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Detecting periodicity from the trajectory of a random walk in random environment
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For nearest neighbor univariate random walks in a periodic environment, where the probability of moving depends on a periodic function, we show how to estimate the period and the function. For random walks in non-periodic environments, we find that the asymptotic limit of the estimator is constant in the ballistic case, when the random walk is transient and the law of large numbers holds with a non zero limit. Numerical examples are given in the recurrent case, and the sub-ballistic case, where the random walk is transient but the law of large numbers yields a zero limit.

Introduction

Given no other information than the trajectory of a random walk in random environment (RWRE), one would like to estimate the law of the environment. While this is usually not feasible, there are simple instances where various modeling choices will generate the full distribution, at least asymptotically in some sense. Our purpose is solely to detect periodicity from observing a single trajectory of an RWRE.

All random variables are built on an ambient complete probability space (E, E, P). A random environment is a measurable two-sided sequence α(e) = α(•, e) ∈ (0, 1) Z indexed by e ∈ E and we write µ = P • α -1 for its distribution on the Borel subsets of [0, 1] Z . It will be convenient to write ρ i (e) = 1-α(i,e) α(i,e) and we will occasionally drop parameter e whenever there is no ambiguity in doing so. Let X = {X t } t≥0 be a (nearest neighbor) RWRE on Z, to wit

P e (∆X t = X t -X t-1 = 1| X t-1 = i) = P (X t = i + 1| X t-1 = i, E) (e) = α(i, e), (1.1) 
with P e (∆X t = -1| X t-1 = i) = 1 -α(i, e), for every choice of i ∈ Z and positive integer t. This simply means that given a realization e of the environment and a starting point X 0 for the walk, the successive locations {X t : t ≥ 1} form a time homogeneous irreducible Markov chain on Z under P e and the conditional law of the whole walk is a probability P e on the power set over Z N known as the quenched law for the RWRE. The whole process is therefore encapsulated in the family of joint probability laws P µ defined by P µ (F × A) = A P e (F) µ(de), and its first marginal on Z N is known as the annealed law for the RWRE. Note that X is not in general a Markov process under P µ .

In order to use such models, it is necessary to be able to estimate the process A = {α(i)} i∈Z . Of course, this is not possible in general, but if there is some sort of parametric structure, estimation is possible. For instance Comets et al. [START_REF] Comets | Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment[END_REF] study the asymptotic distributions for an M-estimator of their choice that is very close to the MLE for the solution to (1.1) above. The authors consider that {α(i)} i∈Z are independent and identically distributed (iid) with a parameterized marginal distribution, in the so-called ballistic right-transient case E(log ρ 0 ) < 0 and E(ρ 0 ) < 1. The parameter of interest is estimated via a M-estimator of the sequence X 0 , . . . , X τ n , where τ n is the time of the first visit to n. The corresponding sub-ballistic case, i.e., E(log ρ 0 ) < 0 and E(ρ 0 ) ≥ 1, was studied in Falconnet et al. [START_REF] Falconnet | Maximum likelihood estimation in the context of a sub-ballistic random walk in a parametric random environment[END_REF],

while the recurrent case E(log ρ 0 ) = 0 is examined in Comets et al. [START_REF] Comets | Maximum likelihood estimator consistency for recurrent random walk in a parametric random environment with finite support[END_REF], when the distribution of the iid sequence {α(i)} i∈Z has finite support. Recently, Diel and Lerasle [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF] considered non-parametric estimators in the i.i.d. case.

Further generalization was achieved in the ballistic case by Andreoletti et al. [START_REF] Andreoletti | Hidden Markov model for parameter estimation of a random walk in a Markov environment[END_REF] where a tractable class of hidden Markov models is assumed for {α(i)} i∈Z . An alternative estimation procedure based on the moments of the random environment was proposed earlier on by Adelman and Enriquez [START_REF] Adelman | Random walks in random environment: What a single trajectory tells[END_REF], which also applies in more general contexts than those considered here. Even in these examples, where in each case {α(i)} i∈Z itself is a very simple stochastic process, the resulting RWRE X in (1.1) is still not a Markov process.

In the present paper, we shall first analyze the MLE for the unobserved environment A = {α(i)} i∈Z in (1.1) under the restricted context where this environment is known to be spatially periodic. We shall then investigate conditions on A under which the MLE obtained in the periodic case, allows for the detection of absence of periodicity.

