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Abstract

This work deals with the propagation of chaos without cut-off for some aggregation-diffusion models known as fractional Keller
Segel equations. The diffusion considered here is given by the fractional Laplacian operator −(−∆)

a
2 with a ∈ (1, 2) and the singu-

larity of the aggregation kernel behaves like |x|1−α with α ∈]1, a]. In the Diffusion Dominated case α ∈ (1, a), we give a propagation
of chaos result, thanks to the Γ lower semi continuity of the fractional Fisher information, already known for the classical Fisher
information, using a result of [20]. In the fair competition case a = α, we only prove a convergence/consistency result in a sub-
critical sensitivity regime, similarly as the result obtained for the classical Keller-Segel equation in [16].

Résumé français. Ce travail concerne la propagation du chos moléculaire pour une classe de modèles d’agrégation-diffusion
appelés équations de Keller-Segel fractionnaires. La diffusion en jeu est modélisée par l’opérateur de Laplacien fractionnaire
−(−∆)

a
2 pour a ∈ (1, 2) et la singularité du noyau d’agrégation se comporte comme |x|1−α avec α ∈]1, a]. Dans le cas où la diffusion

est dominante α ∈ (1, a), on donne un résultat de propagation du chaos, grâce la Γ semi continuité inférieure de l’information
de Fisher fractionnaire, déjà connue dans le cas classique, en utilisant un résultat de [20]. Dans le cas où la compétition entre
la diffusion et l’agrgation est équitable a = α, on donne seulement un résultat de compacité/convergence dans un régime de
chimiosensibilité sous critique, comparablement aux résultats obtenus pour l’équation de Keller-Segel classique dans [16].

Keywords: fractional Laplacian, aggregation-diffusion, tightness, Fisher infromation
2010 MSC: 35Q70, 35Q92, 35R11, 60G52

1. Introduction

The parabolic-elliptic Keller Segel equation has received a large attention from the kinetic community lately. This
model deals with the chemotaxis of cells or bacteria evolving in a environment, which they are able to modify in order
to communicate with each other. More precisely the evolution of the density of bacteria ρt and the concentration of
chemoattractant ct is given by the following system of coupled equations

∂tρt + χ∇ · (ρt∇ct) = ∆ρt,

− ∆ct = ρt,
(1.1)

where χ > 0 is a sensitivity parameter encoding the intensity of the aggregation. The parabolic-elliptic from of the
system follows form the assumption that the diffusion coefficient of the chemoattractant is much larger than the one
of the bacteria (see [23]). We refer to [4] for a proper biological and mathematical motivation. This model has been
extensively studied, especially in dimension 2 which is the best understood and which makes particular biological
sense in the context of bacteria motion. Some blow up phenomena are known to arise if the initial mass is too large
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[4, Corollary 2.2], and global well posedness holds when the mass is small enough [11]. However the question of
propagation of chaos for this model remains open.
Some bacteria are known for their ”run and tumble” motion, therefore their trajectories are better described by Lévy
flights than Brownian motion (see for instance [5]). This consideration motivates to replace the classical diffusion in
the evolution equation of the density of bacteria with a fractional diffusion. We define the fractional Laplacian on Rd

of exponent a/2 ∈ (0, 1) for smooth function u ∈ C∞c (Rd) as

−(−∆)a/2u(x) = cd,av.p.
∫
Rd

u(x) − u(y)
|x − y|d+a dy

= cd,av.p.
∫
Rd

u(x) − u(y) − (x − y) · ∇u(x)
|x − y|d+a dy,

(1.2)

where cd,a is a normalization constant defined as

cd,a = −
2aΓ

(
d+a

2

)
πd/2Γ

(
− a

2

) .
The equality between the two lines of (1.2) comes from the fact that for any x ∈ Rd it holds

v.p.
∫
Rd

x − y
|x − y|d+a dy = 0.

Moreover the fractional Laplacian can be equivalently defined in terms of Fourier multipliers as

F (−(−∆)a/2u)(ξ) = −|2πξ|aû(ξ), (1.3)

where F (·) and ·̂ denote the Fourier transform, defined as F (h)(ξ) = ĥ(ξ) =
∫
Rd h(x)e−2iπx·ξdx (see for instance [25]

for equivalent definitions of the fractional Laplacian). Not only for the purpose of modeling, but also because of the
recent popularity of fractional diffusion equation, the problem

∂tρt + χ∇ · (ρt∇ct) + (−∆)
a
2 ρt = 0,

− ∆ct = ρt,
(1.4)

has been studied under various perspectives by different authors. In [22], Huang and Liu obtained local in time
existence for L2 initial condition when a ∈ (1, 2) in dimension 2. Escudero obtained global existence for a similar
system in dimension 1 in [13]. In dimension 1, equation (1.4) has also been studied by Clavez and Bournaveas in [5]
who prove global existence in case a ∈ (0, 1] for some initial condition in Lp(R) for some p ≥ 1

a , and in case a ∈ (1, 2].
They also show blow-up in case a ∈ (0, 1) if the initial condition has a small first order moment compared to its mass.
More recently, in 2 dimensional settings and for a ∈ (0, 2), Biler et al obtained a blow-up condition for the solution
(1.4) in [2, Theorem 2.1] for large M

2
a -Morrey norm of the initial condition.

In this paper we address the question of propagation of chaos, (we refer to [31] and next section for details) for a
similar equation as (1.4), where we replace the Newtonian attraction force with a less singular interaction kernel. Let
α ∈ (0, 2), and on Rd define

Wα(x) =
|x|2−α

2 − α
, and Kα(x) = −∇Wa(x) = −

x
|x|α

,

(with the convention ” |x|
0

0 = ln |x|”). For (a, α) ∈ (0, 2) × (0, d) and N ≥ 1 let (Zi
t)i=1,··· ,N,t≥0 be N independent a-

stable Lévy flights on Rd (more precisions will be given about a-stable process in the next session), (XN,1
0 , · · · , XN,N

0 )
a random variable on RdN independent of the N Lévy flights and consider the particle system evolving on Rd defined
as

XN,i
t = XN,i

0 +
χ

N

∫ t

0

N∑
j,i

Kα(XN,i
s − XN, j

s )ds +Zi
t. (1.5)
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We expect that when the number of particle goes to infinity, and the family of initial condition is assumed to be
ρ0-chaotic (see [31, Definition 2.1]), the above particle system approaches the following nonlinear PDE

∂tρt + χ∇ · (ρt(Kα ∗ ρt)) + (−∆)
a
2 ρt = 0

ρt=0 = ρ0.
(1.6)

This nonlinear conservation equation, which will be referred as fractional Keller-Segel equation, is solved by the time
marginals of the process solution to the nonlinear SDE

Xt = X0 + χ

∫ t

0

∫
Rd

Kα(Xs − y)ρs(dy) ds +Zt, ρs = L(Xs), (1.7)

with (Zt)t≥0 an a-stable Lévy flight on Rd independent of X0.

Notation :

• Lebesgue and Sobolev’s norm: In the rest of the paper (and sometimes above as well), v.p. stands for the Cauchy
principal value of a singular integral, ‖ · ‖Lp is the Lp norm on Rd, ‖ · ‖Lp∩Lq := ‖ · ‖Lp + ‖ · ‖Lq and | · |Hs(Rd) is the
fractional Sobolev semi-norm of exponent s ∈ (0, 1) defined as

|u|2Hs(Rd) :=
∫ ∫

|u(x) − u(y)|2

|x − y|d+2s dxdy.

• Norms and inner product on the Euclidean space : the Euclidean inner product on Rd will be denoted either x · y
or 〈x, y〉, and sometimes the latter notation will be used for the inner product on other spaces when it will make
sense. We will also use the notation 〈x〉 =

√
1 + |x|2, and for κ ∈ R,

mκ(x) = 〈x〉κ.

The unit ball on Rd will be denoted B, its complementary will be denoted Bc, and the ball of radius r > 0, Br.

• Probability measures : For a functional F on RdN , and i = 1, · · · ,N we note ∇iF = (∂di−(d−1)F, · · · , ∂diF) ∈ Rd,
and the notation Xx

k will stand for the integration variable (x1, · · · , xk−1, x, xk+1, · · · , xN) in RdN .
The notationP(E) stands for the set of probability measures on E,Psym(Ek) for the set of symmetric probability
measures on Ek, and Psym(EN) for the set of sequences of symmetric probabilities on EN , i.e. invariant by
permutation. Wp is the Wasserstein metric on P(Rd) of order p ≥ 1. For T > 0, the notation D([0,T ];Rd)
stands for the càdlàg (right continuous with left limits) paths on Rd, or equivalently the Skorokhod space from
[0,T ] to Rd. We define et : γ ∈ D(0,T ;Rd) 7→ γ(t) ∈ Rd the evolution map at time t, and for ρ ∈ P

(
D(0,T ;Rd)

)
we implicitly associate the family of probability measures (ρt ∈ P(Rd))t∈[0,T ] defined as ρt = et#ρ.
All the probability measure at stake in the paper are assumed to admit a density with respect to the Lebesgue
measure, and the confusion will be abused between measures and their densities.

• Finally, the dependence of some generic constant C on the parameters of the problem will always be expressed
in its indexation. We define the functional Φ as

Φ(x, y) = (x − y) ln
(

x
y

)
, ∀(x, y) ∈ (0,∞) × (0,∞).

Recall that for any x, y ≥ 0 it holds (see for instance the inequality below equation (6) of [34])

Φ(x, y) ≥ 4
(√

x −
√

y
)2
. (1.8)

The rest of the paper is organized as follows. In Section 2, we make some luminary discussions about propagation
of chaos and a-stable processes, and state the main results of this paper after recalling the state of the literature on
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similar problems. In section 3 we obtain a priori bound on some quantities of interests for the underlying particle
system, by entropy dissipation method or stochastic calculus. In section 4 we adapt some classical coupling method
for interacting diffusion which enables to conclude the compactness argument in the diffusion dominated case. In
Appendix A, we pursue an informal discussion aiming at enlightening some technical limitations of the main result in
the fair competition case. Appendix B discusses the case of non singular interactions α ≤ 1, and Appendix C contains
a delayed proof.

2. Preliminaries and main results

2.1. Propagation of chaos

In this paper, we address the question of propagation of chaos for the particle system (1.5). For the sake of
completeness we recall some basic notions on this topic, and refer to [31] for some further explanations. We begin
with the

Definition 2.1 (Definition 2.1 in [31]). Let (uN)N≥1 be a sequence of symmetric probabilities on EN (uN ∈ Psym(EN)),
with E some polish space. We say that uN is u-chaotic, with u ∈ P(E), if for any k ≥ 2 and φ1, · · · , φk ∈ Cb(E) it holds

lim
N→+∞

∫
EN

k⊗
j=1

φ juN =

k∏
j=1

(∫
E
φ ju

)
.

Let us give a short comment about this definition. Consider (uN)N≥1 a sequence of symmetric probabilities, u-
chaotic in the sense of the above Definition for some u ∈ P(E) and let (XN)N≥1 be a sequence of random vectors on
EN of law uN for each N ≥ 1. The chaos assumption then implies that asymptotically in N, the correlations between
two different components of XN is small, and each of its components follows the law u . In other words that uN

behaves like u⊗N as N goes to infinity. Then we need the important

Proposition 2.1 (Proposition 2.2 of [31]). Let be (uN)N≥1 be a sequence of symmetric probabilities on EN (E a polish
space), (X1, · · · , XN)N≥1 a sequence of random vector of law uN , and µN = 1

N
∑N

i=1 δXi the emprical measure associated
to this vector. Then

(i) uN is u chaotic if and only if (µN)N≥1 converges in law (weakly in P(E)) toward u ∈ P(E).

(ii) The sequence of random variables (µN)N≥1 is tight if and only if the sequence of law of X1 under uN is tight, or
equivalently if and only if the sequence of the first marginal of the uN is tight.

Our aim is therefore to prove that the dynamic (1.5) propagates chaos i.e. that if one starts this dynamic from
some initial condition which law is ρ0-chaotic, the law of the solution at time t > 0 to (1.5) is ρt-chaotic, with ρt the
solution at time t > 0 to (1.6). Or equivalently, due to the above Proposition, to prove that

µN
0 =

1
N

N∑
i=1

δXi
0

∗,(L)
⇀

N→+∞
ρ0 ⇒ ∀t > 0, µN

t =
1
N

N∑
i=1

δXt
i

∗,(L)
⇀

N→+∞
ρt.

Implicitly, such a statement requires a good knowledge of the well posedness of the limit problem (1.6). When this
knowledge is not available (typically when the singularity of the kernel Kα is too high), one can not expect such a
strong result as it does not make sense to talk about ”the” solution at time t > 0, ρt. However one can look at a weaker
result of the type, if

µN
0 =

1
N

N∑
i=1

δXi
0

∗,(L)
⇀

N→+∞
ρ0,

then there exists a subsequence of the
(
(µN

t )t∈[0,T ]

)
N≥1

converging in law toward some (possibly random) (µt)t∈[0,T ] ∈

P
(
D(0,T ;Rd)

)
, which solves to (1.6) and such that µ0 = ρ0. in this case we say that we derive a convergence/consistency

result, rather than propagation of chaos result.

4
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2.2. a-stable processes with index a ∈ (1, 2)
Let M be a Poisson random measure on R+×Rd of intensity Leb×λwhere λ is a σ-finite measure on Rd satisfying∫

Rd
(|x|2 ∧ 1)λ(dx) < ∞,

(see for instance [9, Definition 2.3, Chapter V]). Denote M̄ its compensated measure, i.e.

M̄(ds, dx) = M(ds, dx) − dsλ(dx), (2.9)

, and denote (Zt)t≥0 the following Lévy process

Zt =

∫
[0,t]×B

xM(ds, dx) +

∫
[0,t]×Bc

xM(ds, dx). (2.10)

The first stochastic integral in the r.h.s. converges in the sense of the Cauchy principal value i.e.∫
[0,t]×B

xM(ds, dx) = lim
ε→0

(∫
[0,t]×B\Bε

xM(ds, dx) − t
∫
B\Bε

xλdx
)

a.s.

Due to Ito’s rule [1, Theorem 4.4.7, p 226] we have for a test function φ smooth enough

φ(Zt) =φ(Zs) +

∫
[s,t]×B

x · ∇φ(Zu− )M(du, dx) +

∫
[s,t]×Bc

x · ∇φ(Zu− )M(du, dx)

+

∫
[s,t]×Rd

(
φ(Zu− + x) − φ(Zu− ) − x · ∇φ(Zu− )

)
M(du, dx).

In the particular case

λ(dx) = cd,a
dx
|x|d+a ,

we can rewrite
Zt =

∫
[0,t]×Rd

xM̄(ds, dx),

since
∫
Bc xλ(dx) = 0, and then

φ(Zt) =φ(Zs) +

∫
[s,t]×Rd

(
φ(Zu− + x) − φ(Zu− ))

)
M̄(du, dx)

+ cd,a

∫ t

s
v.p.

∫
Rd

φ(Zu + x) − φ(Zu) − x · ∇φ(Zu)
|x|d+a dx du.

(2.11)

This particular choice of intensity makes of (Zt)t≥0 defined in (2.10) an a-stable Lévy process, i.e. (Zt)t≥0 has the same
law as (u−1/aZut)t≥0 for any u > 0. Necessarily, such a process can only exists for a ∈ [0, 2] [9, Exercice 2.34, Chapter
VI], the case a = 0 corresponding to the null process, and the case a = 2, to the standard Brownian motion. It is
well known, but we also see from (2.11), that the infinitesimal generator of the a-stable Lévy process is the fractional
Laplacian of exponent a/2 defined in (1.2). It follows also from (2.11) and classical properties of Poisson random
measures that for any smooth function φ the process (Mt)t≥0 defined as

Mt = φ(Zt) − φ(0) − cd,a

∫ t

0
v.p.

∫
Rd

φ(Zu + x) − φ(Zu) − z · ∇φ(Zu)
|z|d+a dx du,

is a martingale, and the a-stable Lévy flight (Zt)t≥0 is the only process such that (Mt)t≥0 defined as above is a martin-
gale.

5
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2.3. Main result
We now give some comments on propagation of chaos results for similar systems as the one studied here, already

existing in the literature after which we will give the main result of this paper. We emphasize that there are only a few
results of propagation of chaos for particle system with singular interaction and additive diffusion, beside the ones we
recall here. They rely essentially on the fact that the diffusion is non degenerate, and in particular the strategy would
not apply for second order system with a diffusion only in velocity.
We introduce three different cases. When a > α we say we are in Diffusion Dominated case, when a = α, in Fair
competition case and a < α in Aggregation Dominated case. This terminology has been introduced by Carrillo et al
(see for instance [6, Definition 2.6]) and is based on the homogeneity analysis of the free energy for which the system
they study is a gradient flow (in Wasserstein metric). However, the presence of fractional diffusion here makes difficult
to write equation (1.6) in a gradient flow form (in usual Wasserstein metric see for instance [12]), and in some sense
we abuse their terminology. Nevertheless note that the classical 2 dimensional Keller-Segel (which is a = α = 2) falls
in Fair competition case, as they define it, as the sub-critical Keller Segel equation (i.e. 2 = a > α > 1) studied in
[18] falls in the Diffusion Dominated case. So that the extension we give here of their nomenclature is not completely
senseless.

