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Abstract

The problem of characterising the viscoelastic behaviour of a composite material at each
pertinent scale is addressed in this paper. To this purpose, a dedicated multi-scale identifi-
cation strategy (MSIS) exploiting the information restrained in the macroscopic non-linear
dynamic response of the composite is developed. The MSIS aims to identify the viscoelastic
behaviour of the composite at both mesoscopic (lamina-level) and microscopic (constitu-
tive phases level) scales. This goal can be achieved by solving an inverse problem, wherein
the identification of the parameters tuning the viscoelastic behaviour of the constitutive
phases is obtained by minimising the distance between the numerical and the reference
harmonic macroscopic responses of the composite subject to pertinent constraints on the
natural damped frequencies as well as on the positive definiteness of the stiffness tensor
of each phase. The MSIS relies on: (i) a general homogenisation procedure based on the
strain energy of periodic media generalised to the case of viscoelastic materials; (ii) a ded-
icated solver to deal with the non-linear modal and harmonic analyses of the multilayer
plate at the macroscopic scale; (iii) the Bagley-Torvik viscoelastic model to describe the
viscoelastic behaviour of the matrix; (iv) a general hybrid optimisation algorithm able to
deal with optimisation problems defined over a domain of variable dimension to solve the
inverse problem. The effectiveness of the MSIS is proven through a suitable benchmark.

Keywords: Composite materials, Homogenisation, Harmonic analysis, Inverse problems,
Optimisation, Viscoelasticity
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1. Introduction

Composite materials have a long story: they were employed by Israelites for the
manufacturing of strengthen mud bricks and by the Egyptians to produce plywood [1].
Nowadays, because of the introduction of constitutive phases with adequate mechanical
properties in terms of strength, stiffness and heat transfer behaviour, high-performance
engineering structures are more and more made of composite materials.

Composite structures are subjected to a wide variety of loading conditions including
both static and dynamic loads: in order to decrease the design costs related to experimental
tests, accurate numerical simulations coupled to cheaper tests are required to predict the
complex behaviour of the structure.

In order to carry out numerical simulations, reliable material properties have to be
defined, under both static and dynamic conditions. In particular, for fibre-reinforced com-
posites, the macroscopic behaviour depends upon that of the constitutive phases at the
lower scales. In particular, for multilayer plates three characteristic scales can be identified.
At the macroscopic scale the laminate is usually modelled as a homogeneous anisotropic
plate whose structural response depends upon the constitutive stiffness, mass and damping
matrices (membrane, bending and membrane/bending coupling behaviours). The meso-
scopic scale focuses on the lamina-level: each constitutive ply is characterised by some
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geometric and material parameters, i.e. the orientation angle, the thickness, the position
and the material properties of the ply. Of course, each one of the previous parameters is
involved in the definition of the laminate stiffness and mass matrices and has a strong in-
fluence on the macroscopic response of the multilayer plate. Finally, the microscopic scale
is that of the constitutive phases (e.g. fibres and matrix for fibre-reinforced composites):
at this scale each phase is characterised by a given material behaviour and by a set of
geometrical parameters, e.g. fibres volume fraction, fibre shape, fibres arrangement, etc.

The characterisation of the composite material properties at each relevant scale is a
rather complex problem. Concerning the identification of the elastic properties, ASTM
standard tests can be found in literature: mesoscopic destructive tests (as tension [2],
three/four points bending [3] and shear tests [4]) and few microscopic ASTM standard
tests are available (to characterise the matrix [5] and the fibre [6] longitudinal Young’s
modulus, respectively). Unfortunately, the above mentioned tests are not able to provide
the required 3D set of material elastic properties.

Moreover, composite materials show also a dynamical behaviour that is strongly af-
fected by damping properties [7]. Accordingly, a proper characterisation of the damping
capability of the material, at each relevant scale, is a challenging task [8]. This problem is
more difficult than that of the elastic properties characterisation essentially because of the
non-linear nature of the viscoelastic matrix behaviour, in terms of time response, which
influences the damping capability of the composite at all characteristic scales.

From an experimental point of view, two methods are commonly used: the direct
method and the indirect one. On the one hand, the direct techniques are based on the
measurement of the dissipated energy per load cycle, which can be evaluated from the
area of an hysteresis loop [9]. On the other hand, the indirect methods allow estimating
the dissipated energy from the analysis of the spectrum response: free vibration-decay,
resonant-dwell, bandwidth and impedance methods are some of the experimental tech-
niques used for damping characterisation [10].

However, it is possible to describe the damping behaviour of a composite structure by
directly looking at the viscoelastic properties [11, 12]: nowadays, a common and useful
method is the so-called Dynamical Mechanical Analysis (DMA) [13–15]. DMA is an in-
direct method to characterise the material properties of reinforced polymers in terms of
thermal, elastic and viscoelastic behaviours [16].

The DMA test is performed by applying harmonic loads to the specimen. By mea-
suring the sample response, it is possible to compute an apparent modulus that can be
used to estimate the viscoelastic material parameters of the specimen. In the case of a
composite multilayer plate wherein the lamina has an isotropic transverse behaviour [8],
the identification process has to be carried out three different times, e.g. by considering
a symmetric angle-ply stack, to determine the longitudinal EL, transversal ET and shear
GLT moduli.

Unfortunately, when high modulus composite materials are investigated, the DMA
technique provides less accurate results [16] compared to the ASTM three-points bending
test [3]. Indeed, the DMA test provides an apparent modulus giving only an average
approximation of the plate flexural stiffness response which group both structural and
material aspects. However, the DMA test does not allow to extract information about
microscopic properties and only fibre-reinforced polymers can be tested.

From the engineer’s viewpoint it is more interesting to look for those tests which allow
to identify material properties at all relevant scales and which are not limited by the size
of the composite sample or by the geometrical and material properties of the constitutive
phases composing it. The formulation of a suitable inverse problem for material proper-
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ties characterisation is a widely studied topic in the literature [17–19]. In this background,
Barkanov et al. [20] proposed an inverse technique based on modal analysis and on the re-
sponse surface method to characterise the nonlinear behaviour of the viscoelastic core layer
in sandwich panels. Elkhaldi et al. [21] worked on the viscoelastic parameters identifica-
tion for a sandwich panel where a generalised Maxwell model is considered and a gradient
algorithm is used to solve the associated inverse problem. Cortés et al. [22] developed an
identification strategy to characterise the parameters of the fractional derivative model
representing the viscoelastic behaviour of a sandwich beam. The goal is the minimisation
of the error between the predicted Frequency Response Function (FRF) and the measured
one. Ledi et al. [23] proposed an identification method for frequency dependent material
properties of viscoelastic sandwich beams able to take into account for the property of the
interface between layers.

As it can be inferred from the aforementioned works, the damping capability related
to the viscoelastic behaviour of the matrix can be characterised by exploiting the infor-
mation restrained in the dynamic response of the structure. In these works, sandwich
beams/plates manufactured by interposing a viscoelastic layer between metallic ones were
considered because this configuration is well suited to reduce noise and vibration. How-
ever, in multilayer plates the macroscopic damping capability is mainly related to the
viscoelastic behaviour of the matrix at the microscopic scale.