Estimation of a periodic environment

Let P d be the set of all periodic functions on Z with values in (0, 1) and period d. For a given p ∈ P d , set

E p = {e j = p(• + j); 1 ≤ j ≤ d}.
The resulting environment {α(•, e j ) = p(• + j); j ≥ 0} is a deterministic sequence (save for the possibly random starting point e 0 ∈ E p ) with a unique invariant probability, namely the uniform distribution over the finite set E p , meaning that the probability of e j is 1/d, for every j ∈ S d = {1, . . . , d}. This particular case of a random environment leads to the definition of a random walk in a periodic environment (RWPE for short) introduced in Pyke [START_REF] Pyke | On random walks and diffusions related to Parrondo's games[END_REF]. We say that X is a RWPE if there exists p ∈ P d , for some d ∈ N, so that X = {X t } t≥0 is the (nearest neighbor) random walk defined by

P (∆X t = 1| X t-1 = i) = p(i), i ∈ Z, t ≥ 1. (2.1)
Of course, if p ∈ P d , then p ∈ P kd , for any k ∈ N. Clearly X is an irreducible Markov chain. The main aim of this section is to estimate the associated periodic function p and the smallest d 0 so that p ∈ P d 0 , using a single trajectory X 0 , . . . , X n of the RWPE X. The justification of using the class of RWPE instead of the more general RWRE models defined by (1.1) comes from a celebrated result due to Parthasarathy [START_REF] Parthasarathy | On the category of ergodic measures[END_REF] which says that the law µ of the stationary ergodic process A = {α(i)} i∈Z is the limit in distribution of a sequence of processes {α n (i) = p n (i 

p (d) n ( j) = A (d) n, j / A (d) n, j + B (d) n, j , j ∈ {1, . . . , d}, (2.2) 
where

A (d) n, j = n t=1 I{(X t-1 ) d = j, ∆X t = 1}, B (d) n, j = n t=1 I{(X t-1 ) d = j, ∆X t = -1}, and A (d) n, j + B (d) n, j = n t=1 I{(X t-1 ) d = j}. The associated log-likelihood is given by L n,d = d j=1 A (d) n, j log{p (d) n ( j)} + B (d) n, j log{1 -p (d) n ( j)} = - d j=1 A (d) n, j + B (d) n, j H p (d) n ( j) , (2.3) 
where for any x ∈ (0, 1), n, j n → π j p( j), B (d) n, j n → π j {1p( j)} , so p (d) n ( j) → p( j), and L n,d n → L d = -d j=1 π j H{p( j)}.

H(x) = -x log x -(1 -x) log(1 -x) ≥ 0
The problem is to find d. The following example illustrates what one can expect.

Example 2.1. We generated a random walk of length n = 10000 satisfying (2.1), starting from X 0 = 100, with p = (0.099, 0.749, 0.749). The results of the estimation for d = 3 are p n = (0.0954, 0.7593, 0.7430) ∈ P 3 , with a log-likelihood of -4.6976 × 10 3 . Figure 1 shows the behavior of the log-likelihood for periods d ∈ {1, . . . , 10}. As expected, the first local maximum is reached at d = 3, with other local maxima at 6, 9, which are multiples of d = 3.

In addition, we plotted the theoretical value L 3 to show the convergence of L n,d /n to the former. n → ∞, for any i

Estimation of the least period

∈ S d , A (d) n,i n a.s. → m d j∈S d 0 , ( j) m =(i) m π j p( j), B (d) n,i n a.s. → m d j∈S d 0 , ( j) m =(i) m π j {1 -p( j)}, p (d) n (i) a.s. → p (d) (i) = j∈S d 0 , ( j) m =(i) m π j p( j) j∈S d 0 , ( j) m =(i) m π j , (2.4) 
L n,d n a.s. → L d = - m d d i=1 j∈S d 0 , ( j) m =(i) m π j H p (d) (i) . (2.5)
In particular, if m = 1, then A 

Behavior under non-periodic environments

What if the model is not a RWPE? From now on X = (X t ) t≥0 is a full fledged RWRE satisfying (1.1). We investigate next how our estimator behaves when the environment is no longer periodic. Henceforth the right shift operator on (0, 1) Z is denoted by T .

