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On Systems of Reaction Diffusion Equations with a Balance Law: The Sequel

 not only for classical systems but also for systems with either time fractional derivatives or space fractional derivatives accounting for anomalous diffusions.

1 Introduction.

In the early nineties, Martin proposed to find conditions on the reaction term f in the reaction diffusion system with a balance law:

) is supplemented with the usual boundary conditions and bounded given initial data:

The reaction term f is taken differentiable in both variables and satisfies the following requirement:

which ensures the non-negativity of the solutions u ≥ 0 and v ≥ 0 with the initial values u 0 (x) ≥ 0, v 0 (x) ≥ 0.

) can serve as a model for some chemical situations.

• the classical auto-catalytic reaction:

mU + nV (n + 1)V,
where U and V are chemical species whose local concentrations are

u = [U ] , v = [V ] .
According to the usual mass action law (an empirical law by Guldberg and Waage [START_REF] Guldberg | Etudes sur les affinités chimiques[END_REF]), the reaction term is:

f (u, v) = ku m v n , m, n ≥ 1, k > 0.
• the model of Selkov [START_REF] Sel'kov | Self-oscillations in glycolysis: 1. A simple kinetic model[END_REF]:

u t -a∆u = ν - k 1 uv γ 1 + Kv γ , v t -b∆v = -k 2 v + k 1 uv γ 1 + Kv γ ,
where u is the self inhibitor, generated with the coefficient of Hill [START_REF] Hill | The possible effects of the aggregation of the molecules of homogloebin on its dissociation curves[END_REF] γ ( usually large, often greater than 8), that is transformed in the activator v by the kinetic of Hill [START_REF] Hill | The possible effects of the aggregation of the molecules of homogloebin on its dissociation curves[END_REF]. Martin's model is obtained by setting ν = k 2 = K = 0.

• the model of Kumar [START_REF] Inamdar | Bounds on steady states for a nonsystemically autocatalysed reaction-diffusion system[END_REF]:

A -→ k 1 B-→ k 2 C
for which the decomposition of the concentration A depends exponentially on that of B (remember that the mass action law is an empirical one):

k 1 ∝ e β[B] -1, β > 0;
and f (u, v) = u n (e βv -1).

As said above, the main question posed by Martin is to ensure the boundedness of the components u and v of the solution of system (1)- [START_REF] Abdelmalek | A Lyapunov functional for a triangular reaction-diffusion system with nonlinearities of exponential growth[END_REF].

Observe that the component u is trivially bounded by a simple application of the maximum principle as the reaction term in the equation of u is nonpositive and the initial data is bounded. The question then is to show that v remains bounded whenever it is initially so.

It is a common belief that if the system of differential equations associated with system (1)-( 2) (the one obtained by dropping the diffusion terms) admits global solutions then solutions of the reaction-diffusion system will be global too. This is true for a single equation or quasi-monotone decreasing systems via the maximum principle but it is not true in general as the following simple example of Guedda and Kirane [START_REF] Guedda | Diffusion terms in systems of reaction diffusion equations can lead to blow up[END_REF] reveals it.

The system u = uv, t > 0, u(0

) = u 0 ∈ R, v = -2, t > 0, v(0) = v 0 ∈ R,
admits the global solution u(t) = u 0 e v 0 t-t 2 , v(t) = v 0 -2t, while the associated reaction diffusion system

u t -u xx = uv, x ∈ R, v t -v xx = -2, x ∈ R, subject to the initial data u(x, 0) = 1 √ 2π e -x2 2 , v(x, 0) = x 2 , admits the solution v(x, t) = x 2 , u(x, t) = 2 -1 4 2πcos( π 4 -2t) exp - x 2 2 tan π 4 -2t → ∞, t → π 8 .
One can find more examples in Churbanov [START_REF] Churbanov | An example of a reaction system with diffusion in which the diffusion leads to explosion[END_REF], Morgan [START_REF] Morgan | On a question of blow-up for semilinear parabolic systems[END_REF], Weinberger [START_REF] Weinberger | An example of blowup produced by equal diffusions[END_REF] and Souplet [START_REF] Souplet | A note on diffusion-induced blow-up[END_REF]; see also the review paper of Fila and Ninomiya [START_REF] Fila | Reaction-diffusion systems: blow-up of solutions that arises or vanishes under diffusion[END_REF].

