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Introduction

The nuclear industry produces a wide variety of radioactive wastes including contaminated particles and elements of materials such as graphite, aluminum, magnesium, and uranium. Many processes have been successfully used for the disposal of these wastes, basically relying on their immobilization (termed as 'solidification') into packages. The choice of the solidification method depends on the radioactivity level of these wastes, and their behavior in contact with the matrix material. Cementation consists in incorporating the wastes in a mix of cement and water [START_REF] Xuequan | Alkali-activated slag cement based radioactive waste forms[END_REF] [START_REF] Stitt | In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour[END_REF]. Due to hydration reactions of the cement in contact with water, this mix progressively solidifies and immobilizes the waste particles. Among the different types of cement, the Alkali-Activated Slag (AAS) is a good candidate to be used in the case of low and intermediate radioactivity level wastes. Its high early/later strength and low porosity indeed restrict the leaching of harmful species such as radionuclides [START_REF] Xuequan | Alkali-activated slag cement based radioactive waste forms[END_REF], [START_REF] Aydın | Mechanical and microstructural properties of heat cured alkaliactivated slag mortars[END_REF], [START_REF] Luukkonen | One-part alkaliactivated materials: A review[END_REF]. Moreover, the pore solution in the AAS cement paste has a basic pH in the range of . ~ . [5] [START_REF] Puertas | Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate[END_REF], which helps to minimize the solubility of many radionuclides. This high internal pH further tends to limit the kinetics of corrosion reactions of metallic wastes, by keeping them in a passive state [START_REF]Cement-Based Materials for Nuclear Waste Storage[END_REF]. Also, the cement paste allows the possibility to incorporate a wide variety of wasteforms in the solid and provides a radiation shielding. Due to its low porosity, it is known to possess low liquid and gas permeabilities in the hardened state, making important its resistance to aggressive environment. It can also be formed into any desired shape which protects radioactive wastes, and facilitates its storage.

However, the presence of free-water in the pores generally causes at long-term a progressive corrosion of reactive metal inclusions such as magnesium, aluminum, uranium…etc. [START_REF]Cement-Based Materials for Nuclear Waste Storage[END_REF]. The corrosion reaction (1) forms an expansive metal oxide (corrosion product ) layer around the metal inclusions ( ), in general accompanied with a significant release of hydrogen gas [START_REF] Bai | The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals[END_REF] [9] [START_REF] Haschke | Corrosion of uranium in air and water vapor: consequences for environmental dispersal[END_REF]. The first stage of metal inclusions reaction in cement pastes is characterized by a substantial corrosion kinetics due to the presence of an important quantity of free-water in the pores and the high hydration temperature [START_REF] Stitt | In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2: Corrosion in water[END_REF]. Note that the thickness of the developed corrosion product layer can be important with respect to the metal inclusion. Indeed, the transformation process may in theory be complete if reactants are available, meaning that the whole inclusion can be transformed into corrosion products. The general expression of oxidation reaction is:

+ 2 → + 2 (1) 
The volume expansion associated with the formation of the corrosion products (metal oxide MO ) can generate deformations and micro-cracks in the cement matrix [START_REF] Stitt | In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour[END_REF] [START_REF]Cement-Based Materials for Nuclear Waste Storage[END_REF].

It should be mentioned that in the application considered in this study, the wastes to be cemented contain an important volume fraction of non-metallic and stable inclusions (graphite ≈ 40%), and only a small volume fraction of composite inclusions (metal inclusions + corrosion product) (see Fig. 1).

The main objective of this study is to develop a model that may be used in the general context of heterogeneous microstructures containing several types of inclusions, some of them being composite in the form of n-layered spheres. The aim of the model is to estimate the effective elastic properties and to predict the macroscopic stress/strain in the material when subjected to the expansion of (some of) the layers of the composite spheres. This will be done through the introduction of an interaction coefficient that relates the microscopic expansions to the macroscopic behavior. As will be shown, this model will prove useful to investigate analytically the effects of various parameters as e.g. the size, volume fraction and layer thickness of the inclusions on the material response. Ultimately, the model may be applied to assess the initiation of cracking in the microstructure.

The effective properties of the composite material depend on the mechanical properties of the constituent phases, the geometry and size distribution of inclusions, the nature of interface between inclusions and matrix, and the volume fraction of inclusions. These properties can be determined experimentally. However, their estimation for different corrosion rates, inclusions shapes, and different volume fractions may largely benefit from the use of an analytical and/or numerical approach. Analytically, a great deal of micromechanical models were developed to homogenize composite of various microstructures by determining analytical expressions of the effective properties associated with a homogeneous equivalent medium. One particularity of our problem is that some of inclusions corrode, and are then surrounded by a layer of oxide phase having in general different mechanical properties; such particles may then be seen as composite inclusion. In the literature, two kinds of model are often used to simulate the presence of a corrosion product layer whose thickness remains small with respect to the inclusion. The first kind of models describes explicitly the corrosion product as a layer (i.e. an additional phase between the metal inclusion and the matrix) with perfect bonding conditions [12] [13]. The second kind of models consists in describing the corrosion product as an imperfect interface between the metal inclusions and the matrix in which displacement and/or stress discontinuities are assumed to exist [START_REF] Nguyen | Experimental and numerical behaviour of reinforced mortar plates subjected to accelerated corrosion[END_REF] [15] [16] [START_REF] Bary | Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces[END_REF]. Note that particular conditions regarding the thickness of the layer and the respective mechanical properties of inclusion and layer phases are required for these interface models to be applicable.