This work focuses on the damping capability of multilayer plates made of unidirec-
tional fibre-reinforced laminae. In particular, this study aims to generalise the multi-scale
identification strategy (MSIS) developed in a previous study [24] to the case of the vis-
coelastic behaviour of composites. The MSIS relies on the information restrained in a
non-destructive harmonic test conducted at the macroscopic scale. The idea is to exploit
this information to characterise the viscoelastic behaviour of the constitutive phases at
the microscopic scale.

In the context of the MSIS, the multi-scale identification problem is stated as a con-
strained non-linear programming problem (CNLPP). The goal is to minimise the distance
between a reference harmonic response (that can be obtained either experimentally or nu-
merically) and the numerical one. This function is subject to some requirements involved
at different scales: (a) on the positive definiteness of the stiffness tensor of the constitu-
tive phases (microscopic scale); (b) on the damped natural frequencies of the composite
(macroscopic scale); (c) on a non-negative internal work and a non-negative dissipation
rate as far as the viscoelastic model is concerned.

Nevertheless, the identification of the viscoelastic behaviour of the constitutive phases
(mostly due to the matrix) at the microscopic scale is characterised by two difficulties:
(a) the equivalent viscoelastic properties of the constitutive lamina at the mesoscopic
scale depend upon the frequency ; (b) since the ply material properties depend upon the
frequency, the problem of determining the structure damped natural frequencies becomes
a non-linear eigenvalue problem, thus a suitable iterative method must be foreseen to
perform the related modal analysis.

Therefore, the harmonic response of the laminate, at the macroscopic scale, is strongly
affected by the matrix viscoelastic behaviour.

In this context, the MSIS presented in [24] is generalised here to the characterisation
of the parameters of the law tuning the viscoelastic behaviour of the constitutive phases,
for a given frequency range. The proposed MSIS relies upon the following features: (a)
an hybrid optimisation tool called HERO (Hybrid EvolutionaRy-based Optimisation) al-
gorithm, see [25]; (b) an extension of the numerical homogenisation method based on the
strain energy of periodic media and on volume-averaged stresses and strains [26] to the case
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of viscoelastic materials; (c) the Arnoldi’s method [27, 28] to solve the non-linear modal
analysis for materials with frequency-dependent viscoelastic properties. The effectiveness
of the MSIS for viscoelastic materials is proven on a meaningful benchmark taken from
the literature.

The paper is structured as follows. The problem and the MSIS are introduced in
Section 2. The mathematical formulation of the inverse problem and the related numerical
aspects are discussed in Section 3. The finite element (FE) models of the composite at
both microscopic and macroscopic scales are presented in Section 4. The numerical results
of the MSIS are illustrated and discussed in Section 5. Finally, Section 6 ends the paper
with some conclusions and perspectives.

2. Multi-scale identification of composite viscoelastic properties

2.1. Problem description

In this work, the MSIS is applied to a rectangular composite plate made of unidirec-
tional viscoelastic plies, whose geometrical parameters are shown in Figure 1.

Figure 1: Geometrical parameters of the reference composite plate (sizes in mm).

The constitutive ply is made of carbon-epoxy fibre Hexcel T650/F584 pre-impregnated
tapes, whose fibre volume fraction is Vf = 0.555. Concerning the available material proper-
ties of the constitutive phases, only the elastic properties can be found in litterature (they
are taken from [29]). The parameters tuning the viscoelastic response of the F584 matrix
are set a priori because they are not available in [29]. They are set to reasonable values
to give all the necessary microscopic material parameters defining the matrix behaviour.
The reference material properties for both the fibre and the matrix are reported in Table
2. It is noteworthy that the viscoelastic behaviour of the F584 matrix is described by
means of the Bagley-Torvik model (briefly discussed in Section 2.2 and taken from [30]).

The reference laminate is constituted of sixteen identical plies with the stacking se-
quence [0◦/ − 45◦/45◦/90◦/45◦/90◦/ − 45◦/0◦]S. The average thickness of the ply is
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tply = 0.28225 mm and the orientation angle of the lamina is defined positive accord-
ing to counter-clockwise rotation around the z-axis.

The goal of this study is to provide a numerical validation of the MSIS for viscoelas-
tic materials. To this purpose, the reference response of the structure is determined by
means of modal and harmonic analyses performed on the reference configuration of the
laminate described above. As described in Section 5.1, the reference material properties

of the constitutive phases are implemented at the microscopic scale in order to determine
the reference effective viscoelastic properties of the single lamina. Due to the viscoelastic
behaviour of the matrix, the lamina elastic properties evolve according to the frequency.
This variation is determined by generalising, to the viscoelastic case, the well-known ho-
mogenisation technique for periodic media based on the strain energy [26], as detailed in
Section 4.1. Finally, the reference harmonic response and the reference natural frequencies

of the laminate are determined, at the macroscopic scale, on a FE model of the multilayer
plate making use of the reference properties provided by the homogenisation method.

In order to easily follow the flow of information throughout the manuscript, Table 1 lists
all the adopted models, techniques and methods which are needed to achieve the ambitious
goal of the multi-scale identification of the viscoelastic behaviour of the composite.

Model / Technique / Method Role

The Bagley-Torvik model Used to define the viscoelastic behaviour
of the matrix

Strain energy homogenisation
technique

Used to perform the micro-
scopic/mesoscopic scale transition

Finite Element Method Used to model both the RVE of the com-
posite and the multilayer plate at mi-
croscopic and macroscopic scales, respec-
tively

Non-Linear Arnoldi’s method Used to solve the non-linear eigenvalue
problem at the macroscopic scale

GA ERASMUS Used to perform the global search of op-
timal solutions for the multi-scale identi-
fication problem

Automatic Dynamic Penalisa-
tion Method

Used to handle optimisation constraints
during the global search stage

fmincon tool and active-set

algorithm
Used to perform the local search of opti-
mal solutions for the multi-scale identifi-
cation problem

Table 1: Models, techniques and methods used in this study.

2.2. The Bagley-Torvik viscoelastic material model

Composite structures show a dynamical behaviour that is significantly influenced by
the damping capability of the matrix. The time-dependent response of materials can
be classified into elastic (crystalline materials), viscous and viscoelastic. A viscoelastic
material can be characterised by either a linear or a non-linear time-strain relationship
and it can be in the form of a liquid (unrecoverable viscous flow) or a solid (fully recoverable
viscous deformation).

