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Introduction

The analysis of cross-diffusion systems with unknowns u 1 , . . . , u n often relies on the existence of a convex Lyapunov functional, called here an entropy, which provides suitable gradient estimates [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong cross-diffusion[END_REF][START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF][START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. Given the partial differential system, the difficulty is to identify such an entropy functional. Often, it is of the form Ω n i=1 h i (u i )dx for convex functions h i , which only depend on u i ; see the examples in the aforementioned references. In this paper, we identify entropy functionals for certain cross-diffusion systems that are generally not the sum of all h i (u i ).

Our approach is to consider first reaction-cross-diffusion systems for which a Lyapunov functional is known to exist and which is of the form Ω n i=1 h i (u i )dx. Then we perform the limit of vanishing relaxation times that are related to the reaction terms. The limiting system consists of cross-diffusion equations, which possesses an entropy inherited from the original system and where the variables u i are related by an algebraic relation coming from the reaction terms. This strategy enlarges the class of cross-diffusion systems with an entropy structure by providing examples for which the entropy cannot be easily found in another way.

As an example of this approach, we consider reaction-cross-diffusion equations whose reaction terms correspond to one reversible reaction of the form A B + C. More specifically, we study the equations (1)

∂ t u ε i -∆F i (u ε ) = Q i (u ε )
in Ω, t > 0, i = 1, 2, 3, supplemented with no-flux boundary and initial conditions, [START_REF] Bothe | The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction[END_REF] ∇F i (u ε ) • ν = 0 on ∂Ω, u ε i (0) = u I i in Ω, i = 1, 2, 3.

Here,

u ε = (u ε 1 , u ε 2 , u ε 3 ), Ω ⊂ R d (d ≥ 1
) is a bounded domain with smooth boundary, and ν is the exterior unit normal vector to ∂Ω. The unknowns u ε i can be interpreted as chemical concentrations, but generally they are just densities in some diffusive system whose application is not specified. The nonlinear functions contain cross-diffusion terms,

(3)

F 1 (u ε ) = f 1 (u ε 1 ) + f 12 (u ε 1 , u ε 2 ), F 2 (u ε ) = f 2 (u ε 2 ) + f 21 (u ε 1 , u ε 2 ), F 3 (u ε ) = f 3 (u ε
3 ), and the reaction terms are given by ( 4)

Q 1 (u ε ) = -ε -1 q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) , Q 2 (u ε ) = ε -1 q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) , Q 3 (u ε ) = ε -1 q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 
) . The constraints on functions f i , f ij , and q i are specied in Assumptions (A1)-(A5) below. The parameter ε > 0 models the inverse of a reaction rate or, generally, a relaxation time.

Without diffusion terms, the corresponding system of ordinary differential equations is known to possess the Lyapunov functional [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] h(u) := 3 i=1 u i 1 log q i (s)ds.

When q i (u i ) = u i , we recover the physical entropy for the reaction A B + C, i.e. h(u) = 3 i=1 u i (log u i -1). The functional Ω h(u)dx is still a Lyapunov functional if the diffusion terms are given by ∆f i (u i ). In this paper, we allow for the cross-diffusion terms f 12 (u 1 , u 2 ) and f 21 (u 1 , u 2 ). Clearly, an additional assumption is then needed to guarantee that [START_REF] Brézis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF] is still an entropy for [START_REF] Bothe | A reaction-diffusion system with fast reversible reaction[END_REF]. We show that this is the case under a "weak crossdiffusion" condition; see Assumption (A5) below.

The fast-reaction limit ε → 0 in (1) leads formally to the system

∂ t (u 1 + u 2 ) = ∆(F 1 (u) + F 2 (u)), ∂ t (u 1 + u 3 ) = ∆(F 1 (u) + F 3 (u)),
q 1 (u 1 ) = q 2 (u 2 )q 3 (u 3 ) in Ω, t > 0.

Under certain conditions on q i , this system can be formulated in terms of the variables v = u 1 + u 2 and w = u 1 + u 3 , leading to (6)

∂ t v = ∆G 1 (v, w), ∂ t w = ∆G 2 (v, w),
where

G 1 (v, w) = (F 1 + F 2 )(u 1 , u 2 , u 3 ), G 2 (v, w) = (F 1 + F 3 )(u 1 , u 2 , u 3
), and

u 1 = q -1 1 q 2 (u 2 (v, w))q 3 (u 3 (v, w)) , u 2 = u 2 (v, w), u 3 = u 3 (v, w).
Formally, the limit entropy

Ω h 0 (v, w)dx = Ω q -1 1 (q 2 (u 2 (v,w))q 3 (u 3 (v,w))) 1 log q 1 (s)ds + u 2 (v,w) 1 log q 2 (s)ds + u 3 (v,w) 1 log q 3 (s)ds dx
is a Lyapunov functional for [START_REF] Chen | Analysis of a multi-dimensional parabolic population model with strong cross-diffusion[END_REF]. A simple example is given in Remark 13. Fast-reaction limits in reaction-diffusion equations have been studied since about 20 years. These limits are of importance in mass-action kinetics chemistry to reduce a system of many components to a (nonlinear) system with less equations. One of the first papers is [START_REF] Hilhorst | The fast reaction limit for a reaction-diffusion system[END_REF], where a fast-reaction limit in a system consisting of one parabolic and one ordinary differential equation was performed. Later, the fast-reaction limit in a two-species diffusion system was shown, leading to a nonlinear diffusion equation [START_REF] Bothe | A reaction-diffusion system with fast reversible reaction[END_REF]. Fast irreversible reactions for two species, studied in [START_REF] Bothe | The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction[END_REF], led to a Stefan-type limit problem with a moving interface, which represents the chemical reaction front. Systems for three species with Lotka-Volterratype interactions [START_REF] Murakawa | Fast reaction limit of a three-component reaction-diffusion system[END_REF] or with reversible reactions [START_REF] Bothe | Cross-diffusion limit for a reaction-diffusion system with fast reversible reaction[END_REF] were also analyzed. A unified approach for self-similar fast-reaction limits was given in [START_REF] Crooks | Self-similar fast-reaction limits for reaction-diffusion systems on unbounded domains[END_REF].

In [START_REF] Henneke | Fast reaction limit of a volume-surface reaction-diffusion system towards a heat equation with dynamical boundary conditions[END_REF], the fast-reaction limit in a system containing a parabolic equation on the domain boundary (volume surface diffusion model) was proved. Here, the limit problem is the heat equation with a dynamic boundary condition. A combination of the fast-reaction limit and homogenization techniques has given a two-scale reaction-diffusion system with a moving boundary traveling within the microstructure [START_REF] Meier | A two-scale reaction-diffusion system: homogenization and fast-reaction limits[END_REF]. Finally, asymptotic limits related to fast reactions were investigated in reaction-diffusion equations from population dynamics [START_REF] Conforto | Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross-diffusion[END_REF][START_REF] Iida | Diffusion, cross-diffusion and competitive interaction[END_REF][START_REF] Murakawa | A relation between cross-diffusion and reaction-diffusion[END_REF]. Here, the small parameter describes an averaged time within which two types of species convert to each other. If the conversion is of nonlinear type, the limit problem becomes a cross-diffusion system.

A three-species system with power-like reaction functions q i was investigated in [START_REF] Bothe | Cross-diffusion limit for a reaction-diffusion system with fast reversible reaction[END_REF][START_REF] Bothe | Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities[END_REF], proving the existence of mild solutions employing a semigroup approach [START_REF] Bothe | Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities[END_REF] and the fastreaction limit using entropy and duality techniques [START_REF] Bothe | Cross-diffusion limit for a reaction-diffusion system with fast reversible reaction[END_REF].

The main difference between our approach and the results of [START_REF] Bothe | Cross-diffusion limit for a reaction-diffusion system with fast reversible reaction[END_REF][START_REF] Bothe | Global existence for a class of reaction-diffusion systems with mass action kinetics and concentration-dependent diffusivities[END_REF], and the main novelty of this paper, is that we allow for cross-diffusion terms in the original reaction-diffusion system, at least "weak cross-diffusion" as specified in Assumption (A5). Interestingly, the Lyapunov functional structure is still kept when adding cross-diffusion to a certain extent. This leads to a much larger set of cross-diffusion systems than known up to now, for which a Lyapunov functional can be produced.

