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Abstract: 

A comprehensive approach is developed to model the dynamic effects induced by fracturing 

brittle materials through quasi-static loadings. This involves the establishment of a rigorous 1D 

analytical model to answer, in a quantitative way, the question of how elastic waves can be 

induced by the damage of the material. By analyzing the conversion of strain energy into kinetic 

energy, it is found that the rate of fracture opening is driven by a factor that depends on the 

fracture tensile strength, the fracture toughness and the Young’s modulus of the material. 

Dynamic Finite Element Analysis is then performed to determine the most sensitive parameters. 

It is found that the velocities of induced elastic waves are insensitive to the loading rate but 

increase substantially when the tensile strength of the material increases. This finding is of 

interest for many rock engineering problems, for instance the assessment of induced micro-

seismicity triggered during geothermal energy extraction. 

 

1 Introduction 

Fracturing brittle materials leads to a dynamic response that can occur even if the loading is 

quasi-static. This phenomenon has been widely studied (Rosakis and Ravichandran, 2000; Ravi-

Chandar, 2004; Petrov et al., 2016) and observed, particularly during testing of rock-like 

materials where the Acoustic Emissions (AE) have been recorded. In many rock engineering 

situations, the process of rock fracturing can induce micro-seismicity, for instance in rock 

bursting in deep underground mines or during hydraulic stimulation of deep geothermal 
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reservoirs, (Ngo et al., 2019). However, to date there is still no comprehensive approach to 

model the phenomenon of induced dynamic effects related to rock fracturing. 

In the following sections, a rigorous 1D analytical model is presented to quantitatively address 

the question of how elastic waves are generated when the strain energy stored in a body leads 

to material damage and dynamic fracturing. This study first considers the tensile mode of 

rupture (Mode I) and then a dynamic Finite Element Analysis is performed using the Cohesive 

Zone Model to validate the results obtained from the analytical model.  

2 Previous studies on the dynamic response induced by fracturing 

2.1 Experimental evidence 

Numerous experimental studies on brittle materials have shown that their failure is reflected in 

the initiation and propagation of fractures that generate elastic waves. At a laboratory scale, 

Acoustic Emissions (AE) are recorded ( Swindlehurst, 1973; Ohnaka and Mogi, 1982; Hardy Jr, 

2003) whereas on a larger scale the induced micro-seismicity (MS) is measured (Scholz, 1968a, 

b; Evans and Linzer, 1977; Lockner, 1993). 

One explanation for this wave generation can be found through a micro-structural analysis of 

the material. Indeed, it appears that the sudden breakage of atomic bonds allows a fracture to 

form and propagate (Keshavarz et al., 2008; Moradian et al., 2016); the resulting elastic waves 

can be recorded by AE/MS sensors, as shown in Figure 1 . 

During the fracturing process, the energy balance of the system is changed: part of the stored 

strain energy that is not consumed to create fractures is converted into kinetic energy in the 

form of elastic waves that will propagate within the medium (Pellet and Selvadurai, 2016).  

 

Figure 1  (a) Illustration of generation of elastic waves from fracture propagation, (b) Example of signals 

recorded by AE/MS sensors (e.g., acceleration) 
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2.2 Most common numerical approaches 

There are currently three main numerical methods used as modeling techniques for the 

dynamic fracturing process: the conventional or the extended finite element method (FEM-

XFEM), the discrete element method (DEM) and the combined finite-discrete element method 

(FDEM). 

In the finite element method, the fracturing process is modeled using damage mechanics (Tang, 

1997; Kaiser and Tang, 1998; Tang and Kaiser, 1998). The material is modeled according to the 

damage constitutive law and AE/MS are simulated based on the assumption that the number of 

induced dynamic events is proportional to the number of elements that are damaged. The strain 

energy released in the damaged elements is considered to be analogous to the AE/MS energy. 

As an example, we show below the results of a XFEM numerical modeling of a Brazilian test 

(Indirect Tensile Test) performed on a granite specimen (Keshavarz et al., 2008). Complete data 

can be found in Ngo et al. (2017). Figure 2 shows a good agreement between the computed 

load-displacement curve and the experimental one (Figure 2a), whereas the crack propagation 

and the subsequent stress redistribution is displayed in Figure 2b. The computed velocity at 

point M versus time is reported in Figure 2c. 