From a numerical point of view, different linear viscoelastic material models are avail-
able in literature. These models are usually implemented to fit experimental data (usually
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creep and relaxation tests) [26, 31]. The most common models are: (a) Maxwell model;
(b) Kelvin-Voigt model; (c) Zener model; (d) power law-based models; (e) Prony series-
based models; (f) generalised Kelvin model. These models differ essentially in terms of the
number of parameters required to get the best possible fitting of experimental data. How-
ever, these laws are usually applied in the α-region of polymer creep (the characteristic
time of the load application varies from seconds to years) [26]. Nevertheless, when looking
at the frequency range characterising the application presented in this study (see Section
5.1), one can state that harmonic excitation falls in the β-region of polymer creep [26];
accordingly, a different viscoelastic model must be considered.

The effectiveness of a mathematical model in describing the viscoelastic behaviour of
a given material can be seen as the ability of fitting a set of data points by using the least
number of parameters tuning the model. Moreover, from a computational viewpoint and
for optimisation purposes, the interest is always to have a limited number of parameters
to be identified without reducing the accuracy of the model. Among the most effective
mathematical representations of the viscoelasticity, the models based on fractional deriva-
tives have been widely studied in the last three decades [31]. For such models, the general
constitutive law reads:

σ (t) + bmDβm

σ (t) = Em
0 ε (t) +Em

1 Dαm

σ (t) , where αm, βm, Em
0 , Em

1 , bm ∈ R. (1)

In Eq. (1), Dα is the fractional derivative operator which represents a generalisation of
the concept of derivative of a function. Consider a function f ∈ L1 ([a, b]) | a, b ∈ R. If
α ∈ R

∗
+, the fractional derivative of order α is defined as the fractional integral of order

n− α derived n times (Riemann-Liouville definition - RL):

(Dα
a f)RL (x) =

1

Γ (1− α)

d

dx

∫ x

a

f (x)

(x− t)α
dt, where 0 < α < 1. (2)

The function Γ (z) , with z ∈ R
∗
+, is the extension of the factorial function to real numbers.

The reader is addressed to [9, 31] for further information concerning the mathematical
formulation.

The fractional derivative model has been generalised to materials presenting a reticular
complex molecular structure, because the choice of 0 < α < 1 well reproduces the relax-
ation function of different kind of polymers, as widely discussed in [32]. The Fast Fourier
Transform (FFT, whose operator is indicated as F ) of the fractional derivative operator
can be computed as:

F [(Dα
a f)RL (x)] = (Ωi)αF [f (x)] , ∀α ∈ R

∗
+ | 0 < α < 1 ∧ ∀x ∈ R+, (3)

where Ω is the frequency and i the imaginary unit. It is noteworthy that working in fre-
quency domain allows dealing with a very simple mathematical expression of the fractional
derivative operator. Applying the FFT to the Eq. (1), one obtains

σ̂ (Ω) = F [σ (t)] = F [Em (t)]F [ε (t)] = Êm (Ω) ε̂ (Ω) , (4)
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where the relaxation modulus Êm (Ωi) reads [30]

Êm (Ω) =
Em

0 + Em
1 (Ωi)α

m

1 + bm(Ωi)β
m , (5)

that represents the Bagley-Torvik viscoelastic model. It can be observed that, when

Ω 7→ +∞, the relaxation modulus of the matrix Êm (Ω) 7→
Em

1

bm
(iΩ)α

m−βm

(vitreous

domain). Otherwise, when Ω 7→ 0, the relaxation modulus tends to the elastic constant
Em

0 . However, a reliable viscoelastic model must be characterised by a non-negative inter-
nal work and a non-negative rate of dissipation, as highlighted in [30]. In order to ensure
these thermodynamical properties, the material parameters must satisfy the following re-
lationships:

0 < αm = βm < 1, Em
0 > 0 and Em

1 > Em
0 bm. (6)

Therefore, only four parameters are needed to describe the viscoelastic behaviour of
the considered polymeric matrix.

Fibre properties

Ef
1 [MPa] Ef

2 [MPa] νf12 νf23 Gf
12 [MPa]

276000 17300 0.25 0.428 11240

Matrix properties

Em
0 [MPa] Em

1 [MPa] bm αm = βm νm

4140 30 0.0053 0.5 0.35

Table 2: Reference material properties for the fibre T650/35 − 3K and the epoxy matrix F584 (taken
from [24, 29, 33]).

2.3. The multi-scale identification strategy

The goal of the MSIS is to find the optimum value of the parameters tuning the vis-
coelastic behaviour of the composite, at each scale, by smartly exploiting the information
restrained into the harmonic response, measured in some precise locations, of the multi-
layer plate.

The reference response can be obtained either by a non-destructive experimental har-
monic test (e.g. performed with shaker, hammer or solenoidal excitation system) or by
carrying out a numerical harmonic test on the reference structure. This work deals with
the latter case : the reference configuration of the multilayer plate as well as the reference
dynamical results are presented in Section 5.

The MSIS aims to identify the parameters defining both the elastic behaviour of the
fibre and the viscoelastic behaviour of the matrix by using the information available into
the dynamical response of the composite at the macroscopic scale. The proposed approach
relies on some hypotheses. As far as the microscopic scale is concerned, the following
hypotheses are considered:

• the matrix has a viscoelastic isotropic behaviour, described by the Bagley-Torvik
model, with a constant Poisson’s ratio according to [34];

• the fibre has an elastic transversely isotropic behaviour;
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• the fibre-matrix interface is perfect (i.e. perfect bonding condition between the two
phases).

Regarding the mesoscopic and macroscopic scales, the following hypotheses apply:

• the constitutive lamina has a viscoelastic orthotropic behaviour with only six param-
eters, due to the plane of symmetries characterising the considered Representative
Volume Element (RVE), as shown in Figure 3a;

• perfect bonding condition at the interface between two consecutive plies;

• the first-order shear deformation theory (FSDT) is considered to describe the kine-
matics of the multilayer plate.

The general flow-chart of the one-shot MSIS for viscoelastic materials is shown in
Figure 2.

Figure 2: Flow-chart of the one-shot MSIS.

3. Mathematical formulation of the multi-scale inverse problem

3.1. Optimisation variables, objective function and constraints

The multi-scale identification problem considered in this work is formulated as a classi-
cal inverse problem: the goal is the determination of the material properties of the consti-
tutive phases of the composite by minimising the euclidean distance between the reference
harmonic response at macroscopic scale and that provided by the numerical simulation.
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According to the hypotheses introduced in Section 2, the effective elastic properties of
the ply depend upon the frequency (due to the viscoelastic behaviour of the matrix) and
must be computed through a suitable numerical homogenisation procedure. To achieve
this task, a dedicated FE model of the RVE at the microscopic scale is built to perform
the numerical homogenisation: the results are the frequency-dependent elastic constants
of the lamina. In this analysis, the fibre volume fraction Vf is set up a priori, because
usually it is a value that the manufacturer can provide reliably, as highlighted also in [24].

Considering the behaviour of the constituent phases, as discussed in Section 2.3, the
design variables of the inverse problem, i.e. the material parameters to be identified, are
five elastic constants for the fibre, supposed to hava an isotropic transverse behaviour
and five parameters tuning the law of the isotropic viscoelastic matrix. In particular, as
discussed in [24], the fibre Poisson’s coefficient νf23 is not considered among the design
variables due to negligible sensitivity of the harmonic and modal responses of the plate
to this parameter. Indeed, the reference plate (illustrated in Figure 1) is very thin and

νf23 does not significantly influences the macroscopic dynamical response of the structure.