Fixed environments

For a fixed environment e, the asymptotic behavior for X is well-known [START_REF] Chung | Markov chains with stationary transition probabilities[END_REF]. For the sake of completeness, we formulate them in the following lemma. Recall that ρ k (e) = 1-α(k,e) α(k,e) and define (e) , C 0 (e) ≡ 1, and

S (e) = 1 + ∞ j=1 j k=1 ρ k (e), F(e) = 1 + ∞ j=1 j k=1 1 ρ -k
C j (e) =                  α(0,e) α( j,e) j k=1 1 ρ k (e)
for j > 0, 1-α(0,e) 1-α( j,e) j k=1 ρ -k (e) for j < 0.

(3.1) Lemma 3.1. Let X = (X t ) t≥0 satisfy (1.1) for some fixed environment α(•, e) ∈ (0, 1) Z . For any starting point X 0 , one and only one of the following four statements holds.

• If S (e) < ∞ and F(e) < ∞ then P e lim inf n→∞

|X n | = +∞ = 1. • If S (e) < ∞ and F(e) = ∞ then P e lim n→∞ X n = +∞ = 1. • If S (e) = ∞ and F(e) < ∞ then P e lim n→∞ X n = -∞ = 1. • If S (e) = ∞ and F(e) = ∞ then P e lim inf n→∞ X n = -∞, lim sup n→∞ X n = +∞ = 1.
Further, if j∈Z C j (e) < ∞, then S (e) = ∞, F(e) = ∞ and X has a unique invariant measure π j (e) = C j (e)π 0 (e), with π 0 (e) = 1/ j∈Z C j (e).

In the case where X is positive recurrent, prescribed by the finiteness of j∈Z C j (e) < ∞, the ergodic theorem for Markov chain (X t , X t+1 ) t≥0 , which is also irreducible on {( j, k) ∈ Z 2 ; kj = ±1}, and positive recurrent as well, directly implies the following result, proven in Appendix A.4. Proposition 3.1. Let π be the unique invariant probability measure of the Markov chain X associated with an arbitrary but fixed environment α satisfying j∈Z C j (e) < ∞ in (3.1). As n → ∞, there holds, for every integer pair n ; d ≥ 1}, which exhibits a telltale seesaw motion under the hypothesis of periodicity, as shown in Figure 1, will instead display a tendency to increase in d from approximatelylog 2 ∼ -.693 to an upper bound L ∞ when the environment is no longer periodic but such that the simple random walk X on the whole line is positive recurrent. The convexity of -H yields the inequalities L n,1 ≤ L n,d ≤ L n,kd for any n ≥ 1, d ≥ 1, k > 1 and all environments, recurrent or not, hence any departure from periodicity in the environment is likely to be detected through this tendency to increase, simply by graphing the empirical log-likelihoods (L n,kd ) k≥1 , for a fixed d.

1 ≤ i ≤ d < ∞ and any starting point X 0 , p (d) n (i, e) a.s. → α (d) (i, e) = j∈Z, ( j) d =i π j (e)α( j, e) j∈Z, ( j) d =i π j (e), (3.2) 

Random environments

From now on, assume that the sequence α(i, •) is stationary and ergodic with respect to the measure µ and T is a Let us return to (1.1) and write X n = n t=1 {∆X t -2α(X t-1 ) + 1}n + 2 n t=1 α(X t-1 ). Now, ξ t = ∆X t -2α(X t-1 ) + 1 is a bounded martingale difference sequence, so 1 n n t=1 ξ t converges to 0 almost surely, as n → ∞. Hence the limiting behavior of X n /n is the same as the limiting behavior of -1

+ 2 n n t=1 α(X t ). It is shown in Alili [2, Theorem 4.1] that
X n /n converges µ almost surely, an extension of the original iid case due to Solomon [START_REF] Solomon | Random walks in a random environment[END_REF].

Invariant measure for T X t e

In order to find the limit of n t=1 α(X t ) n, consider the Markov chain T X t e on E. Its Markov operator T is given by

T h(e) = α(0, e)h(T e) + {1 -α(0, e)}h(T -1 e), (3.5) 
for any bounded measurable function h. Setting X x t (e) for the chain starting at x from environment e, then X x t (e) = x + X 0 t (T x e), so α(X x t , e) = α(X 0 t (T x e), T x e). The associated Markov operator, denoted T x , satisfies

T x h(e) = E h(T X x 1 e) = T h(T x e).
If λ is an invariant measure for T , the invariant measure λ x for T x is λ x (A) = λ(T x A).

