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Elastic Machines: a non standard use of the axial shear of linear transversely isotropic elastic cylinders
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In the framework of linear transversely isotropic elasticity, we study the deformation of a circular infinite hollow cylinder, whose inner face is fixed, while its outer surface is subject to a constant axial surface traction. In isotropic linear elasticity, the solution of this problem is just a state of antiplane axial shear. In the case of a transversely isotropic material with a chosen arrangement of fibers, the corresponding deformation field becomes more complex and the coupling of axial anti-plane shear with an in-plane deformation may occur. Therefore, it is possible to use an axial tension field to generate, for example, an azimuthal shear deformation. This fact suggests to use anisotropy to design some elastic machineswhich can combine different deformation modes.

Introduction

Most materials behaviour exhibit moderate to high anisotropy in macroscopic mechanical properties due to the dependence of their microstructure to one or more preferred directions. This feature is present in many biomaterials, polycrystals, fiber-reinforced materials and composites which are usually sorted on the basis of their anisotropic behaviour, i.e., the symmetry elements of the underlying microstructure [START_REF] Nye | Physical Properties of Crystals: Their Representation by Tensors and Matrices[END_REF][START_REF] Ting | Anisotropic elasticity: theory and applications[END_REF][START_REF] Ting | Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material[END_REF]. As elasticity is concerned in this work, symmetry considerations reduce the number of mechanical properties to a range from 3 (cubic system) to 21 (triclinic system) [START_REF] Gurtin | The Theory of Linear Elasticity in Handbuch der Physik[END_REF] and classify the elastic energy into 8 categories [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF]. Material anisotropy emerged as an important aspect of material sciences, and it becomes necessary to use the knowledge of this behaviour to design better products.

Otherwise, recent design requirements and constraints of mass reduction cannot be easily fulfilled. To this end, numerical approaches are usually used. However, analytic methods provide exact solutions for some idealized problems which enable us to have an overall picture of the anisotropy influence on local and global mechanical fields [START_REF] Vannucci | Basic Concepts on Anisotropy[END_REF].

Analysis of the boundary value problems associated to anisotropic elasticity has been often tedious due to the complexity of the constitutive behaviour models. In linear anisotropic elasticity, two stress and displacement based formalisms, due to Lekhnitskii [START_REF] Lekhnitskii | Theory of Elasticity of an Anisotropic Elastic Body[END_REF][START_REF] Lekhnitskii | Anisotropic plates[END_REF] and Stroh [START_REF] Stroh | Dislocations and cracks in anisotropic elasticity[END_REF][START_REF] Stroh | Steady state problems in anisotropic elasticity[END_REF], are the most used techniques to find numerical and, if possible, analytical solutions when the mechanical fields depend on only two spatial coordinates. These two formalisms, which have been shown to be equivalent [START_REF] Barnett | A proof of the equivalence of the Stroh and Lekhnitskii sextic equations for plane anisotropic elastostatics[END_REF], have been applied to study anisotropic solids, for example, in [START_REF] Horgan | Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids[END_REF][START_REF] Ting | Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material[END_REF][START_REF] Ting | New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar[END_REF][START_REF] Ting | Anisotropic elasticity: theory and applications[END_REF][START_REF] Ting | Recent developments in anisotropic elasticity[END_REF]. In anisotropic elasticity, coupling general loadings with in-plane and anti-plane deformations is quite complex.

Let us consider an isotropic linearly elastic cylinder subject to a prescribed axial traction field on its outer curved boundary whose only nonzero component is axial and which does not vary in the axial direction. In absence of body force, the infinitesimal deformation corresponding to this surface traction field is an anti-plane shear deformation, where the word plane denotes here the cylinder's cross section plane.

On the other hand, it is well known that not all arbitrary anisotropic cylinders can sustain an anti-plane shear deformation when they are subject to axial tractions. Necessary and sufficient conditions on the elastic moduli which do allow an anti-plane shear deformation in anisotropic materials have been obtained by Horgan and Miller [START_REF] Horgan | Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids[END_REF]. Essentially, they proved that, when the cross-section is circular, the most general elastic symmetry consistent with such a deformation is the one with only one plane of symmetry (monoclinic material with 13 elastic moduli).

