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Abstract

This paper deals with some properties of predator-prey cloud-rain models.
Focus is put on scaling and on some mathematical features such as stability
and limit cycles. Precisely, the Koren-Feingold delay differential equation
model is first investigated and it is shown that it has no limit cycles. Then,
by considering another point of view (i.e. species competition dynamics) for
parametrizing cloud-rain processes, a system of ordinary differential equa-
tions to model these processes is formulated. Some examples are given to
illustrate that this model reproduces in a realistic way the essential macro-
scopic behavior of a cloud-rain system. The model has a Hopf bifurcation at
which certain properties of cloud-rain interactions in the model are represen-
ted. This is an important point to prepare for further examination of cloud
synchronization in a cloud field by Kuramoto model, for instance.
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1. Introduction1

Clouds are complex nonlinear dynamic systems with many degrees of free-2

dom and interactions across a vast range of spatio-temporal scales. Despite3

this complexity, certain non-trivial aspects of their macrobehavior are pre-4

dictable without a consideration of the full complexity of the dynamic system5

(Feingold et al., 2010; Koren and Feingold, 2011; Feingold and Koren, 2013;6

Koren et al., 2017; Mülmenstädt and Feingold, 2018). This implies that mo-7

dels that capture the essential physics have the potential to contribute to our8

understanding of clouds and their interactions. Such models are thus always9

welcome, especially in conjunction with more detailed models. This is of im-10

portance in the context of the climate system (e.g. Held, 2005) since, as is11

well known, clouds play a major role in the climate system (IPCC, 2013).12

An example of macrobehavior that can be tackled by nonlinear dynamics
is the interaction between cloud droplets and rain. Recently, Koren and Fein-
gold (2011) (hereafter KF11) analyzed cloud-rain coupling by means of the
following non-linear system of delay differential equations (DDEs):

dH

dt
=

H0 −H
τ1

− αH2(t− T )

c1Nd(t− T )
dNd

dt
=

N0 −Nd

τ2
− αc2H3(t− T )

(1)

with c1 = 2 × 10−6 mm m−2, c2 = 0.3 m−1, and α = 2 mm m−6 d−1 (see also13

Table 1 in appendix). Here, H is cloud depth (in m) and Nd is cloud droplet14

concentration (in cm−3). These are the two macroscopic degrees of freedom.15

In addition, t is time and T is an arbitrary constant delay (both in minutes).16

The constants τ1 and τ2 are timescales of the order of ten minutes. H0 is a17

height that represents the full environmental potential for cloud development18

(i.e. the maximum cloud depth possible) and N0 is the background concen-19

tration of aerosol (i.e. the maximum concentration of cloud droplets that20

can be reached). According to KF11, this system exhibits predator-prey like21

behavior. In particular, two examples of cloud behavior are provided which22

represent (i) an oscillator limit cycle and (ii) a damped oscillator.23

In the first part of this paper, we explore some physical and mathema-24

tical properties of Eq.1 that we consider important from the perspective of25

nonlinear dynamics that have thus far not been addressed. More precisely,26

our analysis, which is presented in Section 2, concentrates on scale analysis,27
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form of the equations, stability analysis, and the question of the existence of28

limit cycles by means of the Busenberg theorem applied to DDEs.29

In the second part of this paper, we introduce a bulk model which follows30

the initial idea of modeling the macrobehavior of a cloud-rain system and has31

properties in common with species competition dynamics. In contrast to the32

KF11 model, it is a system of ODEs rather than DDEs. However, the model33

presented here reproduces the behavior of the KF11 model, and is derived34

from a physically-based parametrization. This model differs from the KF1135

model not only in its structure, but in the variety of its dynamics which we36

examine through the lense of nonlinear dynamics, e.g. linear stability analysis37

and bifurcation theory. This exploration yields regions of parameter space in38

which clouds grow at the expense of rain and vice versa.39

It must be emphasized that this model does not consider the full com-40

plexity of cloud-precipitation interactions; rather, we examine certain predic-41

table elements of the macrobehavior of the full complex dynamical system.42

In particular, the model we propose incorporates population dynamics in a43

natural way, which includes exchanges with the surrounding environment.44

Our model is presented in Section 3 and examples are given in order to show45

that it is physically realistic and able to reproduce the macroscopic behavior46

of a cloud-rain system. Section 4 provides a discussion and conclusions.47

2. Analysis of some physical and mathematical properties of the48

KF11 model49

2.1. Scale or order-of-magnitude analysis50

The system (1) can be solved numerically by means of the pydelay package51

of Python (http://pydelay.sourceforge.net/) or MATLAB’s dde23 al-52

gorithm. The PyDDE solver can also be useful. These methods are based on53

the Bogacki-Shampine method which is a 3(2) Runge-Kutta scheme adapted54

to DDEs. However, before diving into numerical computations, we analyze55

the magnitudes of the different terms in the system of equations.56

In order to have a consistent set of equations in terms of units, we replace
α and c2 in Eq. (1) by α′ = 10−3 α/(60×24) and c′2 = 10−6 c2 (see appendix).
Typically, for cloud height, H0 ∼ 500 m and so, by definition of H0, 0 < H <
H0. For cloud droplet concentration, N0 ∼ 400 cm−3 and so, by definition
of N0, Nd < N0. A reasonable minimum for Nd (Nd,min) is about 50 cm−3.
Hence, considering the values of the constants involved in Eq. (1), i.e. τ1 =
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τ2 ∼ 60 min, we find:

H0 −H
τ1

<
H0

τ1
≈ 8 m min−1

α′H2

c1Nd

<
α′H2

0

c1Nd,min

≈ 3 500 m min−1

and

N0 −Nd

τ2
<
N0

τ2
≈ 7 cm−3 min−1 α′c′2H

3 < α′c′2H
3
0 ≈ 0.5 cm−3 min−1

It follows that, since H and Nd are physically expected to maintain or-57

ders or magnitude as mentioned above during the evolution of the cloud58

rain system, that α′H2/(c1Nd) and (N0 − Nd)/τ2 are the dominant terms59

in Eq. (1). This is particularly clear for the equation governing the evolu-60

tion of H. Concerning the equation for dNd/dt, having a ratio close to 161

implies that c2 be 104 or 105 higher than the value given in Table 1. Conse-62

quently, the evolution of Nd is either an increasing or a decreasing expo-63

nential function according to the sign (positive or negative, respectively)64

of N0 − Nd. The examples chosen by KF11 have positive signs. Precisely,65

Nd(t) − N0 = [Nd(0) − N0] exp(−t/τ2), where Nd(0) = Nd(t = 0). It ensues66

that Nd evolves exponentially towards N0. With respect to dH/dt, the do-67

minant term is always negative and, unless Nd becomes very small, it will68

remain the dominant term in the evolution of H. Hence, H is a decreasing69

function which must stop at H = 0 by definition. This scale analysis, based70

only on the physical realistic orders of magnitude of H and Nd is independent71

of any constant delay in the equation. Some numerical computations with the72

numerical scheme mentioned above have confirmed the evolution described73

above (Fig. 1). Nonetheless, we have obtained some oscillatory behavior in74

rare cases by varying arbitrarily some constants in Eq. (1) as the constant75

c1 around 10−3 mm m−1 and the constant c2 around 104 m−1 or 105 m−1. We76

have observed that these oscillations are, in addition, extremely sensitive to77

the value of c2 chosen since they disappear if c2 is changed even slightly (we78

recover the evolution described above).79

2.2. Form of the system of equations80

It is worth noting that the system (1) of two equations is not formally
similar to a predator-prey system, stricto sensu. Indeed, in its basic form,
the Lokta-Volterra system is the following (x and y are the two degrees of
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freedom): 
dx

dt
= ax− bxy

dy

dt
= −cy + dxy

(2)

with {a, b, c, d} a set of four positive constants. The signature (+, − | −
,+), or sometimes (+, − | + ,−), is also present in more elaborate versions
of Lokta-Volterra models (e.g. Lipowski and Lipowska, 2000) since it is
a characteristic of species-competition models, with or without predation.
However, the system 1 has the form: dH/dt = −AH−BH2/Nd and dNd/dt =
−CNd −DH3 with {A,B,C,D} a set of four positive constants. So, system
(1) does not have the general form of a Lokta-Volterra system since the
signature is fully negative, (−, − | − ,−). It follows that Ḣ and Ṅd are
negative if (H,Nd) always satisfy the two inequalities:

H

τ1
+
α′H2

c1Nd

>
H0

τ1
∼ 10 m min−1

and
Nd

τ2
+ α′c′2H

3 >
N0

τ2
∼ 1− 10 cm−3 min−1

So, with regard to the typical orders of magnitude of the two degrees of81

freedom (H ∼ 400 m, Nd ∼ 100 cm−3), care is needed in the choice of the82

constants (i.e. in the model parametrization) in order to avoid always de-83

creasing functions H(t) and Nd(t).84

2.3. Stability analysis85

To determine further some of the properties of the system (1), we briefly
discuss the stability of the model (with no delay) near its equilibrium points.
These are independent of any delays, so that a system of DDEs has the
same equilibrium points as the corresponding system (zero delay) of ODEs.
However, investigating the stability for DDEs is a more complex task (e.g.
Engelborghs et al., 2000, and references therein) which is beyond the scope of
this paper (some elements can be found in Koren et al. (2017, Section IV)).
Nonetheless, it is still instructive to analyze stability in the simplest case of
no delay. A quick calculation yields that the KF11 system has an equilibrium
point given by

N e
d = N0 − α′c′2τ2(He)3
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and

He =
c1N

e
d

2α′τ1

−1 +

Ç
1 +

4α′τ1H0

c1N e
d

å1/2
 (3)

Physically, becauseN e
d (andHe) must be positive, the value of α′c′2 is constrai-

ned: α′c′2 < N0/[τ2(H
e)3]. The behavior of Eq. (1) near this equilibrium point

can be obtained by evaluating the Jacobian matrix J at (He, N e
d) and finding

its eigenvalues. These are given by the well-known formula:

λ± =
1

2

ï
TJ ±

Ä
T 2
J − 4∆J

ä1/2ò
where TJ and ∆J are respectively the trace and the determinant of [J ]. A
straightforward calculation yields:

TJ = −
Ç

1

τ1
+

1

τ2
+

2α′He

c1N e
d

å
and

∆J =
1

τ2

Ç
1

τ1
+

2α′He

c1N e
d

å
+ 3α′2c′2

(He)4

c1(N e
d)2

Since TJ < 0 and ∆J > 0, the equilibrium point (He, N e
d) is a stable node86

or a stable focus (spiral) according to the sign of (T 2
J − 4∆J). We note that87

if the value of α′c′2 does not satisfy the above constraint, then TJ can be88

negative, which means that Eq. (1) describes an unstable dynamical system.89

In addition, since the sign of TJ never changes, there is no local bifurcation.90