Hence 1 n n t=1 α(X x t-1 , e) should converge to E λ x {α(x)} = E λ {α(0)}.
Hence the limit is independent of x even if α(x) is not necessarily stationary with respect to λ. If λ is a stationary distribution for this Markov chain that is absolutely continuous with respect to µ, its density φ satisfies φ = T φ, where T is the adjoint operator of T on L 1 (µ) given by T φ(e) = α(0, T -1 e)φ(T -1 e) + {1 -α(0, T e)}φ(T e).

(

Suppose that E(S ) < ∞. Then dλ = v{1 + ρ 0 (e)}S (e)dµ is an invariant ergodic measure for T X t e, so in this case X n /n converges almost surely to -1 + 2E λ (α 0 ) = -1 + 2vE(S ) = v, where α 0 (e) = α(0, e). Next, if E(F) < ∞,

d λ = ṽ{1 + ρ -1
0 (e)}F(e)dµ is an invariant ergodic measure for T X t e, so in this case X n /n converges almost surely to

-1 + 2Eλ(α 0 ) = 1 -2ṽE(F) = -ṽ. If E(S ) = E(F) = +∞, then X n /n converges almost surely to 0, which is equivalent to 1 n n t=1
α(X t ) converging almost surely to 1/2. That T is an ergodic operator goes back to Kozlov [START_REF] Kozlov | The method of averaging and walks in inhomogeneous environments[END_REF], where a proof is sketched. We prove it in Appendix A.5.

The following section will be used for computing some important limiting values such as E λ (α 0 ).

Distribution of α 0 under the invariant measure λ in the ballistic case

Suppose we are in the right ballistic case, i.e., E(S ) < ∞. Then, the (unique) invariant measure λ has density vS /α 0 with respect to µ,

and v = 1 2E(S )-1 . It follows that E λ (α 0 ) = vE(S ) = 1 1+ρ .
What is the distribution of α 0 under λ? In the iid case, S is independent of α 0 and E(S ) = 1 1-ρ , so v = 1-ρ 1+ρ , and E(1

+ ρ 0 ) = E(1/α 0 ) = 1 + ρ.
Note also that E(log ρ 0 ) < 0 and E(ρ 0 ) = ρ < 1. For any bounded measurable function H on (0, 1),

E λ {H(α 0 )} = vE {H(α 0 )(1 + ρ 0 )S } = vE(S )E H(α 0 ) α 0 = 1 1 + ρ E H(α 0 ) α 0 .
Hence the density of the distribution of α 0 under λ, with respect to the distribution of α 0 under µ is 1 (1+ρ)x . In particular, if α 0 has density g(x) under µ, then it has density g(x)

(1+ρ)x under λ. Suppose now that we are in the left ballistic case, i.e., E(F) < ∞. Then, the (unique) invariant measure λ has density vF/(1 -α 0 ) with respect to µ, and ṽ = 1 2E(F)-1 . In the iid case, i.e., E(log ρ 0 ) > 0 and E(1/ρ 0 ) = ρ < 1. Then under the (unique) invariant measure λ, Eλ(α 0 ) = ρ 1+ ρ . Also, F is independent of α 0 and E(F) = 1 1-ρ , so ṽ = 1-ρ 1+ ρ , and E(1 + 1/ρ 0 ) = E 1 1-α 0 = 1 + ρ. For any bounded measurable function H on (0, 1),

E λ {H(α 0 )} = ṽE {H(α 0 )(1 + 1/ρ 0 )F} = ṽE(F)E H(α 0 ) 1-α 0 = 1 1+ ρ E H(α 0 ) 1-α 0 .
Hence the density of the distribution of α 0 under λ, with respect to the distribution of α 0 under µ is 1 (1+ ρ)(1-x) . In particular, if α 0 has density g(x) under µ, then it has density g(x) (1+ ρ)(1-x) under λ. In this case, X n /n converges also surely to 2Eλ(α 0 ) -1 = ρ-1 ρ+1 = -ṽ. One can ask now if there is an invariant measure when E(S ) = E(F) = +∞ which is not treated by Alili [START_REF] Alili | Asymptotic behaviour for random walks in random environments[END_REF]. We can give a complete answer to this question in the periodic case.