The result by Horgan and Miller suggests that an anisotropic hollow elastic cylinder cannot undergo an anti-plane shear deformation when it is subject to axial tractions on its outer curved boundary.

Anti-plane shear deformations of isotropic elastic materials have been the subject of several studies (see [START_REF] Horgan | Anti-plane shear deformations in linear and nonlinear solid mechanics[END_REF] and references therein for a review on the subject). Some recent results on this problem in isotropic nonlinear elasticity are contained in [START_REF] Pucci | The anti-plane shear problem in nonlinear elasticity revisited[END_REF][START_REF] Pucci | On the determination of semi-inverse solutions of nonlinear Cauchy elasticity: The not so simple case of anti-plane shear[END_REF]. In the framework of the linear theory of elasticity, anti-plane shear deformation is much less studied. In the isotropic case, the linear elastic problem is reduced to a single linear partial differential equation. In the framework of anisotropic elastic materials, some explicit solutions based on the anti-plane shear deformation are given and/or summarised in the book by Ting [START_REF] Ting | Anisotropic elasticity: theory and applications[END_REF]. Among the works devoted to the study of deformations coupling in the framework of linear anisotropic materials we can cite [START_REF] Blouin | A study of helically reinforced cylinders under axially symmetric loads and application to strand mathematical modelling[END_REF][START_REF] Crossley | Bending and flexure of cylindrically monoclinic elastic cylinders[END_REF] where extension-torsion and bending-flexure respectively are considered. These two fields of deformation are different from the ones that will be studied in the following of this paper.

Here, we consider an infinite cylindrical hollow tube with inner radius a and outer radius b.

In cylindrical coordinates r ∈ [a, b], θ ∈ [0, 2π], z ∈ [-∞, ∞].
This cylinder is composed by a fiber reinforced elastic material (i.e. transversely isotropic) and is subject to the following tension boundary conditions:

(σn) | r=b = T e z , (1.1) 
and

u(a) = 0. (1.2)
For the sake of simplicity, we will suppose in the following that the fiber direction remains constant in the cylindrical coordiantes and the studied displacement field is only function of the radial coordinate r. In this case, the equations of linear elasticity, under the usual standard requirements, admit a unique solution. For isotropic elasticity, this solution can be eas-ily determined by considering just an axial shear deformation and solving an ordinary differential equation. In the anisotropic case, this is possible only for special arrangements of the fibers, while in the general case, a more complex deformation is produced by the given tension field on the boundary.

Clearly, the symmetry of geometry and boundary conditions simplifies the problem and makes it solvable by using the semi-inverse method. With this approach, we show that the general solution consists in a superposition to the anti-plane axial shear of an in-plane deformation composed by a radial deformation and an azimuthal shear. Using this solution, it is possible to show how to control the various deformation modes via their coupling 1 .

The plan of the paper is as follows. In the next Section, we introduce the basic equations. Section 3 is dedicated to the study of the pure axial shear and the fiber arrangements compatible with such deformation. In Section 4, we prove that in the most general setting, the equilibrium configuration is a superposition of anti-plane and in-plane deformations. The superposition of an in-plane deformation is a necessary and sufficient condition for an anti-plane deformation to be sustainable by a transversely isotropic elastic tube with any arrangement of fibers. The coupling between the various deformation modes is studied in details via an asymptotic procedure for the compressible materials. In Section 5, some optimisation problems are 1 This coupling should not be confused with the Poynting effect [START_REF] Poynting | On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted[END_REF] for two reasons. First, the Poynting effect is a non-linear effect. Then, in the Poynting effect, the twist and the extension are coupled [START_REF] Atkin | An introduction to the theory of elasticity[END_REF]. Although, here the coupling is between two shear modes (azimuthal and axial shear). The composition of these two modes is also denoted as helical shear and it has been studied into details in non-linear elasticity (see for example [START_REF] Horgan | Helical shear for hardening generalized neo-Hookean elastic materials[END_REF]). In wire ropes (see [START_REF] Costello | Theory of Wire Rope[END_REF]) that are structures and not materials, a coupling between bending and twist deformations is usual.

presented. The last Section is devoted to some concluding remarks.