A similar analysis that corroborates the above result has been performed91

recently by Jiang and Wang (2014).92

2.4. Existence of limit cycles93

One of the important points of this paper is the possibility of limit cycle94

solutions of the KF11 delay differential equations (DDEs). This needs ri-95

gorous examination. First, we note that the KF11 equations with constant96

delay T do not have any limit cycle solutions with period T . To see this, we97

consider either the Bendixson-Dulac theorem or the special case known as98

Bendixson’s criterion (e.g. Minorsky, 1962; Glansdorff and Prigogine, 1971).99

To illustrate the use and consequences of this theorem to the problem at100

hand, we first rewrite the KF11 system: dH/dt = f [H(t − T ), Nd(t − T )]101

and dNd/dt = g[H(t − T ), Nd(t − T )], where the functions f and g are102
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given by the rhs (right hand sides) in Eq. (1). The Bendixson-Dulac theo-103

rem may be applied to this system by considering the sign of the expression104

∂H(φf) + ∂Nd
(φg), where φ(H,Nd) = 1 (this case is Bendixson’s criterion).105

Now, suppose that this set of equations has a non-constant T -periodic106

solution [H(t), Nd(t)]. Then, it follows that dH/dt = f [H(t), Nd(t)] and107

dNd/dt = g[H(t), Nd(t)]. A simple calculation shows that ∂H(f) + ∂Nd
(g)108

is always negative. We can therefore conclude by the Bendixson-Dulac theo-109

rem that no solutions of period T exist in the simply connected region defined110

by positive values of H and Nd.111

Since the KF11 equations are DDEs, a customary application of the112

Bendixson-Dulac theorem to prove the non-existence of limit cycles is inade-113

quate. However, this theorem has been generalized (Busenberg and van den114

Driessche, 1993, Section 4) to higher dimensional ODEs, including DDEs like115

those proposed by KF11, for instance. This generalized ”Bendixson-Dulac”116

theorem extends the concept of limit cycle to that of simple loop solutions,117

i.e. any continuous solution of the system of equations whose orbit contains118

a closed curve. Here, we apply this generalized theorem to the KF11 DDEs119

in order to demonstrate the absence of loop solutions.120

To illustrate the use and consequences of this generalized theorem to the
problem at hand, especially theorem 4.1 in Busenberg and van den Driessche
(1993), we first rewrite the KF11 system:

dH

dt
= F1(H,Nd)ht(Ht, Nd,t) + l1(H,Nd)

dNd

dt
= F2(H,Nd) kt(Ht, Nd,t) + l2(H,Nd)

where F1(H,Nd) = −α/c1, F2(H,Nd) = −αc2, ht(Ht, Nd,t) = H2
t /Nd,t and

kt(Ht, Nd,t) = H3
t are time-delayed functions (the subscript ”t” stands for

”time-delayed”), l1(H,Nd) = (H0 − H)/τ1, and l2(Hd, Nd) = (N0 − Nd)/τ2.
Theorem 4.1 in Busenberg and van den Driessche (1993) gives conditions
under which the KF11 DDEs have no simple loop solution. To verify the
first condition, we define the vector function g(H,Nd) = (g1, g2, 0). Here,
g1 = α c2A

3+(N0−Nd)/τ2, g2 = −αA2/(c1B)−(H0−H)/τ1, A and B being
constants. For notational simplicity, let (u, v) represent the coordinates of the
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curve in Theorem 4.1 of Busenberg and van den Driessche (1993). Then:

g(H,Nd) ·
Ç−αu2

c1v
+ l1,− αc2u3 + l2, 0

å
=
α2c2A

2u2

c1

Ç
u

B
− A

v

å
+ αc2l1

Ä
u3 + A3

ä
− αl2

c1

Ç
A2

B
+
u2

v

å
≤ 0

This follows from the following observations. The third term always contri-121

butes negatively, the second positively, to the sum. The first contributes122

negatively whenever uv < AB. Because c1 is small, the first and third terms123

dominate the second so that, whenever uv < AB, the entire sum is negative.124

Since A and B can be taken as large as wished, the region is finally R2
+. To125

verify the second condition, we calculate ∂Hg2 − ∂Nd
g1 = 1/τ1 + 1/τ2 > 0 for126

any solution (H,Nd) in the region specified above. So, an application of the127

Busenberg-van den Driessche theorem implies that there is no simple loop128

solution traversed in the clockwise sense (the analogue for DDEs of the limit129

cycle of ODEs) for the positive values of H and Nd. A similar argument with130

vector function −g works in the opposite sense as well. In other words, there131

is no solution of the KF11 system which enclose a smooth oriented simple132

closed curve.133

3. A new species-competition bulk model134

3.1. Description135

In order to retain the simplicity of the KF11 model with ODEs instead of136

DDEs, we propose an approach which incorporates population competition,137

interaction, and carrying capacities in a natural way. Here, the populations138

are given by cloud water content Lc (g cm−3), rain water content Lr (g cm−3),139

and cloud droplet number concentration Nd (cm−3). We emphasize that these140

variables are considered here as macroscopic averages and that our model141

captures some of the macroscale properties of cloud-precipitation interactions142

by means of three relatively simple equations in three variables, rather than a143

fine-scale description with complete microphysical details. The model consists144