Numerically, many applications of the finite element method (FEM) may be found to estimate the effective properties of composites (see e.g. [START_REF] Zhang | Effective elastic constants of wire mesh material studied by theoretical and finite element methods[END_REF] [17] [START_REF] Wang | Computational technology for analysis of 3D mesostructure effects on damage and failure of concrete[END_REF] ). The microstructures are described via 2D or 3D representative elementary volumes (REV) which are constructed by using advanced computer algorithms [START_REF] Bary | Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces[END_REF], or by employing the real microstructure obtained experimentally by e.g. X-ray tomography [20] [21].

Following the increasing power of PCs, numerical methods become more and more used to estimate the behavior of heterogeneous materials. One reason is that, apart from the problem size to solve, there is only limited restrictions on the geometry, the number of phases, the material properties, and the size of inclusions.

In this paper, we propose as mentioned above to describe the macroscopic behavior of a composite material made up of a cementitious matrix in which are distributed different types of inclusions, with some of them surrounded by a layer of corrosion products in formation. The macroscopic effects of the growing layer (internal expansion) are reproduced via an effective interaction coefficient related to the inclusion radius and the metal corrosion rate. A micromechanical model is then developed to predict the effective elastic properties of the heterogeneous structure shown in Fig. 1, and to estimate the macroscopic actions of the corrosion-induced expansions of the metallic particles. First, the effective properties are determined for a material containing only composite inclusions by solving a dilatation and shear problem in a dilute context. A differential scheme is then applied to extrapolate the effective properties for a microstructure with several types of inclusions with higher volume fractions. 

Analytical approaches

In order to describe the corrosion product layer development (i.e., growth of metal oxide layer) and its macroscopic effects through the interaction coefficient of the heterogeneous microstructure, an analogy with thermomechanics has been performed, in the same spirit of e.g. [START_REF] George | On transformation strains and uniform fields in multiphase elastic media[END_REF], [START_REF] Bary | Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar[END_REF] . Note that alternative approaches have been developed in the case where the phase that formed behaves like a fluid, e.g. [START_REF] Charpin | Microporomechanics study of anisotropy of ASR under loading[END_REF], [START_REF] Multon | Expansion modelling based on cracking induced by the formation of new phases in concrete[END_REF]. The principal idea is to simulate the growth of the metal oxide layer by applying a free strain * yet to be determined in all phases of the material. The Fig. 2. A corroded metal inclusion of initial radius with expansion factor = 4 interaction coefficient which transmits the microscopic action of * at the macro-level is assumed to be zero in all phases except the expansive ones. We can write, with the hypothesis that the inclusions subject to corrosion are spherical:

* = ∆ℎ = * ∆ℎ ( 2 
)
where * is the interaction coefficient ( ! ), ∆ℎ is the increase of radius due to the corrosion product layer, is the initial radius of the metal inclusion " (see Fig. 2), and * is the local free strain associated with the corrosion product layer growth of phase ". We define here an expansion factor = # $ % &$ % $ ( < ) which represents the ratio of the corrosion product thickness ℎ and the consumed part of the metal inclusion ". Fig. 2 illustrates a corroded metal inclusion of radius with an expansion factor = 4. With the hypotheses that all phases are isotropic and the inclusions are randomly dispersed, the basic equation of the macroscopic stress Σ in terms of the macroscopic strain + takes the following form:

, = -./0 ∶ (+ -3 44 * 5 ∆ℎ 6 6 ) (3) 
where -./0 , 788 * 6 and are the homogenized tensor of elastic modulus, the homogenized interaction coefficient of phase 5 and the second order identity tensor, respectively.

Explicit representation of the corroded metal inclusions

Classical schemes

In this subsection the corrosion product is described explicitly as a layer (additional phase between the metal inclusion and the matrix) with perfect bonding conditions. There are several analytical approaches that can be used to estimate the effective properties of such heterogeneous structure shown in Fig. 1. First of all, the Mori-Tanaka method (MT) was introduced by [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] to compute the effective elastic properties of a composite containing ellipsoidal inclusions while considering their interactions in a certain manner. The MT method has been extensively used for the prediction of effective performances of heterogeneous materials, see for instance [29] [30] [31] [START_REF] Lee | Local anisotropy analysis based on the Mori-Tanaka model for multiphase composites with fiber length and orientation distributions[END_REF]. Another well-known scheme is the Self Consistent Method (SCM) based on the approach of spheroidal inclusions embedded in an infinite medium which has the (yet unknown) effective properties and is subjected to homogeneous loading at infinity. The formal solution of this classical problem was given by Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. However, as these schemes involve homogeneous inclusions dispersed in a matrix, they are not directly relevant for the composite inclusions considered here.

Generalized Self Consistent Method GSCM

Later, Christensen and Lo [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF] generalized the Eshelby's solution by embedding a spherical composite inclusion (twophases) in the effective infinite medium; this method is known as the three-phase model or the generalized selfconsistent method (GSCM) [13] [34]. The GSCM is recognized by its efficiency in estimating both effective shear and bulk modulus of isotropic composites [34] [35], and it is widely used in the literature. Herve and Zaoui [START_REF] Herve | n-Layered inclusion-based micromechanical modelling[END_REF] extended the three-phase model of [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF] to the n-phase model by considering an n-layered spherical inclusion. This model is well adapted to the case of composite inclusions of same geometry surrounded by a cementitious matrix. However, the GSCM is not suited for different types of composite inclusions, or to a combination of composite and homogeneous inclusions, as in the present case of cemented wastes.