Before we detail our main results, we need some assumptions. First, we introduce the notation

R + = [0, ∞), R * + = (0, ∞), Q T = Ω × (0, T ).
The functions F i and Q i are extended continuously to R 3 by setting

F i (u) = F i (|u 1 |, |u 2 |, |u 3 |) and Q i (u) = Q i (|u 1 |, |u 2 |, |u 3 |) for any u = (u 1 , u 2 , u 3 ) ∈ R 3 . Finally, we set |u| 2 = 3 i=1 u 2 i for u = (u 1 , u 2 , u 3 ) ∈ R 3 .
Assumptions. We impose the following conditions. (A1) Nonlinear diffusion:

f i ∈ C 1 (R + ; R + ) satisfies f i (s) = g i (s)s for s ≥ 0, where g i ∈ C 0 (R + ; R + ) ∩ C 1 (R * + ; R * + )
, and f i (s) ≥ κ 1 > 0 for all s ≥ 0 and for some κ 1 > 0. (A2) Cross-diffusion:

f ij ∈ C 0 (R 2 + ; R + ) satisfies f ij (s 1 , s 2 ) = g ij (s 1 , s 2 )s i , where g ij ∈ C 0 (R 2 + ; R + ) ∩ C 1 ((R * + ) 2 ; R * + ), and ∂ 1 f ij (s 1 , s 2 ) ≥ 0, ∂ 2 f ij (s 1 , s 2 ) ≥ 0 for all s 1 , s 2 ≥ 0, i, j = 1, 2, i = j.
(A3) Reaction terms I: q i ∈ C 1 (R + ) satisfies q i (0) = 0, q i (s) > 0 for all s > 0, and q i (s 0 ) ≥ 1 for some s 0 > 0. (A4) Reaction terms II: There exist C q > 0, C q > 0 such that for all s = (s 1 , s 2 , s 3 ) ∈ R 3 + , lim |s|→∞ q 1 (s 1 ) + q 2 (s 2 )q 3 (s 3 )

3 i=1 F i (s) 3 i=1 s i + 1 = 0, q i (s i )(1 + q i (s i )) q i (s i )f i (s i )(F i (s)s i + 1) ≤ C q , 3 i=1 s i 1 log(1 + q i (v)) dv 3 i=1 F i (s) 3 i=1 s i + 1 ≤ C q .
(A5) Weak cross-diffusion: There exists η 0 > 0 and δ ∈ (0, 1) such that for all η ∈ [0, η 0 ] and s 1 , s 2 ≥ 0,

q 1 (s 1 )∂ 2 f 12 (s 1 , s 2 ) q 1 (s 1 )(1 + ηq 1 (s 1 )) + q 2 (s 2 )∂ 1 f 21 (s 1 , s 2 ) q 2 (s 2 )(1 + ηq 2 (s 2 )) 2 ≤ 2(1 -δ) 2 q 1 (s 1 )q 2 (s 2 )(f 1 (s 1 ) + ∂ 1 f 12 (s 1 , s 2 ))(f 2 (s 2 ) + ∂ 2 f 21 (s 1 , s 2 )) q 1 (s 1 )q 2 (s 2 )(1 + ηq 1 (s 1 ))(1 + ηq 2 (s 2 )
) .

(A6) Initial data: u I i ∈ L ∞ (Ω) and there exists κ 2 > 0 such that u I i ≥ κ 2 > 0 in Ω. Remark 1 (Discussion of the assumptions). We indicate where the main assumptions are needed in the existence proof.

• Assumption (A1): The lower bound f i (s) ≥ κ 1 > 0 and f i (0) = 0 imply that f i (s) ≥ κ 1 s for all s ≥ 0. This means that we require some amount of standard diffusion in the problem. This assumption implies a uniform L 2 bound for the approximate solutions; see Lemma 7. • Assumption (A2): This is a structure condition on the diffusion matrix. It allows us to show that F is a homeomorphism on R 3 + (see Lemma 15), which is needed in the approximate scheme.

• Assumption (A3): This condition is satisfied, for instance, for power-type functions q i with exponent larger than or equal to one. It ensures that the entropy built out of the q i is well-behaved. • Assumption (A4): The conditions relate the reaction and diffusion terms. Together with the duality estimate, they yield the uniform integrability of Q i . Note that because of this assumption, it is not possible to handle reaction terms which grow too fast when the unknowns become large. The third bound is needed to show that the regularized entropy density is bounded from below; see the arguments before (27). • Assumption (A5): The weak cross-diffusion condition allows us to prove nonlinear gradient estimates. Expanding the square on the left-hand side of the inequality of the assumption and choosing δ > 0 such that 2(1 -δ) 2 < 1, we see that this assumption implies that

(7) ∂ 2 f 12 (s 1 , s 2 )∂ 1 f 21 (s 1 , s 2 ) < f 1 (s 1 ) + ∂ 1 f 12 (s 1 , s 2 ) f 2 (s 1 ) + ∂ 2 f 21 (s 1 , s 2 ) .
It means that the determinant of the diffusion matrix F (u) is positive. This information is needed to show that F is a homeomorphism on R 3 + ; see Lemma 15. Note that assumption (A5) is typically satisfied when the derivatives of the cross diffusion terms f 12 and f 21 are assumed to be small when compared to the derivatives of the standard diffusion terms f 1 , f 2 ; in other words when the cross diffusion is dominated in some sense by the standard diffusion.

• Assumption (A6): The positivity assumption on the initial data is necessary to prove the nonnegativity of u i . By using an approximation argument, we may relax this condition to u I i ≥ 0 in Ω, but we leave the technical details to the reader. Note that for instance, the functions

f i (u i ) = α i u i + u δ i , q i (u i ) = u β i , β ≥ 1, i = 1, 2, 3, f 12 (u 1 , u 2 ) = αu γ 1 u 2 , f 21 (u 1 , u 2 ) = αu 1 u γ 2 , satisfy Assumptions (A1)-(A5) if δ > 1 is
sufficiently large and α > 0 is sufficiently small; see Lemma 14 for details.

The first main result is the global-in-time existence of very weak (i.e. integrable) solutions to equations 1, for a given ε > 0.

Theorem 2 (Global existence of solutions). Let Ω be a bounded open subset of R d with a smooth boundary, let assumptions (A1)-(A6) hold, and let ε > 0, T > 0. Then there exists a very weak solution

u ε i ∈ L 2 (Ω T ) to (1)-(2) such that u ε i ≥ 0 in Ω T , F i (u ε ), Q i (u ε ) ∈ L 1 (Q T ), and for all φ i ∈ H 1 (0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; W 2,∞ (Ω)) with ∇φ i • ν = 0 on ∂Ω, (8) 
- ∞ 0 Ω u ε i ∂ t φ i dxdt - ∞ 0 Ω F i (u ε )∆φ ε i dxdt = ∞ 0 Ω Q i (u ε )φ i dxdt + Ω u I i (x)φ i (x, 0)dx, ( and 
u ε i (0) = u I i in H m (Ω) , i = 1, 2, 3
, where m > 2 + d/2). Moreover, this solution satisfies the entropy inequality

(9) Ω h(u ε (t))dx + δ t 0 Ω 3 i=1 |∇[J i (u ε i )]| 2 dxdσ ≤ Ω h(u I )dx,
where h(u ε ) is the entropy given by (5), δ is defined in Assumption (A5), and

(10) J i (s) = s 0 min 1, q i (y)f i (y) q i (y)(1 + q i (y)) 1/2 dy, s ≥ 0, i = 1, 2, 3.
Remark 3. (i) A global existence result for cross-diffusion systems of type (1) was also shown in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. Compared to that work, we allow for more general reaction terms (in principle we allow for arbitrarily fast growing reactions) and we make explicit the entropy structure of the diffusion system. In [10, Section 5.2], a specific three-species system was studied too, but assuming vanishing reactions and special diffusion coefficients.