We begin with the Aggregation Dominated case, as it is the less understood of all. To the best of the author’s
knowledge, there is no result without cut-off, except for the case a = 0 that is without any diffusion at all. In [8],
the authors consider the case a = 0 and α ∈ (0, 2), as the absence of diffusion makes possible here to control the
minimal inter-particle distance, thus the singularity of the interaction, but under some very restrictive assumptions on
the initial distribution of the particles. As for cut-off result, Huang and Liu treated the case α = 2 and a ∈ (0, 1) with
logarithmic cut-off of order (ln N)−1/2 in [22]. More recently Garcia and Pickl treated in [17] the classical Keller Segel
case a = α = 2 in the sub-critical sensitivity regime χ < 4, with polynomial cut-off of order N−δ with δ ∈ (0, 1/2), but
it is likely that the coupling techniques they used, can be extended to the full Aggregation Dominated case, provided
that one controls the L∞ norm of the limit solution.
For the Fair competition case, the only existing result to the best of the author’s knowledge, is the one of Fournier and
Jourdain [16, Theorem 6] for the classical Keller Segel equation.
Finally the Diffusion Dominated case is the easiest as far as propagation of chaos is concerned. Godinho and Quininao
treated the case a = 2, α ∈ (1, 2) in [18]. Let also be mentioned that when a = 2 and α ∈ (0, 1), the interaction Kα is
(1 − α)-Holder, and the propagation of chaos follows from a recent and more general result by Holding [21, Theorem
2.1]. This result provides convergence rate in Wasserstein metric, and is very different from the other results quoted
in this section. Nevertheless, this result is obtained by taking advantage of the diffusion, and could not be stated in the
deterministic case.
To summarize, the Newtonian interaction is critically controlled by a classical diffusion, and a less singular than
Newtonian interaction is perfectly controlled without any diffusion at all or with a classical diffusion. As these two
cases correspond to the two extremal exponent for stable Lévy process (a = 0 and a = 2), a natural question to
investigate is, which type of singularity can be controlled by a fractional diffusion. It is the object of the main result
of this paper given in the

Theorem 2.1. Let be T > 0.

Diffusion Dominated Let be 2 > a > α > 1 and
(
(XN,1

t , · · · , XN,N
t )t∈[0,T ]

)
N≥1

be a sequence of solutions to equation (1.5) with

initial condition of law
(
ρ⊗N

0

)
N≥1

with ρ0 ∈ L log L(Rd) ∩ Pκ(Rd) for some κ ∈ (1, a). Then the sequence((
1
N

∑N
i=1 δXN,i

t

)
t∈[0,T ]

)
N≥1

converges in law P
(
D(0,T ;Rd)

)
to (ρt)t∈[0,T ] the unique solution to equation (1.6) in

L1(0,T ; L1 ∩ Lp(Rd)) for any p ∈
(

d
d−α ,

d
d−a

)
starting from ρ0.

Fair Competition Assume that a ∈ (a∗, 2), α = a and χ ∈ (0, χ(a)) for some given real a∗ ∈ (1, 2) and function χ : (a∗, 2) 7→
(0,∞). Let

(
(XN,1

t , · · · , XN,N
t )t∈[0,T ]

)
N≥1

be a sequence of solutions to equation (1.5) with initial condition of laws(
FN

0

)
N≥1
∈ Psym(RdN) being ρ0-chaotic in the sense of Definition 2.1 and satisfying

sup
N≥1

∫
RdN
〈x1〉

κFN
0 (dx1, · · · , dxN) < ∞,

6
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for some κ ∈ (1, a). Then there exists a subsequence of
((

1
N

∑N
i=1 δXi

t

)
t∈[0,T ]

)
N≥1

which converges in law in

P(D(0,T ;Rd)) to (ρt)t∈[0,T ], a solution to equation (1.6) starting from ρ0 ∈ Pκ(Rd) which satisfies for any
ε ∈ (0, 1) ∫ T

0

∫
Rd×Rd

|x − y|ε−aρs(dx)ρs(dy) ds < ∞.

Remark 2.1. In the Diffusion Dominated case, the result could be extended to the case where the initial condition
is not necessarily tensorized. Actually, we could perform the proof with a sequence of initial condition

(
FN

0

)
N≥1
∈

Psym(RdN) which is ρ0-chaotic in the sense of Definition 2.1, and satisfying

sup
N≥1

N−1
∫
RdN

FN
0 ln FN

0 < ∞, sup
N≥1

∫
RdN
〈x1〉

κFN
0 < ∞.

But as it is customary in propagation of chaos result, to start from i.i.d. initial conditions, we will do so for the sake
of simplicity.
In the Fair Competition case, the limitations a ∈ (a∗, 2) is mainly technical. In practice, a∗ is equal to 1, and χ(a) can
be defined explicitly as

χ(a) = 2a−1
Γ
(

d+1
2

)
Γ
(

a−1
2

)
√
πΓ

(
d+a−1

2

) ,

see Appendix A for further considerations on this topic.

We emphasize that this result is, to the best of the author’s knowledge, the first propagation of chaos result with
singular kernel and anomalous diffusion.
Let us briefly sketch the proof of this theorem. In both Diffusion Dominated and Fair Competition cases, the key
argument is given in the

Lemma 2.1. Let (((XN,i
t )t≥0))i=1,··· ,N)N≥1 be a family of processes such that for each t ≥ 0 and N ≥ 1 the law of the

random vector (XN,i
t )i=1,··· ,N is symmetric, and for some p > 1 and T > 0 it holds

sup
N≥1

E
[∫ T

0
|XN,1

s − XN,2
s |

(1−α)pds
]
< ∞. (2.12)

Then the family of laws of the processes ((JN
t )t∈[0,T ])N≥1defined by

JN
t =

∫ t

0

1
N

N∑
k>1

Kα(XN,1
s − XN,k

s )ds,

is tight under P.

This Lemma can be seen as a particular application of the Kolmogorov’s tightness criteria in a mean field settings
and has been much used in similar problems (see for instance [16, Lemma 11], [15, Lemma 5.2] or [18, Lemma 4.1]).
For the sake of completeness we detail the proof below

Proof. For any 0 ≤ s < t ≤ T we have∣∣∣JN
t − JN

s

∣∣∣ ≤ 1
N

∑
j>1

∫ t

s

∣∣∣∣XN,1
u − XN, j

u

∣∣∣∣1−α du

≤ |t − s|p
′ 1
N

∑
j>1

(∫ T

0
|XN,1

u − XN, j
u |

(1−α)pdu
)1/p

≤ |t − s|p
′

1 +
1
N

∑
j>1

∫ T

0
|XN,1

u − XN, j
u |

(1−α)p du

 := |t − s|p
′

ZT
N,p.

7
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Then for R > 0 let us denote

KR = {h ∈ C([0,T ],Rd), h(0) = 0, sup
0≤s<t≤T

|h(s) − h(t)|
|s − t|p′

≤ R},

which is compact by Ascoli-Azerla’s Theorem. Then using Markov’s inequality and the symmetry in law of the XN,i
t

yields

sup
N≥1

P
(
(JN

t )t∈[0,T ] < K
R
)

= sup
N≥1

P
(
ZT

N,p ≥ R
)

≤ R−1 sup
N≥1

E
[
ZT

N,p

]
= R−1

(
1 + sup

N≥1
E

[∫ T

0
|XN,1

s − XN,2
s |

(1−α)pds
])
,

and the sequence of laws of
(
(JN

t )t∈[0,T ]

)
N≥1

is tight (see Definition before Theorem 5.1 of [3]), since for any ε > 0, we
can choose R large enough such that it holds

sup
N≥1

P
(
(JN

t )t∈[0,T ] < K
R
)
≤ ε.

There now remains to obtain the bound (2.12) from the particle dynamic (1.5) but this estimate is obtained with
different techniques in the Diffusion Dominated and the Fair Competition case.

For the Fair Competition case a = α, we follow in Proposition 3.4 the strategy of [16] (see also [28]). Namely, the
strategy relies on the following formal Ito’s computation. If for ε ∈ (0, 1) we denote φ(x) = |x|ε and Z1,2

t = XN,1
t −XN,2

t ,

since M1 − M2
(L)
= 21/aM1, stochastic calculus for jump processes formally yields

φ
(
Z1,2

t

)
= φ

(
Z1,2

0

)
−

∫ t

0

χε

N
|Z1,2

s |
ε−2Z1,2

s ·

 N∑
k>2

(
Kα(Z1,k

s ) − Kα(Z2,k
s

) ds −
∫ t

0

2χε
N

∣∣∣Z1,2
s

∣∣∣ε−a
ds

+

∫
[0,t]×Rd

(
φ
(
Z1,2

s− + 21/ax
)
− φ

(
Z1,2

s−

)
− 21/ax · ∇φ

(
Z1,2

s−

))
M1(ds, dx)

+

∫
[0,t]×Rd

21/ax · ∇φ
(
Z1,2

s−

)
M̄1(ds, dx).

(2.13)

Using the symmetry of the roles played by the particles yields

E
|Z1,2

s |
ε−2Z1,2

s ·

 N∑
k>1

(
Ka(Z1,k

s ) − Ka(Z2,k
s )

) ≤ 2(N − 2)E
[
|Zi, j

s |
ε−a

]
.

Now since M1(ds, dx) has the intensity dscd,a
dx
|x|d+a , and by definition of the fractional Laplacian we have

E
[∫

[0,t]×Rd

(
φ
(
Z1,2

s− + 21/ax
)
− φ

(
Z1,2

s−

)
− 21/ax · ∇φ

(
Z1,2

s−

))
M1(ds, dx)

]

= E

∫ t

0
cd,a

∫
Rd

(
φ
(
Z1,2

s− + 21/ax
)
− φ

(
Z1,2

s−

)
− 21/ax · ∇φ

(
Z1,2

s−

))
|x|d+a dxds


= 2

∫ t

0
E

[
(−∆)a/2φ(Z1,2

s )
]

ds = 2εcε,a

∫ t

0
E

[
|Z1,2

s |
ε−a

]
ds,

8
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where we used the definition of the fractional Laplacian by Fourier multipliers in the last line. Finally since the last
term in the r.h.s. (2.13) is a martingale, in the end we obtain

sup
N≥1

E
[
|XN,1

T − XN,2
T |

ε
]
≥ 2ε(cε,a − χ) sup

N≥1

∫ T

0
E

[
|XN,1

s − XN,2
s |

ε−a
]

ds,

which yields the desired bound (2.12) with p = a−ε
a−1 for some ε ∈ (0, 1), provided that χ ∈

(
0, supε∈(0,1) cε,a

)
. Of course

this scheme of proof is only formal as we can not apply Ito’s rule with the non smooth function φ(x) = |x|ε and we
have to replace it with a mollification φη(x) = (|x|2 +η2)ε/2 for any η > 0. But the fractional Laplacian of this mollified
function can not be explicitly computed, and have to be estimated by below (see Lemma 3.2). In Appendix A we
develop the formal computation (2.13) in order to give a sharper idea of the critical value of the sensitivity χ

For the Diffusion Dominated case, we follow in Proposition 3.3 the strategy of [15]. Namely the law of solutions
to (1.5), FN

t = L((XN,i
t )i=1,··· ,N) ∈ Psym(RdN) solves the Liouville equation

∂tFN
t +

N∑
i=1

∇i ·

 1
N

∑
j,i

Kα(xi − x j)FN
t

 +

N∑
i=1

cd,ap.v.
∫
Rd

FN
t (x1, ·, xi + z, ·, xN) − FN

t (x1, · · · , xN)
|z|d+a dz = 0, (2.14)

for the initial condition FN
|t=0 = FN

0 , the law of initial conditions of (1.5). Since we assume that these initial conditions
are i.i.d. of law ρ0 ∈ L ln L(Rd) i.e. FN

0 = ρ⊗N
0 , estimating the entropy dissipation along the Liouville equation (2.14)

yields the following uniform control

sup
N≥1

∫ T

0
IN

a (FN
t )dt < ∞.

where IN
a is the normalized fractional Fisher information defined on P(RdN) as the dissipation of entropy along the

fractional many-body heat flow

IN
a (FN) =

1
2

1
N

N∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

Φ
(
FN(Xx

k ), FN(Xy
k)
)

|x − y|d+a dxdy dXN−1. (2.15)

Thanks to natural properties of this Fisher information (Proposition 3.1) and Sobolev’s embeddings (Lemma (3.5)),
this control implies the desired bound.

In both cases, once the bound 2.12 is obtained, by Lemma 2.1 and point (ii) of Proposition 2.1, the family of the
laws of the sequence of empirical measures

(
( 1

N
∑N

i=1 δXN,i
t

)t∈[0,T ]

)
N≥1

is tight. Thus by Prokhorov’s Theorem (see for
instance [3, Theorem 5.1]), there exits a subsequence converging in law to some limit point (ρt)t∈[0,T ] as N goes to
infinity. In Theorem 3.1, we show that this limit point almost surely solves (1.6) for the initial condition ρ0.

In the Fair Competition case, this solution almost surely satisfies for any ε ∈ (0, 1)∫ T

0

∫
Rd×Rd

|x − y|ε−aρs(dx)ρs(dy)ds < ∞.

This information is not sufficient to conclude to the uniqueness of this cluster point, and we obtain only some conver-
gence/consistency result in this case as in [16].

In the Diffusion Dominated case, this solution satisfies almost surely, thanks to Corollary 3.1∫ T

0
I1

a(ρs)ds =

∫ T

0

∫
Rd×Rd

Φ (ρs(x), ρs(y))
|x − y|d+a dxdy < ∞,

so that thanks to inequality (1.8), it holds almost surely ρ ∈ L2((0,T ),Ha/2(Rd)), and thus by Sobolev’s embeddings
ρ ∈ L1((0,T ), Lp(Rd)) for any p ∈

(
1, d

d−a

)
. In Proposition 4.1, we use some rather classical coupling method to prove

9



/ Procedia Computer Science 00 (2019) 1–45 10

that there is at most one solution to (1.6) lying in L1((0,T ), Lp(Rd)) for some p ∈
(

d
d−α ,∞

)
. In other words, there is

one and only one accumulation point (for the convergence in law) of the sequence
(
( 1

N
∑N

i=1 δXN,i
t

)t∈[0,T ]

)
N≥1

, which is

the unique solution to (1.6) lying in ρ ∈ L1((0,T ), Lp(Rd)) for some p ∈
(

d
d−α ,

d
d−a

)
. Which yields to the convergence

in law of the full sequence, and concludes the proof.

Figure 1. Topography of propagation of chaos results without cut-off for equation (1.6) in the plane (a, α). It seems delicate to make sense out of
equation (1.6) in the region α + a < 1, since moments of order at least 1 − α on ρ are needed to make sense of the term (Kα ∗ ρ), and −(−∆)a/2

propagates moments of order at most a (see Lemma 3.3). See also Appendix B for some results in the case α ≤ 1 depending on whether α ≥ a,
1 ≥ a > α or α ≤ 1 < a ≤ 2.

Remark 2.2. Note that we have not said anything so far regarding the existence of solutions to the particles system
equation (1.5). The difficulty comes from the non smoothness of the drift coefficient. However this can be solved by
mollifying the interaction kernel, and showing that the family of the (unique due to classical SDE theory) solution with
such a mollified drift is tight in the mollification parameter for fixed N. But as the computations done in the proofs
of Proposition 3.3 and 3.4 show the tightness uniformly in N with the not mollified interaction kernel, they a fortiori
show the tightness in the regularization parameter for the regularized system with fixed number of particles. Hence
with a similar strategy as described above (see also [16, Theorem 5]) it is possible to build a solution to the particle
system thanks to the tightness argument. We leave the reader check that the less singular kernel or the a-stable Lévy
noise considered here instead of the Newtonian force and Brownian motion considered in [16], do not change the
argument used by Fournier and Jourdain. However, this argument does not provide uniqueness, but it is not required
in order to obtain Theorem 2.1.

10
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3. Tightness estimate

The key point of the proof of Theorem 2.1, is the tightness of the law of the particle system (1.5). Such a result
follows from getting an estimation of the expectation of some singular function of the distance between the first and
second particle (by ex changeability), but this estimate is obtained with very different techniques in the Diffusion
Dominated and the Fair Competition case, as explained in the sketch of proof.

3.1. Useful estimates

In this section we provide some basic estimates which will be used later in the paper. We begin with the

Lemma 3.1. The following properties hold.

(i) For all a, b ≥ 0 and α, β ≥ 0 we have

(αa − βb) (ln a − ln b) ≥ (a − b)(α − β),

with equality if and only if a = b.

(ii) The functional Φ defined on (0,∞) × (0,∞) as Φ(x, y) = (x − y)(ln x − ln y) is jointly convex.

(iii) For any κ ≥ 1 and x, y ∈ Rd we have (
〈x〉κ−2x − 〈y〉κ−2y

)
· (x − y) ≥ 0.

Proof. (i) By symmetry of the role of a, b, α, β we only treat the cases a ≥ b, α ≥ β and a ≥ b, α ≤ β. In the first case
we easily obtain, since x 7→ ln x is increasing

(aα − bβ)(ln a − ln b) = (α − β)a(ln a − ln b) + β(a − b)(ln a − ln b)
≥ (α − β)(a − b),

because since x 7→ ln x is concave, it holds

(ln a − ln b) ≥
(a − b)

a
,

with equality if and only if a = b. On the other case we get

(aα − bβ)(ln a − ln b) = α(a − b)(ln a − ln b) + b(ln a − ln b)(α − β)
≥ (α − β)(a − b),

because it holds
(ln a − ln b) ≤

(a − b)
b

,

which concludes the proof.
(ii) direct computations yields

∇2Φ(x, y) = (x + y)
 1

x2 − 1
xy

− 1
xy

1
y2

 ,
which is nonnegative. (iii) The functional mκ : x ∈ Rd 7→ 〈x〉κ is convex for κ ≥ 1. And then for any x, y ∈ Rd

(∇mκ(x) − ∇mκ(y)) · (x − y) ≥ 0.

11
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3.2. Fractional Laplacian and fractional Fisher information

In this section we provide the key arguments from which the tightness of the law of the particle system will follow.
We start with the tool needed in the Fair Competition case. It consists roughly in giving a bound from below of the
Ito’s correction of the process (|Zt |

ε)t≥0 with ε ∈ (0, 1) and (Zt)t≥0 some d-dimensional and a-stable Lévy process.
Precisely we have the

Lemma 3.2. Let η > 0, ε ∈ (0, 1) and φη defined as

φη : x ∈ Rd 7→
(
|x|2 + η2

) ε
2

= ηε〈
x
η
〉ε.