Accordingly, νf23 has been set to the reference value given in Table 2. Therefore, the nine

material properties involved at the composite microscopic scale can be collected in the
vector of design variable x, as:

x =
{

Ef
1 , E

f
2 , G

f
12, ν

f
12, E

m
0 , Em

1 , bm, αm, νm
}

. (7)

In order to guarantee the positive definiteness of the fibre and matrix stiffness ten-
sors [24] and the thermodynamic requirements related to the viscoelastic behaviour of the
matrix (see Section 2.2), the following set of non-linear constraints must be considered:

g1(x) = |νf12| −

√

√

√

√

Ef
1

Ef
2

< 0,

g2(x) =
Ef

1

Ef
2

(

2νf23ν
f
12

2
+ 2νf12

2
)

− 1 < 0,

g3(x) = −Em
1 + Em

0 bm < 0,

g4(x) = −αm < 0,

g5(x) = −Em
0 < 0,

g6(x) = νm −
1

2
< 0,

g7(x) = −νm − 1 < 0.

(8)

In order to get a numerical harmonic spectrum really close to the reference one (and also
to match the reference damped natural frequencies), a set of constraints on the laminate
(damped) eigenfrequencies must be integrated into the problem formulation:

g7+i (x) =

∣

∣

∣

∣

fin − f ref
in

f ref
in

∣

∣

∣

∣

− ǫi ≤ 0, i = 1, ..., nf . (9)

In Eq. (9), nf is the number of natural damped frequencies falling in the selected frequency
spectrum range (as discussed in Section 5.1), whilst fin and f ref

in are the i-th computed and
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reference damped eigenfrequency, respectively. ǫi is a user-defined tolerance that establish
the relative error for each eigenfrequency: here, a maximum relative error equal to 0.005
is chosen.

The microscopic material parameters vary within the design space defined in Table 3.

Material properties Lower bound Upper bound

Ef
1 [MPa] 220800 331200

Ef
2 [MPa] 13840 20760

νf12 0.2 0.3

Gf
12 [MPa] 8992 13488

Em
0 [MPa] 3312 4968

Em
1 [MPa] 24 36
bm 0.00424 0.00636
αm 0.4 0.6
νm 0.28 0.42

Table 3: Lower and upper bounds of the design variables for the multi-scale inverse problem.

The objective function Φ(x) is defined by introducing an Euclidean distance between
the reference and the numerical harmonic responses, both for real and imaginary parts.
In particular, an error estimator of the least-squares type has been chosen:

Φ(x) =

Np
∑

q=1

Ns
∑

r=1

2

(

fr − f ref
r

f ref
r

)2

+

[

ℜ
(

Hr,q (x)−Href
r,q

)

ℜ
(

Href
r,q

)

]2

+

[

ℑ
(

Hr,q (x)−Href
r,q

)

ℑ
(

Href
r,q

)

]2

. (10)

In Eq. (10), fr is the r-th sampled frequency, while Hr,q is FFT of the FRF determined at
the q-th sample point of the multilayer plate and evaluated at the r-th sampled frequency.
Of course, f ref

r , Href
r,q are the same quantities evaluated on the reference configuration of

the laminate. ℜ (· · · ) and ℑ (· · · ) represent the real and imaginary part, whilst Ns and
Np are the number of sampled frequencies and of sample points over the laminate plate
(where the FRF is computed/measured), respectively. These quantities are detailed in
Sections 4 and 5.

Finally, the multi-scale inverse problem can be stated as a classical CNLPP:

min
x

Φ (x) ,

subject to:

gj (x) ≤ 0, j = 1, ..., 7 + nf .

(11)

3.2. The numerical strategy

Problem (11) is highly non linear and non-convex in terms of both constraint and
objective functions, see Eqs. (8), (9) and (10).

For inverse problems, the uniqueness of solution is not a priori guaranteed: the set of
parameters matching a given observed state may not be unique. Nevertheless, no proved
theoretical rules exist in literature [35, 36], to define the number of data points Np for a
given number of unknowns (n) that have to be identified. Often, the inverse problem is
stated as a CNLPP and it can be viewed as an over-determined system of equations [35, 36].
Since more observation points than parameters exist (Np is usually much greater than n)
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there are more equations than unknowns. If an optimal point exists, of course it may be
not unique, thus implying the existence of many combinations of parameters that result
to be equivalent optimal solutions for the CNLPP at hand.

Considering all these aspects and according to the practice always employed in lit-
erature, in this work a number of observed states (i.e. sample points Np) greater than
two times the number of design variables n has been considered. As explained in the next
Section, the number of sample points has been inferred by means of a numerical sensitivity
analysis of the FRF of the plate with respect to parameter Np: as a results Np = 329 has
been chosen to properly perform the optimisation calculations.

Taking into account all of the aforementioned points, a hybrid optimization tool com-
posed of the genetic algorithm (GA) ERASMUS (EvolutionaRy Algorithm for optimiSa-
tion of ModUlar Systems) developed by Montemurro [25], interfaced with the MATLAB
fmincon algorithm [37], has been used. The GA ERASMUS has already been successfully
applied to solve different kinds of real-world engineering problems, see for instance [38–44].

As shown in Figure 2, the optimisation procedure for problem (11) is split in two
phases. During the first phase, solely the GA ERASMUS is used to perform the solution
search. Due to the strong non-linearity of problem (11), the aim of the genetic calculation
is to provide a potential sub-optimal point in the design space, which constitutes the initial
guess for the subsequent phase, i.e. the local optimisation, where the MATLAB fmincon

tool is employed to finalise the solution search. The optimisation algorithm is the active-set
which is a Quasi-Newton method making use of an approximation of the Hessian matrix
to estimate the descent direction. For more details on the active-set algorithm see [37].

For the resolution of the multi-scale inverse problem, both optimisation algorithms
have been interfaced with the FE models of the multilayer plate at two different scales:
microscopic (constitutive phases-level) and macroscopic (laminate-level). As shown in
Figure 2, for each individual at each generation, the optimisation tool performs three
different type of FE analyses:

1. an homogenisation analysis to determine the frequency-dependent equivalent elastic
properties of the lamina (microscopic / macroscopic scale transition);

2. a non-linear modal analysis (by means of a suitable in-house coded solver) to extract
the nf natural frequencies;

3. a non-linear harmonic analysis for the evaluation of the FRF of the laminate.

Then, the optimization algorithm elaborates the results provided by the two FE analyses
in order to execute the optimization operations on the basis of the current value of both
objective and constraint functions. These operations are repeated until the algorithm
satisfies the user-defined convergence criterion. The details of the FE analyses are given
in Section 4.

