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This paper deals with some properties of predator-prey cloud-rain models. Focus is put on scaling and on some mathematical features such as stability and limit cycles. Precisely, the Koren-Feingold delay differential equation model is first investigated and it is shown that it has no limit cycles. Then, by considering another point of view (i.e. species competition dynamics) for parametrizing cloud-rain processes, a system of ordinary differential equations to model these processes is formulated. Some examples are given to illustrate that this model reproduces in a realistic way the essential macroscopic behavior of a cloud-rain system. The model has a Hopf bifurcation at which certain properties of cloud-rain interactions in the model are represented. This is an important point to prepare for further examination of cloud synchronization in a cloud field by Kuramoto model, for instance.

Introduction

Clouds are complex nonlinear dynamic systems with many degrees of freedom and interactions across a vast range of spatio-temporal scales. Despite this complexity, certain non-trivial aspects of their macrobehavior are predictable without a consideration of the full complexity of the dynamic system [START_REF] Feingold | Precipitationgenerated oscillations in open cellular cloud fields[END_REF][START_REF] Koren | Aerosol-cloud-precipitation system as a predator-prey problem[END_REF][START_REF] Feingold | A model of cloupled oscillators applied to the aerosol-cloud-precipitation system[END_REF][START_REF] Koren | Exploring the nonlinear cloud and rain equation[END_REF][START_REF] Mülmenstädt | The Radiative Forcing of Aerosol-Cloud Interactions in Liquid Clouds: Wrestling and Embracing Uncertainty[END_REF]. This implies that models that capture the essential physics have the potential to contribute to our understanding of clouds and their interactions. Such models are thus always welcome, especially in conjunction with more detailed models. This is of importance in the context of the climate system (e.g. [START_REF] Glansdorff | The gap between simulation and understanding in climate modeling[END_REF] since, as is well known, clouds play a major role in the climate system (IPCC, 2013).

An example of macrobehavior that can be tackled by nonlinear dynamics is the interaction between cloud droplets and rain. Recently, [START_REF] Koren | Aerosol-cloud-precipitation system as a predator-prey problem[END_REF] (hereafter KF11) analyzed cloud-rain coupling by means of the following non-linear system of delay differential equations (DDEs):

         dH dt = H 0 -H τ 1 - αH 2 (t -T ) c 1 N d (t -T ) dN d dt = N 0 -N d τ 2 -αc 2 H 3 (t -T ) (1) 
with c 1 = 2 × 10 -6 mm m -2 , c 2 = 0.3 m -1 , and α = 2 mm m -6 d -1 (see also

Table 1 in appendix). Here, H is cloud depth (in m) and N d is cloud droplet concentration (in cm -3 ). These are the two macroscopic degrees of freedom.

In addition, t is time and T is an arbitrary constant delay (both in minutes).

The constants τ 1 and τ 2 are timescales of the order of ten minutes. H 0 is a height that represents the full environmental potential for cloud development (i.e. the maximum cloud depth possible) and N 0 is the background concentration of aerosol (i.e. the maximum concentration of cloud droplets that can be reached). According to KF11, this system exhibits predator-prey like behavior. In particular, two examples of cloud behavior are provided which represent (i ) an oscillator limit cycle and (ii ) a damped oscillator.

In the first part of this paper, we explore some physical and mathematical properties of Eq.1 that we consider important from the perspective of nonlinear dynamics that have thus far not been addressed. More precisely, our analysis, which is presented in Section 2, concentrates on scale analysis, form of the equations, stability analysis, and the question of the existence of limit cycles by means of the Busenberg theorem applied to DDEs.

In the second part of this paper, we introduce a bulk model which follows the initial idea of modeling the macrobehavior of a cloud-rain system and has properties in common with species competition dynamics. In contrast to the KF11 model, it is a system of ODEs rather than DDEs. However, the model presented here reproduces the behavior of the KF11 model, and is derived from a physically-based parametrization. This model differs from the KF11 model not only in its structure, but in the variety of its dynamics which we examine through the lense of nonlinear dynamics, e.g. linear stability analysis and bifurcation theory. This exploration yields regions of parameter space in which clouds grow at the expense of rain and vice versa.

It must be emphasized that this model does not consider the full complexity of cloud-precipitation interactions; rather, we examine certain predictable elements of the macrobehavior of the full complex dynamical system.

In particular, the model we propose incorporates population dynamics in a natural way, which includes exchanges with the surrounding environment.

Our model is presented in Section 3 and examples are given in order to show that it is physically realistic and able to reproduce the macroscopic behavior of a cloud-rain system. Section 4 provides a discussion and conclusions.

2. Analysis of some physical and mathematical properties of the KF11 model

Scale or order-of-magnitude analysis

The system (1) can be solved numerically by means of the pydelay package of Python (http://pydelay.sourceforge.net/) or MATLAB's dde23 algorithm. The PyDDE solver can also be useful. These methods are based on the Bogacki-Shampine method which is a 3(2) Runge-Kutta scheme adapted to DDEs. However, before diving into numerical computations, we analyze the magnitudes of the different terms in the system of equations.