(ii) In principle, the existence result (Theorem 2) may be generalized to n-species systems. However, the structure conditions between reaction and diffusion and the weak cross-diffusion assumption would become much more involved. Therefore, we restricted ourselves to the three-species case.

(iii) We have proved the existence of very weak solutions (for the starting systems as well as for the final systems). One may ask whether there are more regular solutions. Stará and John [START_REF] Stará | Some (new) counterexamples of parabolic systems[END_REF] have shown that there are solutions to cross-diffusion systems whose Hölder continuity breaks down after finite time. Thus generally, classical solutions cannot be expected. However, L p regularity for p > 2 may be possible using the duality method [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF] or L ∞ bounds can be proved for specific systems of volume-filling type [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. Note also that some bounds are available on first-order derivatives in x for both the starting and final system, thanks to the entropy estimates (these bounds are, however, not easily written in terms of Sobolev spaces).

The proof of Theorem 2 is based on a regularization procedure, entropy estimates, and a duality method. More precisely, we replace the time derivative by the implicit Euler discretization with time step size τ > 0 and regularize the reactions Q i with parameter η > 0 to make them bounded (say, Q η i ). The existence of solutions u k i , which approximate u i (•, kτ ), is shown by techniques similarly as in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. Using a regularized version of the entropy (5), h η , we derive the discrete entropy inequality (see Lemma 8) ( 11)

Ω h η (u k )dx + τ k j=1 3 i=1 Ω |∇[J i (u j i )]| 2 dx + τ ε k j=1 Ω Q η (u ε ) • (h η ) (u ε )dx ≤ Ω h(u I )dx.
This gives a priori estimates independent of the regularization parameters η and τ as well as the relaxation time ε. Further L 2 bounds are obtained from the duality method of [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF], here in the discrete version of [10, Lemma 2.12]. Thanks to the discrete Aubin-Lions lemma of [START_REF] Dreher | Compact families of piecewise constant functions in L p (0, T ; B)[END_REF], we obtain the relative compactness of the sequence of approximate solutions. This allows us to perform the limit (η, τ ) → 0 in the approximate problem.

The second main result is the fast-reaction limit.

Theorem 4 (Fast-reaction limit). Let Ω be a bounded open subset of R d with a smooth boundary, T > 0, and let assumptions (A1)-(A6) hold. We suppose that q 1 (u I 1 ) = q 2 (u I 2 )q 3 (u I 3 ) in Ω, and that the functions

(12) R 2 + → R, (u 2 , u 3 ) → 1 u i q -1 1 (q 2 (u 2 )q 3 (u 3 )), i = 2, 3, are continuous. Furthermore, let u ε = (u ε 1 , u ε 2 , u ε
3 ) be the very weak solution to (1)-( 2) constructed in Theorem 2. Then there exists a subsequence, which is not relabeled, such that, as ε → 0,

u ε i → u i strongly in L 1 (Q T ), i = 1, 2, 3. The limit u i ∈ L 1 (Q T ) is a very weak solution to the system ∂ t (u 1 + u 2 ) = ∆(F 1 (u) + F 2 (u)), ∂ t (u 1 + u 3 ) = ∆(F 1 (u) + F 3 (u)), ( 13 
)
q 1 (u 1 ) = q 2 (u 2 )q 3 (u 3 ) in Q T . ( 14 
)
Moreover, it satisfies the entropy inequality

(15) Ω h(u(t))dx + δ t 0 Ω 3 i=1 |∇J i (u i )| 2 dxdσ ≤ Ω h(u I )dx,
where h and J i are defined in (5) and (10), respectively.

The proof is based on the following ideas: From the entropy inequality (see the discrete version ( 11)), we deduce immediately that [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) → 0 strongly in L 1 (Q T ). Here, we need the condition q 1 (u I 1 ) = q 2 (u I 2 )q 3 (u I 3 ), which prevents a boundary (more precisely, an initial) layer. We cannot directly apply the Aubin-Lions lemma to u ε i , since the bounds for ∂ t u ε i depend on ε. However, ∂ t (u ε 1 + u ε 2 ) and ∂ t (u ε 1 + u ε 3 ) are uniformly bounded, showing, together with the gradient estimate from [START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF], that

u ε 1 + u ε 2 → v and u ε 1 + u ε 3 → w strongly in L 1 (Q T ).
The key idea is to prove that the mapping (u 2 , u 3 ) → (u 1 +u 2 , u 1 +u 3 ) can be inverted (see Lemma 12). For this argument, we need the continuity of the functions in [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]. We deduce that u ε 2 → u 2 and u ε 3 → u 3 a.e. in Q T and consequently

u ε 1 = q -1 1 (q 2 (u ε 2 )q 3 (u ε 3 )) → u 1 a.e. in Q T .
The paper is organized as follows. Theorems 2 and 4 are proved in Sections 2 and 3, respectively. In the appendix, we collect some technical and auxiliary results.

Proof of the existence result

We start here the Proof of Theorem 2: We first show the existence of solutions to an approximate problem. Let T > 0, N ∈ N, τ = T /N , and η ∈ (0, 1). We assume throughout this section that Assumptions (A1)-(A6) hold. Given

u k-1 = (u k-1 1 , u k-1 2 , u k-1 3 ) ∈ L ∞ (Ω; R 3 + )
, we wish to solve the following implicit Euler scheme with bounded reaction terms:

(17) τ -1 (u k i -u k-1 i ) -∆F i (u k ) = Q η i (u k ) in Ω, i = 1, 2, 3,
together with the no-flux boundary conditions

(18) ∇F i (u k ) • ν = 0 on ∂Ω, i = 1, 2, 3.
When k = 1, we set u k-1 = u I . The regularized reaction terms are defined by

Q η i (u k ) = σ i ε q 1 (u k 1 ) 1 + ηq 1 (u k 1 ) - q 2 (u k 2 ) 1 + ηq 2 (u k 2 ) q 3 (u k 3 ) 1 + ηq 3 (u k 3 )
, where σ 1 = -1 and σ 2 = σ 3 = 1. They satisfy the following properties. First, a straightforward estimation gives

(19) |Q η i (s)| ≤ 1 ε 1 + η η 2 ≤ 2 εη 2 =: K 1 (ε, η) for all s i ≥ 0, i = 1, 2, 3. Second, let Q η i = Q η i,+ -Q η i,-, where Q η i,+ ≥ 0 and Q η i,-≥ 0. Then there exists a constant K 2 (ε, η) > 0 such that (20) Q η i,-(s) ≤ K 2 (ε, η)s i for all s i ≥ 0, i = 1, 2, 3.
Indeed, this estimate is clear for large values of s i because of the boundedness of Q η i,-; for small values of s i , it follows from q i (s i ) = q i (0) + q i (ξ)s i = q i (ξ)s i for some 0 < ξ < s i .

We also need the following property of F (shown in Lemma 15 in the appendix):

F : R 3 + → R 3 + is a C 1 -diffeomorphism from (R * + ) 3 into itself and a homeomorphism from R 3 + into itself.
2.1. Existence for scheme [START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF]. We prove that there exists a strong solution to ( 17)-( 18) (under the assumptions of Theorem 2).

Lemma 5. Let 0 < τ ≤ 1/K 1 (ε, η) = εη 2 /2.
Then there exists a solution u k ∈ C 0 (Ω; R 3 ) to (17)-( 18) such that F (u k ) ∈ W 2,p (Ω; R 3 ) for all p < ∞.

Proof. The proof is a modification of the proof of Theorem 2.5 in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. Since our estimates are partially different, we present a full proof. The idea is to define a fixed-point operator whose compactness follows from the compactness of an elliptic solution operator.