Basic Equations

The constitutive equation for the Cauchy stress tensor σ for a linear elastic transversely isotropic material with a preferred direction M (the fiber direction) has the form [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF]:

σ = (λtr + α f )I + 2µ T + (αtr + β f )M ⊗ M (2.1) + 2(µ L -µ T ) (M ⊗ M + M ⊗ M ) ,
where I is the identity tensor, is the infinitesimal strain tensor, f = tr( M ⊗ M ) is the strain in the fiber direction and λ, α, β, µ T , µ L are the constitutive parameters. Clearly, µ T and µ L are the infinitesimal shear modulus in the transverse and longitudinal direction relative to the preferred direction. The connection of all these parameters with the longitudinal and transverse Young's modulus can be found in [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF]. From (2.1), the isotropic case can be recovered considering α = β = 0 and µ L = µ T .

In the case of incompressible materials, only isochoric deformations are admissible (i.e. tr = 0) and the constitutive equation is given by [START_REF] Spencer | Constitutive theory for strongly anisotropic solids[END_REF]:

σ = -pI + 2µ T + β f M ⊗ M (2.2) + 2(µ L -µ T ) (M ⊗ M + M ⊗ M ) ,
where p is the arbitrary Lagrange multiplier associated with the constraint of incompressibility. To guarantee the uniqueness of the boundary value problem's solution, the strong ellipticity is a sufficient and necessary condition [START_REF] Marsden | Mathematical foundations of elasticity[END_REF], i.e.:

µ L > 0, µ T > 0, 2µ L + λ > 0, 2α + β + λ + 4µ l -2µ T > 0 (2.3) and |µ L + α + λ| < µ L + (2µ T + λ)(2α + β + λ + 4µ l -2µ T ).
(2.4)

For the incompressible materials, the above strong ellipticity conditions are replaced by:

µ L > 0, µ T > 0, β + 4µ L -2µ T > 0. (2.5)
As assumed above, the displacement field is a function only of the radial coordinate and the domain is a circular cylinder. Therefore, in the absence of body forces, the three scalar equilibrium equations become:

d dr (rσ rr ) = σ θθ , d dr r 2 σ rθ = 0, d dr (rσ rz ) = 0.
(2.6)

Axial Shear

The axial shear problem is a trivial problem in the framework of the theory of linear isotropic elasticity and for this reason, it is usually not considered into details in the classical textbooks (see for example [START_REF] Horgan | Anti-plane shear deformations in linear and nonlinear solid mechanics[END_REF]). The objective of this section is to identify the possible fibers arrangements that can sustain the axial shear deformation.

Considering an axial anti-plane deformation field u ap whose components are:

u ap r = 0, u ap θ = 0, u ap z = w(r), (3.1) 
the strain tensor relative to the displacement field mentioned in (3.1) becomes:

ap = 1 2 w (e r ⊗ e z + e z ⊗ e r ), (3.2) 
where w = dw/dr. To preclude any confusion in the following, we notice here that M is not assumed to be aligned with z-axis of the considered cylinder. Also, the anti-plane nature of the displacement field u ap is relevant to the tube geometry i.e: u ap is perpendicular to the cross section of the cylinder and it is not necessarily in the same direction of the vector M .

In the isotropic case, the only non zero component of the Cauchy stress tensor is the axial shear stress σ rz and the balance equations (2.6) are reduced to a single differential equation: (rσ rz ) = 0. The boundary conditions, (

and (1.2), to append to this equation are:

σ rz (b) = T, w(a) = 0.
Therefore, the solution of our problem in the isotropic case is given by:

w(r) = T b µ ln r a , (3.3) 
where µ is the isotropic infinitesimal shear modulus.

