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Introduction

The study of consensus problem can be traced back to mid-80s in the eld of computer science, distributed computing and fault tolerance, starting from a problem in real-time process control [START_REF] Michael | Easy impossibility proofs for distributed consensus problems[END_REF]. In 1987, Reynolds [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] simulated a ock of birds by actually simulating the behaviour of every individual bird in the ock; by working independently, the birds follow a set of rules and thus manage to stick together and avoid collision overall. In 2002, Jadbabaie et al. [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] used graph theory concepts and provided a theoretical explanation for this behaviour that was observed in [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] and [START_REF] Vicsek | Novel type of phase transition in a system of self-driven particles[END_REF]. They emphasised the role this problem plays in studying the coordination of autonomous agents. Another 2002 pioneering attempt to put the consensus problem into a control formalism can be found in [START_REF] Fax | Information ow and cooperative control of vehicle formations[END_REF], where the authors show the importance of using the Laplacian matrix to study special cases of consensus problems. In 2003, Olfati-Saber and Murray introduced two consensus protocols in [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF], and further discussed them in [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. The pioneering work of Fax, Olfati-Saber and Murray has been a trend setter for the control community: based on their protocols, thousands of papers were published since 2003 on the con-This paper was not presented at any IFAC meeting.

Email address: dina.irofti@edf.fr (Dina Irofti). sensus problem in connection to various problems from the control eld (vehicle coordination, sensor networks, synchronization of coupled oscillators, distributed control, collective behaviour of ocks and swarms).

A consensus protocol is the interaction rule that species how the information is exchanged between the nodes (or agents) of a network. In the case of continuous-time systems, the consensus protocol, here denoted by u i (t), is employed in the system dynamics, generally stated as

x i = u i (t), i = 1, . . . , n, (1) 
where n is the number of agents in the network, and x i ∈ R is the state of the agent i at time t. We note that in [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF], u i (t) is seen as a state feedback. The state of all the agents of the network changes over time as a consequence of the interaction with other agents described by the consensus protocol u i (t). By denition, system (1) is said to reach consensus if for any set {x i (0)} of initial conditions there exists c ∈ R such that lim t→∞ x i (t) = c ∀i, in which case the value of c is called the consensus value. In the linear case, the classical consensus protocol, proposed in [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF] and widely used in the control community has the form

u i (t) ∼ n j=1 a i j x j (t -τ 1 ) -x i (t -τ 2 ) , (2) 
with τ 1 = τ 2 = 0 and where a i j are non-negative numbers corresponding to the inuence strength of agent j on agent i, by convention. The connectivity of the network is the key for the system (1) under (2) without delays to reach consensus from arbitrary initial conditions. The time-delays protocol introduced by Olfati-Saber and Murray has the form (2) where τ = τ 1 = τ 2 > 0 is the delay; it has been shown in [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF] that there exist an upper limit τ max such that the system (1) under this protocol reaches consensus from arbitrary initial conditions if and only if τ < τ max . Another consensus protocol with delays was introduced in [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF] and further studied in [START_REF] Seuret | Consensus under communication delays[END_REF], and has the form (2) with τ 1 > 0 and τ 2 = 0; it was shown in [START_REF] Fatihcan | Consensus in networks under transmission delays and the normalized laplacian[END_REF][START_REF] Fatihcan | The consensus problem in networks with transmission delays[END_REF] that the system (1) reaches consensus from arbitrary initial conditions under this protocol regardless of the value of the delay τ 1 as long as the network contains a spanning tree. The stability conditions for a consensus protocol with one delay parameter is studied in [START_REF] Sipahi | Responsible eigenvalue concept for the stability of a class of single-delay consensus dynamics with xed topology[END_REF], where the delay margin depends only on one Laplacian eigenvalue. In protocol (2), τ 1 corresponds to the information transmission delay between two neighboring agents, and τ 2 represents the time needed to process an agent's own information. In the remaining part of the paper, we consider τ 1 = τ 2 = 0 when we refer to protocol (2), if not otherwise specied.