Step 1: Definition of the fixed-point operator. Let K p,Ω > 0 be the elliptic regularity constant defined in Lemma 17. Introduce for u

= (u 1 , u 2 , u 3 ) ∈ L ∞ (Ω; R 3 ), M (u) := max τ K p,Ω , 1 κ 1 1 + τ max i=1,2,3
sup

Ω Q η i,-(u) |u i | .
The constant κ 1 is defined in Assumption (A1). Because of [START_REF] Murakawa | Fast reaction limit of a three-component reaction-diffusion system[END_REF],

Q η i,-(u)/|u i | is finite and so, M (u) is finite too.
We define the fixed-point operator Λ :

[0, 1] × L ∞ (Ω; R 3 ) → L ∞ (Ω; R 3 ) by Λ(σ, u) = Φ • (σΘ) • Ψ(u),
where (recall that F i and Q η are continuously extended to R 3 by setting

F i (u) = F i (|u 1 |, |u 2 |, |u 3 |), Q η i (u) = Q η i (|u 1 |, |u 2 |, |u 3 |)), Ψ : L ∞ (Ω; R 3 ) → L ∞ (Ω; R 3 + ) × (τ K p,Ω , ∞), Ψ(u) = u k-1 + M (u)F (u) -u + τ Q η (u), M (u) , Θ : L ∞ (Ω; R 3 + ) × (τ K p,Ω , ∞) → L ∞ (Ω; R 3 + ), Θ(u, M ) = (M Id -τ ∆) -1 u with no-flux boundary conditions, Φ : L ∞ (Ω; R 3 + ) → L ∞ (Ω; R 3 + ), Φ(u) = F -1 (u).
A computation shows that any fixed point of Λ(σ, •) solves ( 21)

M (u)F i (u) -τ ∆F i (u) = σ u k-1 i + M (u)F i (u) -u i + τ Q η i (u) , i = 1, 2, 3
, which means that for σ = 1, this fixed point solves ( 17)- [START_REF] Meier | A two-scale reaction-diffusion system: homogenization and fast-reaction limits[END_REF].

We have to show that the functions Φ, Θ, and Ψ are well defined. Indeed, by Assumption (A1), the definition of M (u), and the property

F i (u) ≥ κ 1 |u i |, M (u)F i (u) -u i + τ Q η i (u) ≥ |u i | 1 + τ max i=1,2,3
sup

Ω Q η i,-(u) |u i | -|u i | + τ Q η i,+ (u) -Q η i,-(u) ≥ τ Q η i,+ (u) ≥ 0.
We deduce that Ψ is well defined. If Θ(u, M ) = v for some u ∈ L ∞ (Ω; R 3 + ) then M vτ ∆v = u ≥ 0 in Ω and ∇v • ν = 0 on ∂Ω. Using v -= min{0, v} as a test function in the weak formulation of this elliptic equation, we see that v ≥ 0 in Ω. Furthermore, with the test function

(v -µ) + = max{0, v -µ}, where µ = u L ∞ (Ω) /M , it follows that τ Ω |∇(v -µ) + | 2 dx = {v>µ} (u -M v)(v -µ) + dx ≤ 0,
and hence, v L ∞ (Ω) ≤ u L ∞ (Ω) /M . This shows that Θ is well defined. Finally, Φ is well defined since F is a homeomorphism on R 3 + ; see Lemma 15. We check the properties of Λ needed to apply the Leray-Schauder fixed-point theorem. Clearly, Λ(0, u) = 0 for all u ∈ L ∞ (Ω; R 3 ). The continuity of Λ follows from the continuity of the functions Ψ, Θ, and Φ proved in Lemma 2.6 in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. By Lemma 17 of the appendix, Θ(u, M ) ∈ W 2,p (Ω; R 3 ) for any p < ∞. Since the embedding W 2,p (Ω) → L ∞ (Ω) is compact for p > d/2, we deduce that Θ :

L ∞ (Ω; R 3 + ) × (τ K p,Ω , ∞) → L ∞ (Ω; R 3 +
) is compact too, and the same holds for Λ.

It remains to show a uniform L ∞ estimate for any fixed point u (that is, such that Λ(σ, u) = u). Note that any fixed point is nonnegative and thus, F i (u) ≥ 0 in Ω.

Step 2: L 1 estimate for F i (u). We claim that there exists a constant C > 0, depending on u k-1 L ∞ (Ω) and Ω, such that

(22) 0 ≤ 3 i=1 Ω F i (u)dx ≤ C.
Indeed, the fixed point u solves [START_REF] Pierre | Blow up in reaction-diffusion systems with dissipation of mass[END_REF] in Ω and ∇F i (u) • ν = 0 on ∂Ω. Summing (21) for i = 1, 2, 3 and denoting

|F (u)| 1 := 3 i=1 F i (u), (21) leads to (23) (1 -σ)M (u)|F (u)| 1 + σ|u| 1 -τ ∆|F (u)| 1 = σ|u k-1 | 1 + στ |Q η (u)| 1 .
Multiplying this equation by |F (u)| 1 and integrating over Ω yields

(24) (1 -σ) Ω M (u)|F (u)| 2 1 dx + τ Ω |∇|F (u)| 1 | 2 dx + σ Ω |u| 1 |F (u)| 1 dx = σ Ω |u k-1 | 1 |F (u)| 1 dx + στ Ω |Q η (u)| 1 |F (u)| 1 dx.
If σ = 0, we have F i (u) = 0 for i = 1, 2, 3, and u = 0. Therefore we consider σ = 0. Neglecting the first two integrals in (24) and dividing this equation by σ, it follows that

Ω |u| 1 |F (u)| 1 dx ≤ Ω |u k-1 | 1 |F (u)| 1 dx + τ Ω |Q η (u)| 1 |F (u)| 1 dx.
Then, by [START_REF] Murakawa | A relation between cross-diffusion and reaction-diffusion[END_REF] and

τ K 1 (ε, η) ≤ 1, Ω |u| 1 |F (u)| 1 dx ≤ 3 u k-1 L ∞ (Ω) Ω |F (u)| 1 dx + 3τ K 1 (ε, η) Ω |F (u)| 1 dx ≤ 3 u k-1 L ∞ (Ω) + 1 Ω |F (u)| 1 dx. Let R > 0. If |u| 1 ≤ R, the continuity of F i gives |F (u)| 1 ≤ ω(R),
where ω is a modulus of continuity. Therefore,

Ω |u| 1 |F (u)| 1 dx ≤ 3 u k-1 L ∞ (Ω) + 1 {|u| 1 >R} |F (u)| 1 dx + {|u| 1 ≤R} |F (u)| 1 dx ≤ 3 u k-1 L ∞ (Ω) + 1 1 R Ω |u| 1 |F (u)| 1 dx + ω(R)|Ω| ,
where |Ω| denotes the measure of Ω. We choose R = 6( u k-1 L ∞ (Ω) + 1) and obtain

1 2 Ω |u| 1 |F (u)| 1 dx ≤ 3 u k-1 L ∞ (Ω) + 1 ω(R)|Ω| = R 2 ω(R)|Ω|.
We use this estimate in

Ω |F (u)| 1 dx = {|u| 1 >R} |F (u)| 1 dx + {|u| 1 ≤R} |F (u)| 1 dx ≤ 1 R Ω |u| 1 |F (u)| 1 dx + ω(R)|Ω| ≤ 2ω(R)|Ω|,
which proves [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

Step 3: L ∞ estimate for u i . We use estimate [START_REF] Murakawa | A relation between cross-diffusion and reaction-diffusion[END_REF] for Q η in (23):

-τ ∆|F (u)| 1 ≤ (1 -σ)M (u)|F (u)| 1 + σ|u| 1 -τ ∆|F (u)| 1 ≤ σ|u k-1 | 1 + 3στ K 1 (ε, η).
As the right-hand side is in L ∞ (Ω), we can apply Lemma 18 in the appendix to conclude that

|F (u)| 1 L ∞ (Ω) ≤ C 3 τ u k-1 L ∞ (Ω) + 3K 1 (ε, η) + |F (u)| 1 L 1 (Ω) .
Then, taking into account Assumption (A1) and ( 22),

u i L ∞ (Ω) ≤ κ 1 |F (u)| 1 L ∞ (Ω) ≤ C(ε, η, Ω, u k-1 L ∞ (Ω) ),
which shows the desired estimate (uniform with respect to the considered fixed points). Hence, we can apply the Leray-Schauder theorem and infer the existence of a solution to ( 17)- [START_REF] Meier | A two-scale reaction-diffusion system: homogenization and fast-reaction limits[END_REF].

It remains to verify the continuity of u k i . We know that F i (u k ) ∈ W 2,p (Ω) for all p < ∞. Thus, choosing p > d/2, F i (u k ) ∈ C 0 (Ω). Since F is a homeomorphism, we conclude that u k i ∈ C 0 (Ω).