Differential scheme

The differential scheme (DS) is based on the construction of heterogeneous materials using infinitesimal volume fractions of inhomogeneities, and was initially proposed in [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF] to estimate the effective conductivity of composite materials. It was then applied and improved in many research works, see e.g. [START_REF] Hashin | The differential scheme and its application to cracked materials[END_REF] [39] [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF]. The main idea of this approximation is to progressively generate the microstructure using finite but small increments of volume fraction until the global volume fraction of heterogeneities is reached. Within each increment, the dilute scheme is applied to the newly added small volume fractions of inclusions embedded in a matrix whose properties are obtained from the homogenization procedure of the previous increment. Interestingly, different types/ morphologies of inclusions may be involved in this step-by-step process. This is why in this study the DS is preferentially used for predicting the effective properties of the heterogeneous material comprising several types of inclusions (i.e. composite metallic and graphite inclusions) with high volume fraction. The approach used in this paper was proposed by [START_REF] Veiville | Influence des paramètres architecturaux sur les caractéristiques viscoélastiques du bois à ses différentes échelles d'hétérogénéité[END_REF] and [START_REF] Vieville | Application du schéma autocohérent par étapes à la modélisation des propriétés viscoélastiques des composites[END_REF] for two types of inclusions, and it has been generalized for multitype of inclusions by [START_REF] Broohm | Prediction of mechanical behaviour of inhomogeneous and anisotropic materials using an incremental scheme[END_REF]. We describe in the following its general principles: consider a composite made up of k phases with total volume Fig. 3. Construction of the heterogeneous structure and homogenization using differential scheme: metal inclusion ("), corrosion product (9) graphite (:) fraction of heterogeneities 0 < 4 < 1; let 4 < be the global volume fraction of the inclusion type =, and the incremental fraction of the inclusion = be 4 > < = 8 ?

@

, where is the number of steps to build the composite, such as at step " the volume fraction of the family = is 4 > < A " in the equivalent medium (see Fig. 3). The volume fraction of the heterogeneity = introduced in the equivalent medium at step " is given by [START_REF] Broohm | Prediction of mechanical behaviour of inhomogeneous and anisotropic materials using an incremental scheme[END_REF]:

4 < = 4 > < 1 -(" -1) ∑ 4 > 6 6
(4)

The introduced volume fraction 4 < (4) increases as a function of the increment number . As we have seen above, the DS is applied in the theoretical case of infinitesimal volume fractions of heterogeneities, and for this reason a large value of increment number is required to reach the convergence (when the number of steps is infinite, the summation becomes an integration over the volume fraction). As has been observed e.g. in [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF], many methods of insertion of inclusions in the composite exist in the case of multiphases, which depend on the increasing volume fraction path (see [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF], [START_REF] Broohm | Prediction of mechanical behaviour of inhomogeneous and anisotropic materials using an incremental scheme[END_REF], [START_REF]New models for effective Young's modulus of particulate composites[END_REF] for more details). Eq. ( 4) corresponds to the general case where all phases are progressively added proportionally, which seems reasonable without more precise information; it has been used in e.g. [START_REF] Tchalla | Incremental meanfields micromechanics scheme for non-linear response of ductile damaged composite materials[END_REF].

Thereafter, the differential scheme is extended to the case of composite spherical inclusions with several radii, corresponding to possible different corrosion rates between metallic particles of different nature, and other types of inert inclusions in the matrix (see Fig. 1). We then presume the existence of C inclusion types in the heterogeneous structure. Each inclusion has distinct elastic properties (= < , E < , * < ), where = ranges from 1 to C. The extended expressions of the effective properties can be expressed at the increment " as [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF]:

= 788 = = 788 ! + 3 F= < (μ < , = < , μ 788 ! , = 788 ! , 4 < ) H <I! (5) 
μ 788 = μ 788 ! + 3 Fμ < (μ < , = < , μ 788 ! , = 788 ! , 4 < ) H <I! (6) 788 * = 788 * ! + 3 F < * (μ < , = < , μ 788 ! , = 788 ! , 788 , 4 < ) H <I! (7) 
where (F= < , Fμ < , F * < ) are the increments of the effective properties (= 788 , μ 788 , 788 *

) related to the inclusion = (including spherical inclusions with different radii and corrosion rates) due to the increment of the volume fraction 4 < by applying the developed model for each type of inclusions. Note that when the increment " = 1, (= 788 , μ 788 , 788 * ) are the mechanical properties of the matrix (= @ , E @ , @ * ). The expressions of (F= < , Fμ < ,F < * ) will be detailed in section 3.

Interface model

As mentioned above, the corrosion product (CP) layer is assumed thin compared to the inclusion radius. In this subsection we represent the CP layer as an imperfect interface between the metal inclusion and the matrix, which is an alternative strategy to the composite inclusion modelling. Interfacial bonding conditions is one of the important factors that affect the global behavior of composite materials. Consequently, many models have been proposed to simulate the interface zone between the inclusion and the matrix. The term "imperfect interface" is used in the case of interfaces which present stress/displacement discontinuities. In the following, we give the expressions of the equivalent moduli (= 7J , μ 7J , * 7J ) for the considered composite inclusions, i.e. metal inclusions + CP described by an imperfect interface.