Compressible transversely isotropic materials

In the absence of any internal constraints in a transversely isotropic material, the use of equation (3.2) leads to:

tr ap = 0, ap f = w M r M z . (3.4)
Thus, the explicit form of the stress field components corresponding to (3.1) is:

σ ap rr = αM r M z + βM 3 r M z + 2(µ L -µ T )M r M z w , (3.5) 
σ ap θθ = αM r M z + βM r M 2 θ M z w , (3.6) 
σ ap zz = αM r M z + βM r M 3 z + 2(µ L -µ T )M r M z w , (3.7) 
σ ap rθ = βM 2 r M θ M z + (µ L -µ T )M θ M z w , (3.8) 
σ ap rz = µ T + βM 2 r M 2 z + (µ L -µ T )(M 2 r + M 2 z ) w , (3.9) 
σ ap θz = βM r M θ M 2 z + (µ L -µ T )M r M θ w . (3.10) 
In this case, the three balance equilibrium equations (2.6) compose an overdetermined system where the only unknown is the anti-plane displacement field w = w(r). The boundary conditions relative to this overdetermined system are:

σ rr (b) = 0, σ rθ (b) = 0, σ rz (b) = T, w(a) = 0. (3.11)
One important question is to establish when a non-trivial (i.e. w(r) non constant) solution for such a system exists.

Using (2.6) 2 and the corresponding boundary condition σ rθ (b) = 0 leads to the vanishing of the azimuthal shear stress component i.e σ rθ (r) = 0.

Bearing in mind that the components of M with respect to the fundamental basis associated with the cylindrical coordinate system are constants, equation (3.11) 2 reduces to:

βM 2 r + µ L -µ T M θ M z w = 0. (3.12)
Considering only non-trivial solutions, we get:

i) M θ = 0, ii) M z = 0, iii) βM 2 r + µ L -µ T = 0. (3.13)
Equation (2.6) 3 and the corresponding boundary conditions are:

σ rz (b) = T, w(a) = 0, (3.14) 
and therefore the axial displacement field is:

w(r) = µ T + βM 2 r M 2 z + (µ L -µ T )(M 2 r + M 2 z ) -1 T b ln r a , (3.15) 
in case i) and

w(r) = µ T + (µ L -µ T )M 2 r -1 T b ln r a , (3.16) 
in the remaining cases ii) and iii).

When the axial field is defined by (3.15) or (3.16), it is remarkable that (rσ rr ) = 0 and therefore (2.6) 1 reduces to σ θθ = 0. In so doing, we distinguish three possibilities:

i) M r = M θ = 0 (figure 1.c) and w(r) = T b µ L ln r a .
(3.17)

ii) M z = 0 (figures 1.a, 1.b, 1.d) and

w(r) = µ T + (µ L -µ T )M 2 r -1 T b ln r a . (3.18) iii) M 2 r = (µ T -µ L )/β and M 2 θ = -α/β. Therefore, M 2 z = 1 + α β + µ L -µ T β .
In this case, once again, the axial displacement component could be written as in in (3.18) (figure 1.g).

Case iii) introduces a link among fiber direction of the material and the constitutive parameters. It is necessary to check if this link is compatible with the strong ellipticity condition and the conditions:

(µ T -µ L )/β ≥ 0, -α/β ≥ 0.

Incompressible transversely isotropic materials

Considering the isochoric displacement (3.1), it is interesting to note what happens when the incompressibility constraint is in force. For incompressible materials, the first equilibrium equation (2.6) 1 is used to determine the pressure field p = p(r) and therefore the previous classification is simplified as follows:

i) M θ = 0 (figures 1.a, 1.c, 1.e) and the axial shear is defined by (3.15).

ii) M z = 0 (figures 1.a, 1.b, 1.d) and the axial shear is defined by (3.16).

iii)

M 2 r = (µ T -µ L )/β, M 2 θ + M 2 z = 1 + (µ L -µ T )/β
, and once again the axial shear is defined by (3.16) (figure 1.g).