In order to have a consistent set of equations in terms of units, we replace α and c 2 in Eq. ( 1) by α = 10 -3 α/(60 × 24) and c 2 = 10 -6 c 2 (see appendix). Typically, for cloud height, H 0 ∼ 500 m and so, by definition of H 0 , 0 < H < H 0 . For cloud droplet concentration, N 0 ∼ 400 cm -3 and so, by definition of N 0 , N d < N 0 . A reasonable minimum for N d (N d,min ) is about 50 cm -3 . Hence, considering the values of the constants involved in Eq. (1), i.e. τ 1 = τ 2 ∼ 60 min, we find:

H 0 -H τ 1 < H 0 τ 1 ≈ 8 m min -1 α H 2 c 1 N d < α H 2 0 c 1 N d,min ≈ 3 500 m min -1
and

N 0 -N d τ 2 < N 0 τ 2 ≈ 7 cm -3 min -1 α c 2 H 3 < α c 2 H 3 0 ≈ 0.5 cm -3 min -1
It follows that, since H and N d are physically expected to maintain orders or magnitude as mentioned above during the evolution of the cloud rain system, that α H 2 /(c 1 N d ) and (N 0 -N d )/τ 2 are the dominant terms in Eq. ( 1). This is particularly clear for the equation governing the evolution of H. Concerning the equation for dN d /dt, having a ratio close to 1 implies that c 2 be 10 4 or 10 5 higher than the value given in Table 1. Consequently, the evolution of N d is either an increasing or a decreasing exponential function according to the sign (positive or negative, respectively)

of N 0 -N d .
The examples chosen by KF11 have positive signs. Precisely, of any constant delay in the equation. Some numerical computations with the numerical scheme mentioned above have confirmed the evolution described above (Fig. 1). Nonetheless, we have obtained some oscillatory behavior in rare cases by varying arbitrarily some constants in Eq. (1) as the constant c 1 around 10 -3 mm m -1 and the constant c 2 around 10 4 m -1 or 10 5 m -1 . We have observed that these oscillations are, in addition, extremely sensitive to the value of c 2 chosen since they disappear if c 2 is changed even slightly (we recover the evolution described above).

N d (t) -N 0 = [N d (0) -N 0 ] exp(-t/τ 2 ),

Form of the system of equations

It is worth noting that the system (1) of two equations is not formally similar to a predator-prey system, stricto sensu. Indeed, in its basic form, the Lokta-Volterra system is the following (x and y are the two degrees of freedom):

       dx dt = ax -bxy dy dt = -cy + dxy (2)
with {a, b, c, d} a set of four positive constants. The signature (+, -| -, +), or sometimes (+, -| + , -), is also present in more elaborate versions of Lokta-Volterra models (e.g. [START_REF] Lipowski | Nonequilibrium phase transition in a lattice prey-predator system[END_REF] since it is a characteristic of species-competition models, with or without predation. However, the system 1 has the form: dH/dt = -AH-BH 

H τ 1 + α H 2 c 1 N d > H 0 τ 1 ∼ 10 m min -1 and N d τ 2 + α c 2 H 3 > N 0 τ 2 ∼ 1 -10 cm -3 min -1
So, with regard to the typical orders of magnitude of the two degrees of freedom (H ∼ 400 m, N d ∼ 100 cm -3 ), care is needed in the choice of the constants (i.e. in the model parametrization) in order to avoid always decreasing functions H(t) and N d (t).

Stability analysis

To determine further some of the properties of the system (1), we briefly discuss the stability of the model (with no delay) near its equilibrium points. These are independent of any delays, so that a system of DDEs has the same equilibrium points as the corresponding system (zero delay) of ODEs. However, investigating the stability for DDEs is a more complex task (e.g. Engelborghs et al., 2000, and references therein) which is beyond the scope of this paper (some elements can be found in Koren et al. (2017, Section IV)). Nonetheless, it is still instructive to analyze stability in the simplest case of no delay. A quick calculation yields that the KF11 system has an equilibrium point given by

N e d = N 0 -α c 2 τ 2 (H e ) 3
and

H e = c 1 N e d 2α τ 1   -1 + Ç 1 + 4α τ 1 H 0 c 1 N e d å 1/2   (3) 
Physically, because N e d (and H e ) must be positive, the value of α c 2 is constrained: α c 2 < N 0 /[τ 2 (H e ) 3 ]. The behavior of Eq. ( 1) near this equilibrium point can be obtained by evaluating the Jacobian matrix J at (H e , N e d ) and finding its eigenvalues. These are given by the well-known formula:

λ ± = 1 2 ï T J ± Ä T 2 J -4∆ J ä 1/2 ò
where T J and ∆ J are respectively the trace and the determinant of [J]. A straightforward calculation yields:

T J = - Ç 1 τ 1 + 1 τ 2 + 2α H e c 1 N e d å and ∆ J = 1 τ 2 Ç 1 τ 1 + 2α H e c 1 N e d å + 3α 2 c 2 (H e ) 4 c 1 (N e d
) 2 Since T J < 0 and ∆ J > 0, the equilibrium point (H e , N e d ) is a stable node or a stable focus (spiral) according to the sign of (T 2 J -4∆ J ). We note that if the value of α c 2 does not satisfy the above constraint, then T J can be negative, which means that Eq. ( 1) describes an unstable dynamical system.

In addition, since the sign of T J never changes, there is no local bifurcation.