In this paper, we propose a consensus protocol with delays, where the time-delays come from a quite dierent source: the anticipatory nature of the agents. More precisely, the agents use past information to anticipate the future states of their neighbours. We note that prediction based on previous values of an agent (and not of its neighbours) has been studied e.g. in [START_REF] Boris N Oreshkin | Distributed average consensus with increased convergence rate[END_REF] for the discretetime consensus problem. Anticipation turns out to be important for autonomous agents coordination problems, as it improves the convergence rate. The convergence speed-up has been achieved using a few techniques for discrete-time distributed average consensus problem. In [START_REF] Liu | Accelerated linear iterations for distributed averaging[END_REF], the states are adjusted using an additional parameter in the consensus protocol, trading o between the current and past states; the authors also show how to tune this parameter and how it aects the convergence speed. Shift-register algorithms can also improve the convergence speed for a certain class of networks [START_REF] Johansson | Faster linear iterations for distributed averaging[END_REF]. In [START_REF] Olshevsky | Linear time average consensus and distributed optimization on xed graphs[END_REF], a linear time convergence is proved for a particular class of systems under a consensus protocol where highly connected nodes have smaller weights, and the changing opinion tendency is taken into account when the states are updated. Polynomial ltering is applied on the agents' weights in [START_REF] Kokiopoulou | Polynomial ltering for fast convergence in distributed consensus[END_REF] to make use of some of their previous opinions and thus increase the convergence rate. In [START_REF] Ramírez | Further remarks on single-delay and multiple-delay pr protocols for fast consensus in a largescale network[END_REF], the parameters of a proportional-retarded protocol are tuned to achieve fast consensus in complete undirected networks by using techniques based on placing the system rightmost poles [START_REF] Ramírez | Design of maximum decay rate for siso systems with delayed output feedback using elimination theory[END_REF]. The protocol we propose in this paper improves the convergence speed in both directed and undirected networks, of general topology and size. Other techniques based on multiple rightmost poles have also been studied in connection to multi-agent sys-tems [START_REF] Irofti | On the codimension of the singularity at the origin for networked delay systems[END_REF][START_REF] Boussaada | Computing the codimension of the singularity at the origin for delay systems in the regular case: A vandermonde-based approach[END_REF]. Another approach giving a very fast convergence speed (up to 100 times faster than the classical consensus problem) for continuous-time systems has been published in [START_REF] Olfati-Saber | Ultrafast consensus in small-world networks[END_REF] and uses a slightly more complex procedure changing the network structure by rewiring its nodes. Our consensus protocol does not change the networks' topology and improves the convergence speed especially for sparse networks (more than 20 times faster for small circular networks when compared to classical consensus problem). The proposed protocol has the form:

u i (t) ∼ n j=1 a i j (x j (t + δ) -x i (t)), (3) 
where the agent i estimates the future state xj (t + δ) of its neighbour x j at some time (t + τ). In order to estimate this future state, the agents use a rst-order estimation:

agent i, knowing the current state x j (t) of its neighbour j and remembering its past state x j (t -τ) as well, uses a linear extrapolation to obtain the future state

xj (t + δ) = (1 + α)x j (t) -(α)x j (t -τ), (4) 
where

α = δ τ . (5) 
We note that classical consensus protocol can be seen as a zero-order estimation, as neigbours' future states are simply represented by present states, xj (t +δ) = x j (t). We substitute the estimation (4) in the protocol (3) and obtain the consensus algorithm u i (t) ∼ n j=1 a i j [(1+α)x j (t)αx j (t -τ)x i (t)]. We divide the summation above by the degrees d i to obtain a normalized Laplace operator. This is a natural choice in several applications because the normalisation allows the comparison of networks of very dierent sizes by bounding the Laplacian spectrum regardless of the network size. More details on the normalised Laplacian are given in Section 2. Thus, the considered system studied throughout this paper is

x i (t) = 1 d i n j=1 a i j [(1 + α)x j (t) -αx j (t -τ) -x i (t)], (6) 
where a i j ≥ 0 ∀i, j and d i = n j=1 a i j is the (generalized) degree of node i. We note that the anticipatory protocol (6) reduces to the classical protocol (2) without delays by setting either α = 0, or τ = 0.

In this paper, we analyse and discuss the proposed anticipatory protocol [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] for general α, τ ∈ R + . One important contribution of this work is that we show that the proposed anticipatory algorithm (6) guarantees fast convergence, independent of the network topology, for general α and τ; we show how to optimally tune the design parameters to obtain very fast convergence speed, and that such a solution always exists. We note that the convergence conditions for a particular case of algorithm [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF], namely α = 1, has been published in [START_REF] Fatihcan | A delayed consensus algorithm in networks of anticipatory agents[END_REF] for undirected networks and in [START_REF] Irofti | On the delay margin for consensus in directed networks of anticipatory agents[END_REF] for directed networks. However, in this paper, we also study the parameters tuning to reach a certain convergence speed for the proposed algorithm (for general α), and we discuss the performance obtained by using the proposed algorithm against its limitations.