2.2.

A priori estimates for scheme [START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF]. We show several a priori estimates which are (except for Lemma 6 below) uniform in η and τ . Some of these estimates are also uniform with respect to ε and will be used in Section 3. We denote by C(δ 1 , . . . , δ n ) a generic positive constant depending on the parameters δ 1 , . . . , δ n , whose value may change from occurence to occurence. We begin with Lemma 6 (Positivity of u k i ). Let τ < 1. Then there exists a constant δ(ε, η, τ ) > 0 depending on ε, η, and τ such that

(25) u k i ≥ δ(ε, η, τ ) in Ω, i = 1, 2, 3.
Proof. We proceed by induction. By Assumption (A6),

u I i ≥ κ 2 > 0 in Ω. Let u k-1 i
≥ γ > 0 for some γ > 0, i = 1, 2, 3. Using [START_REF] Murakawa | Fast reaction limit of a three-component reaction-diffusion system[END_REF], we find that

Q η i (u k ) = Q η i,+ (u k ) -Q η i,-(u k ) ≥ -K 2 (ε, η)u k i .
Thus, choosing M ≥ (τ K 2 (ε, η) + 1)/κ 1 ,

Q η i (u k ) + M τ F i (u k ) ≥ Q η i (u k ) + κ 1 M τ u k i ≥ u k i τ ,
and consequently, using the scheme and the induction hypothesis,

M τ F i (u k ) -∆F i (u k ) = u k-1 i τ - u k i τ + Q η i (u k ) + M τ F i (u k ) ≥ u k-1 i τ ≥ u k-1 i ≥ γ.
By the minimum principle (see Step 1 of the proof of Lemma 5 for the same argument), F i (u k ) ≥ τ γ/M for i = 1, 2, 3. We know from the proof of Lemma 5 that

u k i ∈ L ∞ (Ω). By Assumption (A1), this gives F i (u k ) ≤ Cu k i ,
where C > 0 depends on the L ∞ bound of u k . We infer that u k i ≥ τ γ/(CM ) =: δ(ε, η, τ ) > 0. Lemma 7 (Uniform L 2 estimate). There exists a constant C > 0 independent of ε, η, and τ such that

τ N k=1 Ω 3 i=1 F i (u k ) 3 i=1 u k i dx ≤ C, τ N k=1 u k i 2 L 2 (Ω) ≤ C, i = 1, 2, 3.
Proof. These bounds are a consequence of the duality estimate stated in Lemma 16. Indeed, we set 

v k = 2u k 1 + u k 2 + u k 3 and µ k = 2F 1 (u k ) + F 2 (u k ) + F 3 (u k ) 2u k 1 + u k 2 + u k 3 . Note that µ k v k ∈ H 2 (Ω). Then (v k -v k-1 )/τ = ∆(µ k v k ),
τ N k=1 Ω µ k (v k ) 2 dx ≤ C 1 + τ N k=1 Ω µ k dx ,
where C > 0 depends only on u I , Ω, and T = N τ . It remains to estimate Ω µ k dx. Let L > 0 and define

S = {s = (s 1 , s 2 , s 3 ) ∈ R 3 + : 2s 1 + s 2 + s 3 ≤ L} and µ(L) := sup s∈S 2F 1 (s) + F 2 (s) + F 3 (s) 2s 1 + s 2 + s 3 = sup s∈S 2s 1 (g 1 (s 1 ) + g 12 (s 1 , s 2 )) + s 2 (g 2 (s 2 ) + g 21 (s 1 , s 2 )) + s 3 g 3 (g 3 ) 2s 1 + s 2 + s 3 .
Clearly, µ(L) is finite. It follows that

Ω µ k dx = {v k ≤L} µ k dx + {v k >L} µ k dx ≤ µ(L)|Ω| + 1 L 2 Ω µ k (v k ) 2 dx.
Inserting this estimate into (26) and using kτ ≤ T , we arrive at

1 - C L 2 τ N k=1 Ω µ k (v k ) 2 dx ≤ C 1 + T µ(L)|Ω| .
Choosing L > 0 sufficiently large, this yields the first estimate in the statement. For the L 2 bound, we observe that F i (u k ) ≥ κ 1 u k i so that, for all j = 1, 2, 3,

τ κ 1 N k=1 Ω (u k j ) 2 dx ≤ τ N k=1 Ω 3 i=1 F i (u k ) 3 i=1 u k i dx ≤ C(L, T, Ω),
which concludes the proof.

We now introduce the regularized entropy density

h η (u k ) = 3 i=1 u k i 1 log q i (s) 1 + ηq i (s)
ds, η > 0.

We need to show that Ω h η dx is bounded from below uniformly in η (since otherwise, the following estimates would depend on η). Indeed, we have h η (u) = h(u) -3 i=1 u 1 log(1 + ηq i (s))ds, and Ω h(u) dx is bounded from below. Now, for η ∈ [0, 1], by Assumption (A4) and Lemma 7, it holds that (for u i ≥ 1 for all i)

3 i=1 Ω u i 1 log(1 + ηq i (s))dsdx ≤ 3 i=1 Ω u i 1 log(1 + q i (s)) dsdx ≤ C q Ω 3 i=1 F i (u) 3 i=1 u i dx ≤ C.
This means that the integral Ω h η dx is bounded from below uniformly in η, showing our claim. Since q i ≥ 0, the function h η is convex. The construction of h η allows for the control of the reaction terms since

Q η (u k ) • (h η ) (u k ) = - 1 ε q 1 (u k 1 ) 1 + ηq 1 (u k 1 ) - q 2 (u k 2 )q 3 (u k 3 ) (1 + ηq 2 (u k 2 ))(1 + ηq 3 (u k 3 )) × log q 1 (u k 1 ) 1 + ηq 1 (u k 1 ) -log q 2 (u k 2 )q 3 (u k 3 ) (1 + ηq 2 (u k 2 ))(1 + ηq 3 (u k 3 )) ≤ 0. ( 27 
)
Lemma 8 (Entropy estimate). Let 0 < η ≤ min{1, η 0 }, where η 0 is defined in Assumption (A5). Then (with δ > 0 from Assumption (A5))

(28) Ω h η (u k )dx + δ N k=1 Ω 3 i=1 q i (u k i )f i (u k i ) q i (u k i )(1 + q i (u k i )) |∇u k i | 2 dx -τ N k=1 Ω Q η (u k ) • (h η ) (u k )dx ≤ Ω h(u I )dx.
Proof. We know from Lemma 6 that u k i is strictly positive, so (∂h η /∂u i )(u k ) is an admissible test function in the weak formulation of ( 17): ( 29)

Ω (u k -u k-1 ) • (h η ) (u k )dx + τ Ω ∇u k : (h η ) (u k )F (u k )∇u k dx = τ Ω Q η (u k ) • (h η ) (u k )dx,
where ":" is the Frobenius matrix product. Summing (29) over k = 1, . . . , j and taking into account (27) and

Ω h η (u k ) -h η (u k-1 ) dx ≤ Ω (u k -u k-1 ) • (h η ) (u k )dx,
which follows from the convexity of h η , we find that (30)

Ω h η (u j )dx + τ j k=1 Ω ∇u k : (h η ) (u k )F (u k )∇u k dx -τ j k=1 Ω Q η (u k ) • (h η ) (u k )dx ≤ Ω h η (u I )dx. A straightforward computation yields Ω ∇u k : (h η ) (u k )F (u k )∇u k dx = Ω T 1 |∇u k 1 | 2 + T 2 |∇u k 2 | 2 + T 3 |∇u k 3 | 2 + T 4 ∇u k 1 • ∇u k 2 dx,
where