Linear spring model LSM

The linear spring model of thin layers is the simplest model of imperfect interfaces. It assumes that interfacial stress vector is continuous, while the displacement vector presents an interfacial jump linearly related to the stress vector. The interface conditions in linear elasticity for the LSM are [START_REF] Duan | A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework[END_REF]:

KLM. N = 0 , =. KOM = L . N (8) 
where N, O and L are the unit normal vector to the interface, the displacement vector, and the traction stress vector, respectively; K•M denotes the jump of the corresponding term. In this expression, = represent the second order tensor which can be expressed as [START_REF] Duan | A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework[END_REF]:

= = = Q N ⊗ N + = S T ⊗ T + = U V ⊗ V with: = Q = 2 E > (1 -W > ) ℎ > (1 -2W > ) , = S = = U = E > ℎ > (9) 
= Q , = S , = U represent the interface elastic parameters in the normal and the tangential directions, respectively, T and V represent the orthogonal unit vectors in the tangent plan of the interface, ℎ > and W > are the thickness and the Poisson ratio of the interface (i.e., corresponding to the corrosion product), respectively. As mentioned before, the LSM can be used in the case where the interface is thin and compliant with respect to the inclusion, that is,

ℎ > ≪ Y Z , [\NV = ] Z ] > ⁄ ≫ 1
where Y Z is the inclusion radius, and [\NV is the mechanical properties contrast including + > , + Z , and E > , E Z , which are the Young moduli and shear moduli of the interface and the inclusion, respectively.

Interface stress model ISM

In estimating the effective properties of composite materials with interfacial bonding conditions in the context of linear elasticity, the interface stress model ISM has been widely adopted. The ISM was first derived by [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF] and has been more recently used in the works of e.g. [47] [48] [49] [START_REF] Duan | Stress concentration tensors of inhomogeneities with interface effects[END_REF].

In this model, the displacement vector is continuous across the interface while the stress vector presents an interfacial jump governed by the Young-Laplace equation. The interface conditions for the ISM model are given by [START_REF] Gurtin | A continuum theory of elastic material surfaces[END_REF]:

KOM = 0 , N . KLM = -`S . a (10) 
where ∇ S . a represents the interface divergence of a stress tensor related to the interface strain written in the following form:

a = 2 E S + c S V ( ) (11) 
where c S , E S are the Lamé coefficients of the interface material. The interface moduli are given by [START_REF] Wang | An anti-interpenetration model and connections between interphase and interface models in particle-reinforced composites[END_REF]:

c S = 2 E > W > ℎ > 1 -W > E S = E > ℎ > (12) 
As mentioned before, the ISM can be used in the case where the interface is thin and stiff with respect to the inclusion, i.e.

ℎ > ≪ Y Z , [\NV = ] Z ] > ⁄ ≪ 1 .

Equivalent inclusion method

To consider the interface effect (corrosion product layers development and their mechanical properties) on the global behavior of the heterogeneous microstructure, a replacement procedure based on an energy equivalency condition is applied. The concept of this procedure is to replace the composite inclusion with an imperfect interface by an equivalent inclusion perfectly bonded to the matrix (see Fig. 4), providing that the elastic energy of both systems is equivalent [START_REF] Duan | A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework[END_REF]. Once the composite inclusion is replaced by this equivalent homogeneous inclusion, a micromechanical scheme as the MT or GSCM can be used to obtain the effective properties of the composite. The expressions of the equivalent bulk = 7J (= Z , = > , E Z , E > , Y Z , ℎ > , W > ) and equivalent shear E 7J d= Z , = > , E Z , E > , Y Z , ℎ > , W > , W Z e moduli calculated from this replacement procedure are rather lengthy and are not given here (see [START_REF] Duan | A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework[END_REF] eq 18-19 for more details). For the equivalent interaction coefficient 788 * , an explicit formula was used for spherical inclusion with imperfect interface [START_REF] Duan | Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections[END_REF], which presents a displacement or stress jump across the interface (LSM and ISM models), relating the effective interaction coefficient to the effective elastic moduli (refer to [START_REF] Duan | Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections[END_REF] for more details).

Model development

In this section, the corrosion product is represented explicitly as a layer perfectly bonded with the metal inclusion and the matrix. The constituents of the composite are considered isotropic and homogeneous. The principal objective is to estimate the effective properties (= 788 , E 788 , * 788 ) of the heterogeneous microstructure shown in Fig. 1 by means of the differential scheme, which has been recognized as an attractive method in the present case. While this scheme has been widely applied to heterogeneous microstructures comprising different homogeneous particles, to the authors knowledge it has not been used in the general context of thermos-elasticity with n-layered spherical inclusions, except in the very particular (non-generalizable) case of hollow spheres in [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF]. In such context, it is necessary to solve the problem of the composite inclusions in the dilute condition. In the first step, the model is then developed for a spherical multilayered inclusion embedded in a matrix and subjected to a pure dilatation/shear at infinity. The geometry of the spherical composite inclusion is shown in Fig. 5; the matrix is assimilated to a layer of external radius Y. A spherical coordinate system is set to the metal inclusion center. The volume fraction of the composite inclusion is supposed to be infinitely small with an internal (delimitating the interface between corrosion product layer and metallic inclusion) and an external radius and , respectively. In the second step, the differential procedure is applied in order to extend the developed model for composite containing several radius/types of inclusions with high volume fraction.

The strain energy f of a homogeneous medium containing an inclusion under remote displacement conditions is given by the Eshelby equation [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]: where j is the surface of the inclusion, f is the strain energy in the homogeneous medium without the inclusion, L , O are the stress and the displacement in the medium without inhomogeneity, while L 7 , O 7 are the stress and the displacement in the medium with inhomogeneity. The effective properties are determined by imposing that the strain energy f is equal the strain energy f 788 stored in the equivalent homogeneous medium of radius Y.

f = f + 1 2 g dL % O % 7 + L %h O h 7 + L %i O i 7 -L % 7 O % S -L %h 7 O h -L %i 7 O i e Fj (13) 