It has to be pointed out that in lab experiments, most of the observation are based on Acoustic 

Emission records. Because of the use of piezo electric sensors, the collected data are expressed 

in voltage and there is no direct relationship to transform the electrical signal in velocity [m.s-1] 

or acceleration [m.s-2]. Therefore, only qualitative comparisons are possible. 

Figure 2: Numerical simulation of a Brazilian test (Ngo et al. 2017); a- load-displacement curve; b- 

fracture propagation and stress redistribution, c- acceleration versus time in point M 

 

In discrete element models, the material is represented as an assembly of particles that have 

the shape of a circular disc for 2D models or a sphere for 3D models (Cundall and Hart, 1992; 

Potyondy and Cundall, 2004). These particles are bonded together and interact with each other 

at contact points where constitutive contact laws are required to describe their normal and 

shear interactions. When the shear or tensile stress exceeds the shear or tensile strength of a 
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contact bond, the latter is broken allowing a crack to initiate and propagate. The magnitude of 

an induced dynamic event is calculated based on the change in kinetic energy of particles before 

and after one or several bonds are broken. The method was used by Hazzard and Young (2000, 

2004) to simulate triaxial compression tests and a mine-by tunnel experiment. The authors 

showed that the model was able to reproduce the Gutenberg-Richter relationship (Gutenberg 

and Richter, 1956) which expresses the seismic magnitude as a function of the number of 

induced dynamic events. More specifically, they were able to obtain the numerical b-value 

within the range obtained from experiments. 

In the combined finite-discrete element method, the intact material is typically assumed to be 

linear elastic and is modeled by finite elements. Cohesive elements are then inserted between 

the finite elements to model the fracture initiation and propagation (Munjiza, 2004). Once the 

fracture has occurred, the blocks of material created are treated as discrete blocks. The kinetic 

energy that is induced by the fracture propagation is considered to be the AE/MS energy. This 

method was used by Lisjak et al. (2013) to simulate the induced dynamic effects in an 

unconfined compression test on granite. The authors reported that the magnitude of the 

simulated event tended to display as a power-law distribution, with b values in agreement with 

those reported in the literature for granitic rocks. 

The three numerical methods briefly presented above have had some success in reproducing 

several features of the dynamic effects induced by fracture propagation (e.g., b-value in the 

range found in experiments). However, the following fundamental questions (FQ) have not yet 

been fully resolved: 

• FQ1: How can dynamic response effects be generated through fracture propagation, 

even when the loading is quasi-static? 

• FQ2: How much of the stored strain energy is converted into kinetic energy in the form 

of elastic waves? 

• FQ3: What parameters have the greatest influence on the induced dynamic response 

effects? 
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Several text books attempt to address this and Some research provides partial answers to these 

fundamental questions. For question FQ1, Keshavarz et al. (2008) and Moradian et al. (2016) 

showed, by testing brittle rocks and recording the AEs, that fracture propagation can induce 

dynamic response effects even when the loading rate is quasi-static. For question FQ2, 

Kanamori (1977) proposed that a fraction (2x10-5) of the strain energy change is converted into 

the kinetic energy of induced elastic waves. For the question FQ3, several authors (Fineberg et 

al., 1992; Boudet et al., 1995; Batrov and Petrov, 2007) suspected that there was some 

relationship between the velocity of fracture propagation or the fault slip rate and the intensity 

of the induced dynamic effects. These explanations are plausible but they still do not address 

the above questions in a quantitative way. Therefore, in the following section quantitative 

answers to these fundamental questions are proposed. 

3 Discrete models for generating a dynamic response through damage 

In this section, an existing discrete model that provides an indication of how dynamic effects can 

be induced through material damage is presented. Then an extension of the discrete model is 

proposed to more clearly illustrate this phenomenon. 