2 The results

Classical diffusions

Martin's question has been answered positively in case of non-negative and bounded initial data for bounded Ω or not in the following situations:

2.1.1 the case of a nonlinearity of polynomial growth in v by:

In the case of bounded Ω:

-Masuda [START_REF] Masuda | On the global existence and asymptotic behavior of solutions of reaction-diffusion equations[END_REF], using the Lyapunov functional (a piece of art!):

L(t) = Ω (1 + δ(u + u 2 ))v n dx, δ > 0,
which allowed him to bound v n in the space L 1 (Ω); this is sufficient to obtain the boundedness of v. Moreover, he studied the large time behavior of the solution (u, v) and found it to be tending to a constant vector C = (c 1 , c 2 ), as t ↑ ∞, uniformly on Ω, where c j ≥ 0, j = 1, 2, satisfy

c 1 c 2 = 0, c 1 + c 2 = 1 |Ω| Ω (u 0 (x) + v 0 (x)) dx.
-Martin and Pierre retrieved Masuda's result by a duality argument [START_REF] Martin | Nonlinear Reaction Diffusion Systems[END_REF]; we don't comment more on the paper of Martin and Pierre as we will use their argument in the sequel.

A more general situation has been handled by Kouachi [36] by studying the following system:

u t -a∆u = f (u, v), (4) 
v t -b∆v = g(u, v), (5) 
subject to homogeneous Neumann boundary conditions and initial conditions

0 ≤ u(x, 0) = u 0 (x) ≤ M, 0 ≤ v(x, 0) = v 0 (x) ≤ N, (6) 
even if the nonlinearities don't have a definite sign but satisfy the following dissipation condition:

λf (u, v) + g(u, v) ≤ 0, u, v ≥ 0, λ 1,
where f and g are of polynomial growth

f (u, v), g(u, v) ≤ C(1 + u + v) γ , u, v ≥ 0, γ ≥ 1.
Theorem 2.1. [START_REF] Kouachi | Existence of global solutions to reaction-diffusion systems via a Lyapunov functional[END_REF] Let Ω be bounded and a, b > 0, a = b, γ ≥ 1,

λ ≥ (a + b) 2 4ab m-1 ≥ 1,
where m ∈ N satisfies m > n(γ -1)/2. Then, for any u 0 , v 0 ≥ 0, bounded, problem (4)-( 5) admits a uniformly bounded in Ω × [0, +∞) global solution.

An example of nonlinearities satisfying the above conditions is given by:

f (u, v) = u p v q -u r v s , g(u, v) = u r v s -λu p v q ,
where p, q, r s ≥ 0, λ 1.

Proof. The proof of Kouachi's result is based on the Lyapunov functional

L(t) = Ω H m (u(x, t), v(x, t))dx, 0 < t < T max ,
where

H m (u, v) = m i=0 C i m K i 2 -i u i v m-i , C i m = m! i!(m -i)! , K ≥ a + b 2 √ ab , m ∈ N, λ ≥ K 2(m-1) .
Later on, Abdelmalek and Kouachi [START_REF] Abdelmalek | Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method[END_REF] pushed further the study to handle a m × m ( m ≥ 2) system that generalizes Martin's system. Their system reads:

(u i ) t -a i ∆u i = f i (U ) , x ∈ Ω, t > 0, U = (u i ) m i=1 , i = 1, ..., m, (7) 
subject to the general boundary conditions

λ i u i + (1 -λ i ) (u i ) ν = β i , x ∈ ∂Ω, t > 0, i = 1, ..., m, (8) 
and the initial data

u i (0, x) = u 0 i (x) ≥ 0, x ∈ Ω, i = 1, ..., m, (9) 
where a i are positive constants and 0

≤ λ i ≤ 1, 0 ≤ β i ∈ C 1 (∂Ω × R + ), i = 1, ..., m.
The reaction terms are supposed to satisfy the following conditions: (A1) Functions f i are continuously differentiable on R m + for all i = 1, ..., m, and satisfy f i (u 1 , ..., u i-1 , 0, u i+1 , ..., u m ) ≥ 0, for all u i ≥ 0; i = 1, ..., m, which allow the components of the solution to be nonnegative whenever they are so initially; (A2) Functions f i possess polynomial growth, i.e., for all i = 1, ..., m, there is an integer N ≥ 1 such that

|f i (U )| ≤ C 1 1 + m i=1 u i N for u i ≥ 0, i = 1, ..., m (10) 
and

m-1 i=1 D i f i (U ) + f m (U ) ≤ C 2 1 + m i=1 u i (11) 
for all u i ≥ 0, i = 1, ..., m, and some sufficiently large constants D i , i = 1, ..., m, C 1 and C 2 are positive and uniformly bounded functions, defined on R m + .