Effective bulk modulus k lmm

The effective bulk modulus of the composite inclusion is determined by solving a pure dilatation problem. We assume that the spherical composite in Fig. 5 is subjected to a pure dilatation at infinity dO n , O o , O p e = T. (q, r, s), where T is the normal strain. Due to the symmetry in spherical coordinate system, the only nonzero displacements/stresses are the radial displacement/stresses components in the three phases of the composite, which can be written in a general form as:

f % 6 = t 6 + u 6 1 (14) 
L %% 6 = 3 = 6 t 6 -u 6 4 E 6 w ( 15 
)
where 5 represents the considered phase such as (": inclusion, : matrix, 9: corrosion product), t 6 and u 6 are two constants determined by applying boundary and interface conditions. The displacement f % is required to be zero in the inclusion center ( = 0), which gives (u = 0). The linear equations given by the boundary and interface conditions can be expressed by:

3= t = 3= > t > -u > 4E > w = (16) 
t = t > + u > 1 = (17) 
3= > t > -u > 4E > w = 3= @ t @ -u @ 4E @ w = (18) 
t > + u > 1 = t @ + u @ 1 = (19) 
The strain energy stored in a homogeneous sphere of radius Y comprised of the effective medium, and subjected to a pure dilatation is f 788 = 6y= 788 Y w T [START_REF] Porfiri | Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites[END_REF]. The identity f = f 788 gives the following expression of the effective bulk modulus:

= 788 = = @ -u @ 3= @ + 4E @ 3Y w t @ (20)

Solving the system equations (16…19) by using Wolfram Mathematica ® software (www.wolfram.com/mathematica/) for t , t > , u > , t @ , and u @ and using equation ( 20), the final expression of the effective bulk modulus is:

= 788 = = @ + w(z { |} { )|~• { w(w€ { |~7 { )|~8 { (3= @ + 4E @ )Γ w (21) 
where

Γ = Y ⁄ (22) 
The coefficients (' ! , ƒ ! , [ ! , F ! , ! , 4 ! ) are given in appendix.

Effective shear modulus " lmm

The effective shear modulus of the composite inclusion is determined by solving the problem where the composite sphere shown in Fig. 5 is subjected to a pure shear at infinity, i.e. dO n , O o , O p e = T. (q, r, 0) with T the shear strain. The displacement vector is given by [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF], it can be written as:

O % = f % ( ) T"N … [\T2 † (23) 
O h = f h ( ) T"N… [\T… [\T2 † (24) 
O i = f i ( ) T"N… T"N † (25) 
with f h = -f i , and the general forms of the function f % , f h are expressed as:

f % 6 = u ! 6 - 6W 6 1 -2W 6 w u 6 + 3 ~uw 6 + 5 -4W 6 (1 -2W 6 ) u 6 (26) 
f h 6 = u ! 6 - 7 -4W 6 1 -2W 6 w u 6 - 2 ~uw 6 + 2 u 6 (27) 
where 5 is the considered phase, and (u ! , u , u w , u ~) are constants determined by applying appropriate boundary and interface conditions. According to [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF] the stress expressions L %% and L %h can be written as: 

L %% = 3c
The displacements f % and f h are required to be zero at = 0, which gives u w = u ~ = 0, and the constant u ! @ is equal to the shear strain at infinite distance from the origin which gives u @ = 0. The linear equations given by the boundary and interface conditions can be expressed in the form of . q = 4, where the column vector q = •u ! , u , u ! > , u > , u w > , u >, u w @ , u @ Ž, and 4 = •0,0, T, T, 0,0,2E @ T, E @ TŽ, and is a matrix with 8 A 8 dimensions.

The strain energy stored in a homogeneous sphere of radius Y composed of the effective medium, and subjected to a pure shear is f 788 = • w yE 788 Y w T [START_REF] Porfiri | Effect of volume fraction and wall thickness on the elastic properties of hollow particle filled composites[END_REF]. The identity f = f 788 gives the following expression of the effective shear modulus:

E 788 = E @ - 3(c @ + 2E @ )
Y w u ! @ u @ (30)

Solving the system equations . • = 4 by using Mathematica ® for u ! , u , u ! > , u > , u w > , u >, u w @ , and u @ and using equation ( 30), the final expression of the effective shear modulus is:

E 788 = E @ + ' (= @ , E @ , = , E , = > , E > , Γ, †) (31) 
The expression of ' in [START_REF] Tran | Mori-Tanaka estimates of the effective elastic properties of stress-gradient composites[END_REF] is not detailed here due to its lengthiness.

Comparison with analytical models

The developed model based on the DS is compared here with different analytical models reported in literatures in terms of effective moduli of a heterogeneous material made up of a matrix in which are dispersed spherical composite inclusions mimicking the metallic core surrounded by a CP layer. Table 1 summarizes the mechanical properties of the different phases in the heterogeneous material. Fig. 6 illustrates the analytical results of bulk/shear modulus in terms of volume fraction of metal inclusion (bottom axis) of radius = 5 and corrosion product (top axis) for different analytical models, and with the assumption of a layer thickness ℎ = "0 30 ⁄ . For a (metallic inclusion) volume fraction varying from 0 to 0.15, the prediction of all models is close; for greater values the differential scheme is closer to GSCM and MT models. We note that the predictions of both LSM and ISM models in the case of thin layers of corrosion product do not agree very well with the DS one. This may be attributed to the fact that these models are valid for important properties contrast between sphere and layer phases, while in the considered practical case this contrast is near 1, i.e. mechanical properties of CP and metal are close. From this viewpoint, the application of the classical interface models is not relevant; consequently, the results are only presented for the sake of comparison.