3.1 Pollock's model 

From the energy balance point of view, the generation of elastic waves from fracturing material 

is a process of conversion of strain energy into kinetic energy. A physics-based approach to 

modeling induced elastic waves must be able to model this energy conversion process. To our 

knowledge, the only model that illustratively explains the conversion of strain energy into 

kinetic energy was proposed by Pollock (1973). The model consists of a mass m suspended by 

two springs of stiffness K (Figure 3). The stiffness of the lower spring is assumed to 

instantaneously change by an amount δK. As the stiffness of the system is suddenly changed, 

the mass will move toward and vibrate around a new equilibrium position. The change in strain 

energy due to the decrease of stiffness of the system ΔE
s
 and the peak kinetic energy of the 

mass E
kin

 are, according to Pollock (1973) , expressed as followed: 
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     ;       

8 8
s kin

K
E K x E x

K

δδ∆ = ⋅ =   (1) 

 

where x is initial extension of the spring system 

From equation (1), the ratio between the kinetic energy and the change in strain energy is 

obtained as / /s kinE E K Kδ∆ = . 

 

Figure 3  A spring-mass model after Pollock (1973) 

 

Thus, Pollock’s model shows that the amount of induced kinetic energy is proportional to the 

change in the stiffness of the system. For a continuum material, the stiffness change can 

originate from the propagation of fracture and the resulting damage. 

3.2 New discrete model 

To more clearly illustrate the generation of dynamic response effects from the damage, 

regardless of the loading rate, we also use a spring-mass model as shown in Figure 4. The model 

consists of two masses M1 and M2, and two springs 1 and 2. Each spring is characterized by its 

stiffness and its tensile strength: K
1
 and R

1
 for spring 1, K

2
 and R

2
 for spring 2. Let us assume that 

the tensile force R
2
 is smaller than R

1
 (R

2
 < R

1
). 

When the system is loaded by controlling the displacement of the mass M2 (as illustrated in 

Figure 4) the latter is pulled downwards and internal forces of the same magnitude are 

generated in both of the springs. At some point the internal force reaches the tensile strength of 

spring 2, R
2
 , and spring 2 breaks. Let us assume that the failure of the spring 2 is instantaneous; 

when spring 2 fails the mass M1, which has been displaced from its initial position to a distance 

a, is free to move. The movement of the mass M1 after spring 2 has broken is a harmonic 

vibration with the following characteristics: 
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• Displacement of M1:   cos( )x a tω=       (2) 

• Velocity of M1:   sin( )v a tω ω= −      (3) 

• Kinetic of M1:    [ ]2 2

1 1

1 1
1 cos(2 )

2 4
k

E m v K a tω= = −    (4) 

• Strain energy of spring 1:  [ ]2 2

2 2

1 1
1 cos(2 )

2 4
ω= = +SE K x K a t    (5) 

where ω is the angular frequency; and a is the displacement of the mass M1 when spring 2 

breaks and is equal to R
2 

/ K
1
.  

Thus, the maximum kinetic energy E
kmax

 of the mass M1 is: 

 
2

2 2

max 1

1

1 1

2 2
k

R
E K a

K
= =   (6) 

The time evolution of the kinetic and the strain energies is presented in Figure 5. From 

equations (2) to (6) and Figure 5, the followings comments can be made: 

(i) The kinetic energy of the mass M1 is proportional to the tensile strength of the spring 2 

and is inversely proportional to the stiffness of the spring 1 (equation (6)) 

(ii) There is a conversion between kinetic and strain energy: when the kinetic energy is zero 

the strain energy is maximum, and vice versa (Figure 5) 

(iii) The frequency of kinetic energy and strain energy is twice the frequency of the 

displacement or the velocity (equations (2) to (5) and Figure 5) 

 

 

Figure 4  Proposed spring-mass model: K1 and R1 are the stiffness and strength of spring 1, K2 and R2 are 

the stiffness and strength of spring 2 
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Figure 5  Time evolution of kinetic energy and strain energy; T is the period of the vibration of the mass 

M1 

In the calculations, the strain energy of the spring 2 and the energy loss due to the breakdown 

of spring 2 are not included. For a discrete system of springs and masses, these simplifications 

are acceptable. The calculation clearly shows that the intensity of the induced dynamic effects, 

which is reflected by the maximum kinetic energy, depends on two factors: the strength and the 

stiffness of the system. It should also be noted that the kinetic energy of the mass M1 is shown 

to be independent of the rate of the applied displacement. This means that no matter how 

slowly the displacement is applied, the mass M1 will vibrate harmonically once the spring 2 is 

broken and maximum kinetic energy of the mass M1 remains the same. By using this simple 

spring-mass model, the questions FQ1 and FQ3 are clearly and quantitatively addressed. 