of three coupled differential equations, one each for Lc, Lr, and Nd. The145

system includes three main processes that contribute to the cloud budgets of146

8



Lc, Lr, and Nd, namely: (1) sources/sinks which represent exchanges with the147

surroundings, and two internal processes, (2) autoconversion of cloud water148

to rain water, and (3) accretion of cloud water by rain water.149

The various terms in the equations were suggested by the Seifert and150

Beheng (2001) parametrization for simulating autoconversion and accretion.151

Other terms can be added to the equations, such as self-collection for ins-152

tance, but to retain some measure of simplicity we use only the terms al-153

ready mentioned and which we describe further. This parametrization is a154

straightforward consequence of the stochastic collection equation (STE) with155

polynomial kernel. For this reason, it seems to us that this approach is more156

rigorous than many other methods which consist in using heuristic (or em-157

pirical) parametrizations. Details on the STE can be found in Seifert and158

Beheng (2001) and Pruppacher and Klett (1997) and references therein. It is159

worth mentioning that the goal of Seifert and Beheng (2001) has been to fill160

a gap between heuristic parametrizations and detailed microphysical (com-161

putationally expensive) schemes. The terms representing autoconversion and162

accretion are given by the following expressions (for a comprehensive over-163

view see the references):164

– Autoconversion: the contribution to dLc/dt and dLr/dt is given by

dLc
dt

∣∣∣∣∣
auto

= −KL4
cN
−2
d = − dLr

dt

∣∣∣∣∣
auto

(4)

– Accretion: the contribution to dLc/dt and dLr/dt is given by

dLc
dt

∣∣∣∣∣
accret

= −krLcLr = − dLr
dt

∣∣∣∣∣
accret

. (5)

We note that these expressions are adapted from the Seifert and Beheng165

(2001) parametrization by considering the variables as bulk, cloud-scale va-166

riables. The various parameters in the equations above are defined as follows:167

K = [kc/(20x∗)] (ν + 2)(ν + 4)(ν + 1)−2, where x∗ is a cloud drop mass se-168

parating the cloud droplets from raindrops, kc (kr) is a constant from the169

cloud (rain) water kernel, and ν is the shape parameter of the gamma dis-170

tribution. See Seifert and Beheng (2001) for complete details. By combining171

these equations, neglecting spatial dependence and adding source/sink terms172

for cloud and rain water contents, we arrive at the following system of bulk173
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coupled first-order differential equations for Lc, Lr and Nd:174 

dLc
dt

= AcLc −Bc(Nd)L
4
c − krLcLr

dLr
dt

= −ArLr +Bc(Nd)L
4
c + krLcLr

dNd

dt
= f(Nd,Lc,Lr)

(6)

Here, Bc(Nd) = KN−2d , and Ac and Ar are two positive constants that can
be chosen so that the source/sink terms represent the background meteoro-
logical conditions. In particular, Ar represents the rain out process. These
two constants give the timescales, τc = 1/Ac and τr = 1/|Ar|, of cloud
water content and rain water content evolutions respectively. In addition,
f(Nd, Lc, Lr) is a function which can be defined according to the question
being investigated. Here, we choose to define f as follows:

dNd

dt
= Ac(N0 −Nd)−

4

3
kcL

2
c − krLrNd. (7)

On the rhs, the first term represents a supply of cloud droplets from the175

surroundings, N0 being the background aerosol concentration that feeds the176

system (nucleation). Considered alone, this term causes an exponential in-177

crease (decrease) of Nd with N0 as horizontal asymptote if initially Nd is lo-178

wer (higher) than N0. This represents cloud droplet concentration and when179

considered alone it tends toward a constant background aerosol population180

concentration. Moreover, this term (or similar ones) should be dominant in181

the very early stages of the cloud system evolution. Indeed, at the initial time182

(and close to t = 0), Nd is zero or very small (clear air condition) and must183

increase enough in order that the cloud can further evolve and produce rain.184

The two other terms in Eq. (7) come from Seifert and Beheng (2001, Eqs.185

A-5, A-6, and A-9) and represents respectively cloud droplet self-collection186

and accretion.187

It has to be recalled that the state variables considered (Lc, Lr, and Nd)188

in this bulk model are macroscopic averages over the whole cloud. They189

can also be seen as local variables over a volume element of the cloud for190

which they are more or less uniform. A further step would be to introduce in191

the equation an explicit inside-cloud location (e.g. altitude z) dependence.192

Nonetheless, as showed below, the present model describes some macroscale193

features of could-precipitation coupling.194
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3.2. Comment on the form of the system of equations195

We note that the first two equations in (6) constitute a predator-prey196

system modified to include autoconversion. To see this, observe that the197

constants {a, b, c, d} in the Lotka-Volterra equations (Eq. 2) have the follo-198

wing formal correspondence with the model presented here: {a = Ac, b =199

−d = kr, c = Ar}. Hence, the source/sink and accretion terms form a stan-200

dard predator-prey system when considered alone. The quartic terms not201

only represent autoconversion of cloud droplets to rain given in the Seifert202

and Beheng (2001) parametrization, but also ensure that the cloud droplet203

population does not exhibit unbounded growth in the absence of competition.204

Thus, it plays a similar role to the carrying capacity term used in population205

dynamics to modify some of the unrealistic features of the original Lotka-206

Volterra system.207

The entire system of equations is not rigorously equivalent to a three-208

species competition model. As already discussed, the first two equations209

constitute a modified Lotka-Volterra system. The autoconversion terms which210

modify the traditional predator-prey system have coefficients driven by the211

third equation, viz. that for Nd. The interpretation of the varying coefficients212

is that the carrying capacities of the water contents vary according to the213

state of Nd, which is more realistic for clouds.214

It is worth mentioning that Lc and Lr are, for physical reasons, necessa-215

rily bounded. So, in virtue of the Poincaré-Bendixson theorem, the first two216

equations of system (6) have a solution that either converges towards a limit217

or presents an asymptotic behaviour that can take the form of a limit cycle.218

Boundedness has not been proved in a mathematical sense but, rather, we219

rely on numerical evidence (see some examples below, in Subsection 3.4) and220

on the fact that the present system of equations has much in common with221

other predator-prey models which are known to have bounded solutions. Ob-222

viously, if kr and Bc are zero, the evolution of Lc is exponentially divergent.223