Then for any a ∈ (1, 2) there exist some constants Cε,a, cd > 0 such that for any x ∈ Rd it holds∫
Rd

φη(x + z) − φη(x) − z · ∇φη(x)
|z|d+a dz ≥ |Sd−1|

(
ε2cd

2(2 − a)
(|x|2 + η2)

ε−4
2 |x|4−a − εCε,a|x|ε−a

)
,

with

Cε,a =

(
2 − ε

√
4 − ε(3 − a)ε

+
1
aε

)
,

cd =

 1
2 if d = 2
|Sd−2 |

|Sd−1 |
B

(
d−1

2 , 3
2

)
if d > 2,

.

where B stands for the beta Euler function.

Proof. Let be x, z ∈ Rd × Rd, η > 0 and define φz,x
η as

φz,x
η (t) =

(
|x + tz|2 + η2

) ε
2 .

Then straightforward computations yield

(φz,x
η )′(t) = ε 〈z, x + tz〉

(
|x + tz|2 + η2

) ε−2
2 ,

(φz,x
η )′′(t) = ε

(
|x + tz|2 + η2

) ε−2
2
|z|2

(
(ε − 2)X2

x,t,z + 1
)
,

(φz,x
η )(3)(t) = ε(ε − 2)

(
|x + tz|2 + η2

) ε−3
2
|z|3

(
(ε − 4)X3

x,t,z + 3Xx,t,z

)
,

with Xx,t,z =
〈

x+tz
|x+tz| ,

z
|z|

〉 (
|x+tz|2

|x+tz|2+η2

) 1
2 .

Then Taylor’s formula yields∫
Rd

φz,x
η (1) − φz,x

η (0) − (φz,x
η )′(0)

|z|d+a dz =

∫
|z|≤|x|

φz,x
η (1) − φz,x

η (0) − (φz,x
η )′(0)

|z|d+a

+

∫
|z|≥|x|

φz,x
η (1) − φz,x

η (0)
|z|d+a dz

=

∫
|z|≤|x|

(φz,x
η )′′(0)

2|z|d+a dz

+

∫
|z|≤|x|

∫ 1

0

(φz,x
η )(3)(t)

2!
(1 − t)2dt

 dz
|z|d+a

+

∫
|z|≥|x|

φz,x
η (1) − φz,x

η (0)
|z|d+a dz

:= I1 + I2 + I3.
12
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� Estimate of I1
It is direct to obtain, rewriting x = |x|σ0

I1 =
ε

2

(
|x|2 + η2

) ε−2
2

∫
|z|≤|x|
|z|2−d−a

(ε − 2)
〈

z
|z|
,

x
|x|

〉2
|x|2

|x|2 + η2 + 1

 dz

=
ε

2

(
|x|2 + η2

) ε−2
2

∫ |x|

0

∫
Sd−1

r2−d−a
(
1 + (ε − 2) 〈σ,σ0〉

2 |x|2

|x|2 + η2

)
rd−1drdσ

=
ε

2

(
|x|2 + η2

) ε−2
2

(∫ |x|

0
r1−adr

) ∫
Sd−1

(
1 + (ε − 2) 〈σ,σ0〉

2 |x|2

|x|2 + η2

)
dσ

=
ε

2

(
|x|2 + η2

) ε−2
2 |x|2−a

2 − a
|Sd−1|

1 +

∫
Sd−1 〈σ,σ0〉

2 dσ

|Sd−1|
(ε − 2)

|x|2

|x|2 + η2

 .
When d = 2, we write σ0 = (cos(θ0), sin(θ0)) and then we have∫

Sd−1 〈σ,σ0〉
2 dσ

|Sd−1|
=

∫ 2π
0 cos2(θ0 − θ)dθ

2π
=

1
2
.

When d > 2 we find by changes of of variables (see for instance equation (61) of [33])∫
Sd−1 〈σ,σ0〉

2 dσ

|Sd−1|
=
|Sd−2|

|Sd−1|

∫ π

0
sind−2(θ) cos2(θ)dθ =

|Sd−2|

|Sd−1|
B

(
d − 1

2
,

3
2

)
=
√
π−1

Γ
(

d−1
2

)
Γ
(

d−2
2

)B
(

d − 1
2

,
3
2

)
.

It can be numerically checked that cd ≤ 1/2 for any d ≥ 2, so that we obtain

I1 =
ε2cd |Sd−1|

2(2 − a)

(
|x|2 + η2

) ε−4
2
|x|4−a +

ε|Sd−1|

2(2 − a)

(
|x|2 + η2

) ε−2
2
|x|2−a (1 − 2cd)|x|2 + η2

|x|2 + η2

≥
ε2cd |Sd−1|

2(2 − a)

(
|x|2 + η2

) ε−4
2
|x|4−a.

� Estimate of I2
In the case |z| ≤ |x| we easily get

|x + tz| ≥ |x| − t|z| ≥ (1 − t)|x|,

and since ∣∣∣(ε − 4)X3 + 3X
∣∣∣ ≤ 2
√

4 − ε
,

for X ∈ (−1, 1), and we deduce

|(φz,x
η )(3)(t)| ≤ ε(2 − ε)|x|ε−3|z|3(1 − t)ε−3 2

√
4 − ε

,

therefore

I2 ≥ −
ε(2 − ε)

2
2

√
4 − ε

(∫ 1

0
(1 − t)ε−1dt

)
|x|ε−3

∫
|z|≤|x|

|z|3

|z|d+a dz

≥ −
ε(2 − ε)|Sd−1|

ε(3 − a)
√

4 − ε
|x|ε−a.

� Estimate of I3
Note that if |z| ≥ |x| then

−(|z|2 + η2)
ε
2 = −φx,z

η (0) ≤ −φz,x
η (0) = −(|x|2 + η2)

ε
2 ,

13
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then since φz,x
η (1) = φx,z

η (1), we have

I3 =

∫
|z|≥|x|

φz,x
η (1) − φz,x

η (0)
|z|d+a dz

≥

∫
|z|≥|x|

φx,z
η (1) − φx,z

η (0)
|z|d+a dz

=

∫
|z|≥|x|

(φx,z
η )′(0) +

∫ 1
0 (φx,z

η )(2)(t)(1 − t)dt

|z|d+a dz

=

∫
|z|≥|x|

ε(|z|2 + η2)
ε−2

2 〈x, z〉
|z|d+a dz +

∫
|z|≥|x|

∫ 1

0
(φx,z

η )(2)(t)(1 − t)|z|−(d+a)dtdz

=

∫
|z|≥|x|

∫ 1

0
(φx,z

η )(2)(t)(1 − t)|z|−(d+a)dtdz,

but recall that

(φx,z
η )′′(t) = ε

(
|z + tx|2 + η2

) ε−2
2
|x|2

(ε − 2)
〈

x
|x|
,

z + tx
|z + tx|

〉2
|z + tx|2

|z + tx|2 + η2 + 1

 ,
and since |z| ≥ |x| we easily get

|z + tx| ≥ |z| − t|x| ≥ (1 − t)|x|.

Moreover since for any X ∈ (0, 1) ∣∣∣(ε − 2)X2 + 1
∣∣∣ ≤ 1,

it follows
|(φz,x

η )′′(t)| ≤ ε|x|ε(1 − t)ε−2.

This yields

I3 ≥ −
|Sd−1|ε

εa
|x|ε−a,

and the result holds with the desired constant.

Remark 3.1. Also recall the bound for any ε ∈ (0, a)

− (−∆)a/2(mε)(x) ≤ Ca,εmε−a(x), (3.16)

see for instance [26, Proposition 2.2, (18)].

Next we need some tools for the Diffusion Dominated case α < a. As this case is close to the one studied in [18]
which relies on properties of the classical Fisher information, we need to extend those properties to the anomalous
diffusion case. Such a fractional Fisher information has not been very studied in the literature. The main results in
this domain, to the best of the author’s knowledge, have been obtained by Toscani [32], also note the contribution
of [19] where the author also consider such a fractional Fisher information for probability measures on the 1d torus
or the real line. The work by Erbar in [12] should also be quoted, where the author establishes some new metric on
the probability measure space, with respect to which the Boltzmann’s entropy is a gradient flow functional for the
fractional heat equation. In this purpose the author introduces a (relative) fractional Fisher information.
By definition, considering N independent d-dimensional Brownian motion and one dN-dimensional Brownian motion
is the same. Therefore establishing the Liouville equation associated to a particle system with independent Brownian
diffusions, falls by using an Ito’s formula in RdN (see for instance [15, Proof of Proposition 5.1, Step 1]). However,
for any a ∈ (0, 2), a vector valued process whose components are N independent a-stable Lévy flights on Rd, is Lévy
processes on RdN which is not a-stable.
Let µ1, · · · , µN be N independent Poisson random measures on R+ × Rd with intensity ds × cd,a

dx
|x|d+a , and denote Z̃N

t

the RdN-valued process defined by

Z̃N
t =

(∫
[0,t]×Rd

xµ̄1(ds, dx), · · · ,
∫

[0,t]×Rd
xµ̄N(ds, dx)

)
.

14



/ Procedia Computer Science 00 (2019) 1–45 15

It is classical (see [9, Chapter VII, 3)]), since the (µi)i=1,··· ,N are independent, to obtain for any rN = (r1, · · · , rN) ∈ RdN

E
[
eirN ·Z̃N

t
]

= et
∑N

k=1 cd,a |rk |
a

= et
∑N

k=1 ψ(rk),

where ψ(r) = cd,a|r|a is the characteristic exponent of the d-dimensional a-stable Lévy process. Let now beMN be a
Poisson random measure on R+ × Rd × {1 · · · ,N} with intensity Nds × cd,a|x|−d+a)dx ×U ({1, · · · ,N}) and denote

Z̄N
t =

∫
[0,t]×Rd×{1··· ,N}

(δl=1x, · · · , δl=N x) M̄N(ds, dx, dl).

Hence it holds due to classical properties of Poisson random measure (see [9, Theorem 2.9, p 252] for instance)

E
[
eirN ·Z̄N

t
]

= e
−

∫ t
0 cd,av.p.

∫
Rd

1
N

∑N
l=1

(
1−ei

∑N
k=1 δl,k x·rk

)
N dx
|x|d+a ds

= et
∑N

k=1 cd,av.p.
∫
Rd (eix·rk−1) dx

|x|d+a dx
= et

∑N
k=1 ψ(rk).

Then it follows that the law FN
t = L(Z̃N

t ) = L(Z̄N
t ) solves the many-body fractional heat equation

∂tFN
t (XN) +

N∑
k=1

∫
RdN

FN
t (XN + zak) − FN

t (XN))
|z|d+a dz = 0, (3.17)

with zak =

0, · · · 0︸ ︷︷ ︸
2(k−1)

, z1, z2, 0 · · · , 0︸  ︷︷  ︸
2(N−k)

 ∈ RdN and z = (z1, z2). Next we look at the dissipation of entropy along this

equation. For a probability measure FN ∈ P(RdN) introduce the normalized Boltzmann’s entropy

HN(FN) =
1
N

∫
RdN

FN(x) ln FN(x)dx,

then it holds

d
dt
HN(FN

t ) = −
1
N

∫
RdN

(1 + ln FN
t (XN))

 N∑
k=1

p.v.
∫
Rd

FN
t (XN + zak) − FN

t (XN)
|z|d+a dz

 dXN

= −
1
N

N∑
k=1

∫
RdN

p.v.
∫
Rd

(
FN

t (XN + zak) − FN
t (XN)

)
ln FN

t (XN)

|z|d+a dzdXN

=
1
N

N∑
k=1

∫
RdN

p.v.
∫
Rd

(
FN

t (XN) − FN
t (XN + zak)

)
ln FN

t (XN + zak)

|z|d+a dzdXN

= −
1
2

1
N

N∑
k=1

∫
RdN

p.v.
∫
Rd

(
FN

t (XN + zak) − FN
t (XN)

) (
ln FN

t (XN + zak) − ln FN
t (XN)

)
|z|d+a dzdXN

= −
1
2

1
N

N∑
k=1

∫
RdN

p.v.
∫
Rd

Φ
(
FN

t (XN + zak), FN
t (XN)

)
|z|d+a dzdXN .

Henceforth we consider the functional defined in 2.15 on P(RdN) as

15
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IN
a (GN) =

1
2

1
N

N∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

Φ
(
GN(Xx

k ),GN(Xy
k)
)

|x − y|d+a dxdy dx1, · · · , dxk−1, dxk+1, · · · , dxN ,

=
1
2

1
N

N∑
k=1

∫
Rd(N−1)

∫
R4

(
GN(Xx

k ) −GN(Xy
k)
) (

ln GN(Xx
k ) − ln GN(Xy

k)
)

|x − y|d+a dxdy dx1, · · · , dxk−1, dxk+1, · · · , dxN ,

=
1
2

1
N

N∑
k=1

∫
RdN

∫
Rd

(GN(x + zak) −GN(x)) (ln GN(x + zak) − ln GN(x))
|z|d+a dzdx

with Xx
k = (x1, · · · , xk−1, x, xk+1, · · · , xN),

as the pendent for fractional diffusion of the normalized Fisher information (with the convention I1
a = Ia).

Remark 3.2. In the classical case the Fisher information can be rewrtiten as

IN(FN) =
1
N

∫
RdN

∣∣∣∇FN
∣∣∣2

FN dXN =
1
N

N∑
i=1

∫
RdN

∣∣∣∇iFN
∣∣∣2

FN dXN

=
1
N

N∑
i=1

∫
RdN
∇iFN · ∇i ln FNdXN ,

which has the same the form of the one defined in (2.15), except that the H1 inner product between FN and ln FN w.r.t.
the i-th component is replaced in the fractional case with the Ha/2 inner product.

This quantity is so far an entropy dissipation, but not an information yet. In oder to properly qualify it as such, we
have the

Proposition 3.1. The fractional Fisher information defined in (2.15)

(i) is proper, convex,

(ii) is lower semi continuous w.r.t. the weak convergence in P(RdN),

(iii) is super-additive in the sense that for GN ∈ P(RdN) and Gi ∈ P(R2i),GN−i ∈ P(R2(N−i)) its marginal on R2i

(resp. R2(N−i) for i = 1, · · · ,N − 1 it holds

IN
a (GN) ≥

i
N
Ii

a(Gi) +
N − i

N
IN−i

a (GN−i).

Moreover equality holds if and only if GN = Gi ⊗GN−i.

(iv) satisfies, for any GN ∈ Psym(RdN), and Gk ∈ Psym(R2k) its marginal on R2k

IN
a (GN) ≥ Ik

a(Gk),

and for any g ∈ P(Rd)
IN

a (g⊗N) = Ia(g).

Proof. Proof of point (i)
Convexity holds form point (ii) of Lemma 3.1. We delay the proof of the fact that IN

a is proper after the proof of point
(iv).
Proof of point (ii)

Let be (uk
n)n∈N, such that uk

n
∗
⇀ uk ∈ P(R2k) and for ε > 0 set ρε(x1, · · · , xk) = 1

(2πε)
k
2

e−
∑N

k=1 |xk |
2

2ε . Then it holds that

16
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uk
n ∗ ρε =: uk,ε

n
∗
⇀ uk,ε := uk ∗ ρε ∈ P(R2k) for any ε > 0, and that uk,ε is a smooth function which is always strictly

larger than 0. Note that due to point (ii) of Lemma 3.1 and Jensen’s inequality it holds

Ik
a(uk,ε

n ) =
1
2k

k∑
j=1

∫
R2(k−1)

∫
Rd×Rd

Φ
(∫

uk
n(Xx

j + z)ρε(z)dz,
∫

uk
n(Xy

j + z)ρε(z)dz
)

|x − y|d+a dxdy dX̂ j,

≤
1
2k

∫ k∑
j=1

∫
R2(k−1)

∫
Rd×Rd

Φ
(
uk

n(Xx
j + z), uk

n(Xy
j + z)

)
|x − y|d+a dxdy dX̂ j

Nρε(z)dz = Ik
a(uk

n).

Moreover it holds (dealing only with the case j = 1 by symmetry)

Ik
a(uk,ε

n ) =

∫
R2(k−1)

∫
Rd×Rd

(
uk,ε

n (x, Xk) − uk,ε
n (y, Xk)

) (
ln uk,ε

n (x, Xk) − ln uk,ε
n (y, Xk)

)
|x − y|d+a dxdydXk

=

∫
R2(k−1)

∫
Rd×Rd

(
uk,ε

n (x, Xk) − uk,ε
n (y, Xk)

) (
ln uk,ε(x, Xk) − ln uk,ε(y, Xk)

)
|x − y|d+a dxdydXk

+

∫
R2(k−1)

∫
Rd×Rd

(
uk,ε

n (x, Xk) − uk,ε
n (y, Xk)

) (
ln

(
uk,ε

n (x,Xk)
uk,ε(x,Xk)

)
− ln

(
uk,ε

n (y,Xk)
uk,ε(y,Xk)

))
|x − y|d+a dxdydXk

:= En
1 + En

2.

� Estimate of En
1

We rewrite

En
1 = 2

∫
R2k

uk,ε
n (x, Xk)

∫
Rd

(
ln uk,ε(x, Xk) − ln uk,ε(y, Xk)

)
|x − y|d+a dydxdXk,

by symmetry
� Estimate of En

2
Using point (i) of Lemma 3.1 and also by symmetry we find that

En
2 ≥

∫
R2(k−1)

∫
Rd×Rd

(
uk,ε(x, Xk) − uk,ε(y, Xk)

) (
uk,ε

n (x,Xk)
uk,ε(x,Xk) −

uk,ε
n (y,Xk)

uk,ε(y,Xk)

)
|x − y|d+a dxdydXk

= 2
∫
R2k

uk,ε
n (x, Xk)

∫
Rd

(
uk,ε(x, Xk) − uk,ε(y, Xk)

)
uk,ε(x, Xk)|x − y|d+a dydxdXk.