Preliminaries

The results presented throughout this paper hold for directed and undirected graphs. A directed graph G = (V, E) is dened by a nite set V of vertices and a set E ⊂ V × V of directed edges containing ordered pairs of vertices. The (weighted) adjacency matrix of the graph is denoted by A = [a i j ], where a i j > 0 if there is a link from the node j to the node i, and a i j = 0 otherwise. The in-degree d i of a node i is dened as the sum of the elements of the i th row of the adjacency matrix A, i.e. d i = n j=1 a i j , where n is the number of vertices in the graph. The diagonal matrix D = diag(d 1 , . . . , d n ) is called the degree matrix. We consider simple, non-trivial graphs, without self-loops, and with non-zero degrees d i for all i. The normalized Laplacian matrix is dened as

L = I -D -1 A, (7) 
where I denotes the identity matrix. As a consequence of Gershgorin's circle theorem, one advantage of the normalisation is that the eigenvalues {λ i } of L lie in the unit-diameter disc centred at 1 on the complex plane, i.e.

|1 -

λ k | ≤ 1, k = 1, 2, . . . , n. (8) 
Moreover, given the denition of the in-degree d i , the sum of each row of L equals zero. Hence, L always has a zero eigenvalue, which we denote by λ 1 , corresponding to the eigenvector v 1 = (1, 1, . . . , 1) .

For undirected graphs,

A is symmetric. Because D is diagonal, D -1 A satises D -1 A = D -1 2 (D -1 2 AD -1 2 )D 1 2 . In other words, D -1 A is similar to the symmetric matrix D -1 2 AD -1
2 . This has two implications. The rst implication, for undirected networks, is that the normalised Laplacian has real eigenvalues {λ i } that can be ordered as

0 = λ 1 ≤ λ 2 ≤ • • • ≤ λ n ≤ 2.
The second eigenvalue, λ 2 , is also called the algebraic connectivity [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF], and is positive if and only if the graph is connected. More precisely, in a connected graph, λ 2 gives an indication of how dicult it is to disconnect the graph into two large pieces by removing a small number of edges, and it is thus directly related to graph connectivity. A second implication for undirected networks is that the eigenvectors of L form a complete set that spans R n .

For directed networks, the Laplacian eigenvalues are complex numbers satisfying inequality [START_REF] Hayes | Roots of the transcendental equation associated with a certain dierence-dierential equation[END_REF]. When considering both directed and undirected networks, the matrix form of the equation (6) becomes

x(t) = D -1 A[(1 + α)x(t) -αx(t -τ)] -x(t), (9) 
with x = (x 1 , x 2 , . . . , x n ) . We make the standing assump- tion that L has a complete set of eigenvectors {v k } (this is true for undirected networks and generally holds in applications for directed networks). Then, we consider some scalar coecients u k and write x(t) = n k=1 u k (t)v k . Thus, the matrix equation ( 9) can be equivalently written by a system of n decoupled scalar equations: [START_REF] Irofti | On the codimension of the singularity at the origin for networked delay systems[END_REF] with k = 1, . . . , n. The characteristic equation corresponding to the eigenmode [START_REF] Irofti | On the codimension of the singularity at the origin for networked delay systems[END_REF] is

u k (t) = [(1 -λ k )(1 + α) -1]u k (t) -α(1 -λ k )u k (t -τ),
ψ k (s) := s -(1 + α)(1 -λ k ) + 1 + α(1 -λ k )e -sτ = 0. (11)
Consequently, the characteristic equation for the whole system (9) can be written as

Ψ(s) := n k=1 ψ k (s) = 0. ( 12 
)
The linear equation ( 10) has solutions of the form e st corresponding to characteristic roots s of ( 12). Note that s = 0 is always a characteristic root for the rst factor ψ 1 (s) = s -α + αe -sτ corresponding to the rst eigenvalue, λ 1 = 0. The system (6) reaches consensus if and only if zero is a simple root of Ψ and all other roots of Ψ have negative real parts. Moreover, if the system reaches consensus given an arbitrary set of initial conditions, the speed of convergence depends on the slowest mode from {u k }, with k ≥ 2. Therefore, we factor Ψ(s) as Ψ(s) = ψ 1 (s) Ψ(s), where Ψ(s) := n k=2 ψ k (s), and give the following denition.