A similar analysis that corroborates the above result has been performed

recently by [START_REF] Jiang | Aerosol Replenishment and Cloud Morphology: A VOCALS Example[END_REF].

Existence of limit cycles

One of the important points of this paper is the possibility of limit cycle solutions of the KF11 delay differential equations (DDEs). This needs rigorous examination. First, we note that the KF11 equations with constant delay T do not have any limit cycle solutions with period T . To see this, we consider either the Bendixson-Dulac theorem or the special case known as

Bendixson's criterion (e.g. [START_REF] Minorsky | Nonlinear Oscillations[END_REF][START_REF] Glansdorff | The gap between simulation and understanding in climate modeling[END_REF].

To illustrate the use and consequences of this theorem to the problem at hand, we first rewrite the KF11 system: dH

/dt = f [H(t -T ), N d (t -T )] and dN d /dt = g[H(t -T ), N d (t -T )],
where the functions f and g are given by the rhs (right hand sides) in Eq. ( 1). The Bendixson-Dulac theorem may be applied to this system by considering the sign of the expression

∂ H (φf ) + ∂ N d (φg), where φ(H, N d ) = 1 (this case is Bendixson's criterion). Now, suppose that this set of equations has a non-constant T -periodic solution [H(t), N d (t)]. Then, it follows that dH/dt = f [H(t), N d (t)] and dN d /dt = g[H(t), N d (t)]. A simple calculation shows that ∂ H (f ) + ∂ N d (g)
is always negative. We can therefore conclude by the Bendixson-Dulac theorem that no solutions of period T exist in the simply connected region defined by positive values of H and N d .

Since the KF11 equations are DDEs, a customary application of the Bendixson-Dulac theorem to prove the non-existence of limit cycles is inadequate. However, this theorem has been generalized (Busenberg and van den Driessche, 1993, Section 4) to higher dimensional ODEs, including DDEs like those proposed by KF11, for instance. This generalized "Bendixson-Dulac" theorem extends the concept of limit cycle to that of simple loop solutions,

i.e. any continuous solution of the system of equations whose orbit contains a closed curve. Here, we apply this generalized theorem to the KF11 DDEs in order to demonstrate the absence of loop solutions.

To illustrate the use and consequences of this generalized theorem to the problem at hand, especially theorem 4.1 in Busenberg and van den Driessche (1993), we first rewrite the KF11 system:

       dH dt = F 1 (H, N d ) h t (H t , N d,t ) + l 1 (H, N d ) dN d dt = F 2 (H, N d ) k t (H t , N d,t ) + l 2 (H, N d )
where [START_REF] Busenberg | A method for proving the nonexistence of limit cycles[END_REF] gives conditions under which the KF11 DDEs have no simple loop solution. To verify the first condition, we define the vector function g(H, N d ) = (g 1 , g 2 , 0). Here,

F 1 (H, N d ) = -α/c 1 , F 2 (H, N d ) = -αc 2 , h t (H t , N d,t ) = H 2 t /N d,t and k t (H t , N d,t ) = H 3 t are time-delayed functions (the subscript "t" stands for "time-delayed"), l 1 (H, N d ) = (H 0 -H)/τ 1 , and l 2 (H d , N d ) = (N 0 -N d )/τ 2 . Theorem 4.1 in
g 1 = α c 2 A 3 + (N 0 -N d )/τ 2 , g 2 = -α A 2 /(c 1 B) -(H 0 -H)/τ 1 ,
A and B being constants. For notational simplicity, let (u, v) represent the coordinates of the curve in Theorem 4.1 of [START_REF] Busenberg | A method for proving the nonexistence of limit cycles[END_REF]. Then:

g(H, N d ) • Ç -αu 2 c 1 v + l 1 , -αc 2 u 3 + l 2 , 0 å = α 2 c 2 A 2 u 2 c 1 Ç u B - A v å + αc 2 l 1 Ä u 3 + A 3 ä - αl 2 c 1 Ç A 2 B + u 2 v å ≤ 0
This follows from the following observations. The third term always contributes negatively, the second positively, to the sum. The first contributes negatively whenever uv < AB. Because c 1 is small, the first and third terms dominate the second so that, whenever uv < AB, the entire sum is negative.

Since A and B can be taken as large as wished, the region is finally R 2 + . To verify the second condition, we calculate

∂ H g 2 -∂ N d g 1 = 1/τ 1 + 1/τ 2 > 0 for
any solution (H, N d ) in the region specified above. So, an application of the Busenberg-van den Driessche theorem implies that there is no simple loop solution traversed in the clockwise sense (the analogue for DDEs of the limit cycle of ODEs) for the positive values of H and N d . A similar argument with vector function -g works in the opposite sense as well. In other words, there is no solution of the KF11 system which enclose a smooth oriented simple closed curve.