Invariant measure in the periodic case

Suppose that E p = {T k p; k ∈ S d }, for some p ∈ P d . We noted earlier that (X t ) d forms an irreducible Markov chain with a unique ergodic distribution π = π(p, X 0 ), one for each fixed e ∈ E p . The unique solution of (3.6) is φ(T k e) = dπ k (e), where π(e) is the unique stationary distribution of (X t ) d . As a result, E λ (α 0 ) = d k=1 π k (p)α(k, p). In fact the density of λ with respect to µ should be cφ(e), where φ(e) = {1 + ρ 0 (e)} {1 + ρ 1 (e)

+ • • • + ρ 1 (e) • • • ρ d-1 (e)},
and one gets that c = d/ d k=1 φ(T k e) . This means that we have a closed-form expression for the invariant measure π, namely, for any k ∈ {1, . . . , d}, π k (e) = φ(T k e)/ d j=1 φ(T j e) . Note that the invariant measure exists even in the recurrent case, i.e., if E(S ) = E(F) = +∞. In this case, E(log ρ 0 ) = 0 means that 1

d d k=1 log(ρ k ) = 0, so ρ 1 • • • ρ d = 1.

Behavior of the estimator

Next, consider the Markov chain X t = ((X t ) d , T X t e) on S d × E, and suppose that there are m closed classes E 1 , . . . , E m . Its Markov operator Ť is given, for any bounded measurable h on S d × E, by Ť h( j, e) = α(0, e)h( j + 1, T e) + {1 -α(0, e)}h( j -1, T -1 e). ϕ k ( j, e)µ(de) = 1. Here it is assumed that ϕ k ( j, e) = 0 whenever ( j, e) E k . If φ solves (3.6), then ϕ k ( j, e) = φ(e)I E k ( j, e) satisfies (4.2). In particular, if m = 1, i.e., the Markov chain X is irreducible, then ϕ( j, e) = φ(e) solves (4.1) if φ solves (3.6). We can also prove uniqueness in this case.

Theorem 4.1. Assume that all powers of T are ergodic. Then ϕ( j, e) = φ(e) solves (4.1) if φ solves (3.6) and it is the unique invariant ergodic measure for the Markov chain X.

Remark 4.1. A sufficient condition for all powers of T to be ergodic is that T is weak mixing [5, p. 16], i.e., for any measurable sets A, B, lim n→∞

1 n n-1 k=1 µ A ∩ T -k B -µ(A)µ(B) = 0.
If T is weak mixing then T k is also weak mixing for any k, yielding that T k is ergodic.

Using the ergodic theorem, we have the following interesting result.

Corollary 4.1. Under the conditions of Theorem 4.1, for any ( j, e), A (d) n, j n a.s.

→ 1 d E{ϕ( j, •)α 0 } = 1 d E λ (α 0 ), B (d) n, j n a.s. → 1 d E {ϕ( j, •)(1 -α 0 )} = 1 d E λ (1 -α 0 ), so p (d) n ( j) a.s. 
→ E λ (α 0 ). Also, L n,d /n a.s.

→ -H {E λ (α 0 )}.

Remark 4.2. Suppose that d 0 is the least k so that T k = I. Then we are in the periodic case, and it follows from the proof of the theorem that any harmonic function is constant on the closed classes

E i = ( j, T i+ j-1+ d p); j ∈ S d , = 0, . . . , (d 0 /m -1) = ( j, T i+ j-1+ m p); j ∈ S d , = 0, . . . , (d 0 /m -1) , i ∈ {1, . . . , m}, with m = (d, d 0 )
. In this case the Markov chain is ergodic on each class E i , with invariant density proportional to φ. Let φ be defined as in Section 3.3. Set d = d 0 ×d/m. Then p ∈ P d. As a result, since µ is the uniform measure on E p = {T p, . . . , T d 0 p}, one gets for ( j, e) = j, T i+ j-1+ m p ∈ C i , ϕ i ( j, e) = md 0 φ(e)

d 0 r=1 φ(T r p) = md 0 π i+ j-1+ m ,
where π k = π k (p) is the unique invariant measure of the Markov chain (X t ) d 0 defined by (2.1). One then recovers the results of Proposition 2.2 using the ergodic theorem for the Markov chain X on E i , i ∈ S d .

Numerical experiments

We provide three illustrations when the α(i) are iid with uniform distribution on [a, b]. First, we consider a rightballistic case, where the assumptions of Theorem 4.1 are met. In the other two cases, where X n /n → 0, we consider a sub-ballistic case and a recurrent case. More precise rates of convergence are known to exist [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF]. n with d ∈ {1, . . . , 5}, and using a simulated trajectory of length 10 7 , one obtains that p (d) n (i) = .5954 ± .0005 for all i ∈ {1, . . . , d}. These results are coherent with Corollary 4.1. The estimation of the distribution of α 0 and the graph of the log-likelihoods are displayed in Figure 2. The graph of the likelihoods seems to vary but if we look closely at the scale, there is no significant variability.