Denition 1 The number s * ∈ C is called the dominant transverse root of the consensus algorithm (6) (or simply dominant root) if Ψ(s * ) = 0 and all roots s of Ψ satisfy Re(s) ≤ Re(s * ).

Although s * may not be unique, its real part is unique and essentially determines the speed of convergence to consensus in case its real part is negative. We recall that reaching consensus under the un-delayed protocol (2) is possible if and only if the following condition is satised.

(H) Zero is a simple eigenvalue of the Laplacian matrix.

In this study, we also assume that our system satisfy the hypothesis (H), and that L has a complete set of eigenvectors {v k }. Assumption (H) allows us to compare the anticipatory algorithm to the un-delayed protocol (2). As mentioned before, condition (H) is a requirement for the connectivity of the network (λ 1 has multiplicity one). We remark that for undirected networks, because the Laplacian eigenvalues are real numbers, condition (H) is equivalent to λ 2 > 0. Moreover, we observe that, since e -λ 2 t determines the speed of convergence to consensus, we have a direct relation between the consensus speed and the algebraic connectivity of the graph given by the second eigenvalue λ 2 .

3 Main results

Observations on characteristic roots

In this subsection, we provide a lemma used to prove the convergence and parameters tuning results for the proposed consensus protocol. We make some remarks on the characteristic roots of the complex function

ψ(s) = s -β (1 -e -s ) , β ∈ C. ( 13 
)
When β ∈ R, ψ(s) becomes a special case of the function

ψ(s) := s -a 1 -a 2 e -s , a 1 , a 2 ∈ R, (14) 
studied by Hayes in [START_REF] Hayes | Roots of the transcendental equation associated with a certain dierence-dierential equation[END_REF]. Therefore, the characteristic roots for equation ( 14) have been already studied; we recall its stability region function of the a 1 a 2 parameters, depicted in Fig. 1. We note that, when the a 1 a 2 parameters take values on the semi-innite line L = {a 1 , a 2 :

-a 2 = a 1 < 1}, ψ function has a simple root at zero and all its remaining roots have negative real parts. The next lemma extends this observation to the function [START_REF] Kokiopoulou | Polynomial ltering for fast convergence in distributed consensus[END_REF].

Lemma 1 The function ψ given in equation ( 13) has a simple root at zero and all its other roots have negative real parts if and only if

β < 1, if β ∈ R; (15) 
Re(β) < Im(β) cot(Im(β)), if Im(β) 0. (16) 
Proof. We obtain, by direct substitution, that ψ(0) = 0.

In other words, zero is always a root of ψ. In order to check if zero is a double root, we need to compute the rst derivative of ψ(s) in zero:

ψ (0) = 1 -β.
Zero is a simple root when ψ(0) is non-zero, i.e. if and only if β 0. If

a 1 -2 -1 0 1 2 3 a 2 -3 -2 -1 0 1 2
Stable region L Fig. 1. The stability region of the function ψ given in [START_REF] Liu | Accelerated linear iterations for distributed averaging[END_REF] in the a 1 a 2 parameter space.

β ∈ R, we consider the special case of equation ( 14) with a 1 = -a 2 = β, for which the condition (15) follows from considering the line L in Fig. 1, as mentioned above. If β ∈ C, we know that the statement of the lemma hold on the ray R := {Im(β) = 0 and Re(β) < 1}, which allows us to check the roots crossing the imaginary axis as β is varied in the complex plane. Thus, we consider s = iω in equation ( 13), with ω 0. We separate the real and imaginary parts, and obtain

-Re(β) + Re(β) cos ω + Im(β) sin ω = 0, ω -Re(β) sin ω + Im(β)(cos ω -1) = 0.
Since (cos ω -1) 0, we solve for Re(β) from the rst equation and substitute it into the second equation, obtaining Im(β) = ω 2 , and Re(β) = ω sin ω 2(1-cos ω) . This gives the explicit curve on the complex plane described by

Re(β) = Im(β) sin(2 Im(β)) 1-cos(2 Im(β)) = Im(β) cot(Im(β))
, which is depicted in Fig. 2. We check (for instance by taking the limit Im(β) → 0) that this curve encloses the ray R dened above, on which the statement of the lemma was shown to hold. Hence, for the values of β described by the condition ( 16), all roots of ψ have negative real parts except for a simple root at zero.