To render their result easy to read, let us set A ij = (a i + a j )/2 √ a i a j for all i, j = 1, ..., m, and let θ i , i = 1, ..., (m -1) , be positive constants such that

K l l > 0, l = 2, ..., m, (12) 
where

K r l = K r-1 r-1 • K r-1 l -H r-1 l 2 , r = 3, ..., l, H r l = det 1≤i,j≤l
(a i,j ) i =l,...r+1

j =l-1,..r • k=r-2 Π k=1 (det k) 2 (r-k-2) r = 3, ..., l -1, K 2 l = a 1 a l l-1 Π k=1 θ 2(p k +1) 2 k • m-1 Π k=l θ 2(p k +2) 2 k positive value • l-1 Π k=1 θ 2 k -A 2 1l
and

H 2 l = a 1 √ a 2 a l θ 2(p 1 +1) 2 1 l-1 Π k=2 θ (p k +2) 2 +(p k +1) 2 k • m-1 Π k=l θ 2(p k +2) 2 k positive value • θ 2 1 A 2l -A 12 A 1l ,
and det 1≤i,j≤l

(a i,j ) i =l,...r+1 j =l-1,..r
denotes the determinant of the r square symmetric matrix obtained from the matrix (a i,j ) 1≤i,j≤m by removing the (r + 1) th , (r + 2) th , ..., l th rows and the r th , (r + 1) th , ..., (l -1) th columns. The elements of the matrix are:

a ij = a i + a j 2 θ p 2 1 1 ...θ p 2 (i-1) (i-1) θ (p i +1) 2 i ...θ (p(j-1)+1) 2 j-1 θ (p j +2) 2 j ...θ (p(m-1)+2) 2 (m-1) . ( 13 
)
For the matrix )) be a solution of ( 7)-( 9) and that:

A =   
L(t) = Ω H pm (u 1 (t, x) , u 2 (t, x) , ..., u m (t, x)) dx, (14) 
where

H pm (u 1 , ..., u m ) = pm p m-1 =0
...

p 2 p 1 =0 C p m-1 pm ...C p 1 p 2 θ p 2 1 1 ...θ p 2 (m-1) (m-1) u p 1 1 u p 2 -p 1 2 ...u pm-p m-1 m ,
with p m a positive integer and

C p i p j = p j ! p i !(p j -p i )! .
Then the functional L is uniformly bounded on the maximal interval of existence (0, T max ).

The boundedness of L is sufficient to show that the solution is global.

Concerning the application of Theorem 1.2, it particularly applies in particular to the following biochemical and chemical models.

Consider the scheme of reversible reactions

U 1 + U 2 k 1 k 2 U 3 , U 1 + U 4 k 3 k 4 U 5, U 2 + U 6 k 5 k 6 U 4 ; (15) 
standard chemical kinetics lead to the following system of reaction-diffusion equations for the local concentrations u i of U i , i = 1, . . . , 6:

(u 1 ) t -d 1 ∆u 1 = -k 1 u 1 u 2 -k 3 u 1 u 4 + k 2 u 3 + k 4 u 5 , (u 2 ) t -d 2 ∆u 2 = -k 1 u 1 u 2 + k 2 u 3 -k 5 u 2 u 6 + k 6 u 4 , (u 3 ) t -d 3 ∆u 3 = k 1 u 1 u 2 -k 2 u 3 + k 5 u 2 u 6 -k 6 u 4 , (u 4 ) t -d 4 ∆u 4 = -k 3 u 1 u 4 + k 4 u 5 + k 5 u 2 u 6 -k 6 u 4 , (u 5 ) t -d 5 ∆u 5 = k 3 u 1 u 4 -k 4 u 5 -k 5 u 2 u 6 + k 6 u 4 , (u 6 ) t -d 6 ∆u 6 = -k 5 u 2 u 6 + k 6 u 4 . (16) 
In the special case

k 5 = k 6 = 0, U 1 , U 2 , U 3 , U 4 , U 5 may represent, respec- tively, hemoglobin Hb, O 2 , HbO 2 , CO 2 and HbCO 2 .
2. The reversible chemical reaction:

µ 1 R 1 + µ 2 R 2 + ... + µ r R r k f kr ν 1 P 1 + ν 2 P 2 + ... + ν P , (17) 
where R i and P i represent reactant and product species, respectively, and µ i , ν i are positive constants for each i.

For u i = [R i ], v i = [P i ] with k f , k r ,
the (non-negative) forward and reverse reaction rates, we have the following reaction diffusion system

(u i ) t -∇ • (d i ∇u i ) = µ i k r j=1 v ν j j -k f r j=1 u µ j j , i = 1, ...r, (v i ) t -∇ • (d r+i ∇v i ) = ν i k f r j=1 u µ j j -k r j=1 v ν j j , i = 1, ... . (18) 
In both situations, the nonlinearities satisfy the hypotheses of the theorem.

3. The Brusselator (Prigogine and Col. [START_REF] Nicholis | Self-Organization in Non-equilibrium Systems[END_REF]) described by the following system

u t -a∆u = Au 2 v -(B + 1)u + 1, v t -b∆v = -Au 2 v + Bu,
is a model for the tri-molecular scheme

2U + V 3V, B + U V + D.
4. The model of Schnackenberg [START_REF] Schnackenberg | Simple chemical reaction systems with limit cycle behavior[END_REF] given by the system:

u t -a∆u = A -u + u γ v, v t -b∆v = B -u γ v + Bu, describes the stoichiometric reaction 2U + V 3V, A V U B,
a modification of the Brusselator by incorporating a further reaction step A V .

The question of Martin has also been answered positively in

2.1.2
The case of unbounded domain Ω = R N , and reaction terms of super polynomial growth type .

-The case of unbounded domain Ω = R N has been treated by:

-Collet and Xin [START_REF] Collet | Global existence and large time asymptotic bounds of L ∞ solutions of thermal diffusive combustion systems on R N[END_REF] using a localization of Masuda's Lyapunov function. and -Fitzgibbon, Morgan and Sanders [START_REF] Fitzgibbon | Global existence and boundedness for a class of inhomogeneous semilinear parabolic systems[END_REF] using estimates of the heat kernel.

case of Nonlinearity of sub-exponential growth in v

It has been tackled by:

-Haraux and Youkana [START_REF] Haraux | On a result of K. Masuda concerning reactiondiffusion equations[END_REF] using a modification of Masuda's Lyapunov functional in the form

L(t) = Ω (1 + δ(u + u 2
))e εv dx, δ, ε > 0 (ε small); they could handle Martin's system with the reaction term

f (u, v) = u n ψ(v) satisfying lim v→∞ 1 v log(1 + ψ(v)) = 0. ( 19 
)
A nonlinearity reached by the result of [START_REF] Haraux | On a result of K. Masuda concerning reactiondiffusion equations[END_REF] is

ψ(v) = (e v γ -1), 0 < γ < 1.
Even though we do not know a practical situation leading to such nonlinearities, the mathematical result is interesting in itself.

-The case of nonlinearity of exponential growth in v has been studied in [START_REF] Herrero | Global existence for reaction-diffusion systems modelling ignition[END_REF] for the system

u t -a∆u = -f (u, v), t > 0, x ∈ R n , a > 0, v t -b∆v = f (u, v) t > 0, x ∈ R n , b > 0,
with positive and bounded initial data, where the reaction term and diffusion constants satisfy:

• f (0, v) ≥ 0, f (u, 0) ≥ 0; • f (u, v) ≤ Cφ(u)e σv , σ > 0,
for any constants C > 0, α > 0 and any continuous and positive function φ defined on [0, ∞) such that φ(0) = 0. Their contribution deals with the case b > a as the case a > b was investigated for any nonlinearity φ by Martin and Pierre [START_REF] Martin | Nonlinear Reaction Diffusion Systems[END_REF] using on an idea of Kanel [START_REF] Ya | The Cauchy problem for a system of semilinear parabolic equations with balance conditions[END_REF].