Effective Interaction Coefficient • * lmm

The effective interaction coefficient is determined by solving a dilatation/contraction problem, where the structure shown in Fig. 5 is subjected to a uniform dilatation/contraction loading ∆ℎ, which generates stress/strain in the radial direction. The only nonzero displacements/stresses components are the radial ones in the three phases of the composite; they can be written in general form as:

f % 6 = t 6 + u 6 1 (32) 
L %% 6 = 3 = 6 t 6 -u 6 4 E 6 w -3= 6 6 * ∆ℎ 6 [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] where 6 * is the interaction coefficient of the phase j. A perfect interface is considered between each phase. As before, the constants are determined by applying boundary conditions and interface continuity. The displacement f % is required to be zero in the inclusion center ( = 0), which gives (u = 0). The free strain * due to the effects of internal expansion (see eq (2)) of the effective medium can be written as:

* = 788 * ∆ℎ → 788 * = f %I- @ Y∆ℎ = t @ ∆ℎ + u @ Y w ∆ℎ (34) 
Solving the system equations by using Mathematica ® for t , t > , u > , t @ , and u @ and using eq [START_REF] Christensen | A critical evaluation for a class of micro-mechanics models[END_REF], the final expression of the effective interaction coefficient is: where † = ⁄ .

The coefficients (' w , ƒ w , [ w , F w , w , 4 w , : w , ℎ w ) are given in appendix. Note that formula [START_REF] Christensen | Two Theoretical Elasticity Micromechanics Models[END_REF] can be used to predict the coefficient of thermal expansion CTE; in particular, we have verified that it gives the same results as Levin formula [START_REF] Levin | On the coefficients of thermal expansion of heterogeneous materials[END_REF] in Fig. 7. Prediction of the effective CTE based on differential scheme [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF], experimental results given by [START_REF] Shunmugasamy | Thermal expansion behavior of hollow glass particle/vinyl ester composites[END_REF], GSCM and the differential scheme DS developed in this paper, for hollow spheres embedded in a ceramic matrix.

the case of a two-phase composite. Fig. 7 illustrates the coefficient of thermal expansion (CTE) experimental results given by [START_REF] Shunmugasamy | Thermal expansion behavior of hollow glass particle/vinyl ester composites[END_REF] of hollow spherical inclusions (glass bubbles) with external and internal radius ratio 0.958 embedded in a matrix, the analytical results based on the developed model, the differential scheme given by [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF] (see [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF], [START_REF] Shunmugasamy | Thermal expansion behavior of hollow glass particle/vinyl ester composites[END_REF] for more details) and the GSCM. The predictions given by the developed model are close to experimental results [START_REF] Shunmugasamy | Thermal expansion behavior of hollow glass particle/vinyl ester composites[END_REF] and the analytical predictions given by GSCM and [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF]. Furthermore the little difference between the developed model and the DS given by [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF] is explained by the incremental insertion method of the inhomogeneities volume fraction in the composite: in [START_REF] Makarian | Coefficient of thermal expansion of particulate composites with ceramic inclusions[END_REF] the added volume fraction of inhomogeneities per increment FΦ is multiplied by

! (! T)
(Φ @ is described as the maximum possible concentration of inhomogeneities) to take into account the matrix volume decrease, which is different from eq (4) applied in this work (see [START_REF]New models for effective Young's modulus of particulate composites[END_REF] [22] for more details).

Comparison with analytical models

Fig. 8 shows the predictions of the effective interaction coefficient of a microstructure with composite spherical inclusions obtained with the model based on the DS, the GSCM given by [START_REF] Herve | n-Layered inclusion-based micromechanical modelling[END_REF], and the interface models (LSM, ISM) for different contrasts ([\NV = ] Z ] > ⁄ ) with a corrosion rate of 3.7%. This corrosion rate is defined by

š = › $& › $ › $&
where oe and oe are the initial and after corrosion volume fraction of metal inclusions, respectively. The initial radius of the metal inclusion is = 5

. The DS and GSCM give a result consistent with the LSM in the case of thin and low mechanical properties of corrosion product layer (i.e., for higher values of contrast), and show more discrepancies when the mechanical properties contrast is small. In all cases, the DS predictions of 788 * are at least equal or higher than those obtained with the other models, in particular for [\NV ≪ 1. This means that the macroscopic effects of expansions are greater with the proposed model, making it more "conservative" with regards to the potential microcracking.

Interestingly, for contrasts near to 1 ([\NV~1), which are in principle far from the validity domain of interface models, the estimations of both LSM and ISM are quite close and not significantly different from DS and GSCM ones when compared to the case of [\NV ≪ 1. Finally, it is worth mentioning that the overall value of the interaction coefficient is as expected influenced by the mechanical properties contrast between metallic inclusion and CP layer. The values range from about 95 (greatest contrast) to 130 m -1 (lowest contrast) for the DS and the volume fraction of metal inclusion of 0.4. For our practical case of contrast close to 1, the DS predicts a 788 * approaching the one obtained for lowest-contrast. Fig. 9 shows the macroscopic free strain (i.e. at null overall stresses) due to the expansion of metal inclusions in the matrix as a function of their volume fraction in the range 0~40% and the corrosion product layer thickness varying in the range ℎ = 0 μ ~ 180 μ which represents a final corrosion rate of 3.7%. As expected, the generated strain augments for increasing values of volume fraction and CP layers development. For the case of an expansion factor of = 4 and maximum values of both inclusion volume fraction and ℎ as considered here, the overall free strain can exceed 2.21%, which is considerable given that the corresponding corrosion rate is only 3.7%. Note that, this free macroscopic strain * = 2.21% (in the case of expansion factor approach in Fig. 2) is greater than that of a simple theoretical assumption * = 2.11% (when the consumed part is not considered).

The developed model is applicable for composites with different types of metal inclusions and/or corrosion rates.