The number of design variables and that of constraint functions is nine and nf + 7,
respectively. The generic individual of the GA ERASMUS represents a potential solution
for the problem at hand. The genotype of the individual for problem (11) is characterised
by only one chromosome composed of nine genes, each one coding a component of the
vector of design variables, see Eq. (7).

4. Finite element models at different scales

4.1. The finite element model at the microscopic scale and the homogenisation strategy

The microscopic / macroscopic scale transition is carried out through a homogenisation
step performed on the RVE shown in Figure 3a.
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The frequency-dependent elastic properties of the ply are obtained by means of the
strain energy homogenisation technique (SEHT) of periodic media [24, 26]. This technique,
originally introduced for elastic heterogeneous materials, can be generalised to different
kinds of composites showing a general non-linear behaviour, e.g. fabrics, lattice structures,
etc. This technique has already been successfully used in other works, see [38, 45–47]:
in this work, the SEHT is generalised to the case of viscoelastic materials subjected to
harmonic loads. The SEHT is based on the main hypothesis that the RVE of the periodic
heterogeneous material and the corresponding homogenised volume undergo the same
deformation having, therefore, the same strain energy. Consequently, at the ply scale, an
equivalent homogeneous anisotropic material replaces the heterogeneous medium, by using
the frequency-dependent stiffness tensor resulting from the homogenisation phase.

In this study, the real random micro-structure of the lamina (which is usually char-
acterised by misalignments of the fibres, porosity, damaged zones, etc.) is not taken into
account and the topology of the RVE is described by a perfect hexagonal array, as illus-
trated in Figure 3a.

(a) (b)

Figure 3: (a) The reference Representative Volume element (RVE) and (b) details of the RVE mesh.

The FE model of the RVE has been realised into the commercial FE code ANSYS R©.
A 20-nodes solid element (SOLID186) with three DOFs per node has been used. The
model together with its structured mesh is shown in Figure 3b. A sensitivity study (not
reported here for the sake of brevity) on the proposed FE model with respect to the mesh
size has been conducted: it was observed that a mesh having 19551 degrees of freedom
(DOFs) is sufficient to properly evaluate the set of frequency-dependent homogenised
elastic properties of the lamina.

The RVE is submitted to an average strain field ε̄ij (tensor notation), to evaluate the
stiffness matrix components C̄ij . The six components of the average strain tensor are
applied, by means of the classical periodic boundary conditions (PBCs) as follows [24, 26]:

ui(a1, x2, x3)− ui(−a1, x2, x3) = 2a1ε̄i1, −a2 ≤ x2 ≤ a2,−a3 ≤ x3 ≤ a3,

ui(x1, a2, x3)− ui(x1,−a2, x3) = 2a2ε̄i2, −a1 ≤ x1 ≤ a1,−a3 ≤ x3 ≤ a3,

ui(x1, x2, a3)− ui(x1, x2,−a3) = 2a3ε̄i3, −a1 ≤ x1 ≤ a1,−a2 ≤ x2 ≤ a2,

where i = 1, 2, 3.

(12)

As stated above, the RVE is subjected to harmonic excitations, in order to compute
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the frequency-dependent elastic properties at the upper scale. Consequently, the internal
stresses σα and strains εα, α = 1, ..., 6 (Voigt’s notation) are varying harmonically with
different amplitudes and phases, for each RVE internal point xp:

σα (f0,xp, t) = |σα (f0,xp) | exp [(2πf0t+ ϕσα (f0,xp)) i] , (13)

εα (f0,xp, t) = |εα (f0,xp) | exp [(2πf0t+ ϕεα (f0,xp)) i] . (14)

The equivalent stresses and strains at the lamina-level can be evaluated from the
corresponding fields by considering an average over the RVE volume, i.e.

σ̄α (f0, t) = 〈σα (f0,xp, t)〉 =
exp [(2πf0t) i]

VRVE

∫

VRVE

|σα (f0,xp) | exp [ϕσα (f0,xp) i] dV, (15)

ε̄α (f0, t) = 〈εα (f0,xp, t)〉 =
exp [(2πf0t) i]

VRVE

∫

VRVE

|εα (f0,xp) | exp [ϕεα (f0,xp) i] dV. (16)

where VRVE = 8a1a2a3 according to Figure 3.
The internal RVE stresses and strains of Eq. (13) and Eq. (14)can also be written in

the Laplace-Carson (L is the related operator) space:

σ∗
α (f0,xp, f) = L [σα (f0,xp, t)] =

|σα (f0,xp) | exp [ϕσα (f0,xp) i]

2π (f − f0) i
, (17)

ε∗α (f0,xp, f) = L [εα (f0,xp, t)] =
|εα (f0,xp) | exp [ϕεα (f0,xp) i]

2π (f − f0) i
. (18)

By following the same logical steps, also the average stresses and strains components
of Eqs. (15) and (16) can be written in the Laplace-Carson L space:

σ̄∗
α (f0, f) = L [σ̄α (f0, t)] =

1

VRVE2π (f − f0) i

∫

VRVE

|σα (f0,xp) | exp [ϕσα (f0,xp) i] dV,

(19)

ε̄∗α (f0, f) = L [ε̄α (f0, t)] =
1

VRVE2π (f − f0) i

∫

VRVE

|εα (f0,xp) | exp [ϕεα (f0,xp) i] dV.

(20)

In order to perform the numerical homogenisation process, harmonic analyses are re-
quired and the imposed strain field, applied through the PBCs of Eq. (12), assumes the
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following expression:

ε̄∗α (f0, f) = L [ε̄α (f0, t)] =
|ε̄α (f0) |

V 2π (f − f0) i
, ∀ α = 1, ..., 6, with

ε̄∗β (f0, f) = 0∀ β = 1, ..., 6 and β 6= α.
(21)

Finally, the frequency-dependent components of the homogenised stiffness complex
tensor C̄αβ of the lamina can be evaluated as:

C̄αβ (f0) =
σ̄∗
α (f0, f)

ε̄∗β (f0, f)
=

1

VRVE|ε̄β (f0) |

∫

VRVE

|σα (f0,xp) | exp [ϕσα (f0,xp) i] dV, (22)

ℜ
[

C̄αβ (f0)
]

=
1

VRVE|ε̄β (f0) |

∫

VRVE

|σα (f0,xp) | cos [ϕσα (f0,xp)] dV, (23)

ℑ
[

C̄αβ (f0)
]

=
1

VRVE|ε̄β (f0) |

∫

VRVE

|σα (f0,xp) | sin [ϕσα (f0,xp)] dV. (24)

Even in the case of complex stiffness tensor, the compliance matrix at a given frequency
f0 can be determined as: S̄ (f0) = C̄−1 (f0). Finally, the frequency-dependent lamina
(complex) elastic properties can be computed from the components of the compliance
matrix [26].

To give an idea of the homogenisation of the frequency-dependent elastic properties of
the lamina at the mesoscopic scale, an analysis is performed by considering the material
properties of the constitutive phases listed in Table 4, in the frequency range f ∈ [100, 6000]
Hz.