The exponential nonlinearities were suggested by Kumar [START_REF] Inamdar | Diffusive instability near Hopf bifurcation for exponentially autocatalyzed reaction-diffusion system[END_REF] for auto-catalytic reactions (see the motivation mentioned above).

It remains now an open problem to obtain the boundedness of v for nonlinearities of super exponential growth like f (u, v) = u n (e v 2 -1). Even though we do not know a definitely practical situation leading to such nonlinearities, the mathematical problem is of interest.

Nonlinearities without Limitation

In [START_REF] Kanel | Global solutions of reaction-diffusion systems with a balance law and nonlinearities of exponential growth[END_REF], Kanel and Kirane considered the triangular system

u t -a∆u = -f (u)g(v), t > 0, x ∈ Ω, ( 20 
) v t -c∆u -d∆v = f (u)g(v), t > 0, x ∈ Ω, (21) 
subject to the boundary conditions

u ν = v ν = 0 on ∂Ω (22) 
and positive and bounded initial data, and proved the global boundedness of its solutions without any restriction on the reaction terms. Precisely, they obtained the following result.

Theorem 2.3. Let c > 0, a > d, (a -d)v 0 (x) ≥ cu 0 (x) and u 0 (x), v 0 (x) be bounded. Then there exists a nonnegative bounded solution (u, v) ((a-d)v ≥ cu) to system ( 21), ( 21), [START_REF] Hollis | On the Blow-up of Solutions to Some Semilinear and Quasilinear Reaction-diffusion Systems[END_REF].

Notice that the hypotheses of Theorem 2.1 ensures ensures the nonnegativity of u and v. Moreover, observe that the given problem is posed on a bounded domain.

Theorem 2.4. [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law[END_REF] Assume thatg(v) is bounded in V(-∞), and c > d -a > 0. Then there exists a nonnegative bounded solution (u, v) to the problem ( 21)- [START_REF] Hollis | Global existence and boundedness in reaction-diffusion systems[END_REF].

We conclude this part by mentioning the result of Rebiai and Benachour [START_REF] Rebiai | Global classical solutions for reactiondiffusion systems with nonlinearities of exponential growth[END_REF].

Theorem 2.5. The solution of the system

u t -a∆u = -f (u, v), t > 0, x ∈ Ω ⊂ R n , v t -b∆v = g(u, v), t > 0, x ∈ Ω,
with a, b > 0, a = b, supplemented with the Robin boundary conditions

λ 1 u + (1 -λ 1 ) ∂u ∂ν = λ 2 v + (1 -λ 2 ) ∂v ∂ν = 0, t > 0, x ∈ ∂Ω,
and bounded initial data

u(x, 0) = u 0 (x) ≥ 0, v(x, 0) = v 0 (x) ≥ 0, x ∈ Ω,
under the hypotheses

• f (0, η) = g(0, η) = 0, g(ξ, 0) ≥ 0; • g(ξ, η) ≤ ψ(η)f (ξ, η), ψ ≥ 0, ψ ∈ C 1 (R + ); • There exists β ≥ 1 such that lim η→+∞ η β-1 ψ(η) = > 0; • g(ξ, η) ≤ ϕ(ξ)e αη β , α, β > 0,
is global provided that:

u 0 ∞ ≤ 8ab αβn(a -b) 2 , > 0.
Examples of nonlinearities satisfying the above hypotheses are:

f (u)g(v) = u(1 + v β-1 )e v β , f (u)g(v) = ue v β , m > 1.
Proof. The proof is based on the following Lyapunov functional and follows the arguments used by Barabanova in [START_REF] Barabanova | On the global existence of solutions of a reactiondiffusion equation with exponential nonlinearity[END_REF]:

L(t) = Ω δu + (M -u) -γ e αp(v+1) β (x, t) dx,
where the positive constants α, β, γ, δ and M are such that 2 and 2p > n.

