. Thus, we arrive at the conclusion that

T2 (f, Q)HH%(Rn) S HfHHP(R")HQHQ;(Rn)

whenever f € HP(R™) has a finite wavelet expansion.

As in Proposition 4.8, from the fact that {1/1}‘} 1eD, xeE 1s an unconditional
basis of H?(R") and a standard argument, we can deduce that the definition
of IIy(f, g) can be extended to general f € H?(R") and g € €,(R") with the
desired boundedness estimate, the details being omitted. This finishes the
proof of Proposition 4.9. O]

Similarly to the proof of Proposition 4.8, we deduce the following results
on the boundedness of the bilinear operators 1I3 and Ily.

Proposition 4.10. Letp € (0,1) and o = 1/p—1. Then the bilinear operator
Il3, defined as in (4.9), can be extended to a bilinear operator bounded from

HP(R") x €(R") to H'(R™).
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Proof. According to Lemma 4.2 and Remark 4.3, the operator II3(f,g) is
well defined whenever g € L*(R™) and f has a finite wavelet expansion, and
can be extended to a bounded bilinear operator from L?*(R") x L*(R") to
H'(R"). With this, we follow the same lines as in the proof of Proposition
4.8 and can obtain the desired conclusion, the details being omitted. O]

Proposition 4.11. Letp € (0,1) and o = 1/p—1. Then the bilinear operator
Iy, defined as in (4.10), can be extended to a bilinear operator bounded from

HP(R") x €4 (R") to LY(R™).

Proof. The proof of this proposition is similar to that of Proposition 4.8, but
now we use the boundedness of Iy from L?*(R™) x L*(R") to L'(R"™) (see
Lemma 4.2). The details are omitted. O

Proof of Theorem 1.2. Let f € HP(R™) and g € €,(R"). By (4.12), we know
that the wavelet system {17 } rep, xer is an unconditional basis of HP(R") (see,
for instance, [9, Theorem 5.8]), so there exists a sequence { f }ren C HP(R"),
with finite wavelet expansions, satisfying limy_,. fr = f in H?(R™). By the
definition of f x g in (1.2) and Corollary 3.2, we conclude that

fxg=lm frg  inSR"),
k—o00

where f;. g denotes the usual pointwise product of f, and g. Since f; has
a finite wavelet expansion, it follows that f, € L*(R™) and f;, is supported
on a ball B(0,, Ry) for some Ry € (0,00). Let n; be a cut-off function
satisfying suppnr C B(0n, 9mRy) and n, = 1 on B(0,, 5mRy,), where m is
as in property (P2) in Section 4.1. By Remark 4.4, we find that, for any
ke Nandie{l,2, 3,4},

so that

4 4

frg = felng) =D _Wi(frmg) = > _Thi(fr,g)  in S'(R").

i=1 i=1

Notice that the convergence of a sequence in HP(R™) or H®(R™) implies its
convergence in §'(R"); see [26, Proposition 6.4.10] and [32, Proposition 5.1].
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By this, limg_,o fx = f in HP(R™) and Propositions 4.8 through 4.11, we
know that, for any i € {1,2,3,4},

Therefore, we have
4 4
fxg=lim fig= zklgroloﬂi(fka 9) = 2H¢(f, g9  inS'(R").

Thus, if we define
S(f, 9) :=1L(f, g) € L'(R") (4.21)

and
T(f. 9):= 3 TIi(f, 9) € H'(R") + H™ (R") C H™(R"),  (4.22)

then, applying Propositions 4.8 through 4.11, we obtain the desired conclu-
sion of Theorem 1.2. O

Remark 4.12. Let p € (0,1), « = 1/p — 1 and na ¢ N. Assume that
(f,g) € HP(R™) x €o(R"). Since L*(R") N €, (R") characterizes the class
of pointwise multipliers of €,(R™), it follows that the largest range of ¢ that
makes
(f x g, ¢)=(gp, f)

meaningful is ¢ € L*(R")N&q, (R"). For any ¢ € {1,2, 3,4}, by Propositions
4.8 through 4.11 and (H*»(R"))* = €4,(R"), we know that (IL(f,g),¢)
makes sense whenever ¢ € L>(R") N €p,(R™). Then the proof of Theorem
1.2 implies that the bilinear decomposition holds true in the following sense:

(fxg,0) =S 9)+T(f, 9), ), VeeLTR") N, (R).

Now we consider the sharpness of Theorem 1.2 when na ¢ N. Suppose
that Theorem 1.2 holds true with H®(R") therein replaced by a smaller
vector space ). Then, for any ¢ € (L'(R") + YV)*, the pairing (f x g, )
is meaningful whenever (f,g) € HP(R") x €,(R"), so that ¢ is a pointwise
multiplier of €,(R") and hence ¢ € L*(R") N &4, (R™). We therefore obtain
(LYR™)+Y)* € L>(R")N€g, (R™). From this and Y C H**(R"), we deduce
that

(LY(R") + )" = L®(R") N €, (R") = (L'(R") + H*(R™))".