Fibre properties

Ef
1 [MPa] Ef

2 [MPa] νf12 νf23 Gf
12 [MPa]

275622 20435 0.32 0.451 10693

Matrix properties

Em
0 [MPa] Em

1 [MPa] bm αm = βm νm

3000 30 0.0053 0.5 0.33

Table 4: Material properties of the fibre and the matrix used to illustrate the effectiveness of the homogeni-
sation procedure.

Figure 4 illustrates the viscoelastic behaviour of the matrix, represented through the
Bagley-Torvik model: the storage and the loss moduli are respectively the real and the
imaginary part of the matrix Young’s modulus. The trend of the engineering moduli of
the lamina vs. the frequency is give in Figures 5 and 6.

As it can be easily inferred from these figures, the lamina Poisson’s ratios, namely
ν12, ν13 and ν23, can be considered constant with the frequency. This result is of paramount
importance to reduce the required computational effort for the multi-scale identification
process.

15



102 103 104

Frequency [Hz]

3400

3600

3800

4000

4200

4400

R
el

ax
at

io
n 

m
ag

ni
tu

de
 [M

P
a]

102 103 104

Frequency [Hz]

3300

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

S
to

ra
ge

 m
od

ul
us

 [M
P

a]

102 103 104

Frequency [Hz]

250

300

350

400

450

500

550

Lo
ss

 m
od

ul
us

 [M
P

a]

Figure 4: Matrix Young’s modulus vs. frequency (amplitude, real and imaginary parts).
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Figure 5: Frequency-dependent elastic properties (amplitude) of the lamina resulting from the homogeni-
sation.

4.2. The finite element model at the macroscopic scale

The FE model of the multilayer plate is built within ANSYS R© environment [48] by
using SHELL281 layered shell elements with eight nodes and six DOFs per node: the plate
kinematics is described by the first-order shear deformation theory (FSDT) [1].

The laminate together with the applied excitation load and boundary conditions (BCs)
is illustrated in Figure 7: the model is characterised by 1974 DOFs and the mesh size has
been chosen after a convergence study (not reported here for the sake of brevity).

The choice of shell elements is due to the aspect ratio of the considered laminate
(AR = 22.14), which is in the range [20, 100] where the FSDT gives satisfactory results.

As far as the computation of both the constraint functions of Eqs. (8), (9) and the
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Figure 6: Frequency-dependent elastic properties (phase) of the lamina resulting from the homogenisation.

Figure 7: FE model of the multilayer plate.

objective function of Eq. (10) two macroscopic FE analyses are run for each point of
the design space. Firstly, a non-linear modal analysis is performed, to extract the first nf

natural frequencies and, secondly, a non-linear harmonic analysis is carried out to calculate
the harmonic response of the plate for each sampling harmonic frequency of the chosen
spectrum (Section 5.1). The spectrum harmonic response is obtained by measuring the
displacement uz in the generic node of the macroscopic FE model mesh, at every sampled
frequency fr, as shown in Figure 8.
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Figure 8: Location of the sample points over the plate for harmonic displacements evaluation.

The harmonic response can be obtained by solving the following problem [49–51]:

[Ksys (Ω)− λMsys] {U sys} =
{

f ext
}

, (25)

where Ksys (Ω), Msys, {U sys} and
{

f ext
}

are the stiffness matrix (which depends upon

the pulsation Ω = ℜ
[

λ
1

2

]

due to the viscoelastic matrix behaviour), the mass matrix, the

nodal displacements vector and the external nodal forces, respectively.
The harmonic response, for each sample point, is obtained by evaluating the ratio of

the FFT of the displacement along the z-axis uzq (fr) to the nodal force along the same
direction Fz (fr):

Hr,q =
uzq (fr)

Fz (fr)
. (26)

It is noteworthy that the problem of determining the structure natural frequencies
becomes non-linear due to the viscoelastic behaviour of the ply. The following non-linear
eigenvalue problem must be faced:

[Ksys (Ω)− λMsys] {U sys} = {0} ,

det [Ksys (Ω)− λMsys] = 0,

(λ, {U sys}) ∈ C× C
n.

(27)

Unfortunately, the non-linear eigenvalue problem of Eq. (27) cannot be solved by
means of commercial FE codes because it requires a dedicated algorithm / solver. Some
research works are explicitely devoted to the implementation of a suitable algorithm for
solving non-linear eigenvalue problems. As discussed in [28], several algorithms are avail-
able in the literature: the asymptotic numerical method (ANM) [50], the inverse iteration
algorithm (IIA) [52], the iterative shift-inverter method (ISIM) [53], the non-linear Jacobi-
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Davidson method (NLJDM) [54] and the non-linear Arnoldi’s method (NLAM) [27]. Each
method is characterised by its own advantages and drawbacks: in this work, the NLAM
has been implemented into the MATLAB environment and interfaced with the FE model
of the multilayer plate implemented into the ANSYS software.

In particular, the stiffness matrix of the FE model is recovered from ANSYS R© and ex-
ported (and elaborated) into the MATLABR© software. The frequency-dependent stiffness
matrix of the FE model can be expressed as:

Ksys (Ω) = ℜ [Ksys (Ω)] + iℑ [Ksys (Ω)] . (28)

The stiffness matrix of the structure depends upon the frequency because of the vis-
coelastic behaviour of the ply (due to the matrix), see Eq. (22). However, this means that
the numerical homogenisation method, discussed in Section 4.1, must be performed for
each sampled frequency in the considered range. This would require a strong computa-
tional effort (and simulation time) which is not accetable for optimisation purposes. This
issue can be easily overcome by looking at the volume-averged stress tensor of Eq. (19)
which can be expressed in the following form:

σ̄ (Ω) =
1

VRVE

∫

VfVRVE

σ
f (xp) dV +

1

VRVE

∫

(1−Vf )VRVE

σ
m (xp) dV. (29)

Since the Poisson’s ratio of the matrix νm does not depend upon the frequency, the
previous expression can be rewritten as:

σ̄ (Ω, ε̄) =
1

VRVE

∫

VfVRVE

σ
f (xp, ε̄) dV + ...

+
Êm (Ω)

VRVE

∫

(1−Vf )VRVE

1

1 + νm

[

ε
m (xp, ε̄) +

νm

1− 2νm
tr [εm (xp, ε̄)]

]

dV,
(30)

therefore, the previous equation can be rearranged in a more compact form as follows

σ̄ (Ω, ε̄) = M (ε̄) + Êm (Ω)R (ε̄) ,

M (ε̄) =
1

VRVE

∫

VfVRVE

σ
f (xp, ε̄) dV,

R (ε̄) =
1

VRVE

∫

(1−Vf )VRVE

1

1 + νm

[

ε
m (xp, ε̄) +

νm

1− 2νm
tr [εm (xp, ε̄)]

]

dV.