Now since the functions

(x, Xk) 7→ v.p.
∫
Rd

(
ln uk,ε(x, Xk) − ln uk,ε(y, Xk)

)
|x − y|d+a dy,

and

(x, Xk) 7→ v.p.
∫
Rd

(
uk,ε(x, Xk) − uk,ε(y, Xk)

)
uk,ε(x, Xk)|x − y|d+a dy,

are continuousfor any ε > 0, we deduce by weak convergence of uk,ε
n to uk,ε as n goes to infinity, that

lim
n→∞
En

1 = 2
∫
R2k

uk,ε(x, Xk)
∫
Rd

(
ln uk,ε(x, Xk) − ln uk,ε(y, Xk)

)
|x − y|d+a dydxdXk = Ik

a(uk,ε),

and

lim
n→∞
En

2 = 2
∫
R2k

uk,ε(x, Xk)
∫
Rd

(
uk,ε(x, Xk) − uk,ε(y, Xk)

)
uk,ε(x, Xk)|x − y|d+a dydxdXk = 0.

17
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Hence it follows that
lim inf

n
Ik

a(uk
n) ≥ lim inf

n
Ik

a(uk,ε
n ) = Ik

a(uk,ε).

Then for almost all x, y, x2, · · · , xk ∈ R2(k+1) it holds

lim
ε→0

Φ(uk,ε(x, Xk), uk,ε(y, Xk))
|x − y|d+a =

Φ(uk(x, Xk), uk(y, Xk))
|x − y|d+a ,

up to taking a sequence (εn)n≥1 converging to 0. Hence by Fatou’s Lemma it holds

Ik
a(uk) =

∫
R2(k−1)

∫
Rd×Rd

Φ(uk(x, Xy), uk(y, Xk))
|x − y|d+a dxdydx2 · · · dxk

≤ lim inf
ε>0

∫
R2(k−1)

∫
Rd×Rd

Φ(uk,ε(x, Xk), uk,ε(y, Xk))
|x − y|d+a dxdydx2 · · · dxk = lim inf

ε>0
Ik

a(uk,ε),

and therefore
lim inf

n
Ik

a(uk
n) ≥ Ik

a(uk).

.
Proof of point (iii)
Let be GN ∈ P(RdN) and (X1, · · · , XN) a random vector of law GN , fix i = 1, · · · ,N and denote

gi(x1, · · · , xi|xi+1, · · · , xN) = L(X1, · · · , Xi | Xi+1, · · · , XN),

then

GN(x1, · · · , xN) = gi(x1, · · · , xi|xi+1, · · · , xN)GN−i(xi+1, · · · , xN) = gN−i(xi+1, · · · , xN |x1, · · · , xi)Gi(x1, · · · , xi).

Next observe that for k ≤ i

Φ
(
GN(Xx

k ),GN(Xy
k)
)

=
(
GN(Xx

k ) −GN(Xy
k)
) (

ln Gi(Xx
k,i) − ln Gi(X

y
k,i)

)
+

(
GN(Xx

k ) −GN(Xy
k)
) (

ln gN−i(XN−i|Xx
k,i) − ln gN−i(XN−i|Xy

k,i)
)
,

with the notations

Xx
k = (x1, · · · , xk−1, x, xk+1, · · · , xN),

Xx
k,i = (x1, · · · , xk−1, x, xk+1, · · · , xi), if k = i the last component is x

XN−i = (xi+1, · · · , xN).

Similarly if k > i

Φ
(
GN(Xx

k ),GN(Xy
k)
)

=
(
GN(Xx

k ) −GN(Xy
k)
) (

ln GN−i(Xx
k,N−i) − ln GN−i(X

y
k,N−i)

)
+

(
GN(Xx

k ) −GN(Xy
k)
) (

ln gi(Xi|Xx
k,N−i) − ln gi(Xi|Xy

k,N−i)
)
,

with the similar notations

Xx
k,N−i = (xi+1, · · · , xk−1, x, xk+1, · · · , xN), if k = i + 1 the first component is x

Xi = (x1, · · · , xi).

Using all this yields

18



/ Procedia Computer Science 00 (2019) 1–45 19

Ik
a(GN) =

1
2

1
N

N∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

Φ
(
GN(Xx

k ),GN(Xy
k)
)

|x − y|d+a dxdy dX̂k
N ,

≥
1
2

1
N

∫ i∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

(
GN(Xx

k ) −GN(Xy
k)
) (

ln Gi(Xx
k ) − ln Gi(X

y
k)
)

|x − y|d+a dxdy dX̂k
N

+
1
2

1
N

∫ i∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

(
GN(Xx

k ) −GN(Xy
k)
) (

ln gN−i(XNi |Xx
k,i) − ln gN−i(XN−i|Xy

k,i)
)

|x − y|d+a dxdy dX̂k
N

+
1
2

1
N

∫ N∑
k=i+1

∫
Rd(N−1)

∫
Rd×Rd

(
GN(Xx

k ) −GN(Xy
k)
) (

ln GN−i(Xx
k,N−i) − ln GN−i(X

y
k,N−i)

)
|x − y|d+a dxdy dX̂k

N

+
1
2

1
N

∫ N∑
k=i+1

∫
Rd(N−1)

∫
Rd×Rd

(
GN(Xx

k ) −GN(Xy
k)
) (

ln gi(Xi|Xx
k,N−i) − ln gi(Xi|Xy

k,N−i)
)

|x − y|d+a dxdy dX̂k
N

:= J i
1 +J i

2 +JN−i
1 +JN−i

2 .

� Estimate of J1:
Both terms are treated equally, so we will focus only on the i term. Using Fubini’s Theorem yields

J1
1 =

1
2

1
N

∫ i∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

GN(Xx
k,i, X

N−i)
(
ln Gi(Xx

k,i) − ln Gi(X
y
k,i)

)
|x − y|d+a dxdy dX̂k

N

−
1
2

1
N

∫ i∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

GN(Xy
k,i, X

N−i)
(
ln Gi(Xx

k,i) − ln Gi(X
y
k,i)

)
|x − y|d+a dxdy dX̂k

N

=
1
2

1
N

∫ i∑
k=1

∫
R2(i−1)

∫
Rd×Rd

∫
GN(Xx

k,i, X
N−i)dXN−i

(
ln Gi(Xx

k,i) − ln Gi(X
y
k,i)

)
|x − y|d+a dxdy dX̂k

i

−
1
2

1
N

∫ i∑
k=1

∫
R2(i−1)

∫
Rd×Rd

∫
GN(Xy

k,i, X
N−i)dXN−i

(
ln Gi(Xx

k,i) − ln Gi(X
y
k,i)

)
|x − y|d+a dxdy dX̂k

i

=
1
2

1
N

∫ i∑
k=1

∫
R2(i−1)

∫
Rd×Rd

(
Gi(Xx

k,i) −Gi(X
y
k,i)

) (
ln Gi(Xx

k,i) − ln Gi(X
y
k,i)

)
|x − y|d+a dxdy dX̂k

i =
i
N
Ii

a(Gi).

� Estimate of J2:
Similarly we only treat J i

2. Using point (i) of Lemma 3.1 and once again Fubini’s Theorem we get

J i
2 ≥

1
2

1
N

∫ i∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

(
Gi(Xx

k,i) −Gi(X
y
k,i)

) (
gN−i(XN−i|Xx

k,i) − gN−i(XN−i|Xy
k,i)

)
|x − y|d+a dxdy dX̂k

N

=
1

2N

∫ i∑
k=1

∫
R2(i−1)

∫
Rd×Rd

(
Gi(Xx

k,i) −Gi(X
y
k,i)

) (∫
gN−i(XN−i|Xx

k,i)dXN−i −
∫

gN−i(XN−i|Xy
k,i)dXN−i

)
|x − y|d+a dxdy dX̂k

i

= 0

Moreover due to point (i) of Lemma 3.1, J2 = 0 only if for any k = 1, · · · , i for almost every x, y ∈ Rd × Rd and
x1, · · · , xk−1, xk+1, xi ∈ R2(i−1) it holds

gN−i(XN−i|x1, · · · , xk−1, x, xk+1, xi) = gN−i(XN−i|x1, · · · , xk−1, y, xk+1, xi) = µ(XN−i),

for some µ ∈ P(R2(N−i)). But necessarily µ = GN−i and we deduce that

GN = Gi ⊗GN−i.
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Proof of point (iv)
Note that the symmetry of GN yields

IN
a (GN) =

1
2

∫
Rd(N−1)

∫
Rd×Rd

Φ
(
GN(Xx

1),GN(Xy
1)
)

|x − y|d+a dxdy dX̂1
N .

In the tensorised case, Fubini’s Theorem yields

IN
a (g⊗N) =

∫ ∫
Rd×Rd

(
g(x)

∏N
k=2 g(xk) − g(y)

∏N
k=2 g(xk)

) (
ln

(
g(x)

∏N
k=2 g(xk)

)
− ln

(
g(y)

∏N
k=2 g(xk)

))
|x − y|d+a dxdyX̂1

N

=

∫ (∫
Rd×Rd

(g(x) − g(y)) (ln(g(x)) − ln(g(y)))
|x − y|d+a dxdy

) N∏
k=2

g(xk)dX̂1
N = Ia(g).

On the other hand, with similar notations as in point (iii) write

GN(Xx
1) = Gk(Xx

1)gN−k(XN−k |Xx
1),

and then

Φ
(
GN(Xx

1),GN(Xy
1)
)

=
(
GN(Xx

1) −GN(Xy
1)
) (

ln Gk(Xx
1) − ln Gk(Xy

1)
)

+
(
GN(Xx

1) −GN(Xy
1)
) (

ln gN−k(XN−k |Xx
1) − ln gN−k(XN−k |Xy

1)
)

≥
(
GN(Xx

1) −GN(Xy
1)
) (

ln Gk(Xx
1) − ln Gk(Xy

1)
)

+
(
Gk(Xx

1) −Gk(Xy
1)
) (

gN−k(XN−k |Xx
1) − gN−k(XN−k |Xy

1)
)
,

dividing the above inequality by |x − y|d+a and integrating over dxdydx2, · · · , dxN yields the desired result thanks to
similar computations as the one done in the proof of point (iii).
To see that IN

a is proper, take ν ∈ P(Rd) and ψε = ε−2e−
√

1+ε−2 |x|2 , and define νN,ε := (νε)⊗ := (ν ∗ ψε)⊗N ∈ P(RdN).
Then we have

IN
a (νN,ε) =Ia(ν ∗ ψε) =

∫
R4

Φ(νε(x), νε(y))
|x − y|d+a dxdy

≤

∫
|x−y|≤1

νε(x) − νε(y)
ln(νε(x)) − ln(νε(y))

| ln(νε(x)) − ln(νε(y))|2

|x − y|d+a dxdy

+

∫
|x−y|≥1

(νε(x) + νε(y))
| ln(νε(x)) − ln(νε(y))|

|x − y|d+a dxdy

≤

∫
|x−y|≤1

(νε(x) + νε(y))
| ln(νε(x)) − ln(νε(y))|2

|x − y|d+a dxdy

+

∫
|x−y|≥1

(νε(x) + νε(y))
| ln(νε(x)) − ln(νε(y))|

|x − y|d+a dxdy,

Using [20, Lemma 5.8] (see also Lemma Appendix C.1 below) we find that ‖∇ ln νε‖L∞(Rd) ≤ ε
−1. Therefore

IN
a (νN,ε) ≤ 2

∫
Rd
νε(x)

(∫
Rd

(|x − y|−(d−2+a) ∧ |x − y|−(d−1+a))dy
)

dx < ∞.

So that IN
a is non identically equal to +∞, and it is proper.

Remark 3.3. All the properties established on the fractional Fisher information can be proved with the same tech-
niques for the classical Fisher information

IN(FN) =
1
N

N∑
i=1

∫
RdN
∇iFN · ∇i ln FNdXN ,
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using this particular form, and a slight modification of point (i) of Lemma 3.1 which reads

∇( f g) · ∇ ln g = ∇ f · ∇g +
f
g
|∇g|2 ≥ ∇ f · ∇g,

for f , g two nonnegative functions. Usually, those properties are obtained with the duality form

I(FN) = sup
ϕ∈C1

b(RdN )

〈
FN ,−

ψ2

4
− ∇ · ψ

〉
,

see [20, Lemma 3.7] for instance. See also [7, Theorem 3] for the first proof of the superadditivity of the Fisher
information, i.e. point (iii) of the above Proposition, where the form

IN(FN) =
4
N

N∑
i=1

∫
RdN

∣∣∣∣∇i

√
FN

∣∣∣∣2 = dXN =
4
N
|
√

FN |2H1(RdN ),

is used.

According to [20, Definition 5.2], define for κ ≥ 1 the sets Pκ(P(Rd)) as

Pκ(P(Rd)) := {π ∈ P(P(Rd)) |
∫
P(Rd)

∫
Rd
〈x〉κρ(dx)π(dρ) < ∞}

:= {π ∈ P(P(Rd)) |
∫
P(Rd)

Mκ(ρ)π(dρ) < ∞}

:= {π ∈ P(P(Rd)) |Mκ(π) < ∞},

and
Pκ(RdN) := {(FN)N≥1 |FN ∈ Psym(RdN) and sup

N≥1

∫
RdN
〈x1〉

κFN(dx1, · · · , dxN) < ∞}.

In some sense we abuse the N in the notation, so we emphasize that Pκ(RdN) is a set of sequences. For π ∈ Pκ(P(Rd)),
define (πN)N≥1 its Hewitt and Savage (see for instance [20, Theorem 5.1]) projection on Pκ(RdN) as

πN :=
∫
P(Rd)

ρ⊗Nπ(dρ).

Next define on Pκ(P(Rd)) the mean fractional Fisher information Ĩa as

Ĩa(π) = sup
N≥1
IN

a (πN) = lim
N≥1
IN

a (πN). (3.18)

The fact that the lim equals the sup comes from the fact that the sequence
(
IN

a (πN)
)

N≥1
is nondecreasing. Indeed the

sequence of symmetric probability measures (πN)≥1 is compatible, i.e. for any k < N the marginal on Rd(N−k) of πN is
πN−k. So that πN−1 is the marginal on Rd(N−1) of πN and by point (iv) of Proposition 3.1 we have IN

a (πN) ≥ IN−1
a (πN−1).

We now give the last technical result, which proof is delayed in appendix, and which enables to conclude to the
desired Γ-l.s.c. property in the

Proposition 3.2. The functional Ĩa defined in (3.18) is affine in the following sense. For any π ∈ Pκ(P(Rd)) and any
partition of Pκ(Rd) by some sets (ωi)i=1,··· ,M , such that ωi is an open set in Pκ(Rd) \

(⋂i−1
j=1 ω j

)
for all 1 ≤ i ≤ M − 1

and π(ωi) > 0 for all 1 ≤ i ≤ M, defining

αi := π(ωi) and γi = (αi)−11ωiπ ∈ Pκ(P(Rd))
γi = 0 if αi = 0,
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so that

π =

M∑
i=1

αiγi, and
M∑

i=1

αi = 1,

it holds

Ĩa(π) =

M∑
i=1

αiĨa(γi).

Remark 3.4. If one considers the classical normalized Fisher information IN (cf Remark 3.3), that is the derivative
of the Boltzmann’s entropy along the classical many-body heat flow (i.e. equation (3.17) with fractional Laplacian
replaced with standard Laplacian), a similar result as the one of the above Proposition can be found in [24, Propo-
sition 3]. It based on the fact that the mean Fisher information Ĩ defined thanks to IN through a similar relation as
(3.18), is the time derivative of the mean entropy along the infinite dimensional heat flow. And then the mean Fisher
information is affine by linearity of the time derivative, the heat flow, and the mean entropy (see for instance [29]).
Another proof can be found in [20], which strategy will be followed in the proof of Proposition 3.2 in Appendix C. But
it is very likely that the lines of the proof of [24, Proposition 3] can also be followed in the fractional case.
Another proof of the affinity of some mean information closely related to the one studied in this paper can be found in
[30, Lemma A.6]. More precisely it is shown that the mean information T̃a associated to the family of functionals

T N
a (FN) =

1
2

1
N

N∑
k=1

∫
Rd(N−1)

∫
Rd×Rd

( √
FN(Xx

k ) −
√

FN(Xy
k)
)2

|x − y|d+a dxdy dXN−1,

through a similar relation as (3.18), is affine. Due to (1.8), we have IN
a ≥ 4T N

a . Furthermore, we claim that the
functionals T N

a satisfies the properties listed in Proposition 3.1. So that the same result as the one of Corollary 3.1
below applies to T̃a. Moreover since

T N
a ( f ⊗N) = | f |2Ha/2(Rd),

the information T̃a provides the required regularity at the limit. So that it is very likely that all our analysis could be
rewritten thanks to these functionals.

We now can state the key argument which enables in the Diffusion Dominated case to go beyond a conver-
gence/consistency result, and provide a complete propagation of chaos result.

Corollary 3.1. For any π ∈ Pκ(P(Rd)) it holds

Ĩa(π) =

∫
P(Rd)

Ia(ρ)π(dρ),

Moreover the functional Ĩa is affine, proper and l.s.c. w.r.t. the weak convergence in Pκ(P(Rd)) and satisfies the
Γ-lower semi continuous property, i.e. for any sequence (FN)N≥1 ∈ Pκ(RdN) converging toward π ∈ Pκ(P(Rd)) in the
sense that

∀ j ≥ 2, F j
N
∗
⇀ π j inP(Rd j), as N → +∞,

where F j
N denotes the marginal on Rd j of FN , and π j the π Hewitt and Savage projection on Rd j, then it holds

lim inf
N
IN

a (FN) ≥ Ĩa(π) =

∫
P(Rd)

Ia(ρ)π(dρ).

Proof. This result is an immediate consequence of [20, Lemma 5.6], and Propositions 3.1 and 3.2. We leave the
reader check that the last two propositions consist in checking that the family of functionals (IN

a )N≥1 satisfies the
assumptions of [20, Lemma 5.6].

This result also provides the so-called 3-level representation of the fractional Fisher information in 2d defined in
(3.18) i.e.