A new species-competition bulk model

Description

In order to retain the simplicity of the KF11 model with ODEs instead of DDEs, we propose an approach which incorporates population competition, interaction, and carrying capacities in a natural way. Here, the populations are given by cloud water content L c (g cm -3 ), rain water content L r (g cm -3 ), and cloud droplet number concentration N d (cm -3 ). We emphasize that these variables are considered here as macroscopic averages and that our model Other terms can be added to the equations, such as self-collection for instance, but to retain some measure of simplicity we use only the terms already mentioned and which we describe further. This parametrization is a straightforward consequence of the stochastic collection equation (STE) with polynomial kernel. For this reason, it seems to us that this approach is more rigorous than many other methods which consist in using heuristic (or empirical) parametrizations. Details on the STE can be found in [START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF] and [START_REF] Pruppacher | Microphysics of Clouds and Precipitation[END_REF] and references therein. It is worth mentioning that the goal of [START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF] has been to fill a gap between heuristic parametrizations and detailed microphysical (computationally expensive) schemes. The terms representing autoconversion and accretion are given by the following expressions (for a comprehensive overview see the references):

-Autoconversion: the contribution to dL c /dt and dL r /dt is given by

dL c dt auto = -KL 4 c N -2 d = - dL r dt auto (4) 
-Accretion: the contribution to dL c /dt and dL r /dt is given by

dL c dt accret = -k r L c L r = - dL r dt accret . (5) 
We note that these expressions are adapted from the [START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF] parametrization by considering the variables as bulk, cloud-scale variables. The various parameters in the equations above are defined as follows:

K = [k c /(20x * )] (ν + 2)(ν + 4)(ν + 1) -2
, where x * is a cloud drop mass separating the cloud droplets from raindrops, k c (k r ) is a constant from the cloud (rain) water kernel, and ν is the shape parameter of the gamma distribution. See [START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF] for complete details. By combining these equations, neglecting spatial dependence and adding source/sink terms for cloud and rain water contents, we arrive at the following system of bulk coupled first-order differential equations for L c , L r and N d :

               dL c dt = A c L c -B c (N d )L 4 c -k r L c L r dL r dt = -A r L r + B c (N d )L 4 c + k r L c L r dN d dt = f (N d ,L c ,L r ) (6) 
Here, B c (N d ) = KN -2 d , and A c and A r are two positive constants that can be chosen so that the source/sink terms represent the background meteorological conditions. In particular, A r represents the rain out process. These two constants give the timescales, τ c = 1/A c and τ r = 1/|A r |, of cloud water content and rain water content evolutions respectively. In addition, f (N d , L c , L r ) is a function which can be defined according to the question being investigated. Here, we choose to define f as follows:

dN d dt = A c (N 0 -N d ) - 4 3 k c L 2 c -k r L r N d . (7) 
On the rhs, the first term represents a supply of cloud droplets from the surroundings, N 0 being the background aerosol concentration that feeds the system (nucleation). Considered alone, this term causes an exponential increase (decrease) of N d with N 0 as horizontal asymptote if initially N d is lower (higher) than N 0 . This represents cloud droplet concentration and when considered alone it tends toward a constant background aerosol population concentration. Moreover, this term (or similar ones) should be dominant in the very early stages of the cloud system evolution. Indeed, at the initial time (and close to t = 0), N d is zero or very small (clear air condition) and must increase enough in order that the cloud can further evolve and produce rain.

The two other terms in Eq. ( 7) come from Seifert and Beheng (2001, Eqs.

A-5, A-6, and A-9) and represents respectively cloud droplet self-collection and accretion.

It has to be recalled that the state variables considered (L c , L r , and N d ) in this bulk model are macroscopic averages over the whole cloud. They can also be seen as local variables over a volume element of the cloud for which they are more or less uniform. A further step would be to introduce in the equation an explicit inside-cloud location (e.g. altitude z) dependence.

Nonetheless, as showed below, the present model describes some macroscale features of could-precipitation coupling.

Comment on the form of the system of equations

We note that the first two equations in (6) constitute a predator-prey system modified to include autoconversion. To see this, observe that the constants {a, b, c, d} in the Lotka-Volterra equations (Eq. 2) have the following formal correspondence with the model presented here:

{a = A c , b = -d = k r , c = A r }.
Hence, the source/sink and accretion terms form a standard predator-prey system when considered alone. The quartic terms not only represent autoconversion of cloud droplets to rain given in the Seifert and Beheng ( 2001) parametrization, but also ensure that the cloud droplet population does not exhibit unbounded growth in the absence of competition.

Thus, it plays a similar role to the carrying capacity term used in population dynamics to modify some of the unrealistic features of the original Lotka-Volterra system.

The entire system of equations is not rigorously equivalent to a threespecies competition model. As already discussed, the first two equations constitute a modified Lotka-Volterra system. The autoconversion terms which modify the traditional predator-prey system have coefficients driven by the third equation, viz. that for N d . The interpretation of the varying coefficients is that the carrying capacities of the water contents vary according to the state of N d , which is more realistic for clouds.

It is worth mentioning that L c and L r are, for physical reasons, necessarily bounded. So, in virtue of the Poincaré-Bendixson theorem, the first two equations of system (6) have a solution that either converges towards a limit or presents an asymptotic behaviour that can take the form of a limit cycle.

Boundedness has not been proved in a mathematical sense but, rather, we rely on numerical evidence (see some examples below, in Subsection 3.4) and on the fact that the present system of equations has much in common with other predator-prey models which are known to have bounded solutions. Obviously, if k r and B c are zero, the evolution of L c is exponentially divergent.