(31)

As a consequence of Eq.( 32), the equivalent frequency-dependent stiffness matrix of
the homogeneous anisotropic material of the ply can be evaluated as (Voigt’s notation):

C̄jk =
σ̄j
ε̄k

= Mjk + Êm (Ω)Rjk, where j, k = 1, ..., 6. (32)

It is straightforward to verify that the global stiffness matrix of the FE model at the
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macroscopic scale can be decomposed as follows:

Ksys (Ω) = K
sys
0 + Êm (Ω) K̃sys, (33)

where Ksys
0 is the term related to the constant part of the ply stiffness tensor, whilst K̃sys

is the contribution related to the frequency-dependent part.
Eqs. (32) and (33) allow obtaining the frequency-dependent stiffness matrices of the

material and of the structure, respectively, directly within the ANSYS R© software by means
of only two homogenisation analyses carried out at two arbitrary frequencies (in this
case the lower and the upper bounds of the considered frequency spectrum), instead of
performing an homogenisation calculation (recall that each homogenisation corresponds
to six FE analyses) for each sampled frequency in the considered range. Accordingly, the
computational costs of the whole optimisation process is significantly reduced (the FE
analyses at both microscopic and macroscopic scales must be carried out for each point in
the design space).

5. Numerical results

5.1. Harmonic response for the reference configuration

Before running the optimisation procedure, the reference response must be calculated.
To this purpose, firstly the numerical harmonic homogenisation process is performed on
a RVE characterised by the material properties listed in Table 2 in order to obtain the
reference ply material properties.

Secondly, the reference viscoelastic behaviour of the ply is implemented into the FE
model of the multilayer plate in which two both a non-linear modal analysis and a har-
monic analysis are performed to calculate the reference damped natural frequencies and the
reference harmonic response. The reference damped eigenfrequencies are listed in Table 5.

For modal and harmonic analyses the frequency samples vary between fLB = 100 Hz
and fUB = 7500 Hz: for the reference solution nf = 5 damped natural frequencies fall into
this interval.

Nat. freq. Value [Hz]

f ref
1n 1716.34
f ref
2n 3626.36
f ref
3n 4758.54
f ref
4n 6481.66
f ref
5n 6677.52

Table 5: Reference natural frequencies.

The sampling of the considered spectrum is made according to the sequence reported
in Table 6.

The value of δi is computed according to the following formula:

δi (fin) = −4.34 × 10−12 (fin)
2 + 2.6× 10−7 (fin) + 6.53 × 10−4, (34)

which has been chosen in order to have a value of δi (fin) that increases with the
frequency. Indeed, by looking at the viscoelastic effect on the amplitude of the FRF
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Frequency intervals [Hz] N. of sampled spectrum points
[

1−
f ref
1n − fLB

f ref
1n

]

f1n < f < f1n − δ1 11

f1n + δ1 < f < f2n − δ2 11
f2n + δ2 < f < f3n − δ3 11
f3n + δ3 < f < f4n − δ4 11
f4n + δ4 < f < f5n − δ5 11

f5n + δ5 < f <

[

1−
fUB − f ref

5n

f ref
5n

]

f8n 11

f1n − δ1 < f < f1n + δ1 6
f2n − δ2 < f < f2n + δ2 6
f3n − δ3 < f < f3n + δ3 6
f4n − δ4 < f < f4n + δ4 6
f5n − δ5 < f < f5n + δ5 6

Table 6: Sampling sequence for FRF calculation.

(evaluated at the fours sampled points highlighted in Figure 8), as shown in Figure 9, it
is possible to observe that the damping effect is more pronounced at high frequencies.

The exciting nodal force (as illustrated in Figure 7) has a value |Fz | = 1 N and it is
not applied at the plate center, in order to be able to excite even and odd modes. Finally,
the number of sampling frequencies are Ns = 87, for each plate point, whose number is
Np = 329.
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Figure 9: Amplitude and phase of the FRF for the reference solution at the four sampling points highlighted
in Figure 8.
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Parameters One-shot analysis

N. of individuals 50
N. of populations 2
N. of iterations 100
Crossover probability. 0.85
Mutation probability. 0.02
Isolation time 10

Table 7: Optimisation parameters for the GA ERASMUS.

Parameters Value

Solver algorithm active-set
Max function evaluation 10000
Tolerance on the objective function 10−15

Tolerance on the gradient norm 10−15

Table 8: Optimisation parameters for the gradient-based algorithm.

5.2. Results of the inverse problem

The optimisation process has been performed by selecting the main optimisation pa-
rameters tuning the behaviour of the GA ERASMUS as a result of a statistic analysis to
evaluate their effects on the optimum solutions, according to the best practices discussed
in [45]. The parameters governing both the GA and the deterministic algorithm are listed
in Tables 7 and 8, respectively.

The GA ERASMUS is run with two populations, each one composed of 50 individ-
uals evolving along 100 generations. The exchange of information among populations is
realised by using a ring-type operator every 10 generations: the probability of success of
the ring-type operator is automatically computed by the GA. As far as the constraint-
handling technique is concerned, the Automatic Dynamic Penalisation (ADP) method is
used, see [55].

The choice of using multiple populations with a small number of individual, is due to
the fact that the main goal is to find the global minimum without increasing too much the
computational time. In this way, the GA has the possibility to explore the design domain
by exchanging information between best individuals belonging to different populations.
More details about the use of multiple populations can be found in [25].

The inverse problem is solved by considering a fibre volume fraction VF = 0.555 [29]
and a fibre diameter equal to df = 6.8 µm [56]. The RVE dimensions are obtained as
follows:

a3 =
df
4

√

2π

Vf

, a2 = a3, a1 = a2/4. (35)

For each point in the design space, the FE analyses constituted by the union of a numer-
ical homogenisation analysis the solution of the non-linear eigenvalues problem and the
computation of the harmonic responses, need about 104 s to be executed (on an Intel R©

Xeon R© 2.70 GHz CPU with two processors and with a RAM of 128 GB). This analysis
must be performed for each individual at each iteration, which implies an overall time of
about 26.3 days, to get an optimum solution.
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Micro-scale Reference GA Gradient-based

viscoelastic properties data results results

Ef
1 [MPa] 276000 275730 (-0.10) 275724.86 (-0.10)

Ef
2 [MPa] 17300 19366.50 (11.95) 19365.77 (11.94)

νf12 0.25 0.26 (5.34) 0.26 (5.34)

νf23 0.428 0.428 (0) 0.428 (0)

Gf
12 [MPa] 11240 13457.20 (19.73) 13457.22 (19.73)

Em
0 [MPa] 4140 3802.49 (-8.15) 3802.44 (-8.15)

Em
1 [MPa] 30 25.35 (-15.50) 25.35 (-15.49)

bm 0.0053 0.0050 (-5.92) 0.0050 (-5.92)
αm 0.5 0.4989 (-0.21) 0.50 (-0.22)
νm 0.35 0.38 (7.92) 0.38 (7.92)

Table 9: Optimum solution of the inverse problem: results provided by the GA and the active-set algorithm.
The percentage difference is indicated in parentheses.