β ≥ 1, u 0 ∞ < M < 2γ αβn , γ = 4ab (a -b)

Systems with a Triangular Matrix of Diffusion Coefficients

In [START_REF] Kirane | Global bounds and asymptotics for a system of reactiondiffusion equations[END_REF], Kirane initiated the study of existence of global solutions for the following triangular system with a balance law:

u t -a∆u = -uψ(v), t > 0, x ∈ Ω, v t -c∆u -d∆v = uψ(v), t > 0, x ∈ Ω, (23) 
supplemented with the homogeneous Neumann boundary conditions

u ν = v ν = 0, t > 0, x ∈ ∂Ω (24) 
and the initial conditions

u(0, x) = u 0 (x), v(0, x) = v 0 (x), x ∈ ∂Ω, ( 25 
)
where Ω is a bounded domain of R N with a regular boundary ∂Ω, ν is the outward normal to ∂Ω, a, c, d are constants such that a > d > 0, c ≥ 0, c 2 ≤ 4ad.

The main result in [START_REF] Kirane | Global bounds and asymptotics for a system of reactiondiffusion equations[END_REF] is the following theorem.

Theorem 2.6. Let ψ satisfy the condition [START_REF] Hill | The possible effects of the aggregation of the molecules of homogloebin on its dissociation curves[END_REF],

u 0 (x), v 0 (x) ∈ L ∞ (Ω), (a -d)v 0 (x) ≥ cu 0 (x) ≥ 0.
Then the solution of the problem ( 25)-( 26) is nonnegative with v ≥ cu/(a -d) ≥ 0, and globally bounded in time. Moreover,

(u, v) → (0, v ∞ ) uniformly as t → ∞, with f (0, v ∞ ) = 0, where v ∞ = 1 |Ω| Ω (u 0 + v 0 )dx.
If N = 1, there exist T > 0 and C > 0 such that

v(t) -v ∞ ≤ Ce -ρ(t-T ) , if αλ 1 = h(v ∞ ), C(1 + t -T )e -ρ(t-T ) , otherwise, u(t) ≤ e -h(v∞(t-T ) , t ≥ T,
where α = min{a, d}, ρ = min{h(v ∞ ), dλ 1 }, λ 1 is the first positive eigenvalue of -∆ with a homogeneous Neumann boundary condition.

If N > 1, then there exist positive constants T and C such that

||(u(t), v(t) -v ∞ )|| ∞ ≤ C(1 + t -T ) -1 n+1 , t ≥ T.

Influence of the Boundary Conditions

Let us consider the system

T t = ∆u + QY f (T ), t > 0, x ∈ Ω, Y t = 1 L e ∆Y -Y f (T ), t > 0, x ∈ Ω,
modeling the reaction

A -→ B (combustion),
where T = T (x, t) is the temperature and Y = Y (x, t) is the fraction of mass, Q and Le are positive constants. Assume that f ≥ 0 is increasing and f (α) > 0, for some α > 0.

Let T and Y satisfy the boundary conditions

T ν = 0 and Y = h on x ∈ ∂Ω,
where h = is continuous and nonnegative.

Theorem 2.7. [START_REF] Avrin | Temperature growth and temperature bounds in special cases of combustion models[END_REF] If the solution of the given system exists for all time, then there exist t 1 > 0, A > 0, C such that

At + C ≤ T (., t) ∞ , t ≥ t 1 . (26) 
This means that the solution, if it is global, can not be bounded.

Proof. [START_REF] Avrin | Temperature growth and temperature bounds in special cases of combustion models[END_REF] Let ϕ be the solution of the torsion problem

-∆ϕ = 1 on Ω, ϕ = 0 on ∂Ω.
It is easy to see that the function

Λ(t) = Ω (εY ϕ + δT )dx, ε, δ > 0 satisfies Λ (t) ≥ ε L Ω Y (-ϕ ν )dx.
The estimate ( 26) is obtained by integration.