The terms involving non-zero values of k r and B c prevent unbounded evolution within certain parameter ranges, as is the case in predator-prey models.

It is far beyond the scope of this paper to address rigorously (i.e. mathematically speaking) boundedness of solutions, but that could be formulated and explored deeply in a future specific work.

Stability analysis

Equilibrium points

The system

       dL c dt = A c L c -B c (N d )L 4 c -k r L c L r dL r dt = -A r L r + B c (N d )L 4 c + k r L c L r (8) 
has two equilibrium points X e = {L (e) c , L (e) r }. In this section we treat N d as a parameter. The first one is trivial: X (1) e = 0. There is no cloud nor a fortiori rain. Using Eq. ( 7), N (e) d = N 0 , which means that the atmospheric volume considered has a constant CCN (cloud condensation nuclei) loading (that does not allow cloud formation). The second equilibrium point X (2) e is such that:

A c L (e) c = |A r |L (e) r and B c (N d ) |A r | 3 A 4 c Ä L (e) r ä 3 + k r A c L (e) r -1 = 0 (9)
Since the two first terms of this third order polynomial are positive, there is only one real positive solution L (e) r -the other two are complex conjugates. The expression of N (e) d follows from those of L (e) c and L (e) r using Eq. ( 7) Plugging L (e) c and L (e) r into Eq. ( 7) yields:

N (e) d = Ç A c + k r A c |A r | L (e) c å -1 ñ A c N 0 - 4 3 k c Ä L (e) c ä 2 ô (10)
The eigenvalues of the jacobian matrix J of the system (6) are:

λ ± = 1 2 ï T J ± Ä T 2 J -4∆ J ä 1/2 ò
where the trace T J and the determinant ∆ J of [J] can be written as follows:

T J = Tr(J) = A c -|A r | + k r Ä L (e) c -L (e) r ä -4B c (N d ) Ä L (e) c ä 3 (11) 
and

∆ J = det(J) = -A c |A r | + k r Ä A c L (e) c + |A r |L (e) r ä + 4|A r |B c (N d ) Ä L (e) c ä 3 (12)
They must be evaluated for each of the two equilibrium points.

Stability analysis around X (1)

e

In this case,

T J = A c -|A r | and ∆ J = -A c |A r | < 0. The two eigenvalues have opposite sign, λ + λ -< 0, with λ + = A c > 0 and λ -= -|A r | < 0. The state X (1)
e is thus a saddle point.

Stability analysis around X (2)

e

In this case

T J = (3A c + |A r |) k r L (e) r A c -1 and ∆ J = -2A c |A r | k r L (e) r A c - 3 2
It follows that the equilibrium point

X (2) e = Ä L (e) c , L (e) r ä is stable if: k r L (e) r A c < 1 i.e. L (e) r < A c k r and L (e) c < |A r | k r (13) Otherwise, for k r L (e) r /A c > 1, X (2) 
e is an unstable equilibrium point.

The identity k r L (e) r /A c = 1, which separates a stable regime from an unstable one, has the straightforward consequence that B c N The other characteristic value is k r L (e) r /A c = 1.5. Below (above) this value, ∆ J is positive (negative). So

X (2) e is a saddle point if L (e) r = 1.5A c /k r .
The nature (node, focus or spiral) of X (2) e is provided by the sign of T 2 J -4∆ J :

T 2 J -4∆ J =   (3A c + |A r |) 2 k r L (e) r A c -1 2   + 4|A r |A c 2 k r L (e) r A c -3 If k r L (e) r /A c = 1, T 2 J -4∆ J = -4|A r |A c < 0 which means that X (2)
e is a focus.

For k r L (e) r /A c = 1, the sign of T 2 J -4∆ J depends on the number N τ = |A r |/A c through the second order polynomial equation:

(3A c + |A r |) 2 k r L (e) r A c 2 -2 k r L (e) r A c î (3A c + |A r |) 2 -4A c |A r | ó +(|A r | -3A c ) 2
The two solutions are easy to find:

Z ± = (3A c + |A r |) 2 -4|A r |A c (3A c + |A r |) 2 ± 2 [(9A 2 c + |A r |A c ) (|A r | 2 + A c |A r |)] 1/2 (3A c + |A r |) 2
Three cases can be distinguished at first sight:

-|A r | = A c : so Z ± = (3 ± √ 5)/4 > 0. Between these two values, T 2 J - 4∆ J < 0, so that X (2)
e is a focus. Outside of this interval, we have a node

-|A r | A c : so Z ± = 1 ± 2 (A c /|A r |) 1/2 > 0. Same as previously. -|A r | A c : so Z ± = 1 ± (2/3) (|A r |/A c ) 1/2 > 0.
Same as previously.

Andronov-Hopf bifurcation

It follows from what precedes that the eigeinvalues of the jacobian matrix cross the imaginary axis for B c = 0. At this point, they are pure imaginary numbers, λ ± = i(A c |A r |) 1/2 . There, the system has a limit cycle. Just after

(B c < 0), the spiral is unstable whilst it is stable just before (B c > 0).
This behavior is precisely a Hopf bifurcation: an unstable focus gives birth to a stable focus (and vice versa) through a limit cycle. The existence of such a bifurcation is an important point for further investigations of cloud organization in a coupled-cloud field at the mesoscale [START_REF] Kuramoto | Chemical Oscillations, Waves, and Turbulence[END_REF].