The terms involving non-zero values of kr and Bc prevent unbounded evolu-224

tion within certain parameter ranges, as is the case in predator-prey models.225

It is far beyond the scope of this paper to address rigorously (i.e. mathema-226

tically speaking) boundedness of solutions, but that could be formulated and227

explored deeply in a future specific work.228
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3.3. Stability analysis229

3.3.1. Equilibrium points230

The system 
dLc
dt

= AcLc −Bc(Nd)L
4
c − krLcLr

dLr
dt

= −ArLr +Bc(Nd)L
4
c + krLcLr

(8)

has two equilibrium points Xe = {L(e)
c , L(e)

r }. In this section we treat Nd as a
parameter. The first one is trivial: X(1)

e = 0. There is no cloud nor a fortiori

rain. Using Eq. (7), N
(e)
d = N0, which means that the atmospheric volume

considered has a constant CCN (cloud condensation nuclei) loading (that
does not allow cloud formation). The second equilibrium point X(2)

e is such
that:

AcL
(e)
c = |Ar|L(e)

r and Bc(Nd)
|Ar|3

A4
c

Ä
L(e)
r

ä3
+
kr
Ac
L(e)
r − 1 = 0 (9)

Since the two first terms of this third order polynomial are positive, there is
only one real positive solution L(e)

r – the other two are complex conjugates.

The expression of N
(e)
d follows from those of L(e)

c and L(e)
r using Eq. (7)

Plugging L(e)
c and L(e)

r into Eq. (7) yields:

N
(e)
d =

Ç
Ac +

krAc
|Ar|

L(e)
c

å−1 ñ
AcN0 −

4

3
kc
Ä
L(e)
c

ä2ô
(10)

The eigenvalues of the jacobian matrix J of the system (6) are:

λ± =
1

2

ï
TJ ±

Ä
T 2
J − 4∆J

ä1/2ò
where the trace TJ and the determinant ∆J of [J ] can be written as follows:

TJ = Tr(J) = Ac − |Ar|+ kr
Ä
L(e)
c − L(e)

r

ä
− 4Bc(Nd)

Ä
L(e)
c

ä3
(11)

and

∆J = det(J) = −Ac|Ar|+ kr
Ä
AcL

(e)
c + |Ar|L(e)

r

ä
+ 4|Ar|Bc(Nd)

Ä
L(e)
c

ä3
(12)

They must be evaluated for each of the two equilibrium points.231
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3.3.2. Stability analysis around X(1)
e232

In this case, TJ = Ac− |Ar| and ∆J = −Ac|Ar| < 0. The two eigenvalues233

have opposite sign, λ+λ− < 0, with λ+ = Ac > 0 and λ− = −|Ar| < 0. The234

state X(1)
e is thus a saddle point.235

3.3.3. Stability analysis around X(2)
e236

In this case

TJ = (3Ac + |Ar|)
(
krL

(e)
r

Ac
− 1

)
and ∆J = −2Ac|Ar|

(
krL

(e)
r

Ac
− 3

2

)

It follows that the equilibrium point X(2)
e =

Ä
L(e)
c , L(e)

r

ä
is stable if:

krL
(e)
r

Ac
< 1 i.e. L(e)

r <
Ac
kr

and L(e)
c <

|Ar|
kr

(13)

Otherwise, for krL
(e)
r /Ac > 1, X(2)

e is an unstable equilibrium point.237

The identity krL
(e)
r /Ac = 1, which separates a stable regime from an238

unstable one, has the straightforward consequence that Bc

[
N

(e)
d

] Ä
L(e)
c

ä4
=239

0, i.e. Bc = 0 since L(e)
c 6= 0. Physically, this critical value means that240

the net rate of the autoconversion process is zero: formation of a raindrop241

from cloud droplets only is compensated over a given time interval by the242

formation of cloud droplets from a raindrop only. Thus, the system maintains243

constant rain and cloud water contents whose values — see Eq. (13) —244

depend only on the exchange rates with the surroundings (Ac and Ar) and245

on the cloud-to-rain reaction constant (kr). Below the critical value (Bc < 0),246

the autoconversion process results in net production of cloud droplets from247

raindrops. It constitutes a nonlinear amplification term for cloud droplets and248

a nonlinear damping term for raindrops, i.e. disturbances from equilibrium249

grow. In other words, the cloud is growing such that cloud droplets become250

more numerous while the number of raindrops vanishes. This behavior is251

reversed above the critical value (Bc > 0): the non linear term compensates252

any deviation from the equilibrium point (stability). In the case Bc < 0,253

without any cloud-rain interaction (kr = 0), cloud (rain) water content is an254

increasing (decreasing) function.255

The other characteristic value is krL
(e)
r /Ac = 1.5. Below (above) this256

value, ∆J is positive (negative). So X(2)
e is a saddle point if L(e)

r = 1.5Ac/kr.257
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The nature (node, focus or spiral) of X(2)
e is provided by the sign of

T 2
J − 4∆J :

T 2
J − 4∆J =

(3Ac + |Ar|)2
(
krL

(e)
r

Ac
− 1

)2
+ 4|Ar|Ac

(
2
krL

(e)
r

Ac
− 3

)

If krL
(e)
r /Ac = 1, T 2

J −4∆J = −4|Ar|Ac < 0 which means that X(2)
e is a focus.258

For krL
(e)
r /Ac 6= 1, the sign of T 2

J − 4∆J depends on the number Nτ =
|Ar|/Ac through the second order polynomial equation:

(3Ac + |Ar|)2
(
krL

(e)
r

Ac

)2

−2

(
krL

(e)
r

Ac

) î
(3Ac + |Ar|)2 − 4Ac|Ar|

ó
+(|Ar| − 3Ac)

2

The two solutions are easy to find:

Z± =
(3Ac + |Ar|)2 − 4|Ar|Ac

(3Ac + |Ar|)2
± 2 [(9A2

c + |Ar|Ac) (|Ar|2 + Ac|Ar|)]1/2

(3Ac + |Ar|)2

Three cases can be distinguished at first sight:259

– |Ar| = Ac: so Z± = (3 ±
√

5)/4 > 0. Between these two values, T 2
J −260

4∆J < 0, so that X(2)
e is a focus. Outside of this interval, we have a261

node262

– |Ar| � Ac: so Z± = 1± 2 (Ac/|Ar|)1/2 > 0. Same as previously.263

– |Ar| � Ac: so Z± = 1± (2/3) (|Ar|/Ac)1/2 > 0. Same as previously.264

3.3.4. Andronov-Hopf bifurcation265

It follows from what precedes that the eigeinvalues of the jacobian matrix266

cross the imaginary axis for Bc = 0. At this point, they are pure imaginary267

numbers, λ± = i(Ac|Ar|)1/2. There, the system has a limit cycle. Just after268

(Bc < 0), the spiral is unstable whilst it is stable just before (Bc > 0).269

This behavior is precisely a Hopf bifurcation: an unstable focus gives birth270

to a stable focus (and vice versa) through a limit cycle. The existence of271

such a bifurcation is an important point for further investigations of cloud272

organization in a coupled-cloud field at the mesoscale (Kuramoto, 2003).273

3.4. Examples274

We now illustrate the behavior of this set of three equations with some275

examples. The values chosen for kr and kc are those given in Seifert and Be-276

heng (2001) which follow from approximations to the collection kernel in Long277
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(1974), i.e. kc ≈ 5.66×1011 cm3 g−2 min−1 and kr ≈ 3.47×105 cm3 g−1 min−1.278

The value of x∗ = 2.6 × 10−7 g, following Seifert and Beheng (2001). We279

take ν = 2, which is a typical value for warm clouds (e.g. , Pruppacher280

and Klett, 1997, chap. 2). With these values, the parameter K ≈ 2.905 ×281

1017 cm3 g−3 min−1.282

In addition, we take Ac = 0.02 min−1 and Ar = 0.1 min−1. So, cloud283

water content and rain water content are expected to evolve on the timescales284

τc = 50 min and τr = 10 min. The latter is lower than the former since raining285

out is a rapid process compared to the evolution of cloud water content. These286

values are chosen for illustrative purposes.287

3.4.1. First example: periodic behavior288

We choose as initial conditions Nd(0) = 10 cm−3, Lc(0) = 10−9 g cm−3,289

Lr(0) = 0, and N0 = 50 cm−3. The system exhibits oscillatory behavior after290

approximately 300 min, with a period of about 200 min, which is physically291

realistic (Fig. 2a). Both Nd and Lc increase initially (the former faster than292

the latter) until rain appears. Soon thereafter, rain water content peaks and293

droplet number and mass concentration decrease drastically in a short in-294

terval of time. Minimum values of Lc are reached and rain water content295

decreases to zero. Then Nd and Lc start to increase again, and so on. This296

periodicity appears clearly as a limit cycle on the plot (Lc, Lr) displayed in297

Fig. 2b. It is interesting to mention that peaks in rain water content are de-298

layed from Lc peaks by about 20− 30 min, which is a very realistic value for299

rain to form from a cloud droplet by collection (Fig. 2c). We also note that300

similar oscillations and limit cycles are obtained for other initial conditions301

(not shown). Note that the model presented here represents well a timescale302

of precipitation production that has to be explicity and arbitrarily accounted303

for via delays in the more complicated DDE framework.304

3.4.2. Second example: damped behavior305

If N0 is lower than Nd(0), the feeding of the system is not sufficient306

to maintain the cloud-rain system in a harmonic (or quasi) oscillation and a307

damping is observed (Fig. 3): Nd, Lc, and Lr still oscillate but their respective308

amplitudes decrease progressively until a steady state is reached. Initially Nd309

decreases exponentially as expected, and then decreases more rapidly when310

Lc and Lr peak for the first time.311

Damping can also be obtained by introducing in the model a decrea-312

sing evolution for the CCN supply, for instance N0 = 50 exp(−0.002 t). This313
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means that the initial CCN burden is divided by around 2.72 in 500 min,314

i.e. 8 hours. Keeping the same initial conditions as previously, we get the315

behavior displayed in Figure 4, which is typical of a damped oscillator: Nd316

increases until a certain time t (approximately 120 min) at which the expo-317

nential function becomes significant. Then Nd decreases dramatically. The318

same behavior is seen for Lc and Lr which increase until t = 500 min and319

then exhibit decaying amplitude oscillations that eventually (t > 1 500 min)320

die out. Again, we note that the peaks of Lr are delayed with respect to those321

of Lc by about 20− 30 min.322

The same damping behavior is observed (not shown) for different initial323

conditions, in particular if Lr 6= 0, provided the values are realistic.324

4. Discussion and conclusion325

Certain aspects of a system’s bulk behavior arise out of many small-326

scale interactions. These aspects may be investigated with simple models327

that faithfully represent the bulk behavior, but do not consider directly the328

full complexity of the system. In conjunction with more detailed models and329

simulations, models which represent bulk behavior can also enhance our un-330

derstanding of complex dynamical systems. The model presented here, which331

has aspects of species competition in biology, is a tool with which to examine332