T 1 = q 1 (u k 1 ) q 1 (u k 1 )(1 + ηq 1 (u k 1 )) f 1 (u k 1 ) + ∂ 1 f 12 (u k 1 , u k 2 ) , T 2 = q 2 (u k 2 ) q 2 (u k 2 )(1 + ηq 2 (u k 2 )) f 2 (u k 2 ) + ∂ 2 f 21 (u k 1 , u k 2 ) , T 3 = q 3 (u k 3 ) q 3 (u k 3 )(1 + ηq 3 (u k 3 )) f 3 (u k 3 ), T 4 = q 1 (u k 1 ) q 1 (u k 1 )(1 + ηq 1 (u k 1 )) ∂ 2 f 12 (u k 1 , u k 2 ) + q 2 (u k 2 ) q 2 (u k 2 )(1 + ηq 2 (u k 2 )) ∂ 1 f 21 (u k 1 , u k 2 ).
Set α = (1 -δ)T 1 /T 4 , where δ comes from Assumption (A5). Then Young's inequality and

T 2 4 ≤ 2(1 -δ) 2 T 1 T 2 (see Assumption (A5)) show that, for 0 < η ≤ η 0 , T 4 ∇u k 1 • ∇u k 2 ≥ -T 4 α|∇u k 1 | 2 - T 4 4α |∇u k 2 | 2 = -(1 -δ)T 1 |∇u k 1 | 2 - T 2 4 4(1 -δ)T 1 |∇u k 2 | 2 ≥ -(1 -δ)T 1 |∇u k 1 | 2 -(1 -δ)T 2 |∇u k 2 | 2 .
(Observe that Assumption (A5) could be weakened to T 2 4 ≤ 4(1 -δ) 2 T 1 T 2 , but then we would need to impose [START_REF] Conforto | Rigorous passage to the limit in a system of reaction-diffusion equations towards a system including cross-diffusion[END_REF] as an additional constraint.) We deduce that

Ω ∇u k : (h η ) (u k )F (u k )∇u k dx ≥ δ Ω T 1 |∇u k 1 | 2 + T 2 |∇u k 2 | 2 dx + Ω T 3 |∇u k 3 | 2 .
Hence, inserting this estimate into (30), observing that η ≤ 1 and h η (u I ) ≤ h(u I ), and including the reaction terms, the result is shown.

Lemma 9 (Estimate for the discrete time derivative). Let m > 2 + d/2. Then there exists a constant C(ε) > 0 independent of η and τ , but depending on ε, such that

τ N k=1 τ -1 (u k i -u k-1 i ) H m (Ω) ≤ C(ε), i = 1, 2, 3.
Proof. Using the duality estimate from Lemma 7, we obtain

τ N k=1 Ω F i (u k )dx ≤ τ N k=1 {u k ≤1} F i (u k )dx + τ N k=1 {u k >1} F i (u k )dx ≤ τ N k=1 {u k ≤1} F i (u k )dx + τ N k=1 {u k >1} F i (u k )u k i dx ≤ C.
Furthermore, by Assumption (A4) and Lemma 7 again,

τ N k=1 Ω |Q η i (u k )|dx ≤ τ ε N k=1 Ω q 1 (u k 1 ) + q 2 (u k 2 )q 3 (u k 3 ) dx ≤ Cτ ε N k=1 Ω 3 j=1 F j (u k ) 3 j=1 u k j + 1 ≤ C(ε). Since m > 2 + d/2, we know that φ i ∈ H m (Ω) → W 2,∞ (Ω)
. Therefore, we can write

τ N k=1 τ -1 (u k i -u k-1 i )φ i dx = τ N k=1 Ω F i (u k )∆φ i dx + τ N k=1 Ω Q η i (u k )φ i dx.
In view of the two previous estimates, we infer that

τ N k=1 τ -1 (u k i -u k-1 i ) H m (Ω) = sup φ i H m (Ω) =1 N k=1 Ω (u k i -u k-1 i )φ i dx ≤ C(ε),
showing the desired bound.

Lemma 10 (Uniform W 1,1 estimate). There exists a constant C > 0 independent of ε, η, and τ such that

τ N k=1 u k i W 1,1 (Ω) ≤ C.
Proof. The Cauchy-Schwarz inequality gives

τ N k=1 ∇u k i L 1 (Ω) ≤ τ N k=1 Ω q i (u k i )f i (u k i ) q i (u k i )(1 + q i (u k i )) |∇u k i | 2 dx 1/2 × τ N k=1 Ω q i (u k i )(1 + q i (u k i )) q i (u k i )f i (u k i ) dx 1/2 .
In view of Lemma 8, the first factor is bounded uniformly in ε, η, and τ . By Assumption (A4) and the duality estimate in Lemma 7, it follows that

τ N k=1 ∇u k i L 1 (Ω) ≤ C τ N k=1 Ω 3 i=1 F i (u k ) 3 i=1 u k i + 1 dx 1/2 ≤ C.
Taking into account the uniform L 2 bound, we can conclude. i (x, t) = u k i (x) for x ∈ Ω, t ∈ ((k -1)τ, kτ ], i = 1, 2, 3, be piecewise constant functions in time, and set u (τ ) = (u

(τ ) 1 , u (τ ) 2 , u (τ )
3 ). We introduce the time shift operator (σ τ u (τ ) )(x, t) = u k+1 (x) for x ∈ Ω, t ∈ ((k-1)τ, kτ ]. Let φ i : (0, T ) → H m (Ω) be a piecewise constant function such that m > 2 + d/2, φ i (t) = 0 for ((N -1)τ, N τ ], and ∇φ i • ν = 0 on ∂Ω, t > 0. Then the weak formulation of (17) reads as (31)

- T 0 Ω u (τ ) i (σ τ φ i -φ i )dxdt - T 0 Ω F i (u (τ ) )∆φ i dxdt = T 0 Ω Q η i (u (τ ) )φ i dxdt + Ω u I i (x)φ i (x, 0)dx.
Lemmas 9 and 10 give the (uniform with respect to τ , η) bounds

τ -1 σ τ u (τ ) i -u (τ ) i L 1 (0,T -τ ;H m (Ω) ) + u (τ ) i L 1 (0,T ;W 1,1 (Ω)) ≤ C(ε).
Observing that the embedding W 1,1 (Ω) → L 1 (Ω) is compact, we can apply the Aubin-Lions lemma in the version of [START_REF] Dreher | Compact families of piecewise constant functions in L p (0, T ; B)[END_REF] to infer the existence of a subsequence, which is not relabeled, such that, as (η, τ ) → 0,

u (τ ) i → u i strongly in L 1 (Q T ),
recalling that Q T = Ω × (0, T ). According to Lemma 5, the limit has to be performed in such a way that τ ≤ εη 2 /2 is verified. Possibly for a subsequence, the convergence also holds a.e. in Q T . The positivity estimate from Lemma 6 implies that u i ≥ 0 in Q T . Moreover,

F i (u (τ ) ) → F i (u), Q η (u (τ ) ) → Q(u) a.e. in Q T . Assumption (A4) implies that (Q i (u (τ )
)) is equi-integrable. More precisely, we have for all δ > 0 the existence of R 0 > 0 such that for all R ≥ R 0 and |u| ≥ R,

Q i (u) 3 i=1 F i (u) 3 i=1 u i + 1 ≤ δ.
Then we conclude from Lemma 7 that

T 0 {u (τ ) ≥R} Q η i (u (τ ) )dxdt ≤ T 0 {u (τ ) ≥R} q 1 (u (τ ) 1 ) + q 2 (u (τ ) 1 )q 3 (u (τ ) 1 ) dxdt ≤ δ T 0 Ω 3 i=1 F i (u (τ ) ) 3 i=1 u (τ ) i + 1 dxdt ≤ Cδ,
where C > 0 is independent of ε (and τ , η). This shows the equi-integrability of (Q i (u (τ ) )).