Examples

We now illustrate the behavior of this set of three equations with some examples. The values chosen for k r and k c are those given in Seifert and Beheng ( 2001) which follow from approximations to the collection kernel in [START_REF] Long | Solutions to the Droplet Collection Equation for Polynomial Kernels[END_REF], i.e. k c ≈ 5.66×10 11 cm 3 g -2 min -1 and k r ≈ 3.47×10 5 cm 3 g -1 min -1 .

The value of x * = 2.6 × 10 -7 g, following [START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF]. We take ν = 2, which is a typical value for warm clouds (e.g. , Pruppacher and Klett, 1997, chap. 2). With these values, the parameter K ≈ 2.905 × 10 17 cm 3 g -3 min -1 .

In addition, we take A c = 0.02 min -1 and A r = 0.1 min -1 . So, cloud water content and rain water content are expected to evolve on the timescales τ c = 50 min and τ r = 10 min. The latter is lower than the former since raining out is a rapid process compared to the evolution of cloud water content. These values are chosen for illustrative purposes.

First example: periodic behavior

We choose as initial conditions N d (0) = 10 cm -3 , L c (0) = 10 -9 g cm -3 , L r (0) = 0, and N 0 = 50 cm -3 . The system exhibits oscillatory behavior after approximately 300 min, with a period of about 200 min, which is physically realistic (Fig. 2a). Both N d and L c increase initially (the former faster than the latter) until rain appears. Soon thereafter, rain water content peaks and droplet number and mass concentration decrease drastically in a short interval of time. Minimum values of L c are reached and rain water content decreases to zero. Then N d and L c start to increase again, and so on. This periodicity appears clearly as a limit cycle on the plot (L c , L r ) displayed in Fig. 2b. It is interesting to mention that peaks in rain water content are delayed from L c peaks by about 20 -30 min, which is a very realistic value for rain to form from a cloud droplet by collection (Fig. 2c). We also note that similar oscillations and limit cycles are obtained for other initial conditions (not shown). Note that the model presented here represents well a timescale of precipitation production that has to be explicity and arbitrarily accounted for via delays in the more complicated DDE framework.

Second example: damped behavior

If N 0 is lower than N d (0), the feeding of the system is not sufficient to maintain the cloud-rain system in a harmonic (or quasi) oscillation and a damping is observed (Fig. 3): N d , L c , and L r still oscillate but their respective amplitudes decrease progressively until a steady state is reached. Initially N d decreases exponentially as expected, and then decreases more rapidly when L c and L r peak for the first time.

Damping can also be obtained by introducing in the model a decreasing evolution for the CCN supply, for instance N 0 = 50 exp(-0.002 t). This means that the initial CCN burden is divided by around 2.72 in 500 min, i.e. 8 hours. Keeping the same initial conditions as previously, we get the behavior displayed in Figure 4, which is typical of a damped oscillator: N d increases until a certain time t (approximately 120 min) at which the exponential function becomes significant. Then N d decreases dramatically. The same behavior is seen for L c and L r which increase until t = 500 min and then exhibit decaying amplitude oscillations that eventually (t > 1 500 min) die out. Again, we note that the peaks of L r are delayed with respect to those of L c by about 20 -30 min.

The same damping behavior is observed (not shown) for different initial conditions, in particular if L r = 0, provided the values are realistic.

Discussion and conclusion

Certain aspects of a system's bulk behavior arise out of many smallscale interactions. These aspects may be investigated with simple models that faithfully represent the bulk behavior, but do not consider directly the full complexity of the system. In conjunction with more detailed models and simulations, models which represent bulk behavior can also enhance our understanding of complex dynamical systems. The model presented here, which has aspects of species competition in biology, is a tool with which to examine the complexity of cloud-rain interactions in a way that highlights certain aspects of their behavior in a simple but realistic manner. This model is not meant to supplant more detailed simulations of cloud-precipitation interactions but to represent certain predictable elements of the macrobehavior of the full complex dynamical system.

In the first part of the paper, we examined some important mathematical properties of the KF11 DDEs model which is a similar model devoted to analyze the bulk behavior of a cloud-rain system. The focus has been put on scaling and limit cycles or loop solutions. In particular, it has been shown, through the Busenberg theorem that this model has no proper limit cycle solutions. The model we have introduced in this paper (second part) is another point of view which retains the idea of modeling cloud-precipitation interaction through population dynamics and exhibits predator-prey behavior with rain as predator and cloud droplets as prey. The stability analysis has shown that our model has limit cycles and a Hopf bifurcation.

In particular, the model formulated here is a system of ODEs rather than DDEs. It is derived from a physically-based parametrization. Several examples illustrate that our model reproduces realistically the behaviour of an unique cloud-rain system. In particular, rain water content peaks are delayed by about 20 -30 min with respect to cloud water content peaks.

Some of the novel properties of the model include regions of parameter space in which clouds grow at the expense of rain and vice versa as determined from bifurcation analysis.