Convergence of the anticipatory algorithm

In this subsection, we give the convergence conditions of algorithm ( 6) with α, τ ∈ R + for undirected networks in Theorem 2, and for directed networks in Theorem 3. Theorem 2 The system [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] dened on a connected undirected graph reaches consensus from arbitrary initial conditions if and only if

ατ < 1. (17) 
Proof. We need to show that the characteristic equation ( 12) has a simple root at zero and all the remaining roots have negative real parts if and only if condition (17) holds. We begin by considering the roots of ψ 1 (s) = s -α + αe -sτ . We make a change of variable s = sτ, and equivalently consider the roots of ψ 1 (s ) = s -τα+ταe -s . We use Lemma 1, and obtain that ψ 1 , and therefore ψ 1 , has a simple root at zero and all its other roots have negative real parts if and only if [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF] holds. Then, it is sucient to show that all roots of the remaining factors ψ k , with k = 2, . . . , n, in (12) have negative real parts under condition [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. We express the roots s of a generic factor ψ k as

s = a k + b k e -sτ . (18) 
The rst equality in [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] allows us to write a k and b k as

a k = (1 + α)(1 -λ k ) -1, ( 19 
) b k = -α(1 -λ k ). (20) 
We remark that for τ = 0, the notation (18) reduces to

s = a k + b k = -λ k < 0 for k ≥ 2, (21) 
and the roots are located on the open left complex plane. Next, we search roots that may cross the imaginary axis as τ increases from zero. We denote the imaginary part of equation ( 18) by s = iω, where ω ∈ R. Thus, we directly obtain ω = -b k sin(ωτ). We apply the absolute value on the last equation, and write

|ω| = |b k sin(ωτ)| ≤ |b k ωτ|. (22) 
We notice from ( 18) and ( 21) that ω 0. Hence, we are allowed to divide inequality [START_REF] Reynolds | Flocks, herds and schools: A distributed behavioral model[END_REF] by |ω|, which gives 1 ≤ |b k τ| = |ατ(1 -λ k )| ≤ ατ, where we have substituted b k from (20) and used [START_REF] Hayes | Roots of the transcendental equation associated with a certain dierence-dierential equation[END_REF]. This shows that no roots can cross the imaginary axis, as long as condition (17) holds, i.e. all roots of ψ k with k = 2, . . . , n have negative real parts. This completes the proof of the theorem. Theorem 3 The inequality [START_REF] Olfati | Consensus problems in networks of agents with switching topology and time-delays[END_REF] is a necessary condition for system [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] dened on a connected directed graph to reach consensus from arbitrary initial conditions.

Proof. We consider the rst factor ψ 1 (s) = s-(1-λ 1 )(1α) + 1 + α(1 -λ 1 )e -sτ in equation [START_REF] Johansson | Faster linear iterations for distributed averaging[END_REF], and recall that λ 1 = 0. We check by direct substitution that ψ 1 (0) = 0. In order to check if zero is a double root of ψ 1 , we need to compute the rst derivative of ψ 1 in zero: ψ 1 (0) = 1 -ατ. Thus, we obtain that zero is always a root of φ 1 , and it is a simple root if and only if ατ 1. For ατ > 1, φ 1 is unstable, as it has a real and positive root. This can be seen by plotting the real functions αs and αe -sτ , and observing that they must intersect at a positive value of s if ατ > 1. Therefore, ( 17) is a necessary condition that ψ 1 , and hence the characteristic equation ( 12), has a simple zero root and all the remaining roots have strictly negative real parts. We note that, unlike the case of undirected networks, the condition ( 17) is not sucient for consensus reaching in directed networks. The distinction clearly lies in the fact that the Laplacian eigenvalues are real for undirected networks but not necessarily real for directed ones.

Parameters tuning to reach ultrafast consensus

This subsection puts some light on one of the main advantages of the proposed protocol: the following results, summarised under two theorems and a corollary, show that by making an appropriate choice for the τ and α parameters, we not only avoid instability, but also guarantee a very fast convergence speed for any network. More precisely, the convergence speed we reach corresponds to λ 2 = 1, for τ chosen equal to

τ * := ln 1 + α α . ( 23 
)
Theorem 4 Let α ∈ R + and let τ = τ * be given by [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF].

Then the characteristic factor [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] has a root s = -1.