Coupling between In-Plane and Anti-Plane Deformations

The possibility to have a transverse isotropic material in an anti-plane deformation without restrictions on the fiber direction relies on the presence of an in-plane special deformation field u ip whose components are: Indeed, in this case the corresponding strain tensor field has the following form:

u ip r = f (r), u ip θ = g(r), u ip z = 0. (4.1) (a) M r = 1 (b) M θ = 1 (c) M z = 1 (d) M r = 0, M θ = 0, M z = 0 (e) M r = 0, M θ = 0, M z = 0 (f) M r = 0, M θ = 0, M z = 0 (g) M r = 0, M θ = 0, M z = 0
[ ip ] ij = 1 2      2f rg 0 rg 2 f r 0 0 0 0      . (4.2)
Then, the volumetric dilatation and the stretch in the fiber direction, corresponding to the in-plane deformation field, can both be expressed as:

tr ip = f + f r , (4.3) 
f = f M 2 r + f r M 2 θ + rg M r M θ . (4.4)
Consequently, the stress distribution relative to the in-plane deformation is given by:

σ ip rr = (M 4 r β + (4µ L -4µ T + 2α)M 2 r + 2µ T + λ)f (4.5) + [(M 2 θ β + α)M 2 r + M 2 θ α + λ] f r + M r M θ (M 2 r β + α + 2µ L -2µ T )rg , σ ip θθ = [(M 2 r β + α)M 2 θ + M 2 r α + λ]f + [M 4 θ β + (4µ L -4µ T + 2α)M 2 θ + 2µ T + λ] f r (4.6) + M r M θ (M 2 θ β + α + 2µ L -2µ T )rg , σ ip zz = (M 2 r + M 2 z )α + M 2 r M 2 z β + λ f + [(M 2 θ + M 2 z )α + M 2 θ M 2 z β + λ] f r + M r M θ (M 2 z β + α)rg , (4.7) 
σ ip rθ = (M 2 r β + α + 2µ L -2µ T )f + (M 2 θ β + α + 2µ L -2µ T )) f r M r M θ + [(M 2 r β + µ L -µ T )M 2 θ + (µ L -µ T )M 2 r + µ T ]rg , (4.8 
)

σ ip rz = (M 2 r β + α + 2µ L -2µ T )f + (M 2 θ β + α) f r M r M z + M θ M z (M 2 r β + µ L -µ T )rg , (4.9 
)

σ ip θz = (M 2 r β + α)f + (M 2 θ β + α + 2µ L -2µ T ) f r M θ M z + (M 2 θ β + µ L -µ T )M r M z rg . ( 4 

.10)

.

Taking advantage of the linearity of the constitutive equation, the composition of the in-plane and anti-plane deformation fields implies:

σ = σ ap + σ ip , (4.11) 
where the boundary conditions are:

σ rr (b) = 0, σ rθ (b) = 0, σ rz (b) = T, (4.12) 
and

w(a) = 0, f (a) = 0, g(a) = 0. (4.13)
Bearing in mind that r 2 σ rθ = 0 and σ rθ (b) = 0, it must be σ rθ (r) ≡ 0 i.e.

Γ1 f + Γ2 f r M r M θ + Γ3 rg + Γ4 M z M θ w = 0. (4.14)
On the other hand, from (rσ rz ) = 0 and σ rz (b) = T , the axial shear stress component must be σ rz (r) = T b/r, i.e.

Γ1 f + (M 2 θ β + α) f r M r M z + Γ4 M θ M z rg + Γ5 w = bT r , (4.15) 
with This means that our boundary value problem is well determined and this is for any direction of the fibers. Moreover, because the system is linear, it is possible to implement its resolution in a numerical code. Instead to pursue this general solution, which is just a simple numerical computation, two special cases are examined: an asymptotic solution in the case of the compressible behaviour and the incompressible case.