Further properties of our model such as ability to represent various physical situations, and sensitivity tests to parametrization schemes similar to those performed by [START_REF] Wacker | Competition of precipitation particles in a model with parametrized cloud microphysics[END_REF] for mixed and ice clouds, will be explored in more detail in future work. Due to its properties, this cloud-rain model is intended to be further developed for examination of cloud organization at larger scales in a coupled-cloud field.

and not [L] -1 (cf. Table 1). Indeed, the well-established relationship is given by LW P (g m -2 ) = 0.5 c w H 2 , where c w = 2 × 10 -6 kg m -4 (e.g. [START_REF] Geoffroy | Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system[END_REF]. Actually, c w = ρ w c 1 , where ρ w ≈ 10 3 kg m -3 is liquid water density and c 1 = 2 × 10 -9 m -1 -in Tab. 1, c 1 = 2 × 10 -6 mm m -2 , i.e. c 1 (m -1 ) = 10 -3 c 1 (mm m -2 ). The relationship between LW P and H we get is thus:

LW P (g m -2 ) = 1 2 c w (kg m -4 ) H 2 (m 2 ) = 1 2 ρ w (kg m -3 ) c 1 (m -1 ) H 2 (m 2 ) ( 14 
)
If we look now at Eq [5] and the units chosen, the decreasing rate of LW P due to rain cannot equal exactly the rainrate R (in mm d -1 ). In fact, dLW P/dt is proportional to the precipitation flux density (or rain current J r = -ρ w R).

The coefficient of proportionality is determined by the choice of units. If, as in KF11, we express time in minutes (it is the most natural timescale for cloud macroscopic physics), and keep LW P in g m -2 as above, we obtain:

dLW P dt (g m -2 min -1 ) = -ρ w (g m -3 ) R (m min -1 ) = -10 3 ρ w (kg m -3 ) R (m min -1 ) = - 10 3 60 × 24 ρ w (kg m -3 ) R (m d -1 ) = - 1 60 × 24 ρ w (kg m -3 ) R (mm d -1 ) (15) 
since R (m min -1 ) = 10 -3 R (mm d -1 )/(60 × 24). Combining Eqs. ( 14) and (15) yields:

dH dt (m min -1 ) = dLW P/dt (g m -2 min -1 ) c w (kg m -4 ) H (m) = - ρ w (kg m -3 ) R (mm d -1 ) (60 × 24) c w (kg m -4 ) H (m) = - 1 60 × 24 R (mm d -1 ) c 1 (m -1 ) H (m) = - 10 3 60 × 24 R (mm d -1 ) c 1 (mm m -2 ) H (m) (16)
It is possible, although not common, to divide LW P by ρ w and then to de-370 fine a volumetric liquid water path: LW P v (m) = 10 -3 LW P (g m -2 )/ρ w (kg m -3 ).
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In this case, Eqs. [2] and [5] of Table 1 are correct provided that, for Eq. [5], R be expressed in m min -1 , or equivalently, considering 10 -3 R (mm d -1 )/(60× 24). However, we have not found any explicit mention of LW P in m or mm in KF11 and further papers; there LW P is explicitly expressed in g m -2 several times. The KF11 model also employs two parametrizations which relate R, N d , and dN d /dt (see Eqs. [4] and [9] in Table 1). The units of the latter two quantities are naturally cm -3 and cm -3 min -1 , respectively. According to the units used in KF11, the rhs of Eq. [4] is in mm m -3 cm 3 d -1 , while the lhs (left hand side) is in mm d -1 . Although Eq. [4] is dimensionally correct ([L][T ] -1 , where [T ] is the time dimension), the units of the rhs and lhs are not the same. Indeed, the relation R = αH 3 /N d should have N d in m -3 when H is in m. If we choose to express N d in cm -3 , then we must multiply H 3 /N d by 10 -6 . With the unit of α, R is thus in mm d -1 : R (mm d -1 ) = 10 -6 α (mm m -6 d -1 ) H 3 (m 3 ) N -1 d (cm 3 ) (17)

Thus, for Eq. ( 16), we obtain: dH dt (m min -1 ) = -10 -3 60 × 24 α (mm m -6 d -1 ) H 2 (m 2 ) c 1 (mm m -2 ) N d (cm -3 ) (18)

In addition, Wood (2006) (ref. 20 in KF11) gives a value of c 2 which does not correspond to that used in KF11. Aside from the conflation of rain current and rainrate in [START_REF] Wood | Rate of loss of cloud droplets by coalescence in warm clouds[END_REF] -this article seems to use P as rainrate and divides it by liquid water density (ρ w ), whereas P should be the rain current and P/ρ w the rainrate -, the coefficient of proportionality between dN d /dt and R is 3E 0 /4 = 3 × 10 3 m -1 since E 0 = 4 × 10 3 m -1 . This value is different from the 0.3 m -1 used in KF11 (assuming that P , in [START_REF] Wood | Rate of loss of cloud droplets by coalescence in warm clouds[END_REF], is rainrate, and not rain current, which is very few probable due to a dimensional analysis of the Eq. 14 of [START_REF] Wood | Rate of loss of cloud droplets by coalescence in warm clouds[END_REF], c 2 would be 3 m -1 , i.e. the previous value of c 2 divided by ρ w , which is again different from the value of Table 1). Because, in Eq. [9], dN d /dt has to be in cm -3 min -1 , we have:

dN d (cm -3 min -1 ) dt = c 2 N d (cm -3 ) R (m min -1 ) (19) 
with c 2 = 3 × 10 3 m -1 .