Moreover, all roots satisfy Re(s) ≤ -1 if and only if

Re(λ k ) > 1 - 1 (1+α) ln( 1+α α ) , if Im(λ k ) = 0, 1 -Im(λ k ) cot (1 + α) Im(λ k ) ln 1+α α , otherwise. ( 24 
)
Proof. We write a factor [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF] of the characteristic equation [START_REF] Johansson | Faster linear iterations for distributed averaging[END_REF], with τ = τ * :

ψ k (s) = s -(1 + α)(1 -λ k ) + 1 + α(1 -λ k )e -sτ * . (25)
It is easy to check that ψ k (-1) = 0 in equation ( 25), meaning that s = -1 is always a root of the characteristic equation ( 12) when τ = τ * . In order to prove the second statement of the theorem, we make the change of variables s = τ * (s + 1) in equation [START_REF] Sipahi | Responsible eigenvalue concept for the stability of a class of single-delay consensus dynamics with xed topology[END_REF]. Thus, we obtain that s is a root of (25) if and only if s is a root of

Φ k (s ) := s τ * -(1 + α)(1 -λ k ) + α(1 -λ k )e -s e τ * = s τ * -(1 + α)(1 -λ k )(1 -e -s ), (26) 
using [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF]. Furthermore, Re(s) ≤ -1 if and only if Re(s ) ≤ 0. The latter inequality is satised if and only if all roots of the quasi-polynomial

φ k (s ) := τ * Φ k (s ) = s -τ * (1 + α)(1 -λ k )(1 -e -s
) have non-positive real parts. We make an important remark, namely that φ k can be expressed under the form of the complex function ψ(s) dened by equation ( 13), with

β = τ * (1 + α)(1 -λ k ).
We apply Lemma 1 to show that Re(s ) ≤ 0 when condition (15) holds for undirected networks, and when condition ( 16) holds for directed networks, depending on whether λ k is real or not. For λ k with Im(λ k ) = 0, we rewrite condition [START_REF] Moreau | Stability of continuous-time distributed consensus algorithms[END_REF] in the form of the rst inequality of [START_REF] Seuret | Consensus under communication delays[END_REF]. This applies to real eigenvalues of directed networks and to all eigenvalues of undirected networks. In directed networks, for complex eigenvalues satisfying Im(λ k ) 0, the condition [START_REF] Olfati-Saber | Ultrafast consensus in small-world networks[END_REF] of Lemma 1 can be written as τ * (1

+ α)(1 -Re(λ k )) < τ * (1 + α) Im(λ) cot [τ * (1 + α) Im(λ k )]. As τ * > 0 and
(1 + α) > 0, we cancel them without changing the sign. Then, taking into account the odd parity of function cot, we obtain exactly the second relation of [START_REF] Seuret | Consensus under communication delays[END_REF].

Corollary 5 Let α ∈ R + and let τ = τ * be given by [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF].

Then the anticipatory consensus protocol [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] on an undirected network converges and, moreover, the dominant transverse root is -1 if

λ 2 > 1 - 1 (1 + α) ln( 1+α α ) . (27) 
Proof. We set τ = τ * and use Theorem 4. Since in the case of an undirected network the normalized Laplacian L has all the eigenvalues real numbers between 0 and 2, with

0 = λ 1 < λ 2 ≤ λ 3 ≤ • • • ≤ λ n ,
we conclude that for any given connected undirected network we get s = -1 the dominant root of the characteristic equation ( 12) if and only if condition (27) holds.

Theorem 6 Consider a connected, directed or undirected network under the consensus protocol [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF], with τ = τ * , as dened by equation [START_REF] Olfati | Consensus protocols for networks of dynamic agents[END_REF]. Given that zero is a simple eigenvalue of the normalized Laplacian L dened as in equation ( 7), we can always nd α > 0 satisfying conditions [START_REF] Seuret | Consensus under communication delays[END_REF] for all Laplacian eigenvalues λ k , with k ≥ 2, such that the network reaches consensus and, moreover, the dominant transverse root of the characteristic equation ( 12) is -1.

Proof. Using l'Hôpital's rule we obtain that

lim α→∞ (1 + α) ln 1 + α α = 1. (28) 
Thus, condition (27) becomes λ 2 > 0 when α → ∞.