In this sense, Theorem 1.2 when na ¢ N is sharp.
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5. The div-curl estimate

In this section, we utilize Theorem 1.2 to prove Theorem 1.5. We first
recall the following Helmholtz decomposition for vector fields in L?*(R"™; R")
(see, for instance, [8, p.1421]).

Lemma 5.1. Let F := (Fy, ..., F,) € L*(R"; R"). Then there exists a
unique decomposition

F=H+K
in L*(R™; R™) with H := (Hy, ..., H,) € L*(R"; R"), K := (K3, ..., K,) €
L*(R™; R"), curl H= 0 and div K = 0. Moreover, for any j € {1, ..., n},

Hy=-Y RiR(F) and  K;=F+Y RiRi(F),
i=1 i=1
where R; = 0,,(—A)™Y2, with A = — i 8§j, denotes the j-th Riesz
transform.
Let p € (0,1] and o € [0,00). For any sequence {as};ep of complex
numbers that is indexed by the set D of dyadic cubes, we define

3
1 2
[{ar}renlle, @n) = sup{ 2a+1 Z ] }
1eD |I| @ JeD, JCI

and

1
1 2 :
{aryrenlljo ) = [Z (lasl 11731, ) ] ,

I€D Lo (E™)

which induce suitable norms for the Carleson sequence space C,(R"™) and
the homogeneous Triebel-Lizorkin sequence space f£,2(R”) (see [23]), respec-
tively. We also need the following duality conclusion for sequence spaces,
whose proof is similar to that of [12, (2.32)] and hence the details are omit-
ted.

Lemma 5.2. Let p € (0, 1]. Then there ezists a positive constant C such
that, for any sequences of complex numbers {a;}rep and {bs}ep,

Z a[b[

1eD

< Cl{ar}trenlljo ,@ny Hbr}renlle, ,_, m)

whenever the right hand side of the above inequality is finite.
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Using Theorem 1.2 and Lemmas 5.1 and 5.2, we now turn to the proof of
Theorem 1.5.

Proof of Theorem 1.5. Let F € HP(R"; R") N L?*(R"; R") with curl F = 0
and G € €,(R"; R") with divG = 0. With bilinear operators S and 7'
defined as in (4.21) and (4.22), we write

F.G= iF X G, = iS(Fi, G) +iT(Fi, )
AR @)+ BF. G). h
By Theorem 1.2, we know that B(F, G) € H®(R") and
IB(F, Gl oo ey S Il ar@eiem [ Glles @ ny-
To estimate A(F, G), by the assumption F € H?(R"; R") N L*(R™; R")
and Lemma 5.1, we find that there exists

ZR ) € HP(R") N L*(R")

such that F = V(—A)~Y2f where R;, for any i € {1, ..., n}, denotes the i-
th Riesz transform. Since div G = 0, it follows that >~ | R;(G;) = 0. Thus,

we can write

ZS i, Gi) Z [S(R:(f), Gi) + S(f, Ri(G))] -

=1

Using (4.10) and the fact that R; is a Calderén-Zygmund operator with odd
kernel, we further find that, for each ¢ € {1, ..., n},

S(Ri(f), Gi) + S(f, Ri(Gi))

- S e e o) | () - @)

I,I'éD A\, N€EE

By a similar calculation to that used in the proof of [6, Lemma 6.1], we obtain

S D> e |G ud)]| st 1),

I,I'eD A\ NEE

o4



where, for any § € (0, 3], || = 279" with center at z7, and |I'| = 279" with
center rp,

—J -5’ n+é
p(S(I, ]’) = 2_|j—j'|(5+n/2) ( Q= 4 977 |)

2-7 4277 + |.CE] —xp
This shows that the coefficient matrix {ps(I, ')} 1 rep is almost diagonal (see

23, p. 53] for the precise definition). Furthermore, from Lemma 5.2 and [23,
Theorem 3.3|, together with Lemmas 4.6 and 4.7, we deduce that

IS(R:(f), Gi) + S(fs Ri(Gi)ll g1 ey

ST T[S am |6
I'eD NeFE LIED \eFE
< {ZZW, U ps(l, I’)}
IeD \eE I'eD,NeE f‘}(})’2(Rn)
X {<Gu 77Z)I,>}I’€'D,>\'EE Cl/p_l(R’rL)

5 H{<f’ Z/}}\>}IGD,AGE {<Gi> ?/l

2 ,@®m) }I’ED, NeE|le,, mn)

S FEar@eiem [Glley -y @i rr),
which implies A(F, G) € H'(R") and
IA(E, G)ll gy S IFllar@nzm [Glle, ), @nien).-

This, combined with the fact H'(R") C H®*#(R"), shows that A(F, G) €
H®r(R") and hence finishes the proof of Theorem 1.5. O
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