               Γ1 = M 2 r β + α + 2(µ L -µ T ), Γ2 = M 2 θ β + α + 2(µ L -µ T ) Γ3 = (M 2 r β + µ L -µ T )M 2 θ + (µ L -µ T )M 2 r + µ T , Γ4 = M 2 r β + µ L -µ T , Γ5 = (M 2 r β + µ L -µ T )M 2 z + (µ L -µ T )M 2 r + µ T . ( 4 

An asymptotic solution for the compressible case

We now rewrite the fiber direction M in spherical coordinates as: M = sin(ϕ) cos(ψ)e r + sin(ϕ) sin(ψ)e θ + cos(ϕ)e z (4. [START_REF] Ting | Anisotropic elasticity: theory and applications[END_REF] and assume that the fibers have a small deviation from the z-direction i.e.:

         M r = ε cos(ψ) + O(ε 3 ), M θ = ε sin(ψ) + O(ε 3 ), M z = 1 -1 2 ε 2 + O(ε 3 ), (4.19) 
where the polar angle ϕ = << 1.

As seen above, for the leading order when M z = 1 and M r = M θ = 0 (see figure 1-c), the anti-plane shear deformation can be sustained. Now, we perform a perturbation analysis of the field equations with respect to the small parameter ε introducing:

         f (r) = εf 1 (r) + ε 2 f 2 (r) + O(ε 3 ), g(r) = εg 1 (r) + ε 2 g 2 (r) + O(ε 3 ), w(r) = w 0 (r) + εw 1 (r) + ε 2 w 2 (r) + O(ε 3 ). ( 4.20) 
For the leading order, the solution of our problem is clearly given by:

w 0 (r) = T b µ L ln r a . (4.21) 
At order O(ε), we have:

σ rθ = ε µ T rg 1 + (µ L -µ T ) sin(ψ)w 0 + O(ε 2 ). ( 4.22) 
From the balance equation (2.6) 2 and the corresponding stress boundary condition, we obtain σ rθ = 0. Solving (4.22) imposing g 1 (a) = 0 it is:

g 1 (r) = µ L -µ T µ T sin(ψ) bT aµ L a -r r . (4.23) 
From (2.6) 1 , we obtain:

r 2 f 1 + rf 1 -f 1 = αbT cos(ψ) µ L (λ + 2µ T ) , (4.24) 
whose exact solution is:

f 1 = k 11 r + k 12 r - αbT cos(ψ) µ L (λ + 2µ T ) , (4.25) 
where k 11 and k 12 are integration constants fixed by the boundary conditions f 1 (a) = 0 and σ rr (b) = 0 as:

k 11 = {[2µ 2 T + (-2µ L -α + λ)µ T -λµ L ]b + µ T aα}bT cos(ψ) (2µ T + λ)µ L (a 2 µ T + b 2 λ + b 2 µ T ) , (4.26) 
k 12 = {[-2µ 2 T + (2µ L + α -λ)µ T + λµ L ]a + bα(µ T + λ)}ab 2 T cos(ψ) (2µ T + λ)µ L (a 2 µ T + b 2 λ + b 2 µ T ) . (4.27)
On the other hand, the use of equation of (2.6) 3 , i.e. σ rz (r) = T b/r, implies:

w 1 = 0.
In conclusion at order O( ) the effect of a dispersion of the fibers out of the z-direction like in (4. [START_REF] Ting | Pressuring, shearing, torsion and extension of a circular tube or bar of cylindrically anisotropic material[END_REF]) produces an in-plane deformation given by (4.23) and (4.25), but it will not change the anti-plane deformation field. To outline the effect of the fibers dispersion on the anti-plane shear deformation mode, it is necessary to consider O(ε 2 ) terms.