Given that 0 = λ 1 < λ 2 ≤ λ 3 ≤ • • • ≤ λ n for undirected networks case, this means that α > 0 can be as large as we need, since condition λ k > 0 always holds ∀k ≥ 2. We use equality (28) for directed networks, and notice that the second condition of [START_REF] Seuret | Consensus under communication delays[END_REF] becomes

Re(λ k ) > 1 -Im(λ k ) cot(Im(λ k )) (29) 
when α → ∞. In other words, α > 0 can be chosen as large as we need if all Laplacian eigenvalues λ k satisfy condition (29). We do a change of variables

λ k = λ k -1 = σ k + iω k .
We note that λ k are located in the unit circle centred at the origin. Thus, condition (29) is equivalent to σ k > -ω k cot(ω k ). We assume, without loss of generality, that ω k > 0. This means that ω k cot(ω k ) > 0, as

|ω k | < 1. If σ k > 0, condition σ k > -ω k cot(ω k ) is im- mediately satised. If σ k < 0, instead of condition (29) we can check condition σ 2 k < ω 2 k cot 2 (ω k ).
The fact that the eigenvalues λ k are in the unit circle is translated into the inequality σ 2 k + ω 2 k ≤ 1. In other words, we can write

σ 2 k ≤ 1 -ω 2 k
. But because we assumed ω k > 0, we have

|ω k | | sin(ω k ) | > 1, which leads to 1 -ω 2 k < ω 2 k cot 2 (ω k ). We can now write σ 2 k ≤ 1 -ω 2 k < ω 2 k cot 2 (ω k ), which means that σ k > -ω k cot(ω k
) is also true for σ k < 0, and that condition (29) is always true for all λ k centred in the shifted unit circle. This implies that we can always nd an α > 0 satisfying conditions [START_REF] Seuret | Consensus under communication delays[END_REF] such that s = -1 is the dominant root of the characteristic equation [START_REF] Johansson | Faster linear iterations for distributed averaging[END_REF]. The above results show how to choose the delay parameter τ to obtain a convergence speed corresponding to the dominant root -1, for all networks. Moreover, such a choice always exists, independent of the network type.

Optimality of the delay parameter choice

Proposition 7 Setting τ = τ * is a local optimum choice in terms of network performances, for connected networks under the anticipatory protocol [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] with α ∈ R + . More precisely, the choice τ = τ * improves the convergence speed for all networks, except complete undirected networks and directed networks where Re(λ k ) > 1 ∀k ≥ 2.

Proof. We consider a connected network under the anticipatory protocol [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF], and let α ∈ R + . We further consider a generic factor k of the characteristic equation [START_REF] Johansson | Faster linear iterations for distributed averaging[END_REF]

: s -(1 + α)(1 -λ k ) + 1 + α(1 -λ k )e -sτ = 0.
In this equation, s can be seen as a function of τ. We would like to know what happens to the real part of s when τ = τ * changes. This is why we rst take the derivative with respect to τ over the expression of characteristic equation generic factor, in order to nd an expression for the derivative of s with respect to τ evaluated in τ = τ * : ∂s ∂τ -α(1 -λ k )e -sτ ∂s ∂τ τ + s τ=τ * = 0. As we know that s = -1 when τ = τ * , we replace [e -sτ ] τ=τ * = 1+α α in the last equation, and obtain

∂s ∂τ [1 -τ * (1 + α)(1 -λ k )] + (1 + α)(1 -λ k ) = 0, which leads to ∂s ∂τ = (1+α)(1-λ k ) τ * (1+α)(1-λ k )-1 .
We note that in the case of undirected networks there is no dierence between the real part of the right-hand part of the equation above and the right-hand side itself, as all involved variables are real. So, in order to observe what happens with the sign of the real part of the left-hand side we study the following two cases. Case 1. If λ k > 1, then we immediately obtain ∂s ∂τ > 0.

Case 2. If λ

k < 1, then the numerator (1 + α)(1 -λ k )
is positive, but the denominator is negative, as we have already chosen τ * (1

+ α)(1 -λ k ) < 1 (apply Lemma 1 with β = τ * (1 + α)(1 -λ k ))
. Thus, we obtain ∂s ∂τ < 0. For λ k = 1, ∂s/∂τ = 0, so the sign does not change. Thus, we conclude by saying that for real eigenvalues λ k , a perturbation on τ = τ * makes the real characteristic roots move leftwards or rightwards, depending on the two cases above. This situation is depicted in Figure 3. For directed networks, we study the real part of complex eigenvalues, Re(λ k ), instead of λ k : Re ∂s ∂τ τ=τ * = Re

(1+α)(1-λ k ) τ * (1+α)(1-λ k )-1 . We write = 0 0.5 1 1.5 2 Re(s) -2 -1 0 1 = = 1 = = ln 2 s = -1
Fig. 3. Evolution of real part of dominant characteristic roots, Re(s), as a function of τ for α = 1. We note that for τ = ln 2, the dominant root is -1. Moreover, we note that the network reaches consensus up to τ = (1/α) = 1.