Ĩa(π) =

∫
P(Rd)

Ia(ρ)π(dρ) = sup
N≥1
IN

a (πN) = lim
N≥1
IN

a (πN),

with πN =
∫
P(Rd) ρ

⊗Nπ(dρ).
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3.3. Convergence/consistency of particle system (1.5)
In this section we establish the tightness of the law of the particle system (1.5) in both case α < a and α = a. Note

that in both case we have that

XN,1
t = XN,1

0 +

∫ t

0

1
N

N∑
j>1

Kα(XN,1
s − XN, j

s ) ds +Z1
t := XN,1

0 + JN,1
t +Z1

t ,

so that it is enough to show the tightness of the
(
(JN,1

t )t∈[0,T ]

)
N≥1

to deduce the tightness of the law of
(
( 1

N
∑N

i=1 δXi
t
)t∈[0,T ]

)
N≥1

,
due to point (ii) of Proposition 2.1. First we need some moments estimates given in the

Lemma 3.3. Let (XN,1
t , · · · , XN,N

t ) be a solution to (1.5) with α ∈ (1, a] (with law FN
t ). Then for any κ ∈ (1, a) and

t > 0 there is a constant Ca,κ such that

sup
i=1,··· ,N

E
[
〈Xi

t〉
κ
]

=

∫
RdN
〈x1〉

κFN
t ≤ Ca,κt +

∫
RdN
〈x1〉

κFN
0 .

Proof. Using Ito’s formula with the C2 functional mκ yields

mκ(X1
t ) = mκ(X1

0) −
∫ t

0

χ

N
a
(
1 +

∣∣∣X1
s

∣∣∣2) κ−2
2

X1
s ·

∑
k>1

Z1,k
s

|Z1,k
s |

α

 ds

+

∫
[0,t]×Rd

(
mκ(X1

s− + x) − mκ(X1
s− ) − x · ∇mκ(X1

s− )
)

M1(ds, dx)

+

∫
[0,t]×Rd

x · ∇mκ(X1
s− )M̄1(ds, dx).

Taking the expectation yields

E
[
mκ(X1

t )
]

= E
[
mκ(X1

0)
]
−

∫ t

0

χ

N
aE

(1 +
∣∣∣X1

s

∣∣∣2) κ−2
2

X1
s ·

∑
k>1

Z1,k
s

|Z1,k
s |

α

 ds

+

∫ t

0
E

[
c2,a

∫
Rd

mκ(X1
s + x) − mκ(X1

s ) − x · ∇mκ(X1
s )

|x|d+a dx
]

ds.

By ex-changeability and point (iii) of Lemma 3.1 we get

E
(1 +

∣∣∣X1
s

∣∣∣2) κ−2
2

X1
s ·

Z1,k
s

|Z1,k
s |

α

 =
1
2
E

((1 +
∣∣∣X1

s

∣∣∣2) κ−2
2

X1
s −

(
1 +

∣∣∣Xk
s

∣∣∣2) κ−2
2

Xk
s

)
·

Z1,k
s

|Z1,k
s |

α

 ≥ 0,

and then

E
[
mκ(X1

t )
]
≤ E

[
mκ(X1

0)
]

+

∫ t

0
E

[
−(−∆)a/2mκ(X1

s )
]

ds.

Using (3.16) then yields

E
[
mκ(XN,1

t )
]
≤ E

[
mκ(XN,1

0 )
]

+

∫ t

0
Ca,κE

[
mκ−a(XN,1

s )
]

ds

≤ E
[
mκ(X1

0)
]

+ tCa,κ,

since κ < a and therefore mκ−a(x) ≤ 1 for any x ∈ Rd. And the result is proved since by ex-changeability of the
particles it holds for any i = 1, · · · ,N

E
[
〈Xi

t〉
κ
]

= E
[
〈X1

t 〉
κ
]

=

∫
RdN
〈x1〉

κFN
t .
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We now give the two main results of this section. The first is the

Proposition 3.3. Let 1 < α < a < 2, and (XN,1
t , · · · , XN,N

t ) be a solution to equation (1.5) for an initial condition with
law (FN

0 )N≥1 ∈ Pκ(RdN) for some κ ∈ (1, a) and such that

HN(FN
0 ) =

1
N

∫
RdN

FN
0 ln FN

0 dXN < ∞.

Then for any t > 0 it holds ∫ t

0
IN

a (FN
s )ds ≤ C

(
HN(FN

0 ) +

∫
RdN
〈x1〉

κFN
0 + t

)
,

where C > 0 is a constant independent of FN
0 . In particular for any γ ∈ (0, a) it holds

sup
N≥1

∫ T

0
sup

1≤i, j≤N
E

[
|XN,i

u − XN, j
u |
−γ

]
du < ∞.

The proof of this proposition is based on [18] itself inspired by [15]. It relies on a control of the Fisher information.
The second result proved in this section is given in the

Proposition 3.4. Let 1 < α = a < 2 and (XN,1
t , · · · , XN,N

t ) be a solution to equation (1.5) for an initial condition
with law (FN

0 )N≥1 ∈ Pκ(RdN) for some κ ∈ (1, a). There exists a∗ ∈ (1, 2), and χ : a ∈ (a∗, 2) 7→ (0,∞), such that if
a ∈ (a∗, 2) and χ ∈ (0, χ(a)) then it holds for any T > 0 and ε ∈ (0, 1)

sup
N≥1

∫ T

0
sup

1≤i, j≤N
E

[
|XN,i

u − XN, j
u |

ε−a
]

du < ∞.

The proof of this proposition is based on [16] itself inspired by [28]. Unfortunately, the technical limitation
a∗ ∈ (1, 2) is not sharp, and it seems not clear how to improve them. The proofs of both these propositions are given
later in this section.

3.3.1. Proof of Proposition 3.3
We begin the proof of this proposition with some fractional logarithmic Gagliardano-Nirenberg-Sobolev inequal-

ity. More precisely we have the

Lemma 3.4. Let be d ≥ 2, for any p ∈ (1, d
d−a ], there is a constant Cp,d,a > 0 s.t. ∀u ∈ P(Rd) it holds

‖u‖Lp(Rd) ≤ Cp,d,aIa(u)1− d
a

(
1
p−

d−a
d

)
.

Remark 3.5. This Lemma can be seen as a generalization in the fractional case of [15, Lemma 3.2], in the case
α < 2. However in the case d = 2, the critical exponent 2

2−a can be reached when a < 2, whereas the exponent∞ has
to be excluded case a = 2.

Proof. First recall that by (1.8) for any x, y ≥ 0 it holds

Φ(x, y) ≥ 4
(√

x −
√

y
)2
,

so that

Ia(u) =

∫
Rd×Rd

Φ(u(x), u(y))
|x − y|d+a

≥ 4
∫
Rd×Rd

(√
u(x) −

√
u(y)

)2

|x − y|d+a = 4|
√

u|2Ha/2(Rd).
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By fractional Sobolev’s embeddings (see for instance [10, Theorem 6.5]) there is Ca,d > 0 such that

|
√

u|2Ha/2(Rd) ≥ Ca,d‖
√

u‖2
L

2d
d−a (Rd)

= Ca,d‖u‖L d
d−a (Rd)

,

we conclude to the desired result since for any p ∈ (1, d
d−a ] by interpolation inequality we have

‖u‖Lp(Rd) ≤ ‖u‖
d
a

(
1
p−

d−a
d

)
L1(Rd) ‖u‖

1− d
a

(
1
p−

d−a
d

)
L

d
d−a (Rd)

.

Lemma 3.5. Let be γ ∈ (0, a) and p ∈
(

d
d−γ ,

d
d−a

)
. There exists a constant Cγ,p,a > 0 such that for any N ≥ 2 and

FN ∈ Psym(RdN) it holds ∫
RdN
|x1 − x2|

−γFN(dx1 · · · dxN) ≤ Cγ,p,a

(
1 + IN

a (FN)1− 2
a

(
1
p−

2−a
2

))
.

Proof. We introduce the unitary linear transformation

∀(x1, x2) ∈ Rd × Rd, Ψ(x1, x2) = (x1 − x2, x2).

Denote F2 ∈ Psym(R2d) the marginal of FN on R2d and F̃2 = F2 ◦ Ψ−1. A simple substitution shows that I2
a(F2) =

I2
a(F̃2). Indeed

I2
a(F̃2) =

∫
Rd

∫
Rd×Rd

Φ(F2 ◦ Ψ−1(x, z), F2 ◦ Ψ−1(y, z))
|x − y|d+a dxdydz

=

∫
Rd

∫
Rd×Rd

Φ(F2(x + z, z), F2(y + z, z))
|(x + z) − (y + z)|d+a dxdydz

=

∫
Rd

∫
Rd×Rd

Φ(F2(x, z), F2(y, z))
|x − y|d+a dxdydz = I2

a(F2).

Then

∫
RdN
|x1 − x2|

−γFN(dx1 · · · dxN) =

∫
Rd×Rd

|x1 − x2|
−γF2(x1, x2)dx1dx2

=

∫
R2×Rd

|y1|
−γF̃2(y1, y2)dy1dy2

≤ 1 +

∫
R2×Rd

1|y1 |≤1|y1|
−γF̃2(y1, y2)dy1dy2

≤ 1 +

∫
|y1 |≤1
|y1|
−γ f̃ 2

1 (y1)dy1

where we used the unitary change of variables (y1, y2) = Ψ(x1, x2), f̃ 2
1 denotes the first marginal of F̃2. Then for

any p > d
d−γ

∫
R2×Rd

|x1 − x2|
−γF2(x1, x2)dx1dx2 ≤ 1 +

(∫
|y1 |≤1
|y1|
−γp′dy1

)1/p′

‖ f̃ 2
1 ‖Lp(Rd)

≤ Cγ,p

(
1 + I

1− 2
a

(
1
p−

2−a
2

)
a ( f̃ 2

1 )
)
,

where we used Lemma 3.4. The proof is then concluded since

Ia( f̃ 2
1 ) ≤ I2

a(F̃2) = I2
a(F2) ≤ IN

a (FN),

thanks to point (iv) Proposition 3.1.
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Remark 3.6. Note that in the tensorized case FN = f ⊗N with f ∈ P(Rd) (in which we are clearly not), Hardy-
Littlewood-Sobolev’s inequality (see for instance [27, Theorem 4.3]) yields∫

RdN
|x1 − x2|

−γFN(dx1 · · · dxN) =

∫
Rd×Rd

|x1 − x2|
−γ f (x1) f (x2)dx1dx2 ≤ C‖ f ‖2

L
2d

2d−γ
.

But by Lemma 3.4
‖ f ‖2

L
2d

2d−γ
≤ C(Ia( f ))γ/a,

so that using point (iv) of Proposition 3.1 yields∫
RdN
|x1 − x2|

−γFN(dx1 · · · dxN) ≤ C
(
I2

a(FN)
)γ/a

,

which holds even in the critical case γ = a, (provided that a , 2 when d = 2). The latter condition excludes the
classical Keller Segel case a = d = 2.

We now have all the ingredient to mimic the entropy dissipation estimate of [15]. Precisely we have the

Lemma 3.6. Let be α ∈ (1, a), χ > 0, and (XN,1
t , · · · , XN,N

t )t≥0 a solution to (1.5) with initial law FN
0 ∈ Pκ(R

dN) for
some κ ∈ (1, a), and denote FN

t ∈ Pκ(RdN) its law. Then for any p ∈
(

d
d−α ,

d
d−a

)
there is a constant Cα,p,a,χ,κ > 0 such

that ∫ t

0
IN

a (FN
s ) ds ≤ Cα,p,a,χ,κ

(
HN(FN

0 ) +

∫
RdN
〈x1〉

κFN
0 + t

)
.

Proof. We first prove that FN
t is a weak solution at time t to the Liouville equation (2.14). Let be φ ∈ C∞(RdN). Due

to Ito’s rule we get

φ(XN,1
t , · · · , XN,N

t ) = φ(XN,1
0 , · · · , XN,N

0 ) +

∫ t

0

N∑
i=1

∇iφ(XN,1
s , · · · , XN,N

s ) ·
1
N

∑
j,i

Kα(XN,i
s − XN, j

s ) ds

+

N∑
i=1

∫
[0,t]×Rd

(
φ(XN,1

s− , ·, X
N,i
s− + z, ·, XN,N

s− ) − φ(XN,1
s− , · · · , X

N,N
s− ) − z · ∇iφ(XN,1

s− , · · · , X
N,N
s− )

)
Mi(ds, dz)

+

N∑
i=1

∫
[0,t]×Rd

z · ∇iφ(XN,1
s− , · · · , X

N,N
s− )M̄i(ds, dz),

and since FN
t = L(XN,1

t , · · · , XN,N
t ) taking the expectation yields∫

RdN
φ(x1, · · · , xN)FN

t =

∫
RdN

φ(x1, · · · , xN)FN
0 +

∫ t

0

∫
RdN

N∑
i=1

∇iφ(x1, · · · , xN) ·
1
N

∑
j,i

Kα(xi − x j)FN
s ds

+

∫ t

0

N∑
i=1

∫
RdN

cd,a

∫
Rd

φ(x1, ·, xi + z, ·, xN) − φ(x1, · · · , xN) − z · ∇iφ(x1, · · · , xN)
|z|d+a dzFN

s ds,

which is nothing but the weak formulation of (2.14). Hence we deduce, dropping the t in the notation for the sake of
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simplicity

d
dt
HN(FN) =

1
N

∫
RdN

∂tFN(1 + ln FN)

= −
χ

N2

∑
j,i

∫
RdN
∇i ·

(
Kα(xi − x j)FN

)
(1 + ln FN)

−
1
N

N∑
i=1

∫
RdN

p.v.
∫
Rd

FN(x1, ·, xi + z, ·, xN) − FN(x1, · · · , xN)
|z|d+a (1 + ln FN(x1, · · · , xN))dzdx1 · · · dxN

=
χ

N2

∑
j,i

∫
RdN
∇i ·

(
Kα(xi − x j)

)
FN(x1, · · · , xN)dx1, · · · , dxN

−
1
N

N∑
i=1

∫
RdN

∫
Rd

(
FN(x1, ·, x, ·, xN) − FN(x1, ·, y, ·, xN)

) (
ln FN(x1, ·, x, ·, xN) − ln FN(x1, ·, y, ·, xN)

)
|x − y|d+a dxdydX̃i

N

=
χ(N − 1)(α − 1)

N

∫
Rd×Rd

|x1 − x2|
−αF2(x1, x2)dx1dx2 − I

N
a (FN),

where X̃i
N = dx1, ·, dxi−1, dxi+1, ·, dxN and F2 ∈ P(Rd × Rd) stands for the two particles marginal of FN . But using

Lemma 3.5, we find for any p ∈
(

d
d−α ,

d
d−a

)
that

d
dt
HN(FN

t ) ≤ χ(α − 1)Cα,p,a

(
1 + IN

a (FN
t )1− 2

a

(
1
p−

2−a
2

))
− IN

a (FN
t )

≤ χ(α − 1)Cα,p,a −

(
IN

a (FN
t ) − χ(α − 1)Cα,p,aI

N
a (FN

t )1− 2
a

(
1
p−

2−a
2

))
≤ Cα,p,a,χ −

1
2
IN

a (FN
t ),

so that

HN(FN
t ) +

∫ t

0

1
2
IN

a (FN
s )ds ≤ HN(FN

0 ) + Cα,p,a,χt. (3.19)

Then define GN
κ = e−

∑N
i=1 λκ |xi |

κ

, with λκ > 0 being such that∫
Rd

e−λκ |x|
κ

dx = 1.

By positivity of the relative entropy

HN(FN
t ) =

∫
RdN

FN
t ln

(
FN

t

GN
κ

)
+

∫
RdN

F t
t ln

(
GN
κ

)
≥ −λκ

∫
RdN
〈x1〉

κFN
t

and summing λκ
∫
RdN 〈x1〉

κFN
t to (3.19), combined to Lemma 3.3 yields(

HN(FN
t ) + λκ

∫
RdN
〈x1〉

κFN
t

)
+

∫ t

0

1
2
IN

a (FN
s )ds ≤ HN(FN

0 ) + λκ

∫
RdN
〈x1〉

κFN
0 +

(
Cα,p,a,χ + λκCa,κ

)
t

which concludes the desired result, since the l.h.s. of the above inequality is the sum of two nonnegative term.

Combining Lemmas 3.6 and 3.5 concludes the proof of Proposition 3.3.

3.3.2. Proof of Proposition 3.4
In this section we now set α = a. In this case we extend the method used in [16]. In this case let (XN,1

t , · · · , XN,N
t )t∈[0,T ]

be a solution to (1.5) and denote Zi, j
s := XN,i

s − XN, j
s note that it solves

Zi, j
t = Zi, j

0 −
χ

N

∫ t

0

∑
k,i, j

 Zi,k
s

|Zi,k
s |

a
−

Z j,k
s

|Z j,k
s |

a

 ds −
2χ
N

∫ t

0

Zi, j
s

|Zi, j
s |

a
ds +

∫
[0,t]×Rd

x
(
M̄i − M̄ j

)
(ds, dx).
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Recall that (Mi)i=1,··· ,N are independent Poisson random measures with intensity dscd,a|x|−(d+a)dx, and M̄i are their
compensated measures (see (2.9)). Denote

Hi, j
t :=

∫
[0,t]×Rd

x
(
M̄i − M̄ j

)
(ds, dx).

It holds (see [9]) for any r ∈ Rd, since Mi is independent of M j

E
[
eir·Hi, j

t

]
= E

[
eir·

∫
[0,t]×Rd xM̄i(ds,dx)

]
E

[
e−ir·

∫
[0,t]×Rd xM̄ j(ds,dx)

]
= e−t2ca,d |r|a = e−tca,d |21/ar|a = E

[
ei21/ar·

∫
[0,t]×Rd xM̄i(ds,dx)

]
,

hence by equality of the Fourier transform, it follows that

Hi, j
t

(L)
=

∫
[0,t]×Rd

21/axM̄i(ds, dx).