In this case, the second order of the asymptotic expansion relative to the axial displacement component w is obtained as it follows:

w 2 = k 23 k 21 ln a r + k 24 ak 21 a -r r + k 22 k 21 (a -r), (4.28) 
with 

k 21 = µ 2 L (2µ T + λ)µ T [(a 2 + b 2 )µ T + b 2 λ], (4.29) 
k 22 = 2b{2bµ 2 T + [(-2µ L -α + λ)b + aα]µ T -bλµ L } cos(ψ) 2 × (α + µ L -µ T )µ T T, (4.30) 
k 23 = {[2(β -µ L )µ 2 T + ((β -µ L )λ + 2µ 2 L -α 2 )µ T + λµ 2 L ] cos(ψ) 2 -(2µ T + λ)(µ L -µ T )µ L }bT [(a 2 + b 2 )µ T + b 2 λ], (4.31) 
k 24 = {-4aµ 2 T + [(4µ L + 2α -2λ)a + 2bα]µ T + 2λ(aµ L + αb)} × (µ T -µ L )µ T b 2 aT cos(ψ) 2 , ( 4 

Incompressible case

In the incompressible case a radial displacement is not admissible (i.e f ≡ 0) and the computations are simplified because the displacement field is directly determined from (4.14) and (4.15). The remaining equilibrium equation in (2.6) must be used to determine the pressure field p and a simple and complete exact solution is derived.

We set: The solutions of this system, subject to the boundary conditions g(a/b) = 0, w(a/b) = 0, are given by: ŵ

         Γ 1 = μ + βM 2 r M 2 θ + (1 -μ)(M 2 r + M 2 θ ), Γ 2 = βM 2 r + (1 -μ) M θ M z Γ 3 = μ + βM 2 r M 2 z + (1 -μ)(M 2 r + M 2 z ).
(r) = Γ 1 Γ 1 Γ 3 -Γ 2 2 T ln b a r , g(r) = Γ 2 Γ 1 Γ 3 -Γ 2 2 T 1 r - b a . (4.36)
This means that the axial shear deformation is always coupled with an anticlockwise azimuthal shear.

Optimisation Problems

There are several interesting aspects about the coupling between the inplane and the anti-plane deformations in the anisotropic setting. First of all, by using an axial deformation, it is possible to generate an azimuthal shear (or the converse). This fact allows to create the concept of some simple elastic machines that may be very useful in some frameworks. The term of elastic machines is used here to denote a kind of mechanical structure taking advantage from the generated coupling inherited from the anisotropy.

In the studied case of this paper, it could transform an axial shear deformation to a rotaion of the fiber or loading of moment to forces and vice versa. This advantage could be used to design a sort of actuators or sensors to generate or control axial or azimuthal deformation with good accuracy since the deformation is infinetesimal. The properties of such device can be designed based on the mechanical properties and the direction of the fibers.

The other aspect of this framework is given by the possibility to arrange the fibers in such a way that it is possible to optimise some quantities of mechanical interest.

It is well known that in the isotropic case, the moment associated with an anti-plane shear, given by:

M = 2π 0 b a r 2 σ θz drdθ, (5.1) 
is null because σ θz = 0. But, in the anisotropic case the situation is completely different.

For example, in case ii) where the distribution of the fibers is as in figure 1.d, using (3.18), the moment expression is found to be: Now the Lagrangian of interest is:

M = (1 -μ)M r M θ μ + (1 -μ)M 2 r T π 1 - a 2 b 2 , (5.2) 
L = M -Λ((M 2 r + M 2 θ + M 2 z -1)), (5.15) 
and the equations to be solved have the same formal structure of (5.10):

                     M θ ∂ L ∂Mr -M r ∂ L ∂M θ = 0, M z ∂ L ∂M θ -M θ ∂ L ∂Mz = 0, M 2 r + M 2 θ + M 2 z -1 = 0.
(5.16)

A first solution of (5.16), valid for any value of the constitutive parameters, is:

M z = 0, M r = ± μ μ + 1 , M θ = ± 1 μ + 1 .
(5.17 

Concluding Remarks

Using a simple, but non trivial example, we have illustrated some interesting couplings of the various modes of deformation in a transverse isotropic material. This kind of couplings shows the inherent complexity of anisotropic elasticity and can be exploited to create some elastic actuators.