λ k = Re(λ k ) + i Im(λ k ), multiply the fraction by the complex conjugate of its denominator, and separate real and imaginary part; then we obtain the Re ∂s ∂τ τ=τ * nominator equal to τ * (1

+ α) 2 (1 -Re(λ k )) 2 -(1 + α)(1 - Re(λ k )) + τ * (1 + α) 2 Im 2 (λ k )
, and its denominator is

[τ * (1 + α)(1 -Re(λ k )) -1] 2 + [τ * (1 + α) Im(λ k )] 2 .
Given the Re (∂s/∂τ) expression in τ = τ * , we verify that if Re(λ) > 1, then Re ∂s ∂τ τ=τ * > 0 for all α > 0. Next, we claim that for any given network there always exists an eigenvalue λ k of the normalized Laplacian L such that Re(λ k ) > 1. We prove that this statement is always true using a proof by contradiction: if we assume that there is an eigenvalue λ k with Re(λ k ) ≤ 1, then we get n k=2 Re(λ k ) ≤ n -1, which contradicts the property of the normalized Laplacian n k=2 Re(λ k ) = n. In other words, every network has at least an eigenvalue of L with real part greater that 1, for which Re ∂s ∂τ τ=τ * > 0. This remark has two implications. First, it shows that choosing τ = τ * in such networks can improve convergence performances. Second, it shows a limitation of algorithm for directed networks where Re(λ k ) > 1 for all k ≥ 2: for these networks we always obtain Re(∂s/∂)τ > 0, i.e. decreasing τ from τ * will improve convergence speed. We note that this limitation of the proposed algorithm [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] does not occur in undirected networks since Re(∂s/∂τ) takes both negative and positive values over the set of Laplacian eigenvalues. However, we can show that the anticipatory algorithm does not give better performances, when compared to the classical consensus protocol, for undirected networks represented by complete graphs. Indeed, among undirected networks, only complete graphs have all their eigenvalues (except λ 1 ) greater than 1, i.e. λ 1 = 0 and λ

2 = • • • = λ n = n n-1 > 1,
where n is the number of nodes in the network. In Prop. 7, a local optimum choice means that there are cases where the classical protocol (2) performs better than using τ * in the proposed algorithm [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF]. Such cases are represented by networks where Re(λ k ) > 1 ∀k ≥ 2.

For undirected networks, this limitation of algorithm [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF] arises only in complete graphs. A proportional controller with delays can be applied in this case to achieve fast converge speed [START_REF] Ramírez | Further remarks on single-delay and multiple-delay pr protocols for fast consensus in a largescale network[END_REF]. Nevertheless, we designed the proposed anticipatory protocol (6) to speed-up the convergence rate in all kinds of badly connected networks, and obviously there is no interest in using it in networks where all nodes directly communicate with all other nodes in the network.

Example. We consider an undirected circular network with 20 nodes, under the classical consensus protocol (2) and under the anticipatory protocol ( 6) with α = 10 and τ = τ * . Fig. 4 shows the evolution over time of the states x i , with i = 1, . . . , 20 for the two cases, classical protocol (top) and anticipatory protocol (bottom), starting from the same initial conditions. We remark that the consensus is reached faster (less than 6 units of time) when we use our algorithm. We also note that λ 2 = 0.048943 under the classical consensus protocol, whereas using the anticipatory algorithm gives λ 2 = 1. This means that for this network, the consensus protocol ( 6) is more than 20 times faster when compared to the classical consensus algorithm (2). Our simulations show that the convergence improvement can be even more dramatic for very large circular networks. However, this improvement comes with a robustness cost in such applications, as the parameters can get very sensitive to the noise.

Concluding remarks

We proposed an anticipatory consensus algorithm, studied its convergence conditions, showed how to tune its parameters so that to always obtain a fast convergence speed corresponding to dominant root -1 for all networks, and discussed the algorithm's limitations. The proposed algorithm is based on a rst-order estimation, and gives a very fast convergence speed when we tune τ = τ * . The two parameters of the proposed algorithm describing how far to look back in the past and how much to extrapolate in the future can be jointly tuned to accelerate convergence. However, the tunning parameters might be noise sensitive in some particular applications.

2 :Fig. 2 .

 22 Fig. 2. The locus of numbers β ∈ C satisfying condition (16) is the open set enclosed by the blue curve.

Fig. 4 .

 4 Fig. 4. Example: undirected circular network with 20 nodes. Nodes' states over time under the classical consensus protocol (2) (top) and anticipatory protocol (6) (bottom).
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