The same conclusion holds for (F i (u (τ ) )) since (32)

T 0 {u (τ ) ≥R} F i (u (τ ) )dxdt ≤ 1 R T 0 Ω F i (u (τ ) )u (τ ) i dxdt ≤ C R .
We deduce from Vitali's convergence theorem that

F i (u (τ ) ) → F i (u), Q η i (u (τ ) ) → Q i (u) strongly in L 1 (Q T ), i = 1, 2, 3.
Therefore, we can perform the limit (η, τ ) → 0 in (31), showing that u = (u 1 , u 2 , u 3 ) solves ( 8) for all φ i ∈ H 1 (0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; H m (Ω)), i = 1, 2, 3. By a density argument, we see that the weak formulation also holds for all φ i ∈ L ∞ (0, T ; W 2,∞ (Ω)) with ∇φ i • ν = 0 on ∂Ω. It remains to verify the entropy inequality [START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF]. We have from (28):

(33)

Ω h η (u (τ ) )dx + δ 3 i=1 T 0 Ω |∇[J i (u (τ ) i )]| 2 dxdt ≤ Ω h(u I )dx,
where J i is defined in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. The a.e. convergence of u

(τ ) i → u i implies that J i (u (τ ) 
i ) → J i (u i ) a.e. in Q T . Moreover, J i (s) ≤ s, and thanks to the uniform L 2 bound for u (τ ) i , we deduce that (J i (u

(τ ) i )) is bounded in L 2 (0, T ; H 1 (Ω)). Up to a subsequence, we have ∇J i (u (τ ) i ) ∇J i (u i ) weakly in L 2 (Q T ).
As h η is convex and continuous, it is weakly lower semicontinuous [5, Corollary 3.9] and

Ω h η (u)dx ≤ lim inf τ →0 Ω h(u (τ ) )dx.
Since (h η ) converges to h monotonically, we infer from the monotone convergence theorem that

Ω h(u)dx ≤ lim inf (η,τ )→0 Ω h(u (τ ) )dx.
Therefore, observing that the square of the L 2 norm is also weakly lower semicontinuous, we may pass to the limit (η, τ ) → 0 in (33) to conclude (9).

Proof of the fast-reaction limit

In the previous section, we have shown some a priori estimates for the approximate solution u (τ ) i , which are also independent of ε. Indeed, by Lemmas 7 and 8,

T 0 Ω (u (τ ) i ) 2 dxdt + T 0 Ω F i (u (τ ) )u (τ ) i dxdt ≤ C, (34) 
T 0 Ω q i (u (τ ) i )f i (u (τ ) i ) q i (u (τ ) i )(1 + q i (u (τ ) i )) |∇u (τ ) i | 2 dxdt ≤ C, i = 1, 2, 3, (35) 
T 0 Ω q 1 (u (τ ) 1 ) 1 + ηq 1 (u (τ ) 1 ) - q 2 (u (τ ) 2 )q 3 (u (τ ) 3 ) (1 + ηq 2 (u (τ ) 2 ))(1 + ηq 3 (u (τ ) 3 )) × log q 1 (u (τ ) 1 ) 1 + ηq 1 (u (τ ) 1 ) -log q 2 (u (τ ) 2 )q 3 (u (τ ) 3 ) (1 + ηq 2 (u (τ ) 2 ))(1 + ηq 3 (u (τ ) 3 )) dxdt ≤ εC. (36)
As mentioned in Section 2.3, estimates (34) and (35) yield the bound (37)

J i (u (τ ) i ) L 2 (0,T ;H 1 (Ω))
≤ C, which is uniform in ε, η, and τ . We need more uniform bounds to be able to pass to the limit ε → 0.

We start here the Proof of Theorem 4 : We systematically denote by u ε = (u ε 1 , u ε 2 , u ε 3 ) a very weak solution to (1)-(2) constructed in Theorem 2. We first state the Lemma 11 (ε-uniform estimates). There exists C > 0 independent of ε such that, for i = 1, 2, 3,

u ε i L 2 (Q T ) + F i (u ε )u ε i L 1 (Q T ) ≤ C, (38) 
J i (u ε i ) L 2 (0,T ;H 1 (Ω)) + u ε i L 1 (0,T ;W 1,1 (Ω)) ≤ C, (39) 
q i (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) L 1 (Q T ) ≤ C √ ε. (40)
Proof. The first estimate in (38) follows immediately from (34) by performing the limit (η, τ ) and using the weakly lower semicontinuity of the L 2 norm. The results in Subsection 2.3 imply that F i (u (τ ) )u

(τ ) i → F i (u ε )u ε i a.
e. in Q T . Then Fatou's lemma and the second estimate in (34) yield

T 0 Ω F i (u ε )u ε i dxdt = T 0 Ω lim inf τ →0 F i (u (τ ) )u (τ ) i dxdt ≤ lim inf τ →0 T 0 Ω F i (u (τ ) )u (τ ) i dxdt ≤ C,
and this implies the second estimate in (38). We have shown in the proof of Theorem 2 that there exists a subsequence of (u

(τ ) i ) (not relabeled) such that u (τ ) i → u ε i in L 1 (Q T )
and a.e. Since J i is continuous, we have J i (u (τ ) i ) → J i (u ε i ) a.e. Estimate (37) then implies that, up to a subsequence, J i (u

(τ ) i ) J i (u ε i ) weakly in L 2 (0, T ; H 1 (Ω)).
Because of the weakly lower semi-continuity of the norm, we infer from (37) that the first estimate in (39) holds. The W 1,1 bound for (u ε i ) follows as in the proof of Lemma 10, using the L 2 bound of ∇J i (u ε i ). It follows from the a.e. convergence q i (u (τ ) i ) → q i (u ε i ), Fatou's lemma, and estimate (36) that T 0 Ω q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) log q 1 (u ε 1 ) q 2 (u ε 2 )q 3 (u ε 3 ) dxdt ≤ εC.

Thus, the elementary inequality 4(a 1/2 -b 1/2 ) 2 ≤ (a -b) log(a/b) gives

q 1 (u ε 1 ) 1/2 -q 2 (u ε 2 )q 3 (u ε 3 ) 1/2 2 L 2 (Q T ) ≤ 1 4 T 0 Ω
q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) log q 1 (u ε 1 ) q 2 (u ε 2 )q 3 (u ε 3 ) dxdt ≤ εC.

We now use Assumption (A4) and (34) to infer that q 1 (u ε 1 ) -q 2 (u ε 2 )q 3 (u ε 3 ) L 1 (Q T )

≤ q 1 (u ε 1 ) 1/2 -q 2 (u ε 2 )q 3 (u ε 3 )

1/2 L 2 (Q T ) q 1 (u ε 1 ) 1/2 + q 2 (u ε 2 )q 3 (u ε 3 )

1/2 L 2 (Q T )
Hadamard-Lévy theorem, a C 1 self-mapping is a C 1 -diffeomorphism if and only if it is proper and has no critical points. The proof that Φ is proper is exactly as in [17, Section 4.2], since here, the separability of variables is not needed. To show that Φ has no critical points, we compute the determinant det F (s) = f 3 (s 3 ) f 1 (s 1 ) + ∂ 1 f 12 (s 1 , s 2 ) f 2 (s 2 ) + ∂ 2 f 21 (s 1 , s 2 )

-∂ 2 f 12 (s 1 , s 2 )∂ 1 f 21 (s 1 , s 2 ) > 0,
which is positive because of Assumption (A5) (see Remark 1). Since both log : (R * + ) 3 → R 3 and exp : R 3 → (R * + ) 3 have no critical points, we conclude that also Φ has no critical points. By the Hadamard-Lévy theorem, Φ : R 3 → R 3 is a C 1 -diffeomorphism and so does F : (R * + ) 3 → (R * + ) 3 .

Step 2: F is bijective on R 3 + . It remains to treat the boundary of R 3 + . To this end, we split it as ∂R 3 + = {0, 0, 0} ∪ V , where V = V 1 ∪ • • • ∪ V 6 and the sets V i are either a quarterplane or a half-line. Since F i can be written as the product of s i and some nonnegative function, we have F (V i ) ⊂ V i . We show that F is bijective on each V i .

As the six cases are similar, we give only a proof for V 3 = R * + × R * + × {0}. The result follows when we have shown that F ∈ C 1 (V 3 ; V 3 ) is proper and has no critical points. Let s = (s 1 , s 2 , 0) ∈ V 3 and define the induced vector s = (s 1 , s 2 ) ∈ (R * + ) 2 and the induced function F : (R * + ) 2 → (R * + ) 2 , Fi (s) = F i (s 1 , s 2 , 0), i = 1, 2. Clearly, F is proper on (R * + ) 2 since F is proper on (R * + ) 3 . We prove that F is C 1 and has no critical points. The first property is clear and the second one follows from det F (s) = f 1 (s 1 ) + ∂ 1 f 12 (s) f 2 (s 2 ) + ∂ 2 f 21 (s) -∂ 2 f 12 (s)∂ 1 f 21 (s) > 0.