Here it is tested for a microstructure containing the same type of spherical metal inclusions but with different radius ( = 10 , 5 , 2

), with corresponding proportion of (50%, 25%, 25%), respectively. The response is compared to results of microstructures containing inclusions with same radius. Fig. 10 , despite the small volume fraction of inclusions of radius = 2 .

Fig. 11 shows the results of macroscopic free-strain in the composite due to metal inclusion corrosion for different corrosion rates. We consider here a metal inclusion of initial radius = 5

. According to Fig. 11, the generated free-strain depends almost linearly on the corrosion product formation, at given inclusion volume fraction. In the case of blocked strain (i.e. null overall strain), the macroscopic compressive stress generated by the expansion of metal inclusions is significant, and can reach -64 "' for a volume fraction of 0.02 and a corrosion rate of 3.7%. The long-term corrosion can generate very important values of free-strain in the matrix; note however that the small perturbation theory is not valid for corrosion rates upper than several percent, and the results shown here are then only indicative for such high values.

3D numerical simulation

The analytical approaches presented above are often limited to simplified cases in terms of shape, volume fraction, and orientation of inclusions. As mentioned in the introduction, numerical methods such as the FE method become more and more used to estimate the behavior of heterogeneous materials, because there is in general less restrictions regarding the geometry, the number of phases, the material properties, and the shape and size of inclusions etc. However, FEM exhibits drawbacks, among others a high computation time especially for 3D simulations, the need of important memory and CPU resources, and a sensitivity to mesh density of the results if the meshes are insufficiently Fig. 7. Predictions of the macroscopic free-strain as a function of different corrosion rates and volume fraction of inclusion fine. We present in this section the 3D simulations performed to compare and validate the analytical model developed above.

Generation of the 3D microstructures

There are mainly two methods for generating 3D microstructures for FE modelling: (a) using advanced computer algorithms [START_REF] Bary | Analytical and 3D numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces[END_REF] [START_REF] Nguyen | Coupled carbonation-rust formation-damage modeling and simulation of steel corrosion in 3D mesoscale reinforced concrete[END_REF], and (b) employing the real microstructure obtained experimentally by e.g. X-ray tomography [20] [21]. In this paper the first method is used. The procedure for generating 3D cubic microstructures is detailed in e.g. [START_REF] Honorio | Multiscale estimation of ageing viscoelastic properties of cement-based materials: A combined analytical and numerical approach to estimate the behaviour at early age[END_REF] [57] and references therein. The open source python library Combs based on the computer-Aided design code Salome (http:/www.salome-platform.org) is applied to generate the geometries and the meshes of the microstructures. The 3D REV is defined by its box dimensions, the shape (spherical and polyhedral in our case) and size of inclusions, the number of inclusions per family to insert (or its volume rate), the minimum distance between each inclusion, and whether it has periodic boundary conditions or not. The geometries are obtained by a random distribution process of the particles in the box, from the greater sizes to the lower ones. Afterwards, the automatic meshing softwares developed by Distene (http:/www.meshgems.com) are used to mesh the resulting shape, with triangle elements for the surfaces (MeshGems-CADSurf) and tetrahedral elements for the volumes (MeshGems-Tetra).

In the following applications, two configurations of microstructure are considered. The first microstructure contains only spherical metal inclusions with the same radius (see Fig. 12a) surrounded by a corrosion product layer of thickness ℎ = 30 ⁄ with a volume fraction variation (0~40%): 8 RVE have been generated. The second microstructure type contains spherical metal inclusions surrounded by a corrosion product layer and graphite inclusions with several shapes (elongated and spherical), and with global volume fraction of inclusions ranging from 0 to 35%: 10 RVE have been generated (see Fig. 12b,c).

The effective properties are determined numerically by imposing boundary conditions such as homogeneous strains (designated as EF-CLDH) and homogeneous stresses (EF-CLCH), which provide bounds for the effective elastic properties (= 788 , E 788 ). The FE simulations are performed with the Cast3m code, developed at CEA (www-cast3m.cea.fr).

Results for composite spherical inclusions

In this part, the numerical results are compared with analytical predictions in terms of effective properties of microstructures containing only spherical composite inclusions. From Fig. 13 we can verify that the effective elastic properties (= 788 , E 788 ) estimated analytically lie between the upper and the lower bounds EF-CLCH and EF-CLDH, respectively. The prediction of = 788 , E 788 based on DS are closer to the lower bound EF-CLCH, which can be explained by the greater mechanical properties of metallic inclusions compared to the matrix. The non-negligible difference between the upper and lower bounds for higher particle volume fractions is explained by the use of spheres with relatively large radius with respect to the dimensions of the box to limit the meh size and then the FE computation time (meshing density: 626037 tetrahedrons and 95544 triangles, 20 minutes to solve the problem on a 2×12 cores PC Linux in the case of 35% volume fraction). This means that the generated samples do not fulfill the strict conditions of a REV. Moreover, the meshes should probably be refined to produce results that are (slightly) more accurate. However, they provide sufficiently precise and valuable results for the sake of comparison. Regarding the effective interaction coefficient, as mentioned above the numerical computation was carried out via an analogy with thermal problem (and with homogeneous stresses boundary conditions), by computing the volume average of strain tensor. We observe that the analytical predictions are very close to the numerical results despite the relatively limited meshing density.