Arranging the anisotropy of the material, for example, it is possible to turn an axial displacement into an azimuthal deformation and vice versa. This fact constitutes a very interesting property to design elastic machines as it is explained above, and also to understand the arrangement of the fibers in some biological materials. In the bio-framework, it is possible that these coupling effects have been optimised for the best efficiency of the different organs functions. Therefore, our findings shed a new light on the structure of some fiber-reinforced biomaterials.

A generalization of our approach, in presence of nonlinear deformations and residual stresses, is a necessary step to adapt our results for realistic applications in biomechanics.
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 164 14) and (4.15), when Γ3 Γ5 -Γ2 4 M θ M z = 0, (4.17) it is possible to determine g and w and then to reduce (2.6) 1 to a second order linear differential equation in the unknown f (r). The boundary conditions for such a differential equation are provided by σ rr (b) = 0 and f (a) = 0. Once the solution for the radial displacement has been provided, the azimuthal and axial shear components are determined from (4.14) and (4.15) imposing g(a) = 0 and w(a) = 0.

  .32) which introduces the direction of the fibers influence on the anti-plane shear component of the displacement. This situation is similar to what happens to the same problem in non-linear isotropic elasticity[START_REF] Pucci | Secondary motions associated with anti-plane shear in nonlinear isotropic elasticity[END_REF].

( 4 .
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 2 Figure 2: Number of the optimal fibers arrangements depending on the material parameters (yellow color: existence of two admissible solutions, blue color: existence of unique general solution).

) Solving ( 5 . 16 ) 2 - 6 , ( 5 . 18 )

 51626518 [START_REF] Forte | Symmetry classes for elasticity tensors[END_REF] we obtain the following relation:( β + 4)μ + 2]M 2 r -2μ 2 + ( β + 3)μ -1 3 β(μ -1)M 2 r -6μ 2 + 3( β + 4)μ -and introducing it in (5.16) 1,3 , we reduce the problem of the additional solution determination to the search of real roots of a fifth order polynomial equation (see Appendix A for details). The existence of this additional solution depends on the values of constitutive parameters (see the right plot of figure2).
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Therefore, a rectilinear surface traction generates a moment which is a function:

M : S 1 → R.

Since S 1 (defined as the unit circle in the plane (M r , M θ ): M 2 r + M 2 θ = 1) is a compact set and M is a continuous function, the Weierstrass extreme value theorem guarantees the existence of optimal arrangements of fibers that maximise and minimize the moment. Parametrising M as:

the optimal arrangements are attained when:

If μ < 1, θ1 is a maximum and θ2 a minimum. The converse situation occurs if μ > 1.

A general treatment of these problems is quite involved. In the incompressible case the solution is known in an explicit form and results in closed form can be obtained.

Indeed, in this case (see subsection 4.2) the torsion stress component σ θz is given explicitly by:

and therefore:

Introducing the dimensionless variable r = r/b ∈ [a/b, 1], the maximum amount of the azimuthal shear is obtained on the external mantle of the cylinder as:

(5.8)

Reading g(1) as a function:

where S 2 is the unit sphere (defined by

, it is possible to search for arrangements of the fibers that optimise the azimuthal displacement, once again, using the classical extreme value theorem of real analysis.

To compute the extrema of the rotation field g, the following Lagrangian is introduced:

and therefore, the following system must be solved:

(5.10) From (5.10) 2 :

and since we require Γ 2 = 0, otherwise g ≡ 0, we obtain:

(5.12)

Using this assumption, it is possible to find a general solution of (5.10) given by:

Another solution to (5.10) can be obtained only for special values of μ and β, if the algebraic equation:

It is possible to determine the zone of existence or non-existence of solutions of (5.10) in the α, β-plane by a direct numerical method see the left plot of figure 2.

Another optimisation problem can be studied if the moment in (5.7) is considered as a function:

Appendix A Moment Optimisation

The explicit form of the fifth order polynomial equation in the M 2 r unknown used in section 5 is given by:

where