Let be ε ∈ (0, 1), η > 0 and similarly as in Lemma 3.2 define

φη(x) = ηε〈
x
η
〉ε =

(
|x|2 + η2

) ε
2 ,

using Ito’s rule yields

φη
(
Zi, j

t

)
= φη

(
Zi, j

0

)
−

∫ t

0

χ

N
ε
(
|Zi, j

s |
2 + η2

) ε−2
2 Zi, j

s ·

∑
k,i, j

 Zi,k
s

|Zi,k
s |

a
−

Z j,k
s

|Z j,k
s |

a

 ds

−

∫ t

0

2χε
N

(
|Zi, j

s |
2 + η2

) ε−2
2

∣∣∣∣Zi, j
s

∣∣∣∣2−a
ds

+

∫
[0,t]×Rd

(
φη

(
Zi, j

s− + 21/ax
)
− φη

(
Zi, j

s−

)
− 21/ax · ∇φη

(
Zi, j

s−

))
Mi(ds, dx)

+

∫
[0,t]×Rd

21/ax · ∇φη
(
Zi, j

s−

)
M̄i(ds, dx).

(3.20)

Taking the expectation yields

E
[
φη

(
Zi, j

t

)]
= E

[
φη

(
Zi, j

0

)]
−

∫ t

0

χ

N
εE

(|Zi, j
s |

2 + η2
) ε−2

2 Zi, j
s ·

∑
k,i, j

 Zi,k
s

|Zi,k
s |

a
−

Z j,k
s

|Z j,k
s |

a


 ds

−

∫ t

0

2χε
N

E
[(
|Zi, j

s |
2 + η2

) ε−2
2
|Zi, j

s |
2−a

]
ds

+

∫ t

0
E

cd,a

∫
Rd

φη
(
Zi, j

s + 21/ax
)
− φη

(
Zi, j

s

)
− 21/ax · ∇φη

(
Zi, j

s

)
|x|d+a dx

 ds.

Note that the change of variable x′ = 21/ax yields

cd,a

∫
Rd

φη
(
Z + 21/ax

)
− φη (Z) − 21/ax · ∇φη (Z)

|x|d+a dx = cd,a

∫
Rd

φη (Z + x′) − φη (Z) − x′ · ∇φη (Z)
|2−1/ax′|d+a 2−d/adx′

= 2(−∆)a/2φη(Z)
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Also note that due to ex changeability we find

Ai, j
s := E

(|Zi, j
s |

2 + η2
) ε−2

2

∣∣∣∣∣∣∣∣Zi, j
s ·

∑
k,i, j

 Zi,k
s

|Zi,k
s |

a
−

Z j,k
s

|Z j,k
s |

a


∣∣∣∣∣∣∣∣


≤
∑
k,i, j

(
E

[(
|Zi, j

s |
2 + η2

) ε−2
2

∣∣∣∣Zi, j
s

∣∣∣∣ ∣∣∣Zi,k
s

∣∣∣1−a
]

+ E
[(
|Zi, j

s |
2 + η2

) ε−2
2

∣∣∣∣Zi, j
s

∣∣∣∣ ∣∣∣∣Z j,k
s

∣∣∣∣1−a])
= 2

∑
k,i

E
[(
|Zi, j

s |
2 + η2

) ε−2
2

∣∣∣∣Zi, j
s

∣∣∣∣ ∣∣∣Zi,k
s

∣∣∣1−a
]

≤ 2
∑
k,i

E
[((
|Zi, j

s |
2 + η2

) ε−2
2

∣∣∣∣Zi, j
s

∣∣∣∣)p]1/p

E
[∣∣∣Zi,k

s

∣∣∣(1−a)p/(p−1)
](p−1)/p

≤ 2(N − 2)E
[((
|Z1,2

s |
2 + η2

) ε−1
2
)p]1/p

E
[∣∣∣Z1,2

s

∣∣∣(1−a)p/(p−1)
](p−1)/p

,

for any p > 1. Choosing p = 1 + a−1
1−ε yields

Ai, j
s ≤ 2(N − 2)E

[((
|Z1,2

s |
2 + η2

) ε−1
2
) a−ε

1−ε
] 1−ε

a−ε

E
[∣∣∣Z1,2

s

∣∣∣ε−a] a−1
a−ε .

Putting all those estimates together and using also Lemma 3.2, we get

E
[
φη

(
Z1,2

t

)]
≥ −

2χε(N − 2)
N

∫ t

0
E

[(
|Z1,2

s |
2 + η2

) ε−a
2
] 1−ε

a−ε
E

[∣∣∣Z1,2
s

∣∣∣ε−a] a−1
a−ε ds −

∫ t

0

2χε
N

E
[(
|Zi, j

s |
2 + η2

) ε−a
2
]

ds

+ 2cd,a|Sd−1|ε

∫ t

0

(
εcd

2(2 − a)
E

[(
|Z1,2

s |
2 + η2

) ε−4
2
|Z1,2

s |
4−a

]
−Cε,aE

[
|Z1,2

s |
ε−a

])
ds.

(3.21)

On the other hand, provided that η ∈ (0, 1), since κ > 1 > ε using ex-changeability

E
[
φη

(
Z1,2

t

)]
≤ E

[
〈Z1,2

t 〉
κ
]

≤ 2
κ
2 +1E

[
〈X1

t 〉
κ
]
≤ 2

κ
2 +1Ca,κ,t,

where Ca,κ,t is the constant exhibited in Lemmma 3.3. This and letting η go to 0 in (3.21) yields

2
κ
2 +1Ca,κ,t

2ε
(
cd,a|Sd−1|( εcd

2(2−a) −Cε,a) − χ
) ≥ ∫ t

0
E

[∣∣∣Z1,2
s

∣∣∣ε−a]
ds,

provided that
εcd,a|Sd−1|cd

2(2 − a)
− cd,a|Sd−1|Cε,a > χ,

where we recall that Cε,a =

(
2−ε

√
4−ε(3−a)ε

+ 1
aε

)
. Now for fixed d ≥ 2, we may define a∗ as

a∗ := inf
{
a ∈ (1, 2), s.t. sup

ε∈(0,1)

{ εcd

2(2 − a)
−Cε,a

}
> 0

}
,

and for fixed a ∈ (a∗, 2), we define χ(a) as

χ(a) := cd,a|Sd−1| sup
ε∈(0,1)

{ εcd

2(2 − a)
−Cε,a

}
.

And the proof of Proposition 3.4 is complete.
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3.3.3. Martingale method for convergence/consistency
Using now Propositions 3.3 and 3.4, we can give the

Theorem 3.1. Let be T > 0 and either 1 < α < a < 2 and χ > 0 or a∗ < α = a < 2 and χ ∈ (0, χ(a)). Consider
(XN,i

t )t∈[0,T ],i=1,··· ,N a sequence of solution to (1.5), and denote µN
t := 1

N
∑N

i=1 δXN,i
t

the associated empirical measure.

Assume that FN
0 = L

(
XN,1

0 , · · · , XN,N
0

)
the law of the initial condition satisfies

FN
0 = ρ⊗N

0 , with ρ0 ∈ L log L(Rd) ∩ Pκ(Rd), if a > α,

or
(FN

0 )N≥1 is ρ0 − chaotic, (FN
0 )N≥1 ∈ Pκ(RdN), if a = α ∈ (a∗, 2),

for some κ ∈ (1, a). Then

(i) (µN
. )N∈N is tight in P(D([0,T ],Rd))

(ii) any accumulation point of (µN
. )N∈N almost surely belongs to Sa

α in case a > α or Sa in case a = α respectfully
defined as

Sa
α = {ρ ∈ P

(
D

(
0,T ;Rd)

))
| ρ. = L(X.), X.solution to (1.7), and

∫ T

0
Ia(ρt)dt < ∞},

Sa = {ρ ∈ P
(
D

(
0,T ;Rd)

))
| ρ. = L(X.), X.solution to (1.7), and

∫ T

0

∫
Rd×Rd

|x − y|ε−aρt(x)ρt(y)dxdydt < ∞},

∀ε ∈ (0, a).
(3.22)

Remark 3.7. This Theorem is mostly a retranscription of [16, Step 2 of proof of Theorem 6], [15, Proposition 6.1] or
[18, Proposition 4.2]. It is a natural step in propagation of chaos by tightness to characterize the limit point obtained
by compactness.

Proof. Proof of (i)
First the sequence (XN,1

0 )N≥1 is tight, since the initial condition are assumed to be ρ0-chaotic. Then, we deduce from
Propositions 3.3 or 3.4 and Lemma 2.1 that

(
(XN,1

0 + JN,1
t )t∈[0,T ]

)
N≥1

is tight inC(0,T ;Rd). Hence
(
(XN,1

0 + JN,1
t +Z1

t )t∈[0,T ]

)
N≥1

is tight inD([0,T ];Rd), the space of cadlag trajectories. But using point (ii) of Proposition 2.1 concludes the proof of
point (i) sinceD([0,T ],Rd) is Polish (see [3, Theorem 12.2]).
Proof of point (ii)
Due to point (i) and Prokhorov’s Theorem (see for instance [3, Theorem 5.1]), we know that there is a subsequence
of (µN

. )N≥1 (for which we will use the same notation for the sake of notational simplicity) going in law to some
µ. ∈ P

(
D(0,T ;Rd)

)
. We now define the martingale problem of unknown Q ∈ P

(
D(0,T ;Rd)

)


(a) e0#Q = ρ0,

(b) Qt := et#Q, (Qt)t∈[0,T ] satisfies the relevant inequality of (3.22) depending on whether a = α or a > α,

(c) ∀0 < t1 < · · · < tk < s < t ≤ T, φ1, · · · , φk ∈ Cb(Rd), φ ∈ C2
b(Rd), F (Q) = 0,with

F (Q) :=∫ ∫ ∏N
k=1 φk(γtk )

(
φ(γt) − φ(γs) − χ

∫ t
s Kα(γu − γ̃u) · ∇φ(γu) − v.p.cd,a

∫
Rd

φ(γu+z)−φ(γu)−z·∇φ(γu)
|z|d+a dz du

)
Q(dγ)Q(dγ̃).

(3.23)
Recall that et is the evaluation of cadlag trajectories at time t map defined as

et : γ ∈ D(0,T ;Rd) 7→ γ(t) ∈ Rd,
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so that condition (a) means that the time marginalQ at time t = 0 is ρ0, and (b) means that the family of time marginals
(Qt)t∈[0,T ] of Q satisfies

∀ε ∈ (0, 1),
∫ T

0

∫
Rd×Rd

|x − y|ε−aQt(dx)Qt(dy)dt < ∞, when a = α, and
∫ T

0
Ia(Qt)dt < ∞,when a > α.

We now show that the limit point µ. ∈ P
(
D(0,T ;Rd)

)
almost surely solves this martingale problem, and divide it

in 3 steps.
� Step 1
It is straightforward that in both cases a = α or a > α, µ. satisfies point (a), due to the fact FN

0 is ρ0-chaotic.
� Step 2
• Step 2.a
In the case a = α we use the techniques of [16, Proof of Theorem 6, step 2.3] and introduce m > 0. Due to Proposition
3.4 we get

E
[∫ T

0

∫
Rd×Rd

(m ∧ |x − y|ε−a)µN
s (dx)µN

s (dy)ds
]

=
1

N2

∑
i, j

E
[∫ T

0

(
m ∧ |XN,i

s − XN, j
s |

ε−a
)

ds
]

≤
Tm
N

+
1

N2

∑
i, j

∫ T

0
E

[
|XN,i

s − XN, j
s |

ε−a
]

ds

≤
Tm
N

+ Cε,T .

Letting N go to infinity, we find that the l.h.s. converges to E
[∫ T

0

∫
Rd×Rd (m ∧ |x − y|ε−a)µs(dx)µs(dy) ds

]
since µN

.

converges in law to µ.. Letting then m go to infinity yields, thanks to the monotone convergence Theorem

E
[∫ T

0

∫
Rd×Rd

|x − y|ε−aµs(dx)µs(dy)ds
]

ds ≤ Cε,T ,

and therefore ∫ T

0

∫
Rd×Rd

|x − y|ε−aµs(dx)µs(dy)ds < ∞, a.s..

.
• Step 2.b
In case a > α we use the techniques of [15, Proof of Proposition 6.1, Step 2]. Denote πt = L(µt) ∈ Pκ(P(Rd)),
π

j
t =

∫
P(Rd) g⊗ jπt(dg) its Hewitt and Savage projection, and FN, j

t the marginal of FN
t on R2 j (recall that FN

t =

L(X1
t , · · · , X

N
t ) ∈ Pκ(RdN)). It is classical (see [31]) to deduce from point (i) that FN, j

t converges weakly to π
j
t as

N goes to infinity. Hence, using Corollary 3.1, Fatou’s Lemma and Proposition 3.3 we find

E
[∫ T

0
Ia(µt) dt

]
=

∫ T

0

∫
P(Rd)

Ia(g)πt(dg)dt ≤
∫ T

0
lim inf
N→+∞

IN
a (FN

t )dt

≤ lim inf
N→+∞

∫ T

0
IN

a (FN
t )dt ≤ 2 lim inf

N→+∞
HN(FN

0 ) + CT

= 2 lim inf
N→+∞

HN(ρ⊗N
0 ) + CT = 2

∫
Rd
ρ0 ln ρ0 + CT,

and therefore ∫ T

0
Ia(µt) dt < ∞, a.s.
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� Step 3
Regardless of a = α or a > α, define

Oi(t) := φ(Xi
t) −

∫ t

0

χ

N

N∑
j,i

∇φ(Xi
s) · Kα(Xi

s − X j
s)ds

−

∫ t

0
cd,a

∫
Rd

φ(Xi
s + z) − φ(Xi

s) − z · ∇φ(Xi
s)

|z|d+a dzds

= φ(Xi
0) +

∫
[0,t]×Rd

(
φ(Xi

s− + z) − φ(Xi
s− )

)
M̄i(ds, dz).

Note that (Oi
t)t∈[0,T ] is a martingale with respect to the natural filtration of Ft = σ(XN

r ,Z
N
r )r≥t. Hence since the

(Mi)i=1,··· ,N are independent, we have,

E
[
F 2(µN

. )
]

=E


 1

N

N∑
i=1

 k∏
l=1

φl(Xi
tl )

 (Oi(t) − Oi(s))


2

= E

E
 1

N2

∑
i, j

k∏
l=1

φl(Xi
tl )

k∏
l=1

φl(X
j
tl )

(
Oi

t − Oi
s

) (
O j

t − O j
s

)
| Fs




=
1

N2

N∑
i=1

E

 k∏
l=1

φl(Xi
tl )

2

E
(∫

[s,t]×Rd

(
φ(Xi

u− + z) − φ(Xi
u− )

)
M̄i(du, dz)

)2 ≤ CF
N
,

(3.24)

since (see for instance [1, point (2) of Theorem 4.2.3 p200])

E
(∫

[s,t[×Rd

(
φ(Xi

u− + z) − φ(Xi
u− )

)
M̄i(du, dz)

)2 =

∫ t

s
E

cd,a

∫
Rd

(
φ(Xi

u− + z) − φ(Xi
u− )

)2

|z|d+a dz

 du

≤ cd,a(t − s)
(
‖∇φ‖2L∞

∫
B
|z|−(d+a)dz + 4‖φ‖2L∞

∫
Bc
|z|−(d−2+a)dz

)
.

After which it is classical to deduce that µ. satisfies c) (see [16, Proof of Theorem 6, Step 2.3.2-3-4]). Indeed for η > 0
define Kη,α as

Kη,α(x) = −
x

max(|x|α, η)α
,

and define Fη as in (3.23) c) with Kα replaced with Kα,η. Note that since Kα(0) = 0 it holds for any x ∈ Rd and
ε ∈ (0, 1) ∣∣∣Kα(x) − Kα,η(x)

∣∣∣ ≤ 1|x|≤η|x|1−α ≤ η1−ε|x|ε−a.

This implies that for any Q ∈ P(D(0,T ;Rd))

|F (Q) − Fε(Q)| ≤ η1−ε
∫ ∫ ∫ t

0
|γu − γ̃u|

ε−aQ(dγ)Q(dγ̃)

≤ η1−ε
∫ T

0

∫ ∫
|z − z̃|ε−aQu(dz)Qu(dz̃) du.

(3.25)

Hence since for any N ≥ 1 and η > 0 it holds

F (µ.) = F (µ.) − Fη(µ.) + Fη(µ.) − Fη(µN
. ) + Fη(µN

. ) − F (µN
. ) + F (µN

. ),
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using some triangular inequalities and (3.25) yields

E
[
|F (µ.)|

]
≤ E

[∣∣∣F (µ.) − Fη(µ.)
∣∣∣] + E

[∣∣∣Fη(µ.) − Fη(µN
. )

∣∣∣] + E
[∣∣∣Fη(µN

. ) − F (µN
. )

∣∣∣] + E
[∣∣∣F (µN

. )
∣∣∣]

≤ η1−ε
∫ T

0
E

[∫
Rd×Rd

|z − z̃|ε−aµu(dz)µu(dz̃)
]

du + E
[∣∣∣Fη(µ.) − Fη(µN

. )
∣∣∣]

+ η1−ε
∫ T

0
E

[∫
Rd×Rd

|z − z̃|ε−aµN
u (dz)µN

u (dz̃)
]

du +

√
CF
N
.

We fix δ > 0. Due to Step 2 of this proof and Proposition 3.3 or Proposition 3.4 depending on whether a = α or a > α,
we have ∫ T

0
E

[∫
Rd×Rd

|z − z̃|ε−aµu(dz)µu(dz̃)
]

du < ∞, sup
N≥1

∫ T

0
E

[∫
Rd×Rd

|z − z̃|ε−aµN
u (dz)µN

u (dz̃)
]

du < ∞.

We fix η > 0 such that

η1−ε
∫ T

0
E

[∫
Rd×Rd

|z − z̃|ε−aµu(dz)µu(dz̃) +

∫
Rd×Rd

|z − z̃|ε−aµN
u (dz)µN

u (dz̃)
]

du < δ.