4 Continuum model 

To extend the previous conclusion to a continuum model, a plate subjected to an uniaxial 

tension is modeled in order to show that elastic waves can be induced even when the loading 

rate is quasi-static. The unit width of the plate under study, whose height is L, is composed of 

two parts as shown in Figure 6.   

The fracture (upper part) is a zero-thickness layer, modeled using the Cohesive Zone Model 

whose constitutive law is characterized by the tensile strength R
T
 and fracture toughness G

IC
 

(Figure 7). The other part of the plate consists of a linear elastic material, which is characterized 

by a Young's modulus E and a Poisson's ratio ν. The loading is applied by controlling the 

displacement rate of the top edge of the plate (Figure 6). As the applied displacement increases, 

the cohesive layer will be damaged and the separation rate of the cohesive layer is calculated. In 

this subsection, only the phase after the onset of damage to the cohesive layer is considered 

(i.e., after the stress in the cohesive layer has reached the tensile strength and after the two 

faces of the cohesive layer start to separate). 
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Figure 6  Plate model made of two materials. The cohesive layer has zero thickness. 

 

Figure 7:  Cohesive traction-separation law 

 

For each stress increment in the cohesive layer Δσ (Δσ < 0), the corresponding displacement 

increment of top edge of the plate Δu consists of 2 components: 

 

 c su u u∆ =∆ +∆   (7) 

where Δuc is the separation increment of the cohesive layer and Δus is the change in length of 

the elastic part. Δuc and Δus are determined by: 

 

 
( )

c

c

s

u
K u

u L
E

σ

σ

∆∆ =

∆∆ =
  (8) 

where K(u
c
) is the slope of the cohesive traction – separation curve (Figure 7), which is /T fR δ− . 

Combining equations (7) and (8) leads to: 

 
1

1
c

T

f

u u
R L

E δ

∆ = ∆
−

  (9) 

 

Dividing both sides of equation (9) by Δt - the time increment during which the stress increment 

Δσ takes place -  gives: 
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1

1
c

T

f

u u
R L

E δ

=
−

& &   (10) 

 

Since 0.5
IC T f

G R δ= , equation (9) can be rewritten as: 

 

 
2

1

1
2

c

T

IC

u u
R L

G E

=
−

& &   (11) 

In equation (11), c
u&  and u& are the separation rate of the cohesive layer and the applied 

displacement rate, respectively.  

Let us denote α as: 

 
2

2

T

IC

R L

G E
α =   (12) 

Then, equation (11) becomes: 

 
1

1
c

u u
α

=
−

& &    (13) 

 

From equation (13), we observe that as the factor α � 1 the separation rate of the cohesive 

layer cu&  becomes very large regardless of the applied displacement rate. This large separation 

rate of the cohesive layer means that elastic waves are generated. 

It can also be seen that if the length of the plate is large enough, α can be larger than 1. In such 

cases c
u&  will become negative. However, as the displacement continues to increase after 

damage initiation of the cohesive layer has occurred, the separation of the cohesive layer will 

increase with time and thus cu& must be positive. 
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This leads to the conclusion that in cases where α > 1, the calculation above is no longer valid. In 

fact, in the above calculation it is assumed that when the stress in the cohesive layer is changed 

by an increment Δσ, the whole plate experiences the same stress increment Δσ. This is indeed 

the case as long as α < 1. When α > 1, if the stress in the cohesive layer is changed by Δσ, this 

stress change will not affect the whole plate instantaneously. Instead, the stress change will 

"propagate" as elastic stress waves from the region close to the cohesive layer to outlying 

regions without dependence on the applied displacement rate. The length L of the plate can be 

seen as a characteristic length of the material. A closer look shows that α is in fact the ratio 

between the change in strain energy before damage initiation, 
2

/ (2 )TR L E , and the energy loss 

due to fracture G
IC 

. 