the complexity of cloud-rain interactions in a way that highlights certain as-333

pects of their behavior in a simple but realistic manner. This model is not334

meant to supplant more detailed simulations of cloud-precipitation interac-335

tions but to represent certain predictable elements of the macrobehavior of336

the full complex dynamical system.337

In the first part of the paper, we examined some important mathematical338

properties of the KF11 DDEs model which is a similar model devoted to339

analyze the bulk behavior of a cloud-rain system. The focus has been put on340

scaling and limit cycles or loop solutions. In particular, it has been shown,341

through the Busenberg theorem that this model has no proper limit cycle so-342

lutions. The model we have introduced in this paper (second part) is another343

point of view which retains the idea of modeling cloud-precipitation interac-344

tion through population dynamics and exhibits predator-prey behavior with345

rain as predator and cloud droplets as prey. The stability analysis has shown346

that our model has limit cycles and a Hopf bifurcation.347

In particular, the model formulated here is a system of ODEs rather348

than DDEs. It is derived from a physically-based parametrization. Several349
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examples illustrate that our model reproduces realistically the behaviour of350

an unique cloud-rain system. In particular, rain water content peaks are351

delayed by about 20 − 30 min with respect to cloud water content peaks.352

Some of the novel properties of the model include regions of parameter space353

in which clouds grow at the expense of rain and vice versa as determined354

from bifurcation analysis.355

Further properties of our model such as ability to represent various phy-356

sical situations, and sensitivity tests to parametrization schemes similar to357

those performed by Wacker (1995) for mixed and ice clouds, will be explored358

in more detail in future work. Due to its properties, this cloud-rain model359

is intended to be further developed for examination of cloud organization at360

larger scales in a coupled-cloud field.361
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Appendix 1: Unit analysis367

The system (1) is derived from four empirical equations which we have368

summarized in Table 1 together with their numbering in KF11.369

Eq. number Equation Constants
in KF11

[2] LWP = 0.5 c1H
2 c1 = 2× 10−6 mm m−2

[5] dLWP/dt = −R None
[4] R = αH3N−1d α = 2 mm m−6 d−1

[9] dNd/dt = −c2NdR c2 = 0.3 m−1

Tab. 1 – Equations and constants in KF11 discussed here. In KF11, LWP and R are
liquid water path and rainrate, respectively. The corresponding units are explicitely gm−2

and mmd−1.

Eq. [2] connects liquid water path (LWP , in g m−2) with cloud depth
(H, in m). The dimension of LWP is [M ][L]−2 (where [M ] and [L] are mass
and length dimensions), which implies that the dimension of c1 is [M ][L]−4
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and not [L]−1 (cf. Table 1). Indeed, the well-established relationship is given
by LWP (g m−2) = 0.5 cwH

2, where cw = 2 × 10−6 kg m−4 (e.g. Geoffroy
et al., 2008). Actually, cw = ρwc1, where ρw ≈ 103 kg m−3 is liquid water
density and c1 = 2 × 10−9 m−1 — in Tab. 1, c1 = 2 × 10−6 mm m−2, i.e.
c1 (m−1) = 10−3 c1 (mm m−2). The relationship between LWP and H we get
is thus:

LWP (g m−2) =
1

2
cw (kg m−4)H2 (m2)

=
1

2
ρw (kg m−3) c1 (m−1)H2 (m2)

(14)

If we look now at Eq [5] and the units chosen, the decreasing rate of LWP due
to rain cannot equal exactly the rainrate R (in mm d−1). In fact, dLWP/dt
is proportional to the precipitation flux density (or rain current Jr = −ρwR).
The coefficient of proportionality is determined by the choice of units. If, as
in KF11, we express time in minutes (it is the most natural timescale for
cloud macroscopic physics), and keep LWP in g m−2 as above, we obtain:

dLWP

dt
(g m−2 min−1) = −ρw (g m−3)R (m min−1)

= −103 ρw (kg m−3)R (m min−1)

= − 103

60× 24
ρw (kg m−3)R (m d−1)

= − 1

60× 24
ρw (kg m−3)R (mm d−1)

(15)

since R (m min−1) = 10−3R (mm d−1)/(60 × 24). Combining Eqs. (14) and
(15) yields:

dH

dt
(m min−1) =

dLWP/dt (g m−2 min−1)

cw (kg m−4)H (m)

= − ρw (kg m−3)R (mm d−1)

(60× 24) cw (kg m−4)H (m)

= − 1

60× 24

R (mm d−1)

c1 (m−1)H (m)

= − 103

60× 24

R (mm d−1)

c1 (mm m−2)H (m)

(16)

It is possible, although not common, to divide LWP by ρw and then to de-370

fine a volumetric liquid water path: LWPv (m) = 10−3 LWP (g m−2)/ρw (kg m−3).371
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In this case, Eqs. [2] and [5] of Table 1 are correct provided that, for Eq. [5], R372

be expressed in m min−1, or equivalently, considering 10−3R (mm d−1)/(60×373

24). However, we have not found any explicit mention of LWP in m or mm374

in KF11 and further papers; there LWP is explicitly expressed in g m−2375

several times.376

The KF11 model also employs two parametrizations which relate R, Nd,
and dNd/dt (see Eqs. [4] and [9] in Table 1). The units of the latter two
quantities are naturally cm−3 and cm−3 min−1, respectively. According to
the units used in KF11, the rhs of Eq. [4] is in mm m−3 cm3 d−1, while the
lhs (left hand side) is in mm d−1. Although Eq. [4] is dimensionally correct
([L][T ]−1, where [T ] is the time dimension), the units of the rhs and lhs are
not the same. Indeed, the relation R = αH3/Nd should have Nd in m−3 when
H is in m. If we choose to express Nd in cm−3, then we must multiply H3/Nd

by 10−6. With the unit of α, R is thus in mm d−1:

R (mm d−1) = 10−6 α (mm m−6 d−1)H3 (m3)N−1d (cm3) (17)

Thus, for Eq. (16), we obtain:

dH

dt
(m min−1) = − 10−3

60× 24

α (mm m−6 d−1)H2 (m2)

c1 (mm m−2)Nd (cm−3)
(18)

In addition, Wood (2006) (ref. 20 in KF11) gives a value of c2 which does not
correspond to that used in KF11. Aside from the conflation of rain current
and rainrate in Wood (2006) — this article seems to use P as rainrate and
divides it by liquid water density (ρw), whereas P should be the rain current
and P/ρw the rainrate —, the coefficient of proportionality between dNd/dt
and R is 3E0/4 = 3× 103 m−1 since E0 = 4× 103 m−1. This value is different
from the 0.3 m−1 used in KF11 (assuming that P , in Wood (2006), is rainrate,
and not rain current, which is very few probable due to a dimensional analysis
of the Eq. 14 of Wood (2006), c2 would be 3 m−1, i.e. the previous value of c2
divided by ρw, which is again different from the value of Table 1). Because,
in Eq. [9], dNd/dt has to be in cm−3 min−1, we have:

dNd (cm−3 min−1)

dt
= c2Nd (cm−3)R (m min−1) (19)

with c2 = 3× 103 m−1.377

Then, because R (m min−1) = 10−3R (mm d−1)/(60× 24), we obtain, by
substituting the rainrate of Eq. (17) into Eq. (19):

dNd (cm−3 min−1)

dt
=

10−9

60× 24
c2 (m−1)α (mm m−6 d−1)H3 (m3) (20)

19



Finally, with this set of units, i.e. with H and Nd in m and cm−3 res-
pectively, and time in minutes, the consistent (in terms of units) system of
equations we get is:

dH

dt
=

H0 −H
τ1

− 10−3

60× 24

αH2(t− T )

c1Nd(t− T )
dNd

dt
=

N0 −Nd

τ2
− 10−9

60× 24
αc2H

3(t− T )

(21)

with c1 = 2 × 10−6 mm m−2, c2 = 3 × 103 m−1, α = 2 mm m−6 d−1. If we378

consider that LWP is a volumetric liquid water path, as it might be assumed379

as suggested above, and R in mm d−1, the factor 10−3 is replaced by 103.380

Appendix 2: Other empirical parametrizations381

Other empirical parametrizations can also be used to relate H, Nd, and382

R. Here, we would like to suggest three. In particular, we can introduce383

the following three alternative parametrizations for the delay term dNd/dt384

instead of the one in Wood (2006). (i) The empirical relationship proposed in385

Mechem et al. (2006, Eq. 9): dNd/dt (cm−3 d−1) = −69.4 (NdR)0.668, with Nd386

in cm−3 and R in cm d−1. (ii) The following empirical relationships given387

in Geoffroy et al. (2008): Jr (10−6 kg m−2 s−1) = a (LWPα/Nd) − b. Here,388

LWP is in g m−2, a, b, and α are positive constants that take the values389

summarized in Table 2.390

a α b
0.3× 106 2 10−6

24.37× 109 1 0
21.5× 103 1.5 2.3× 10−6

Tab. 2 – Values of the constants in Geoffroy et al. (2008)

When using this parametrization, it is necessary to first use Eq. (14) to391

change LWP into H.392

(iii) Finally, a parametrization of the delay term dNd/dt by taking

Nd

LWP

dLWP

dt
=

2Nd

Hr

dHr

dt
(22)

This follows from Eq. (14). The equation for dHr/dt can then be substituted393

into this equation to complete the parametrization. This equation with delay394
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is finally substituted for the delay term in the second equation in the KF11395

system.396

When using these different parametrizations, a set of coupled first-order397

DDEs similar to Eq. (1) is obtained. The units must be made consistent398

when the various empirical relationships are employed. Namely, H is in m,399

Nd is in cm−3, and time is expressed in minutes. For the numerical tets we400

have performed, these parametrizations have given results similar to those401

in Figure 1. However, we have not made a complete test of sensitivity of402

the model to changes in parametrization since it is not the purpose of this403

paper. Our goal here is to suggest other possibilities to parametrize cloud-404

rain interaction processes that could be investigated more deeply in future405

research.406
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Fig. 1 – Evolution of H and Nd according to system (1) with H0 = 530m, N0 = 180 cm−3,
τ1 = τ2 = 60min, and T = 12min. Initial conditions are H(t = 0) = 200m and Nd(t =
0) = 50 cm−3. We have used the pydelay package of Python.
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a

b

c

Fig. 2 – Evolution of Nd, Lc and Lr (a) and limit-cycle in the configuration space (Lc, Lr)
(b) for the initial conditions and values of parameters given in the text. On the limit cycle,
initial and final time of integration are at the origin and (0.25, 0) respectively. (c) Zoom
of (a).
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b

Fig. 3 – Same as Fig. 2 but for N0 = 5 cm−3. On the limit cycle, initial time of integration
is at the origin and final time of integration is represented by the black small ball at about
(0.28, 0.05).
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b

Fig. 4 – Another kind of damped cloud system. On the limit cycle, initial time of integration
is at the origin and final time of integration is represented by the black small ball at about
(0.2, 0.05).
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