Now since Fη is a smooth function on P
(
D([0,T ];Rd)

)
and µN

. converges in law to µ., we may take N large enough
such that

E
[∣∣∣Fη(µ.) − Fη(µN

. )
∣∣∣] ≤ δ,

and simultaneously √
CF
N
≤ δ.

Finally we deduce that ∀δ > 0,E
[
|F (µ.)|

]
≤ 4δ, i.e.

E
[
|F (µ.)|

]
= 0,

which implies F (µ.) = 0 a.s. and concludes the proof.

4. Uniqueness of the limit equation

Now, in order to complete the propagation of chaos result, we need to investigate the uniqueness of the accumu-
lation points of the sequence of the law of solution to equation (1.5), which have been proved to be tight in both case
a > α and a = α in the previous section. However this uniqueness can not be obtained in the Fair Competition case in
the class where lie the accumulation points. However in the Diffusion Dominated we are able to conclude to the well
posedness of equation (1.6) for an initial condition in L log L(Rd).

From Lemma 3.4, we know that any solution to (1.6) starting from an L log L initial condition is L1(0,T ; Lp(Rd))
for any p ∈

(
1, d

d−a

)
. There remains to prove the uniqueness of solution to equation (1.6) in this class. Note that this is

known in the case a = 2 and α ∈ (1, 2) (see [18]). Precisely we have strong-strong stability estimate

Lemma 4.1. Let be p > d
d−α , q ≥ 1. There is a constant Cα,q,p > 0 such that for any X,Y random variables of

respective laws ρ1, ρ2 with ρ1, ρ2 ∈ Lp(Rd) ∩ Pq(Rd), it holds

E
[∣∣∣∣∣∫

Rd
Kα(X − y)ρ1(dy) −

∫
Rd

Kα(Y − y)ρ2(dy)
∣∣∣∣∣ |X − Y |q−1

]
≤ Cα,q,p (2 + ‖ρ1‖Lp + ‖ρ2‖Lp )E[|X − Y |q].

Proof. First, we notice that

∇Kα(x) =

(
Id − α

x ⊗ x
|x|2

)
|x|−α,

33



/ Procedia Computer Science 00 (2019) 1–45 34

hence, denoting X̄, Ȳ some independent copies of X,Y , we find

|Kα(X − X) − Kα(Y − Y)| ≤ Cα

(
|X − Y | + |X − Y |

) ( 1

|X − X|α
+

1

|Y − Y |α

)
.

This yields to

E
[
|Kα(X − X) − Kα(Y − Y)||X − Y |q−1

]
≤ CE

[(
1

|X − X|α
+

1

|Y − Y |α

)
|X − Y |q

]
+ CE

[(
1

|X − X|α
+

1

|Y − Y |α

)
|X − Y ||X − Y |q−1

]
=: C(I1 + I2).

� Estimate of I1: First we easily get for this term, by taking firstly the expectation on (X,Y)

I1 =EX,Y

[
|X − Y |qEX,Y

[(
1

|X − X|α
+

1

|Y − Y |α

)]]
≤ Cα,p

(
‖ρ1‖Lp(Rd) + ‖ρ2‖Lp(Rd) + ‖ρ1‖L1(Rd) + ‖ρ2‖L1(Rd)

)
E

[
|X − Y |q

]
.

� Estimate of I2: We use Holder’s inequality to find

I2 ≤ CE

|X − Y |
(

1

|X − X|α
+

1

|Y − Y |α

)1/q ( 1

|X − X|α
+

1

|Y − Y |α

)1/q

|X − Y |

q−1
≤ CE

[
|X − Y |q

(
1

|X − X|α
+

1

|Y − Y |α

)]1/q

E
[(

1

|X − X|α
+

1

|Y − Y |α

)
|X − Y |q

](q−1)/q

= CE
[
|X − Y |q

(
1

|X − X|α
+

1

|Y − Y |α

)]
.

Now taking first the expectation w.r.t. (X,Y) and then w.r.t. (X,Y) yields similarly as above

I2 ≤ Cα,q

(
‖ρ1‖L1∩Lp(Rd) + ‖ρ2‖L1∩Lp(Rd)

)
E

[
|X − Y |q

]
.

Hence putting all those estimates together leads to the desired result, since

E
[∣∣∣∣∣∫

Rd
Kα(X − y)ρ1(dy) −

∫
Rd

Kα(Y − y)ρ2(dy)
∣∣∣∣∣ |X − Y |q−1

]
= E

[
|Kα(X − X) − Kα(Y − Y)||X − Y |q−1

]

Then we can obtain the desired stability estimate stated in the

Proposition 4.1. Let be T > 0, q ∈ (1, a), and (X1
t )t∈[0,T ] and (X2

t )t∈[0,T ] two solutions to equation (1.7) build with the
same Lévy process, and assume their respective laws ρ1

. , ρ
2
. ∈ L1(0,T ; Lp(Rd)) ∩ P

(
D(0,T ; (Rd))

)
for some p > d

d−α .
Then it holds

E
[
|X1

t − X
2
t |

q
]
≤ E

[
|X1

0 − X
2
0|

q
]

e2t+
∫ t

0 (‖ρ1
s‖Lp +‖ρ1

s‖Lp ) ds.

Proof. Since the two solutions are build on the same Lévy process, we get

|X1
t − X

2
t |

q = |X1
0 − X

2
0|

q + q
∫ t

0
|X1

s − X
2
s |

q−1
∣∣∣∣∣∫

R2
Kα(X1

s − y)ρ1
s(dy) −

∫
R2

Kα(X2
s − y)ρ2

s(dy)
∣∣∣∣∣ ds.

Taking the expectation, using Lemma 4.1 and Gronwall’s inequality yields the desired result.
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Corollary 4.1. When a > α, the set S a
α defined in (3.22) is a singleton.

Proof. Recall that

Sa
α = {ρ ∈ P

(
D

(
0,T ;Rd

))
| ρ. = L(X.), X. solution to (1.7), and

∫ T

0
Ia(ρt)dt < ∞}.

is not empty due to Theorem 3.1. But due to Lemma 3.4, if ρ ∈ Sa
α then ρ ∈ L1

(
0,T ; Lq(Rd)

)
, for any q ∈

(
1, d

d−a

)
. But

since d
d−a > d

d−α , one can choose q ∈
(

d
d−α ,

d
d−a

)
and due to Proposition 4.1 there is at most one solution to equation

(1.7) with initial condition of law ρ0 ∈ Pκ(Rd).

Theorem 3.1 and Corollary 4.1 conclude the proof of Theorem 2.1.

Appendix A. On the critical sensitivity in the Fair Competition case

In this section, we develop the formal computations of (2.13), in order to give a sharper idea of the critical
sensitivity χ(a) in Fair Competition case of Theorem 2.1. Using the definition of the fractional Laplacian by Fourier
multipliers (1.3), we can obtain the identity

− (−∆)a/2(|x|ε) = −2a
Γ
(

d+ε
2

)
Γ
(

a−ε
2

)
Γ
(
− ε2

)
Γ
(

d+a−ε
2

) |x|ε−a, (A.1)

Applying Ito’s rule to Zi, j
s with φ(x) = |x|ε for some ε ∈ (0, 1) is not possible, since φ defined so is not C2 (not even Ca),

but let us perform the computations for the sake of the discussion. Coming back to (2.13) and taking the expectation
formally yields

E
[∣∣∣∣Zi, j

t

∣∣∣∣ε] = E
[∣∣∣∣Zi, j

0

∣∣∣∣ε] − ∫ t

0

χ

N
εE

|Zi, j
s |

ε−2Zi, j
s ·

∑
k,i, j

 Zi,k
s

|Zi,k
s |

a
−

Z j,k
s

|Z j,k
s |

a


 ds

−

∫ t

0

2χε
N

E
[
|Zi, j

s |
ε−a

]
ds + 2

∫ t

0
E

[
−(−∆)a/2φ(Zi, j

s )
]

ds.

(A.2)

Recalling (A.1) and the argument used in the proof of Proposition 3.4 yields

E
[∣∣∣∣Zi, j

t

∣∣∣∣ε] ≥ E
[∣∣∣∣Zi, j

0

∣∣∣∣ε] + 2ε

−2a
Γ
(

d+ε
2

)
Γ
(

a−ε
2

)
Γ
(
− ε2

)
Γ
(

d+a−ε
2

)
ε
− χ

 ∫ t

0
E

[
|Zi, j

s |
ε−a

]
ds

So that, optimizing w.r.t. ε ∈ (0, 1), the condition becomes

χ < χ(a) = sup
ε∈(0,1)

{
−2a

Γ
(

d+ε
2

)
Γ
(

a−ε
2

)
Γ
(
− ε2

)
Γ
(

d+a−ε
2

)
ε

}
.
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Figure A.2. Critical sensitivity threshold χ(a) for a ∈ (1, 2), in green for d = 2, in red for d = 3, in blue for d = 4, together with the asymptotic
horizontal line y = 1.

Since this appendix is rather formal, we limit ourselves to numerically check that this supremum is obtained as
ε→ 1− which yields

χ(a) = −2a
Γ
(

d+1
2

)
Γ
(

a−1
2

)
Γ
(
− 1

2

)
Γ
(

d+a−1
2

) = 2a−1
Γ
(

d+1
2

)
Γ
(

a−1
2

)
√
πΓ

(
d+a−1

2

) .

In particular we have lima→2− χ(a) = 1, and the limit threshold is consistent with the one obtained for classical
diffusion in [16, Theorem 6].

In order to rigorously obtain this threshold, one should be able to prove that

lim
η→0+

∫ t

0
E

[
−(−∆)a/2φη

(
Zi, j

s

)]
ds =

∫ t

0
E

[
−(−∆)a/2φ(Zi, j

s )
]

ds, (A.3)

in the equality after (3.20). This seems more complicated thab in the case a = 2, where one enjoys the explicit formula

∆φη(x) = ε
(
|x|2 + η2

) ε−4
4

(
(d + ε − 2)|x|2 + dη2

)
.

So that it is clear that for any x , 0
lim
η→0+

∆φη(x) = ∆φ(x)

To the best of the author’s knowledge, there is no explicit formula for −(−∆)a/2φη when a < 2, and the limit A.3 has to
be obtained by indirect arguments. So we have to bound −(−∆)a/2φη by below, thus we have to use Lemma 3.2, which
implies the technical limitations a > a∗ and the implicit definition of χ(a) in Theorem 2.1 in the Fair Competition
case.
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Appendix B. Remarks on the case α ≤ 1

In this section, we focus on the case α ≤ 1, which implies that the aggregation kernel Kα is not so singular, given
that it is (1 − α)-Holder. It would be interesting to obtain some quantitative result, similarly as [21] in the case a = 2.
Stating a convergence/consistency result, in the case α ≤ 1 is rather cheap, given that it consists mostly in a moment
control, in view of Lemma 2.1. The bound (2.12) is straightforward in the case α = 1. Otherwise it is a matter of
propagation of moments of order (1 − α)p for some p > 1. But due to (3.16) this is possible only if (1 − α)p < a i.e.
1 < a + α. Therefore we can expect a convergence/consistency result in the all area

{(a, α) ∈ (0, 2) × (0, 1], 1 < a + α}.

Then we divide this area in three parts (see Figure 1).

• (a, α) ∈ (1, 2) × (0, 1)
Making the assumption FN

0 = ρ⊗N
0 with ρ0 ∈ L ln L ∩ Pκ(Rd) with κ ∈ (1, a) similarly as in the Diffusion

Dominated case in Theorem 2.1, Lemma 3.3 apply and we let p = κ
1−α > 1. And we obtain the claimed

convergence/consistency result.
Then since Lemmas 3.6 and 4.1 also apply, we can deduce to the uniqueness of the limit point and obtain a
complete propagation of chaos result.

• (a, α) ∈ (0, 1) × (0, 1), 1 < a + α
In this case it is possible to obtain the bound∫ T

0
sup
N≥1

∫
RdN
〈x1〉

κFN
t dt < ∞,

for some κ ∈ (1 − α, a), but the moment estimate is more complicated than in the proof of Lemma 3.3, as for
κ < 1, mκ is not convex, and one can not enjoy point (iii) of Lemma 3.1. We do not treat this problem here.
Nevertheless, should this bound be obtained, it would immediately imply the tightness of the sequence of the
empirical measure, and the convergence of a subsequence to some element of the set

Sa
α = {ρ ∈ P

(
D

(
0,T ;Rd

))
| ρ. = L(X.), X. solution to (1.7), and

∫ T

0

∫
R2
|x|κρt, dt < ∞}.

– α < a
The moment information is not sufficient to conclude that this set is reduced to a singleton, given the lack
of regularity of Kα. It could be interesting to try to extend the result of Corollary 3.1 in the range a ∈ (0, 1),
in order to gain some regularity on the limit point, by passing some fractional Fisher information of low
order to the limit.

– α ≥ a
Here we can not go beyond the convergence/consistency result.

Otherwise, mollifying the kernel Kα near the origin so that it is Lipschitz, uniqueness can be obtained by
standard coupling arguments. Hence the above strategy yields the existence of a solution to the nonlinear
equation (1.6), with Kα replaced by its mollification. In the classical case (see [31]), this existence of solution
to nonlinear drift-diffusion equations is usually proved by a fix point argument in C([0,T ],Pk(Rd)) for some
k > 1. Here we could not use this strategy given that we can not expect on the solution moment of higher order
than a ≤ 1.

Appendix C. Proof of Proposition 3.2

We begin this section by defining for ε > 0, ψε on Rd as

ψε(x) = ε−2e−
√

1+
(
|x|
ε

)2

.
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which is borrowed from [20]. Observe that for any x, y ∈ Rd × Rd it holds

Φ(ψε(x), ψε(y)) = −(ψε(x) − ψε(y))


√

1 +

(
|x|
ε

)2

−

√
1 +

(
|y|
ε

)2


≤ ε−1|x − y| (ψε(x) + ψε(y))

(C.1)

Lemma Appendix C.1. Let be π ∈ P(P(Rd)) and for N ≥ 1 define

πN,ε =

∫
P(Rd)

(ρ ∗ ψε)⊗Nπ(dρ).

Then for any x2, · · · , xN := XN−1 ∈ Rd(N−1), define pε(·|XN−1) the conditional law knowing XN−1 under πN,ε. Then it
holds

(i)
‖∇ ln pε(·|XN−1)‖L∞ ≤ ε−1.

(ii) there exist constants Cε,R, cε,R > 0 such that for any x ∈ Rd, e ∈ Sd−1 and u ∈ [0,R]

cε,R pε(x|XN−1) ≤ pε(x + ue|XN−1) ≤ Cε,R pε(x|XN−1).

(iii)
Φ(πN,ε(XN

x ), πN,ε(XN
y )) ≤ πN−1,ε(XN−1)Φ(ψε(x), ψε(y))

Proof. Proof of (i):
First note that

pε(x|XN−1) =
πN,ε(x, x2, · · · , xN)
πN−1,ε(x2, ·, xN)

,

Indeed due to Fubini’s Theorem one can check that∫
Rd
πN,ε(x, x2, · · · , xN)dx =

∫
Rd

∫
P(Rd)

(ρ ∗ ψε)(x)
N∏

k=2

(ρ ∗ ψε)(xk)π(dρ)dx

=

∫
P(Rd)

(∫
Rd

(ρ ∗ ψε)(x)dx
) N∏

k=2

(ρ ∗ ψε)(xk)π(dρ) = πN−1,ε(x2, · · · , xN),

and the sequence (πN,ε) is compatible. Hence

∇ ln pε(·|XN−1) = ∇1 ln πN,ε(·, x2, · · · , xN),

and we use [20, Lemma 5.9] to conclude the result.

Proof of (ii):
Observe that for any x ∈ Rd, e ∈ Sd−1 and u ∈ [0,R] it holds∣∣∣∣∣∣∣

√
1 +
|x + ue|2

ε2 −

√
1 +
|x|2

ε2

∣∣∣∣∣∣∣ = ε−2

∣∣∣|x + ue|2 − |x|2
∣∣∣√

1 +
|x+ue|2
ε2 +

√
1 +

|x|2
ε2

≤ ε−1u
ε−1|x + ue| + ε−1|x|√
1 +

|x+ue|2
ε2 +

√
1 +

|x|2
ε2

≤ ε−1R,
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hence √
1 +
|x|2

ε2 + ε−1R ≥

√
1 +
|x + ue|2

ε2 ≥

√
1 +
|x|2

ε2 − ε
−1R, i.e.

eε
−1Rψε(x) ≥ ψε(x + eu) ≥ e−ε

−1Rψε(x),

so that for any ρ ∈ P(Rd)

ρ ∗ ψε(x + ue) =

∫
ψε(x + ue − y)ρ(dy) ≤ Cε,R

∫
ψε(x − y)ρ(dy) = Cε,Rρ ∗ ψε(x),

ρ ∗ ψε(x + ue) ≥ cε,R

∫
ψε(x − y)ρ(dy) = cε,Rρ ∗ ψε(x),

and then

pε(x + ue|XN−1) =
πN,ε(x + ue, x2, · · · , xN)

πN−1,ε(x2, ·, xN)

=

∫
P(Rd)(ρ ∗ ψε)(x + ue)(ρ ∗ ψε)⊗(N−1)(XN−1)π(dρ)∫

P(Rd)(ρ ∗ ψε)
⊗(N−1)(XN−1)π(dρ)

≤ Cε,R

∫
P(Rd)(ρ ∗ ψε)(x)(ρ ∗ ψε)⊗(N−1)(XN−1)π(dρ)∫

P(Rd)(ρ ∗ ψε)
⊗(N−1)(XN−1)π(dρ)

= Cε,R pε(x|XN−1),

and similarly for the lower bound and the point is proved.