In conclusion, if the strain energy that is released during fracture development is larger than the 

energy needed to create a new fracture surface (i.e., the fracture energy), elastic waves will be 

generated regardless of the loading rate. The amplitude of the induced elastic waves is 

proportional to the ratio between the strain energy release and the fracture energy. 

5 Numerical modeling 

The model presented in section 4 is now numerically investigated using the Finite Element 

Method (Abaqus, 2016). Here again, the objective is to model the elastic waves induced by the 

fracture and to identify the factors likely to influence their amplitude. The following points have 

to be demonstrated: 

(i) Elastic waves are induced if α, (i.e., the ratio between the change in strain energy E
S
 

before and after fracture occurs and the energy loss due to the fracture E
F
,) is larger 

than 1 (to be studied in subsection 5.1) 

(ii) The loading rate does not affect the induced elastic waves (to be studied in 

subsection 5.2) 

(iii) The amplitude of the induced elastic waves are also augmented if α increases (to be 

studied in subsection 5.3) 
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5.1 Induced elastic wave simulation when α > 1 

5.1.1 Model set up 

The plate under studied has a width W = 0.2 m and a length L = 1 m. The top edge of the plate is 

pulled upwards at a constant and relatively small rate, such that the loading does not introduce 

any dynamic effect. In this simulation, a displacement rate of 9 mm/s, which corresponds to a 

strain rate 9.10-3 s-1, is chosen. An illustration of the model with the boundary conditions and 

the loading is given in Figure 8. With these boundary and loading conditions, the problem is 

equivalent to a 1D problem and, therefore, only the displacement, velocity, and acceleration in 

direction 2 are non-zero. Thus, the words displacement, velocity, and acceleration are used to 

stand for displacement, velocity, and acceleration in direction 2. The physical and mechanical 

parameters for the cohesive material and the linear elastic material are presented in Table 1, 

which correspond to those of a rock-like material. 

 

Figure 8  Dimensions of the plate (a), boundary and loading conditions (b) 

 

Table 1  Material properties 

 

Using the selected parameters, the following values can be computed: 

• The strain energy available for release is: 

 

2 6 2

9

(2.6 10 ) 1
0.2 22.5 J

2 2 30 10

T
S

R L
E W

E

× ×= = × =
× ×

  (14) 

• The energy loss due to fracture is: 

 25 0.2 5 J
F IC

E G W= × = × =   (15) 

From equations (14) and (15), the factor α is: 
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22.5

4.5
5

S

F

E

E
α = = =   (16) 

Since α is larger than 1, elastic waves are expected to be induced after damage to the cohesive 

layer has occurred. 

5.1.2 Simulation results 

Figure 9 shows a contour plot of the normal stress S22 in direction 2 for the period from the beginning of 

the damage to the cohesive layer. Here, one period is defined as the time it takes for the induced elastic 

waves to travel from the top edge of the plate to the bottom edge and to travel back to the top edge 

after reflection off the bottom edge. 

The damage to the cohesive layer begins at approximately 8 ms when the tensile stress is equal to the 

tensile strength (Figure 9a). Then, the stress in the region near the cohesive layer begins to decrease 

(Figure 9b). The stress decrease propagates toward the bottom of the plate as stress waves. Once the 

stress waves reach the bottom edge (Figure 9c), they are reflected back (Figure 9d) and propagate 

toward the top edge (Figure 9e, f). It can also be seen that the sign of the stress changes from positive to 

negative as the stress waves are reflected off the bottom edge (Figure 9d, e). The distribution of stress 

S22 along the length of the plate, at different times, is presented in Figure 10. The propagation of the 

stress decrease and the reflection of the stress waves are clearly observed. 

 

Figure 9  Normal stress S22 in direction 2 during one period after damage to the cohesive layer starts. 

The damage begins at time t = 8 ms 

 

Figure 10  Stress S22 along the length of the plate at different times corresponding to those of Figure 9. 