By the Hadamard-Lévy theorem, F is a C 1 -diffeomorphism on (R * + ) 2 . By construction of F , this implies that F is bijective on V 3 .

Step 3: F -1 is continuous on R 3 + . Let (y n ) ⊂ (R * + ) 3 be such that y n → y as n → ∞. If y ∈ (R * + ) 3 , then we already know that F -1 (y n ) → F -1 (y). Thus, let y ∈ V . Since F is proper, (F -1 (y n )) is bounded and there exists a subsequence (not relabeled) such that F -1 (y n ) → y for some y. As F is one-to-one and continuous, we obtain F ( y) = y. Consequently, F -1 (y n ) → F -1 (y). We infer that F -1 is continuous on R 3 + , which concludes the proof.

The following result, used in Lemma 7, is proved in [10, Lemma 2.12].

Lemma 16 (Discrete duality estimate). Let N ∈ N, ρ > 0, and τ > 0 be such that ρτ < 1 and set T := N τ . Let µ 1 , . . . , u N be nonnegative integrable functions and let u 0 , . . . , u N be nonnegative bounded functions satisfying µ k u k ∈ H 2 (Ω) and, for 1 ≤ k ≤ N ,

1 τ (u k -u k-1 ) -∆(µ k u k ) ≤ ρu k in Ω, ∇(µ k u k ) • ν = 0 on ∂Ω.

2. 3 .

 3 Limit (η, τ ) → 0. Let u (τ )

  since the weighted sum of the reaction terms vanishes. Consequently, the following estimates do not depend on ε nor η.

	Lemma 16 gives
	(26)
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≤ C

√ ε q 1 (u ε 1 ) + q 2 (u ε 2 )q 3 (u ε 3 )

which concludes the proof.

Unfortunately, the estimate on the discrete time derivative in Lemma 9 is not independent of ε, which prevents the direct use of the Aubin-Lions lemma. We overcome this problem by applying this lemma to u ε 1 + u ε 2 and u ε 1 + u ε 3 and by exploiting estimate (40). Indeed, these sums solve

Using this estimate together with the W 1,1 bound (39) for u ε 1 + u ε i , we can apply the Aubin-Lions lemma of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] to find a subsequence, which is not relabeled, such that, as ε → 0, (41)

. We claim that these convergences are sufficient to infer the strong convergence of (u ε i ) in L 1 (Q T ) for i = 1, 2, 3. To show this, we need the following auxiliary result: Lemma 12 (Inversion of q(u 1 ) = q 2 (u 2 )q 3 (u 3 )). The function g : R 2

The proof is based on Proposition 6.1 of [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. In order to use this proposition, we write g as g(u 2 , u 3 ) = (a 2 (u 2 , u 3 )u 2 , a 3 (u 2 , u 3 )u 3 ) , with

Note that by Assumption (A3), the inverse of q 1 exists on R + and that by hypothesis (12), a 2 and a 3 are continuous on R 2 + . They are bounded from below, a i (u 2 , u 3 ) ≥ 1 for all (u 2 , u 3 ). Moreover, u → u i a i (u) is increasing in each variable, g ∈ C 1 ((R * + ) 2 ; (R * + ) 2 ), and the determinant of its Jacobian is strictly positive:

1 ) (q 2 (u 2 )q 3 (u 3 )) q 2 (u 2 )q 3 (u 3 ) + q 2 (u 2 )q 3 (u 3 ) ≥ 1. Then Proposition 6.1 in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF] shows that g is a homeomorphism on R 2 + .

We come back to the proof of Theorem 4. We proceed with the limit ε → 0. Limit (42) and the continuity of q -1 1 imply that

Clearly, all these convergences also hold a.e. in Q T (maybe only for a subsequence). Lemma 12 shows that g is invertible and hence,

We set

). The uniform integrability of q 1 (u ε 1 ) and q 2 (u ε 2 )q 3 (u ε 3 ) from Assumption (A4) and Vitali's theorem now imply that q 1 (u ε 1 ) → q 1 (u 1 ), q 2 (u ε 2 )q 3 (u ε 3 ) → q 2 (u 2 )q 3 (u 3 ) strongly in L 1 (Q T ). This shows that (14) holds. Furthermore, the uniform integrability of F i (u ε ) from (38) and the above convergences give

We can now perform the limit ε → 0 in the equations

to conclude that u 1 + u 2 and u 2 + u 3 solve (13). Estimate (39) and the strong convergence of (u ε i ) in L 1 (Q T ) allow us to pass to the inferior limit ε → 0 in [START_REF] Desvillettes | Entropy, duality, and cross diffusion[END_REF] to conclude that (15) holds. Here, we use the weakly lower semicontinuity of the integrals as in the end of the proof of Theorem 2. This concludes the proof of Theorem 4.

Remark 13 (Example). We consider q i (s) = s. Then u 1 = u 2 u 3 and the limiting system becomes

The mapping (u 2 , u 3 ) → (v, w) can be inverted explicitly:

It follows that u 1 = u 2 u 3 = w -u 3 (v, w). Then we can write

where

. This system has an entropy structure. Indeed, let

Then

where J i is given by [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]. For example, if f i (s) = s, we can compute J i explicitly. If s ≥ s 0 := (-1 + √ 5)/2, we have 1/ s(1 + s) ≤ 1 and thus,

where 1 {s>s 0 } is the characteristic function on {s > s 0 }. Note that the entropy h 0 and its associated inequality would be difficult to find without the help of the fast-reaction limit.

Appendix A. Auxiliary results

First, we give an example of functions which satisfy Assumptions (A1)-(A5).

Lemma 14 (Assumptions (A1)-(A5)). The functions

Proof. Assumptions (A1)-(A3) are satisfied since β, γ, δ ≥ 1, Moreover, Assumption (A4) holds if δ > 2β -1. It remains to verify Assumption (A5). Multiply the corresponding inequality by q 1 (u 1 )q 2 (u 2 )(1 + ηq 1 (u 1 ))(1 + ηq 2 (u 2 ))/(q 1 (u 1 )q 2 (u 2 )) and abbreviate both sides by

We have to show that L ≤ R for some δ ∈ (0, 1). We choose δ = 1 -1/ √ 2. First, we estimate the right-hand side R:

2 ). For the left-hand side L, we use η ≤ 1 and the elementary inequalities s ≤ 1 + s β , (1 + s ε )(1 + s η ) ≤ 2(1 + s max{ε,η} ) 2 for s ≥ 0, β ≥ 1, and ε, η > 0:

)

)

Note that these conditions are far from being optimal.

We then turn to the Lemma 15 (F is a homeomorphism). The function

Proof. We follow the strategy of [START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF]Section 4.2]. The proof of [START_REF] Lepoutre | Entropic structure and duality for multiple species cross-diffusion systems[END_REF] is valid for functions F i (s)/s i whose variables separate. Since this is not the case in our situation, we need to modify the proof.

Step 1:

, where log and exp are defined coordinate-wise. By the Then there exists a constant C > 0 only depending on u 0 L 2 (Ω) , Ω, ρ, and T , such that

Finally, we recall two useful regularity results for elliptic equations.

Lemma 17 (Theorem 2.3.3.6 in [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]). Let p ∈ (1, ∞) and let Ω ⊂ R d be a bounded domain with smooth boundary. Then there exist positive constants K p,Ω and C p,Ω such that for all M > K p,Ω and all u ∈ W 2,1 (Ω) satisfying M u -∆u = g ∈ L p (Ω), ∇u • ν = 0 on ∂Ω, it holds that u W 2,p (Ω) ≤ C p,Ω g L p (Ω) .

Lemma 18 (Lemma 6.6 in [START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF]). Let Ω ⊂ R d be a bounded domain, f ∈ L p (Ω) with p > d/2, and let u ∈ H 2 (Ω) satisfy u ≥ 0 in Ω and -∆u ≤ f in Ω, ∇u • ν = 0 on ∂Ω.

Then there exists a positive constant only depending on Ω such that