Proof of (iii):
By convexity of Φ and Jensen’s inequality we successively obtain

Φ(πN,ε(XN
x ), πN,ε(XN

y )) = Φ

∫
P(Rd)

ρ ∗ ψε(x)
N∏

i=2

ρ ∗ ψε(xi)π(dρ),
∫
P(Rd)

ρ ∗ ψε(y)
N∏

i=2

ρ ∗ ψε(xi)π(dρ)


≤

∫
P(Rd)

Φ

ρ ∗ ψε(x)
N∏

i=2

ρ ∗ ψε(xi), ρ ∗ ψε(y)
N∏

i=2

ρ ∗ ψε(xi)

 π(dρ)

≤

∫
P(Rd)

N∏
i=2

ρ ∗ ψε(xi)Φ (ρ ∗ ψε(x), ρ ∗ ψε(y)) π(dρ)

≤

∫
P(Rd)

N∏
i=2

ρ ∗ ψε(xi)Φ (ψε(x), ψε(y)) π(dρ) = πN−1,ε(XN−1)Φ (ψε(x), ψε(y))

Before completing the proof we will furthermore use the following consideration. Let FN ,GN ∈ P(RdN) and
according to the notations previously introduced for x, y, x2, · · · , xN ∈ R2(N+1) denote Xx

N = (x, x2, · · · , xN) ∈ RdN .
Then straightforward computations yields

DN := θΦ(FN(Xx
N), FN(Xy

N)) + (1 − θ)Φ(GN(Xx
N),GN(Xy

N))

− Φ(θFN(Xx
N) + (1 − θ)GN(Xx

N), θFN(Xy
N) + (1 − θ)GN(Xy

N))

= −θ
(
FN(Xx

N) − FN(Xy
N)

) ln θFN(Xx
N) + (1 − θ)GN(Xx

N)
FN(Xx

N)

 − ln
θFN(Xy

N) + (1 − θ)GN(Xy
N)

FN(Xy
N)


− (1 − θ)

(
GN(Xx

N) −GN(Xy
N)

) ln θFN(Xx
N) + (1 − θ)GN(Xx

N)
GN(Xx

N)

 − ln
θFN(Xy

N) + (1 − θ)GN(Xy
N)

GN(Xy
N)

 .
39



/ Procedia Computer Science 00 (2019) 1–45 40

Note that due to the convexity of Φ, DN is nonnegative. Denote f (·|XN−1) (resp. g(·|XN−1)) the conditional law w.r.t.
to the first component knowing the last N − 1 under FN (resp. GN) i.e.

FN(x, x2, · · · , xN) = f (x|x2, · · · , xN)FN−1(x2, · · · , xN)

GN(x, x2, · · · , xN) = g(x|x2, · · · , xN)GN−1(x2, · · · , xN),

and define

h(t) = ln
(
θ + (1 − θ)

g(zt |.)
f (zt |.)

GN−1

FN−1

)
, zt = tx + (1 − t)y

Since f∇ g
f = g∇ ln g

f

h′(t) =
GN−1 f (zt |.)∇

g(|.)
f (|.) (zt) · (x − y)

θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1

=
GN−1g(zt |.)∇ ln g(|.)

f (|.) (zt) · (x − y)

θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1 ,

we can rewrite

DN = −

∫ 1

0

(1 − θ)θGN−1FN−1 ( f (x|) − f (y|)) g(zt |.)∇ ln g(|.)
f (|.) (zt) · (x − y)

θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1 dt

−

∫ 1

0

(1 − θ)θGN−1FN−1 (g(x|) − g(y|)) f (zt |.)∇ ln f (|.)
g(|.) (zt) · (x − y)

θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1 dt.

(C.2)

We are now in position to prove Lemma 3.2. Following the idea of [15, Proof of Lemma 4.2] and [20, Proof
of Lemma 5.10], we only treat the case M = 2 and ω1 = Br := {ρ ∈ P1(R2) |W1(ρ, f1) < r} for some r > 0 and
f1 ∈ P1(R2). For π ∈ Pκ(P(Rd)), define

θ := π (ω1) (> 0 w.l.o.g.), F := θ−11ω1π, G := (1 − θ)−11ωc
1
π.

Our aim is to prove that
Ĩa(π) = θĨa(F) + (1 − θ)Ĩa(G),

or equivalently, by convexity, that for any fixed η > 0

θĨa(F) + (1 − θ)Ĩa(G) − Ĩa(π) < η.

Let then be η > 0 fixed for the rest of the proof and for N ≥ 1, ε > 0 define

FN,ε :=
∫
P1(R2)

(ρ ∗ ψε)⊗N F(dρ), GN,ε :=
∫
P1(R2)

(ρ ∗ ψε)⊗NG(dρ)

Also note that
πN,ε :=

∫
P1(R2)

(ρ ∗ ψε)⊗Nπ(dρ) = θFN,ε + (1 − θ)GN,ε,

since F and G have disjunct supports. It is also clear (see for instance the computations done in the proof of Lemma
Appendix C.1), that the sequences (πN,ε)N≥1, (FN,ε)N≥1 and (GN,ε)N≥1 are compatible, and denote πε, Fε and Gε in
Pκ(P(Rd))) the probability measures which are associated to these sequences by the Hewitt and Savage Theorem.

KN := θIN
a (FN) + (1 − θ)IN

a (GN) − IN
a (πN)

=

∫
Rd(N+1)

|x − y|−(d+a)
(
θΦ(FN(XN

x ), FN(XN
y )) + (1 − θ)Φ(GN(XN

x ),GN(XN
y )) − Φ(πN(XN

x ), πN(XN
y ))

)
.

(C.3)
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Let be R > 0 such that 2
∫
Bc

R
|x|−(d−1+a)dx < η. For couples (x, y) ∈ R4 such that |x − y| ≤ R we use the upper bound

provided in (C.2) and on the complementary set, the one of (C.1). Which gives

KN ≤

∫
Rd(N−1)

∫
|x−y|≥R

|x − y|−(d+a)
(
θΦ(FN(XN

x ), FN(XN
y )) + (1 − θ)Φ(GN(XN

x ),GN(XN
y ))

)
dxdydXN−1

+

∫
Rd(N−1)

∫
|x−y|≤R

|x − y|−(d+a)
(
θΦ(FN(XN

x ), FN(XN
y )) + (1 − θ)Φ(GN(XN

x ),GN(XN
y )) − Φ(πN(XN

x ), πN(XN
y ))

)
≤

∫
Rd(N−1)

(
θFN−1(XN−1) + (1 − θ)GN−1(XN−1)

)
dXN−1

∫
|x−y|≥R

|x − y|−(d+a)Φ(ψε(x), ψε(y))dxdy

−

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1FN−1 ( f (x|) − f (y|)) g(zt |.)∇ ln g(|.)
f (|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1

−

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1FN−1 (g(x|) − g(y|)) f (zt |.)∇ ln f (|.)
g(|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1.

(C.4)

Since, by (C.1) it holds∫
|x−y|≥R

|x − y|−(d+a)Φ(ψε(x), ψε(y))dxdy ≤
∫
|x−y|≥R

|x − y|−(d+a)(ψε(x) + ψε(y))dxdy

≤ 2
∫
Rd
ψε(x)

(∫
y,|x−y|>R

, |x − y|−(d−1+a)dy
)

dx < η,

therefore

KN ≤ η −

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1FN−1 ( f (x|) − f (y|)) g(zt |.)∇ ln g(|.)
f (|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1

−

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1FN−1 (g(x|) − g(y|)) f (zt |.)∇ ln f (|.)
g(|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)FN−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1.

(C.5)

Let now be s ∈ (0, r) and define
F′ = 1Bs F, and F′′ = F − F′.

Then

KN ≤ η −

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1F′N−1 ( f (x|) − f (y|)) g(zt |.)∇ ln g(|.)
f (|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)F′N−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1

−

∫
Rd(N−1)

θF′′N−1
∫
|x−y|≤R

| f (x|) − f (y|)|
∫ 1

0

g(zt)
∣∣∣∣∇ ln g(|.)

f (|.) (zt)
∣∣∣∣

f (zt)|x − y|d−1+a dtdxdydXN−1

−

∫
Rd(N−1)

∫
|x−y|≤R

∫ 1

0

(1 − θ)θGN−1F′N−1 (g(x|) − g(y|)) f (zt |.)∇ ln f (|.)
g(|.) (zt) · (x − y)

|x − y|d+a (
θ f (zt |.)F′N−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1

−

∫
Rd(N−1)

θF′′N−1
∫
|x−y|≤R

|g(x|) − g(y|)|
∫ 1

0

∣∣∣∣∇ ln g(|.)
f (|.) (zt)

∣∣∣∣
|x − y|d−1+a dtdxdydXN−1

:= KN
1 +KN

2 +KN
3 +KN

4 .

Set now u = r+s
2 and δ = r−s

2 , and denote

B̃N−1
u =

(x2, · · · , xN) ∈ Rd(N−1) |
1

N − 1

N∑
i=2

δxi ∈ Bu

 ,
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then

KN
1 ≤

∫
Rd(N−1)

∫
|x−y|≤R

(1BN−1 + 1BN−1,c )
∫ 1

0

(1 − θ)θGN−1F′N−1 | f (x|) − f (y|)| g(zt |.)
∣∣∣∣∇ ln g(|.)

f (|.) (zt)
∣∣∣∣

|x − y|d−1+a (
θ f (zt |.)F′N−1 + (1 − θ)g(zt |.)GN−1) dtdxdydXN−1

≤

∫
Rd(N−1)

(1 − θ)1BN−1GN−1
∫
|x−y|≤R

| f (x|) − f (y|)|
∫ 1

0

g(zt |.)
∣∣∣∣∇ ln g(|.)

f (|.) (zt)
∣∣∣∣

|x − y|d−1+a f (zt |.)
dtdxdydXN−1

+

∫
Rd(N−1)

θ1BN−1,c F′N−1
∫
|x−y|≤R

| f (x|) − f (y|)|
∫ 1

0

∣∣∣∣∇ ln g(|.)
f (|.) (zt)

∣∣∣∣
|x − y|d−1+a dtdxdydXN−1.

Using Lemma Appendix C.1 we find easily that

| f (x|) − f (y|)|
∫ 1

0

∣∣∣∣∇ ln g(|.)
f (|.) (zt)

∣∣∣∣
|x − y|d−1+a dt ≤ 2ε−1 | f (x|) − f (y|)| |x − y|−(d−1+a),

Therefore∫
|x−y|≤R

| f (x|) − f (y|)|
∫ 1

0

∣∣∣∣∇ ln g(|.)
f (|.) (zt)

∣∣∣∣
|x − y|d−1+a dtdxdy ≤

∫
|x−y|≤R

|ln f (x|) − ln f (y|)|
| f (x|) − f (y|)|
|ln f (x|) − ln f (y|)|

|x − y|−(d−1+a)dxdy

≤

∫
|x−y|≤R

‖∇ ln f (|)‖L∞ ( f (x|) + f (y|)) |x − y|−d+(2−a)dxdy

≤ 2ε−1
∫
Rd

f (x|)
(∫

y∈Rd ,|x−y|≤R
|x − y|−d+2−ady

)
dx ≤ Cε,R,a.

On the other hand

| f (x|) − f (y|)|
∫ 1

0

g(zt |.)
∣∣∣∣∇ ln g(|.)

f (|.) (zt)
∣∣∣∣

|x − y|d−1+a f (zt |.)
dt ≤ 2ε−1 | f (x|) − f (y|)|

∫ 1

0

g(zt |.)
|x − y|d−1+a f (zt |.)

dt

≤ 2ε−1

∣∣∣∣∣∣
∫ 1

0
∇ f (zs|) · (x − y)ds

∣∣∣∣∣∣
∫ 1

0

g(zt |.)
|x − y|d−1+a f (zt |.)

dt

≤ 2ε−1|x − y|−d+2−a
∫ 1

0

∫ 1

0

|∇ f (zs|)| g(zt |.)
f (zt |.)

dtds

≤ 2ε−1|x − y|−d+2−a
∫ 1

0

∫ 1

0
|∇ ln f (zs|)| g(zt |.)

f (zs|·)
f (zt |.)

dtds

≤ 2
Cε,R

cε,R
ε−2|x − y|−d+2−a

∫ 1

0
g(zt |.)dt,

where we used points (i) − (ii) of Lemma Appendix C.1 to pass to the last line. But∫ 1

0
g(zt |.)dt =

∫ 1

0
g
(
y + t|x − y|

(x − y)
|x − y|

|.

)
dt,

for |x − y| ≤ R by we have by point (ii) of Lemma Appendix C.1∫ 1

0
g(zt |.)dt ≤ Cε,Rg(y|.).

So that ∫
|x−y|≤R

| f (x|) − f (y|)|
∫ 1

0

g(zt |.)
∣∣∣∣∇ ln g(|.)

f (|.) (zt)
∣∣∣∣

|x − y|d−1+a f (zt |.)
dt ≤ 2ε−2Cε,R

∫
|x−y|≤R

g(y|)|x − y|−d+2−adxdy ≤ Cε,a,R.
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Finally we obtain

KN
1 ≤ Cε,a,R

(
(1 − θ)

∫
Rd(N−1)

1BN−1GN−1dXN−1 + θ

∫
Rd(N−1)

1BN−1,c F′N−1dXN−1
)
.

The other terms are treated similarly and we conclude this step with

KN ≤ η + Cε,a,R

(
(1 − θ)

∫
Rd(N−1)

1BN−1GN−1dXN−1 + θ

∫
Rd(N−1)

1BN−1,c F′N−1dXN−1
)

+ Cε,a,Rθ

∫
Rd(N−1)

F′′N−1dXN−1.

� Step five
The end of the proof is then exactly taken from [20, Lemma 5.10]. Nevertheless we reproduce it here for the sake of
completeness. First we treat the third trerm in the above r.h.s. by observing that F

′′

= 1Br\Bs F. Therefore∫
Rd(N−1)

F′′N−1(XN−1)dXN−1 =

∫
P(Rd)

1Br\Bs (ρε)F(dρ).

Due to Lebesgue’s dominated convergence Theorem, the r.h.s. in the above identity converges to 0. Therefore one
can chose some s < r such that

Cεcaθ

∫
Rd(N−1)

F′′N−1(XN−1)dXN−1 < η,

uniformly in N. Then for XN−1 < B̃N−1
u and ρ ∈ Bs we find that

W1

 1
N − 1

N∑
i=2

δxi , ρ ∗ ψε

 ≥ W1

 1
N − 1

N∑
i=2

δxi , f1

 −W1 ( f1, ρ) −W1 (ρ, ρ ∗ ψε)

≥ u − s − cε ≥
δ

2
,

for any ε > 0 small enough. Therefore using a Chebychev-like argument it holds∫
B̃N−1,c

u

F′N−1(XN−1)dXN−1 =

∫
P(Rd)

(∫
Rd(N−1)

1B̃N−1,c
u

ρ⊗(N−1)
ε

)
F′(dρ)

≤
2
δ

∫
P(Rd)

∫
Rd(N−1)

W1

 1
N − 1

N∑
i=2

δxi , ρε

 ρ⊗(N−1)
ε (dXN−1)

 F′(dρ)

We claim that there is a constant C depending only on κ (see [14, Theroem 1] in case d = 2, p = 1, q = κ < 2) such
that it holds ∫

Rd(N−1)
W1

 1
N − 1

N∑
i=2

δxi , ρε

 ρ⊗(N−1)
ε (dXN−1) ≤ C (Mκ(ρε))

1
κ (N − 1)−(1− 1

κ ). (C.6)

Note that [20, Remark 2.12] provides the same result with the exponent 1 − 1
κ

replaced with γ ∈
(
0, 1

3+ 2
κ

)
, but the rate

of convergence does not play any role in the proof. Summing up (C.6) w.r.t. F′, yields∫
B̃N−1,c

u

F′N−1(XN−1)dXN−1 ≤
C

δ(N − 1)(1− 1
κ )

∫
P(Rd)

(Mκ(ρε))
1
κ F′(dρ)

≤
C

δ(N − 1)(1− 1
κ )

(∫
P(Rd)

Mκ(ρ)π(dρ) + Mκ(ψε)
) 1
κ

,

since
Mκ(ρε) =

∫
Rd

∫
Rd
〈x〉κρ(x − y)ψε(y)dxdy =

∫
Rd

∫
Rd
〈x + y〉κρ(x)ψε(y)dxdy

≤ 2κ
(∫

Rd
〈x〉κρ(x)dx +

∫
Rd
〈y〉κψε(y)dy

)
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Treating in the exact same fashion the integral w.r.t. GN−1 concludes this step with

∀η > 0, ∃Nη, s.t.∀N ≥ Nη, K
N ≤ η.

� Final step
Gathering all the estimates obtained in the previous steps yields for any ε > 0

lim
N→+∞

∣∣∣IN
a (πN,ε) − θIN

a (FN,ε) − (1 − θ)IN
a (GN,ε)

∣∣∣ = 0.

Hence we deduce
Ĩa(πε) = sup

N≥1
IN

a (πN,ε) = lim
N→+∞

IN
a (πN,ε)

= θ lim
N→+∞

IN
a (FN,ε) + (1 − θ) lim

N→+∞
IN

a (GN,ε)

= θ sup
N≥1
IN

a (FN,ε) + (1 − θ) sup
N≥1
IN

a (GN,ε)

= θĨa(Fε) + (1 − θ)Ĩa(Gε).

But using the convexity of the functional Φ and Jensen’s inequality yields

Ĩa(πε) = sup
N≥1
IN

a (πN,ε) ≤ sup
N≥1
IN

a (πN) = Ĩa(π).

Morever it is clear from the fact that the functionals (IN
a )N≥1 are l.s.c. w.r.t. the weak convergence in P(RdN), that Ĩa

is l.s.c. w.r.t. the weak convergence in P(P(Rd)). But since πε
∗
⇀π in P(P(Rd)) we get that

lim
ε→0
Ĩa(πε) = Ĩa(π).

Therefore
Ĩa(π) = θĨa(F) + (1 − θ)Ĩa(G),

which concludes the proof.
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