The damage begins at time t = 8 ms. The top and bottom edges of the plate are located at y = 0 and y = 1, 

respectively 

The computed time evolution of displacement and velocity of the top point A (see Figure 8) is 

presented in Figure 11. It can be seen that the displacement increases linearly at first, and then 

starts to decrease as the cohesive layer is damaged. But instead of decreasing to zero, it 

oscillates around the zero-position. 
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A similar evolution pattern is observed for the velocity: the velocity is relatively small before 

damage to the cohesive layer starts; it increases once the cohesive damage occurs and oscillates 

afterward. The maximum velocity of the point A is 0.32 m/s, which is 35.5 times the applied 

displacement rate. Both the displacement and the velocity oscillate with the same period of 

approximately 1.6 ms. 

The time evolution of different types of energy (strain energy, kinetic energy and fracture 

energy) is presented in Figure 12. It is noted that the strain energy increases at first and then 

starts to decrease when cohesive damage occurs. While the kinetic energy remains close to zero 

before the cohesive damage, it starts to increase when cohesive damage occurs. The fact that 

the kinetic energy is close to zero before the onset of cohesive damage ensures that the 

relatively high applied displacement rate used in the simulation has a negligible effect on the 

solution. After the cohesive damage starts, both the strain energy and the kinetic energy 

oscillate harmonically with the same period of approximately 0.8 ms. These two types of energy 

are also converted back and forth into each other: when the kinetic is zero the strain energy is 

largest and vice versa. The maximum value of the kinetic energy after damage to the cohesive 

material is approximately 17.5 J. The energy dissipated due to the damage of the cohesive layer, 

i.e., the fracture energy, increases suddenly from 0 to 5 J upon damage of the cohesive layer. 

This value of fracture energy is equal to the value predicted by the analytical model, equation 

(15). 

It is worth noting that the oscillation period of the displacement and the velocity (T = 1.6 ms) is 

double that of the kinetic and strain energies (T = 0.8 ms). Figure 13 illustrates this observation 

more clearly.  This result was obtained for the discrete spring-mass model and is again obtained 

for this continuum model. 

 

Figure 11  Time evolution of displacement and velocity of the point A 

Figure 12  Time evolution of different types of energy of the whole model 
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Figure 13  Time evolution of the kinetic energy and the displacement showing that the oscillation period 

of the displacement is double that of the kinetic energy 

 

5.2 Influence of the applied displacement rate 

To demonstrate that an increase in the applied displacement rate has a negligible effect on the 

final results, the simulation was re-run with a displacement rate of 0.9 mm/s, which is ten times 

smaller than in the previous case. 

The simulation results are presented in Figure 14 for the time evolution of displacement and 

velocity of the point A, and in Figure 15 for the time evolution of different types of energy. The 

damage of the cohesive material occurs at around 77 ms. After that, identical trends in the 

damage evolution, as seen in the previous case, were obtained. For instance, after damage to 

the cohesive material, the displacement and the velocity of the point A and kinetic and strain 

energies oscillate. The oscillation period of the kinetic and strain energies is approximately 0.8 s 

(Figure 15b), while the displacement and velocity of the point A oscillate with a period of 

approximately 1.6 s (Figure 14b). These periods are identical to those obtained in the previous 

case. The maximum velocity of the point A is 0.32 m/s and the maximum kinetic energy is 17.5 J, 

which again are both identical to those obtained in the previous case. Thus, the simulation 

shows that the reduced applied displacement rate only expands the elastic deformation phase 

and delays the damage to the cohesive layer. After the cohesive layer is damaged, the behavior 

of the model is identical to the previous case. 

 

 

Figure 14  Time evolution of the displacement and the velocity of point A: (a) from the beginning, (b) a 

zoom-in during and after damage to the cohesive layer 

Figure 15  Time evolution of different types of energy of the whole model: (a) from the beginning, (b) a 

zoom-in during and after damage to the cohesive layer 
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5.3 Influence of tensile strength on the amplitude of induced elastic waves 

In this section we investigate the influence of the factor α on the amplitude of the induced 

elastic waves, which is reflected by the maximum velocity of the point A. The expression for α, 

as presented in equation (12), is repeated here for convenience: 

 
2

2

T

IC

R L

G E
α =   

As is seen in the above expression, α can vary by changing either the tensile strength R
T
, the 

length of the specimen L, the fracture toughness G
IC

, or the Young's modulus E. In the following 

only a change in the tensile strength is considered. The change in tensile strength for a Mode I 

fracture is equivalent to a change in shear strength for a Mode II fracture. Thus, conclusions 

obtained in this simulation are also valid for the Mode II fracture. 