Results for multiphase material

We analyze now the case of microstructures containing metallic and other types of inclusions (graphite in this example). 13 samples have been generated by using spherical [START_REF] Haschke | Corrosion of uranium in air and water vapor: consequences for environmental dispersal[END_REF] and elongated (3) with aspect ratio ' = 10 Voronoi-type shapes for graphite inclusions, and for different total inclusion volume fractions ranging from 5 to 33%. In the case of elongated graphite inclusions we limited the process to 22% of volume fraction due to the difficulty of random placement in Salome for such shapes having a marked preferential dimension (the non-interpenetration condition becomes then increasingly challenging to achieve). In this example a small radius of spherical inclusions is used with respect to the box size, which generates an important meshing density: 6313330 tetrahedrons and 695620 triangles for the higher inclusion volume fraction (with spherical graphite shapes) with 3 hours of FE computation time, and 1898886 tetrahedrons and 360330 triangles for the higher inclusion volume fraction in the case of elongated graphite inclusions with 100 minutes of FE computation time. Fig. 14 shows the prediction of the effective properties = 788 , E 788 , 788 * estimated and numerically. Generally, the same remarks as in the previous subsection can be made. However we observe that the relative differences in the estimations of = 788 and E 788 between homogenous stress and strain boundary conditions are smaller than in Fig. 13, indicating that the generated samples are nearer to real REVs. We also note that the effective elastic properties are faintly affected by the graphite inclusions shapes, which can be explained by their mechanical properties which are relatively close to the ones of the matrix. Indeed, it is well known that the higher the properties contrast between matrix and inclusion, the greater the influence of the inclusion shapes. Finally, we remark that the analytical and numerical values of 788 * are very close, though small discrepancies become visible for increasing inclusion volume fractions.

Conclusion

In this paper, the differential scheme was used to estimate the effective properties (bulk/shear modulus and interaction coefficient = 788 , E 788 , 788 * , respectively) of heterogeneous microstructures comprising homogenous and composite inclusions, as can be encountered in the case of nuclear wastes cementation process. The composite inclusions, supposed to be spherical, represent metallic inclusions subjected to (simplified) corrosion phenomena leading to the formation of a growing corrosion product layer, whose effects are reproduced macroscopically via the effective interaction coefficient 788 * . The model has been developed in general manner to take into account the progressive corrosion of metallic inclusion, involving the expansion factor and metal inclusion consumption. Moreover, it can be used for various inclusions sizes and different types of metal inclusion (or different corrosion rates), and can be also used for several families of inclusion (i.e. non-corroded homogenous or composite inclusions, combined with corroded composite ones) with high volume fraction.

Regarding the corroded composite inclusion response, the developed model has been successfully compared to other analytical models (Generalized Self-Consistent Method, Mori-Tanaka, and interface models). Contrary to most of these models, the differential scheme allows considering any mechanical parameters for the phases, and also combining different types of inclusions. Finally, numerical 3D simulations on various reconstructed samples comprising different types of homogeneous and composite inclusions randomly distributed in a matrix were performed to validate the analytical approaches. Globally, a good agreement was found with the analytical predictions, thus confirming the relevance of the proposed approach. It was observed that, due to the mechanical properties of graphite inclusion that are close to the ones of the matrix, the effective elastic properties are faintly affected by their shapes. It should be noticed that the validity domain of the model remains limited to reasonable corrosion rates due to the high induced strains, which may be incompatible with classical elasticity as considered here. As a perspective, an extension of the approach to higher corrosion rates, up to a full transformation of the metallic inclusion into oxides, is under investigation. Moreover, the introduction of microcracking in the matrix through a phase field approach is envisaged in the numerical model, so as to investigate locally the effects of the expansive nature of the corrosion product formation.
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  illustrates the results of the effective interaction coefficient as a function of the inclusion volume fraction. It is clear that the inclusion radius affects significantly 788 * ; much more important values are obtained in the case of smaller radius, due to the fact that at given thickness of CP layer, different volume fractions of the CP phase are obtained depending on the inclusion radius. The results in the case of different radius show that 788 * is greater than in the cases of constant = 5 and = 10
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 a8 Fig. 8. Generated microstructures with volume fraction of 35%
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 109 Fig. 10. Numerical results (boundary conditions with homogeneous strains EF-CLDH and homogeneous stress EF-CLCH) and analytical prediction based on DS model for multiphase composite with different graphite inclusion shape (spherical and elongated ' = 10)

This scheme has been widely applied to heterogeneous microstructures comprising different homogeneous particles. However, to the authors knowledge, it has not been used in the general context of thermoelastic-like materials with n-layered spherical inclusions, except in the very particular (and non- generalizable) case of hollow spheres in [22] [23]. Besides

  

	,
	a 3D FE analysis is also performed on generated specimens
	containing inclusions of different shapes to investigate more
	deeply the behavior of cemented waste materials, and
	validate the analytical approaches.

Table 1 .

 1 Elastic parameters of each constituent (experimental data)

	Element = ('"') μ ('"')	Matrix 11.11 8.33	metal 110.57 86.06	CP 102.48 79.76	Graphite 10 8
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Appendix

We detail in the following the expressions of the different coefficients introduced in the model in section 3.

The coefficients (' ! , ƒ ! , [ ! , F ! , ! , 4 ! ) of equation [START_REF] Wautier | Linking snow microstructure to its macroscopic elastic stiffness tensor: A numerical homogenization method and its application to 3-D images from X-ray tomography[END_REF] are:

The coefficients (' w , ƒ w , [ w , F w , w , 4 w , : w , ℎ w ) of equation ( 35) take the form: ' w = (9= = > = @ d -> e + 12= = @ μ > ( -@ ) + 12= > = @ μ > d @ -> e + 12= = > μ @ d -> e + 12= @ μ @ @ d= -= > e + 16μ > μ @ (= -= > > ) ƒ w = 12= @ @ μ > d= -= > e + 12= @ @ μ @ (= > -= )
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