Sub-ballistic iid case

Suppose again that the α(i) are iid, with a uniform distribution over the interval (a, b). It then follows that The trajectory and the graph of the log-likelihoods are displayed in Figure 3. According to Alili's result, the RWRE is transient with X n → +∞, but X n /n → 0 as n → ∞, explaining the slow convergence of X n . In fact, according to Kesten et al. [START_REF] Kesten | A limit law for random walk in a random environment[END_REF] and Diel and Lerasle [START_REF] Diel | Non parametric estimation for random walks in random environment[END_REF], X n /n κ converges in law to a non-trivial distribution, where κ = .6802. Here we see that the log-likelihoods behave erratically, compared to the periodic case or the ballistic case. 

E(log ρ 0 ) = 1 b-a a log a + (1 -a) log(1 -a) -b log b -(1 -b) log(1 -b) . Also, E(S ) < ∞ iff ρ = E(ρ 0 ) = -1 + 0.

Recurrent iid case

Here we generated the so-called Sinai's random walk of length 10 7 satisfying (1.1), starting from X 0 = 0, with iid uniform probabilities over (0, 1). We are the recurrent case so X n /n → 0. However, as shown in Sinai [START_REF] Sinai | The limit behavior of a one-dimensional random walk in a random environment[END_REF],

X n /(log n) 2 converges in law to a non-trivial distribution. The trajectory and the graph of the log-likelihoods are displayed in Figure 4. Clearly the RWRE X in (1.1) is not a stationary process in this case. For more on those recurrent cases affording tractability, see Andreoletti [START_REF] Andreoletti | On the estimation of the potential of Sinai's RWRE[END_REF] and the references therein. Again, the log-likelihoods behave erratically.

Conclusion

To distinguish between cases, one should first plot the graph of X t /t, for t ∈ {1, . . . , n}. It it goes to 0, we are in the sub-ballistic or the recurrent cases. If the limit is not 0, we can use the likelihoods behavior to distinguish between the periodic and ballistic cases. For a RWPE, we can detect the period and estimate the associated probabilities, while in the ballistic non-periodic case, the limiting distribution of the probability estimators is constant, as well as the log-likelihoods. i = j mod (m), then there is a unique T (i, j) ∈ {1, . . . , d} so that x = T (i, j) mod ( d). If ( ji) m 0, then there is no solution T (i, j). Set a = d/m and b = d 0 /m. Then (a, b) = 1. For a given i ∈ {1, . . . , d} such that (i) m = β ∈ {1, . . . , m}, then for any j = (l -1)m + β, l ∈ {1, . . . , b}, there is a solution T (i, j). As a result, for any i ∈ {1, . . . , d}, A → π j p( j), since the invariant measure for the Markov chain {(X t ) d : t ≥ 0} satisfies πl = π j = π j /a whenever l j mod (d 0 ). As result, A (d) n,i a.s.

→ 1 a j∈S d 0 , ( j) m =(i) m π j p( j). Similarly, B (d) n,i a.s.

→ 1 a j∈S d 0 , ( j) m =(i) m π j {1p( j)}. The almost sure convergence of p (d) n (i) and L n,d /n then follows. Finally, to complete the proof, note that for any i, { j ∈ S d 0 , ( j) 1 = (i) 1 } = S d 0 . ( j) = p (d 0 ) n ( j). Hence the "randomness" of d 0,n is not important in the limit.
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  L n,d (e) n a.s. → L d (e) = -d i=1 j∈Z, ( j) d =i π j (e)H α (d) (i, e) . (3.3) Furthermore, for any d ≥ 1 and k > 1, we have log 2 = L 1 (e) ≤ L d (e) ≤ L kd (e) ≤ L ∞ (e) = -j∈Z π j (e)H {α( j, e)} ≤ 0. (3.4) Remark 3.1. Comparing these results with Proposition 2.2 and Theorem 2.1 shows that the sequence of log-likelihoods for large sample estimates {p (d)

µTheorem 3 . 1 .