Then, because R (m min -1 ) = 10 -3 R (mm d -1 )/(60 × 24), we obtain, by substituting the rainrate of Eq. ( 17) into Eq. ( 19): dN d (cm -3 min -1 ) dt = 10 -9 60 × 24 c 2 (m -1 ) α (mm m -6 d -1 ) H 3 (m 3 ) (20) 

  where N d (0) = N d (t = 0). It ensues that N d evolves exponentially towards N 0 . With respect to dH/dt, the dominant term is always negative and, unless N d becomes very small, it will remain the dominant term in the evolution of H. Hence, H is a decreasing function which must stop at H = 0 by definition. This scale analysis, based only on the physical realistic orders of magnitude of H and N d is independent

  captures some of the macroscale properties of cloud-precipitation interactions by means of three relatively simple equations in three variables, rather than a fine-scale description with complete microphysical details. The model consists of three coupled differential equations, one each for L c , L r , and N d . The system includes three main processes that contribute to the cloud budgets of L c , L r , and N d , namely: (1) sources/sinks which represent exchanges with the surroundings, and two internal processes, (2) autoconversion of cloud water to rain water, and (3) accretion of cloud water by rain water.The various terms in the equations were suggested by the[START_REF] Seifert | A double-moment parameterization for simulating autoconversion, accretion and selfcollection[END_REF] parametrization for simulating autoconversion and accretion.

  .e. B c = 0 since L (e) c = 0. Physically, this critical value means that the net rate of the autoconversion process is zero: formation of a raindrop from cloud droplets only is compensated over a given time interval by the formation of cloud droplets from a raindrop only. Thus, the system maintains constant rain and cloud water contents whose values -see Eq. (13)depend only on the exchange rates with the surroundings (A c and A r ) and on the cloud-to-rain reaction constant (k r ). Below the critical value (B c < 0), the autoconversion process results in net production of cloud droplets from raindrops. It constitutes a nonlinear amplification term for cloud droplets and a nonlinear damping term for raindrops, i.e. disturbances from equilibrium grow. In other words, the cloud is growing such that cloud droplets become more numerous while the number of raindrops vanishes. This behavior is reversed above the critical value (B c > 0): the non linear term compensates any deviation from the equilibrium point (stability). In the case B c < 0, without any cloud-rain interaction (k r = 0), cloud (rain) water content is an increasing (decreasing) function.

Fig. 1 -Fig. 2 -Fig. 3 -Fig. 4 -

 1234 Fig. 1 -Evolution of H and N d according to system (1) with H 0 = 530 m, N 0 = 180 cm -3 , τ 1 = τ 2 = 60 min, and T = 12 min. Initial conditions are H(t = 0) = 200 m and N d (t = 0) = 50 cm -3 . We have used the pydelay package of Python.

  2 /N d and dN d /dt = -CN d -DH 3 with {A, B, C, D} a set of four positive constants. So, system (1) does not have the general form of a Lokta-Volterra system since the signature is fully negative, (-, -| -, -). It follows that Ḣ and Ṅd are negative if (H, N d ) always satisfy the two inequalities:
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Appendix 1: Unit analysis

The system (1) is derived from four empirical equations which we have summarized in Table 1 together with their numbering in KF11.

Eq. number Equation Constants in KF11

[2] LW P = 0.5 c 1 H 2 c 1 = 2 × 10 -6 mm m -2 [5] dLW

Tab. 1 -Equations and constants in KF11 discussed here. In KF11, LW P and R are liquid water path and rainrate, respectively. The corresponding units are explicitely g m -2 and mm d -1 .

Eq. [2] connects liquid water path (LW P , in g m -2 ) with cloud depth (H, in m). The dimension of LW P is [M ][L] -2 (where [M ] and [L] are mass and length dimensions), which implies that the dimension of

Finally, with this set of units, i.e. with H and N d in m and cm -3 respectively, and time in minutes, the consistent (in terms of units) system of equations we get is:

consider that LW P is a volumetric liquid water path, as it might be assumed as suggested above, and R in mm d -1 , the factor 10 -3 is replaced by 10 3 . Tab. 2 -Values of the constants in [START_REF] Geoffroy | Relationship between drizzle rate, liquid water path and droplet concentration at the scale of a stratocumulus cloud system[END_REF] When using this parametrization, it is necessary to first use Eq. ( 14) to change LW P into H.

(iii ) Finally, a parametrization of the delay term dN d /dt by taking

This follows from Eq. ( 14). The equation for dH r /dt can then be substituted into this equation to complete the parametrization. This equation with delay 20 is finally substituted for the delay term in the second equation in the KF11 system.

When using these different parametrizations, a set of coupled first-order DDEs similar to Eq. ( 1) is obtained. The units must be made consistent when the various empirical relationships are employed. Namely, H is in m, N d is in cm -3 , and time is expressed in minutes. For the numerical tets we have performed, these parametrizations have given results similar to those in Figure 1. However, we have not made a complete test of sensitivity of the model to changes in parametrization since it is not the purpose of this paper. Our goal here is to suggest other possibilities to parametrize cloudrain interaction processes that could be investigated more deeply in future research.