Five cases with different values of tensile strength are considered (Table 5.2). Since the applied 

displacement rate has been proven to have a negligible effect on the mechanical response of 

the system, a displacement rate of 9 mm/s is used. For all of these five cases the loading rate is 

applied within 20 ms. 

 

Table 5.2  Analysis cases for studying the influence of α  

 

5.3.1 Simulation results 

The time evolution of the displacement and the velocity of the point A are presented in Figure 

16 and Figure 17, respectively. As seen in Figure 16, for case 1 (α = 0.24), the velocity of the 

point A is virtually zero for the entire time, before and after damage to the cohesive material. 

The predicted value of the velocity of the point A after the damage of the cohesive material is 

given by equation 13: 

 

 
1 1

9 11.8 mm/s
1 1 0.24

Au u
α

= = × =
− −

& &  
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This velocity is of the same magnitude as the applied displacement rate (9 mm/s). 

Then, the factor α is varied from 2.4 in case 2 to 14.1 in case 5. This corresponds to a range of 

tensile strength lying between 1.9 MPa and 4.6 MPa. As α increases, the time at which damage 

to the cohesive material occurs (which corresponds to when the velocity of the point A changes 

significantly) is expectedly to be delayed (Figure 16). The dynamic behavior of the system after 

the cohesive damage has occurred is reflected by the time evolution of the displacement at 

point A (Figure 17). For all cases: the velocity of the point A oscillates with a similar period of 

approximately 1.6 ms. However, as α is increased from 2.4 to 14.1, the maximum velocity of the 

point A increases from 0.19 m/s (21 times the applied displacement rate) to 0.99 m/s (111 times 

the applied displacement rate). 

Figure 16  Time evolution of the velocity in direction 2 of the point A for 5 cases 

Figure 17  Time evolution of the displacement in direction 2 of the point A for 5 cases 

The maximum velocity of the point A is plotted in Figure 18a as a function of the coefficient α. 

An increasing linear relationship between these two quantities, which is represented by a 

straight line passing through the origin, is observed. Figure 18b shows the maximum velocity as 

a function of the tensile strength. Again, it is noted that the maximum velocity tends to zero for 

small tensile strength and increases rapidly as the tensile strength increases. 

The above observations are consistent with the conclusion on the role of the ratio between the 

strain energy release and the fracture energy, which is represented through the coefficient α. It 

is stated that as the ratio between the strain energy release and the fracture energy increases 

the intensity of the induced elastic waves will also increase. 

This conclusion can be extrapolated to a Mode II fracture (shear-mode). Therefore, when the 

shear strength of the fracture increases, the intensity of the elastic waves, that are induced 

when the fracture slips, increases too. For a Mode II fracture and for a given stress state, the 

shear strength of the fracture is solely proportional to the friction coefficient of the fracture. In 

other words, if the friction coefficient of the fracture can be reduced, which will lead to a 
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reduction of the shear strength of the fracture, and the intensity of the induced elastic waves 

will be reduced (Ngo et al., 2019). 

Figure 18  Maximum velocity of the point A as function of (a) coefficient α and (b) tensile strength 

6 Conclusions 

In this paper it has been shown how brittle failure resulting from fracturing processes, produces 

dynamic response that induces elastic wave generation responsible for acoustic events or 

micro-seismicity.  

A simple one-dimensional analytical model that respects the law of conservation of energy 

allows us to illustrate the oscillations of the system after failure. It is shown that the energy of 

elastic deformation is converted into kinetic energy that allows the elastic waves to propagate 

within the system.  

A Dynamic Finite Element Analysis was carried out to determine the parameters that influence 

the amplitudes and the velocities of the waves generated by the fracture rupture. The numerical 

results indicate that the opening velocity of the fracture depends on a factor α, which 

represents the ratio of the elastic strain energy available in the system to the energy consumed 

by the development of the fracture. It is shown that elastic wave generation occurs when the 

factor α  is greater than 1 

Since this factor is calculated from the tensile strength and the toughness of the fracture as well 

as the Young’s modulus of the material, a parametric study was run. It was found that elastic 

wave velocities do not depend on the rate of loading but are strongly dependent on the tensile 

strength of the material. Indeed, the higher the factor α is, the larger will be the wave 

amplification. 