 31 measure preserving transformation. The asymptotic behavior of X is completely determined by the expectation of log ρ 0 , as proven in[START_REF] Alili | Asymptotic behaviour for random walks in random environments[END_REF] Theorem 2.1]. Suppose that u = E log ρ 0 is well defined, with u ∈ [-∞, +∞]. If u > 0, then µ a.s., F(e) < ∞, S (e) = ∞, and for any i ∈ Z, P e i (lim n→∞ X n = -∞) = 1. If u < 0, then µ a.s., S (e) < ∞, F(e) = ∞, and for any i ∈ Z, P e i (lim n→∞ X n = +∞) = 1. If u = 0, then µ a.s., F(e) = ∞, S (e) = ∞, and for any i ∈ Z, P e i lim inf n→∞ X n = -∞, lim sup n→∞ X n = +∞ = 1.

(4. 1 )

 1 Let u d be the uniform distribution on {1, . . . , d}. It is then easy to check that if λ(k) is a stationary distribution for this Markov chain on E k which is absolutely continuous with respect to u d ⊗ µ, then its density ϕ k satisfies, for any ( j, e) ∈ E k , ϕ k = Ť ϕ k , where Ť is the adjoint operator of Ť defined by Ť ϕ k ( j, e) = α(0, T -1 e)ϕ k ( j -1, T -1 e) + {1 -α(0, T e)}ϕ k ( j + 1, T e), µ a.s.

4. 1 . 1 . 1 log ( 13 / 11 )

 1111311 Right-ballistic iid caseSuppose the α(i) are iid, with a uniform distribution over the interval (a, b). Then E(ρ k ) = ρ = -1 + log(b/a) b-a < 1 is required for the right-ballistic case. Using the results of Section 3.2.2, the density of α 0 under λ is then 1 x log(b/a) I(a < x < b). The density of the invariant measure λ for T is φ(e) = 1-ρ 1+ρ S (e) α(0,e) , where S (e) = 1 + ∞ n=1 n k=1 ρ k (e). In particular E λ [α(0)] = 1 1+ρ . As an example, take a = .55, b = .65. Hence, ρ = -1 + 10 log (65/55) ≈ .6705, ≈ 0.5986085. Choosing estimator p (d)

Figure 2 :

 2 Figure 2: Estimation of the distribution of α 0 (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right panel).

Figure 3 :

 3 Figure 3: Trajectory of the RWRE (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right panel).

Figure 4 :

 4 Figure 4: Trajectory of the RWRE (left panel) and graph of the log-likelihoods for period d ∈ {1, . . . , 20} (right panel).

  0 , ( j) m =(i) m I (X t-1 ) d = i, (X t-1 ) d 0 = j, ∆X t = 1 = j∈S d 0 , ( j) m =(i) m A ( d)n,T (i, j) . Now, as n → ∞, it follows from Proposition 2.1 that A ( d) n,T (i, j) /n a.s.

Appendix A. 3 . 1 Fromπππππ

 31 Proof of Theorem 2.Proposition 2.1, L n,d 0 /n a.s.→ L d 0 = -d 0 j=1 π j H{p( j)}. Introduce the following notation for the relative entropy. For any x, y ∈ (0, 1), set h(x|y) = x log(x/y) + (1x) log{(1x)/(1y)}. Then h(x|y) ≥ 0 with equality iff x = y. We will show thatL d 0 > L d if m = (d, d 0 ) < d 0 . Set a = d/m and b = d 0 /m. It follows from (2.4) that for any i = β + lm, with β ∈ {1, . . . , m} and l ∈ {0, . . . , a -1}, p (d) (β + lm) = p (d) (β) = b-1 k=0 π km+β p(km + β) b-1 k=0 π km+β .It then follows from the previous equation and (2.5) that km+β p(d) (β) log p (d) (β) + 1p (d) (β) log 1p (d) (β) km+β p (d) (β) log p (d) (β) + 1p (d) (β) log 1p (d) (β) .Using the previous computations, one getsL d 0 = m β=1 b-1 k=0 π km+β p(km + β) log {p(km + β)} + {1p(km + β)} log {1p(km + β)} . Hence, L d 0 -L d = lm+β p(lm + β) log{p(lm + β)}log p (d) (β) lm+β {1p(lm + β)} × log{1p(lm + β)}log 1p (d) (β) lm+β h p(lm + β)|p (d) (β) ≥ 0,with equality iff m = d 0 . This shows that L d < L d 0 for all d ∈ {1, . . . , 2d 0 -1} \ {d 0 }. Hence, if n is large enough, it follows from Proposition 2.2 that L n,d < L n,d 0 for all d ∈ {1, . . . , 2d 0 -1} \ {d 0 }. This also explains the local maxima pictured in Figure 1. Note that d 0,n → d 0 implies d 0,n = d 0 when n is large enough so p (d 0,n ) n