The optimum solutions obtained from the genetic calculation and the local gradient-
based optimisation in terms of microscopic material properties for both fibre and matrix
are listed in Table 9, while the relative eigenfrequencies values are summarised in Table 10.

Nat. freq. f ref
in [Hz] fin [Hz] GA results fin [Hz] Gradient-based results

f1n 1716.34 1716.94 (3.49 × 10−2) 1715.73 (3.58 × 10−2)
f2n 3626.36 3630.07 (1.02 × 10−1) 3622.61 (1.03 × 10−1)
f3n 4758.54 4766.03 (1.57 × 10−1) 4751 (1.58 × 10−1)
f4n 6481.66 6495.78 (2.18 × 10−1) 6467.49 (2.19 × 10−1)
f5n 6677.52 6690.54 (1.95 × 10−1) 6664.44 (1.96 × 10−1)

Table 10: The damped eigenfrequencies for the optimum solution of the inverse problem: results provided
by the GA and the active-set algorithm. The percentage difference (with respect to the reference values)
is indicated in parentheses.

As it can be easily inferred from the analysis of these results, the microscopic viscoelas-
tic properties of the optimum solution are in good agreement with the reference data: the
absolute percentage difference ranges from 0.10% for Ef

1 to 11.94% for Ef
2 . Only the ma-

terial parameters Em
1 and Gf

12 by significant percentage errors which are equal to 15.49%
and 19.73%, respectively. This is a quite expected result because of the kinematic model
at the basis of ANSYS shell elements FSDT. In fact the effect of these material parame-
ters on the dynamic response at the macroscopic scale is negligible and this is also due to
the particular stacking sequence (orientation angles and thickness) used for the reference
structure: the considered plate is not thick enough to observe a significant influence of
Gf

12 and Em
1 on its dynamic response.

Nevertheless, both the damped eigenfrequencies and the FRF at each sample point are
in excellent agreement with the reference values and the numerical results found at the
end of the optimisation perfectly match the reference data with an absolute percentage
difference ranging from 3.58× 10−2 % (for the first mode) to 2.19× 10−1 % (for the fourth
mode).
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6. Conclusions and perspectives

In this paper, an extension of the Multi-Scale Identification Strategy (MSIS) (initially
presented in [24]) is proposed. The MSIS is here applied to characterise the viscoelastic
behaviour of the matrix and the elastic behaviour of the fibres by exploiting the informa-
tion included into the dynamic response of the composite at the macroscopic scale. The
proposed MSIS shows several features that make it a general methodology, that can be
easily applied for different classes of materials and structures, e.g. multilayer, fabrics, etc,
for identification of material properties without performing destructive tests.

In this study, the multi-scale inverse problem has been solved by means of a “one-shot”
hybrid optimisation strategy. The multi-scale inverse problem is stated as an equivalent
constrained non-linear programming problem (CNLPP) aiming at minimising the distance
between the numerical and reference harmonic responses for the considered multilayer
composite plate.

The scales transition is ensured by means of the strain energy homogenisation method
for periodic media, which has been generalised to the viscoelastic case. In this way, the ply
viscoelastic properties can be computed and used to build the FE model of the multilayer
plate. At the microscopic scale the matrix viscoelastic behaviour is described through the
Bagley-Torvik model, that requires only four material parameters.

Moreover, the modal and harmonic analyses performed on the multilayer plate at
the macroscopic scale are non-linear due to the viscoelastic behaviour of the ply. The
main issue is related to the non-linear modal analysis: no dedicated solvers are available
in commercial FE software. To this purpose, the Arnoldi’s method [27] for non-linear
eigenvalue problems has been coded into the MATLABR© environment and interfaced with
the ANSYS code.

The effectiveness of the proposed strategy is evaluated through a numerical bench-
mark in which a composite laminate made of unidirectional carbon/epoxy pre-preg plies
T650/F584 is considered as a reference structure.

The results provided by the MSIS are quite satisfactory: all viscoelastic properties
are identified with a good level of accuracy, except the in-plane shear modulus of the
fibre Gf

12 and the viscoelastic matrix parameter Em
1 which are affected by an absolute

percentage error of 19% and 15%, respectively. These errors are mainly due to the very
low sensitivity of the objective function to these parameters. On the one hand, this low
sensitivity is due to the geometry of the considered laminate which is not thick enough to
highlight the influence of these properties on its dynamical response. On the other hand,
the laminate stacking sequence plays a fundamental role: the stack considered in this
work is a standard symmetric balanced stack taken from the literature which has not been
designed to maximise the influence of some material properties on the laminate dynamic
behaviour.

The proposed strategy constitutes just a “first attempt”: the MSIS needs to be gen-
eralised to catch the true behaviour of the material of the constitutive phases. In order
to achieve this ambitious goal, research is ongoing in order to include into the MSIS the
following aspects:

• validation of the effectiveness of the proposed MSIS to characterise the viscoelastic
behaviour of composite materials by exploiting the data resulting from experimental
harmonic tests;

• design of a suitable stack to maximise the sensitivity of the objective function Φ(x)
to the full set of the material properties to be identified;
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• extension of the MSIS to the characterisation of the variability related to some
parameters like the fibre volume fraction, misalignments of fibres, variation of the
plies orientation angles, etc. (as partially done in [57]);

• application of the proposed strategy to different macroscopic specimen geometries
and microscopic RVE topologies (in terms of constituent phases configurations).

As far as the experimental validation of the MSIS is concerned, two major difficulties
must be faced before programming a campaign of harmonic/modal tests.
Firstly, the variability of the material properties should be included into the inverse prob-
lem formulation. This requires the development of a suitable numerical model to properly
describe the variability related to the viscoelastic behaviour of the composite, at each per-
tinent scale. Even if some models are available in the literature to properly describe the
uncertainty of the elastic properties of both fibre and matrix, few research studies focuses
on the modelling of the variability of their damping behaviour (to the best of the authors’
knowledge). Therefore, a preliminary numerical/theoretical study should be conducted
in order to find/develop a pertinent model to describe the variability characterising the
viscoelastic behaviour, at each pertinent scale of the composite.
Secondly, experimental results are unavoidably affected by noise. In the literature, one can
find several methods/techniques to take into account the influence of noise on the charac-
terisation of the elastic properties of the composite (very often at the mesoscopic scale).
However, to the best of the authors’ knowledge, the influence of noise on the identification
of the parameters governing the viscoelastic behaviour of the microscopic constituents of
the composite has not fully investigated yet. This aspect is also of paramount impor-
tance and should be addressed before starting an experimental campaign which aims at
validating the proposed MSIS.

Due to its versatility, the MSIS can be used to characterise the geometrical parameters
of the composite material RVE. The variables defining the shape of the inclusion or its
volume fraction can be easily integrated into the vector of optimisation variables, without
altering the overall architecture of the MSIS. Furthermore, laminate parameters can be
included among the unknowns to be identified, e.g. the orientation angle and the thickness
of each ply. Research is ongoing on these aspects as well.
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