In a rock engineering context, these conclusions might be of interest in, for instance, 

determining the risk of inducing micro-seismicity triggered by underground work or geothermal 

energy extraction. 
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(a) 

 

(b) 

Figure 1.  (a) Illustration of generation of elastic waves from fracture propagation, (b) Example of signals 

recorded by AE/MS sensors (e.g., acceleration) 
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a)  

b)  

c)  

Figure 2. Numerical simulation of a Brazilian test (Ngo et al. 2017); a- load-displacement curve; b- 

fracture propagation and stress redistribution, c- acceleration versus time in point M 
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Figure 3.  A spring-mass model after Pollock (1973) 
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Figure 4. Proposed spring-mass model: K1 and R1 are stiffness and strength of the spring 1, K2 and R2 

are stiffness and strength of the spring 2 
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Figure 5. Time evolution of kinetic energy and strain energy; T is the period of the vibration of the mass 

M1 
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Figure 6.  Plate model made of two materials. The cohesive layer has zero thickness. 
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Figure 7.  Cohesive traction-separation law 
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Figure 8. Dimensions of the plate (a), boundary and loading conditions (b) 
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(a) 

t = 8 ms 

 

(b) 

t = 8.1 ms 

 

(c) 

t = 8.2 ms 

 

(d) 

t = 8.25 ms 

 

(e) 

t = 8.37 ms 

 

(f) 

t = 8.52 ms 

 

Unit: Pa 

 

 

 

Figure 9.  Normal stress S22 in direction 2 during one period since the damage of the cohesive layer 

starts. The damage begins at time t = 8 ms 
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Figure 10.  Stress S22 along the length of the plate at different times corresponding to those of Figure . 

The damage begins at time t = 8 ms. The top and bottom edges of the plate are located at y = 0 and y = 1, 

respectively. 
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Figure 11. Time evolution of displacement and velocity of the point A 
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Figure 12.  Time evolution of different types of energy of the whole model 
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Figure 13. Time evolution of the kinetic energy and the displacement showing that oscillation period of 

the displacement is double that of the kinetic energy 
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(a) 

 

(b) 

Figure 14.  Time evolution of the displacement and the velocity of point A: (a) from the beginning, (b) a 

zoom-in during and after the damage of the cohesive layer 
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(a) 

 

(b) 

Figure 15.  Time evolution of different types of energy of the whole model: (a) from the beginning, (b) a 

zoom-in during and after the damage of the cohesive layer 
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Case 1: α = 0.24  

Case 2: α = 2.4  

Case 3: α = 4.5  

Case 4: α = 8.2  

Case 5: α = 14.1  

Figure 16. Time evolution of the velocity in direction 2 of the point A for 5 cases 
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Case 1: α = 0.24  

Case 2: α = 2.4  

Case 3: α = 4.5  

Case 4: α = 8.2  

Case 5: α = 14.1  

Figure 17.  Time evolution of the displacement in direction 2 of the point A for 5 cases 
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(a) 

 

(b) 

Figure 18.  Maximum velocity of the point A as function of (a) coefficient α and (b) tensile strength 
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Table 1  Material properties 

 

Property Value 

Cohesive material 

Tensile strength 

Fracture toughness 

 

RT = 2.6 MPa 

GIC = 25 J/m2 

Linear elastic material 

Young's modulus 

Poisson's ratio 

Density 

P-wave speed 

 

E = 30 GPa 

0.22 

ρ = 2500 kg/m3 

Cp = 3464 m/s 
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Table Error! No text of specified style in document..2  Analysis cases for studying influence of α  

 

Case Tensile strength RT (MPa) α 

1 

2 

3 

4 

5 

0.6 

1.9 

2.6 

3.5 

4.6 

0.24 

2.4 

4.5 (studied in subsection 5.1) 

8.2 

14.1 

 