  + •)} i∈Z , where . Henceforth we use the notation (x) d = i to mean that x = i mod (d), the residual class modulo d. Note that the stochastic process {(X t ) d } t≥0 valued in S d is a Markov chain only when d is a multiple of d 0 . It is this fact which requires some extra care in the treatment of periodic environments.

	p n ∈
	2.1. Estimation of p with d known
	If p ∈ P d then, assuming (X t ) n t=0 satisfies (2.1), the maximum likelihood estimator (MLE) p (d) n of p is given by

d≥1

P d

  is the well-known Boltzmann entropy function for the Bernoulli distribution with parameter x. Note that for any multiple of d, one should get a consistent estimator as well, since p ∈ P d entails that p ∈ P kd , for any k ∈ N.

	The following result, proven in Appendix A.1, shows that the
	MLE is consistent.
	Proposition 2.1. Suppose p ∈ P d and let π be the unique invariant probability measure of the irreducible Markov
	chain (X t ) d on S d , associated with p. Then, as n → ∞, for any j ∈ S d , µ almost surely, A (d)
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Appendix A.1. Proof of Proposition 2.1 Suppose j ∈ S d 0 is given. Then

I{(X t-1 ) d 0 = j}α(X t-1 ). Now, ξ t I{(X t-1 ) d 0 = j}{I(∆X t = 1) -α(X t-1 )} is a bounded martingale difference sequence, so 1 n n t=1 ξ t converges to 0 almost surely, as n → ∞. Hence the limiting behavior of A (d 0 ) n, j /n is the same as the limiting behavior of

). Similarly, the limiting behavior of B (d 0 ) n, j /n is the same as the limiting behavior of

→ p( j)π( j). Similarly,

→ {1p( j)}π( j).

Thus p (d 0 ) n ( j) converges almost surely to p( j). The almost sure convergence of L n,d 0 /n follows. Irreducible Markov chain X = (X t ) t≥0 satisfies (1.1) for some arbitrary deterministic environment α(•, e) ∈ (0, 1) Z , periodic or not. By definition any invariant positive measure π will satisfy the usual balance equation, which is written, for all j ∈ Z, as π j+1 = π j+1 α( j + 1, e) + π j α( j, e), from which there ensues j∈Z π j α( j, e) = 1 2 j∈Z π j as soon as either sum converges. This also implies both L 1 =log 2 and the validity of (3.1) since j∈Z C j (e) < ∞ holds. The convergence of j∈Z C j (e) < ∞ ensures that the Markov chain (X t , X t+1 ) t≥0 on {( j, k) ∈ Z 2 ; kj = ±1} is also irreducible and positive recurrent with unique invariant probability measure Π = (Π j,k ) given by

The ergodic theorem for irreducible Markov chain (X t , X t+1 ) t≥0 immediately yields the asymptotic behavior provided in (3.2) for the sequence of statistics p (d) n and in (3.3) for the sequence of likelihoods L n,d defined by (2.3). The convexity of -H successively yields the inequalities L d ≤ L kd and L 1 ≤ L d , for all d ≥ 1 and k > 1, through an application of Jensen's inequality: Hence h(T e) = h(e) µ a.-s. so h is constant by the ergodic property of T . This is a necessary and sufficient condition for a Markov chain to be ergodic [5, p. 14].

Appendix A.6. Proof of Theorem 4.1

Suppose h is a bounded harmonic function for Ť . Then we have the analog of (A.2). As a result, h( j + 1, T e) = h( j, e) µ-a.-s. Moreover, d j=1 h( j, e) is a bounded harmonic function for T so it is constant. Next, set z(e) = (h(1, e), . . . , h(d, e)) . Then Az(T e) = z(e), where A is a permutation matrix on {1, . . . , d}, with A i j = 1 iff j = i + 1 mod d, while A -1 i j = 1 iff j = i -1 mod d, i, j ∈ {1, . . , d}. In particular, A d = I. It then follows that z(T d e) = z(e). Since T d is ergodic, it follows that z is constant so h is constant as well. It then follows from Brown [5, p.14] that the Markov chain X is ergodic with unique invariant measure having density φ with respect to m d × µ.