The case of a full Matrix of Diffusion Coefficients

It seems that the study started with the paper of Kanel and Kirane [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law[END_REF] for the following system:

u t -λ 1 ∆u -ε∆v = -uf (v), t > 0, x ∈ Ω, ( 27 
)
v t -λ 2 ∆u -λ 3 ∆v = +uf (v), t > 0, x ∈ Ω, (28) 
where the constants of diffusion λ 1 , λ 2 , λ 3 and ε are nonnegative satisfying the condition 4λ 1 λ 3 ≥ (ε+λ 2 ) 2 which reflects the parabolicity of the system, and the non-linearity f (v) is a smooth function satisfying uf (v) ≥ 0. Equations ( 27) and ( 28) are considered with the boundary conditions

u ν = v ν = 0, t > 0, x ∈ ∂Ω, (29) 
and the initial data

u(x, 0) = u 0 (x), v(x, 0) = v 0 (x), x ∈ Ω. ( 30 
)
Let us set the following notations and hypotheses: N 1.

γ 1 := λ 3 -λ 1 -(λ 3 -λ 1 ) 2 + 4λ 2 ε /2ε; N 2. γ 2 := λ 3 -λ 1 + (λ 3 -λ 1 ) 2 + 4λ 2 ε /2ε; H1. w 10 (x) = w 1 (0, x) = v 0 (x) -γ 1 u 0 (x) ≥ 0; H2. w 20 (x) = w 2 (0, x) = v 0 (x) -γ 2 u 0 (x) ≥ 0; H3. λ 2 > λ 3 -λ 1 , 0 < ε 1; H4. f (v) = v n , n ≥ 1 is an odd integer. Theorem 2.8. Assume that γ 1 C p |λ 3 -λ 1 -λ 2 + ε| < (γ 1 + γ 2 ).
Then there exists a unique global solution (u(x, t), v(x, t)) of problem ( 27)- [START_REF] Kanel | Global existence and large time behavior of positive solutions to a reaction diffusion system[END_REF]. Moreover, the solution (u(x, t), v(x, t)) converges uniformly in Ω to a constant vector k = (k 1 , k 2 ) as t ↑ ∞, such that

k 1 ≥ 0, k 2 ≥ 0, k 1 f (k 2 ) = 0,
and

k 1 + k 2 = 1 |Ω| Ω (u 0 (x) + v 0 (x)) dx.
Here C p is the constant from the maximal regularity estimate [START_REF] Solonnikov | On boundary value problems fo linear parabolic systems of differential equations of general form[END_REF]:

u L p ((0,T )×Ω) + A p u L p ((0,T )×Ω) ≤ C p f L p ((0,T )×Ω)
of the heat equation

u (t) + A p u(t) = f (t), a.e t ∈ (0, T ), u(0) = 0, f ∈ L p ((0, T ) × Ω).
The result of [START_REF] Kanel | Pointwise a priori bounds for a strongly coupled system of reaction-diffusion equations with a balance law[END_REF] attracted a significant attention and it was generalized by several authors, see, for example, [START_REF] Kouachi | Existence of global solutions to reaction-diffusion systems via a Lyapunov functional[END_REF] and [START_REF] Kouachi | Explicit Invariant Regions and Global Existence of Solutions for Reaction Diffusion Systems With a Full Matrix of Diffusion Coefficients and Nonhomogeneous Boundary Conditions[END_REF].

Let us consider the system

u t -a 11 ∆u -a 12 ∆v = f (u, v), t > 0, x ∈ Ω, ( 31 
) v t -a 21 ∆u -a 22 ∆v = g(u, v), t > 0, x ∈ Ω, (32) 
equipped with the boundary conditions:

λu + (1 -λ)u ν = β 1 , λv + (1 -λ)v ν = β 2 , t > 0, x ∈ ∂Ω, (33) 
and the initial condition

u(x, 0) = u 0 (x), v(x, 0) = v 0 (x), x ∈ Ω, ( 34 
)
where Ω is a bounded domain of class C 1 , the constants a ij , i, j = 1, 2, are assumed to be positive and satisfy the condition

(a 12 + a 21 ) 2 ≤ 4a 11 a 22 ,
which reflects the parabolicity of the system and that implies that the eigenvalues λ 1 < λ 2 of the transposed of the matrix ((a ij )) i,j=1,2 are positive.

The initial data are supposed to be in the region

Σ =      {(u 0 , v 0 ) ∈ R 2 s.t λ 1 v 0 ≤ a 21 u 0 + a 22 v 0 ≤ λ 2 v 0 }, or {(u 0 , v 0 ) ∈ R 2 s.t λ 1 u 0 ≤ a 11 u 0 + a 12 v 0 ≤ λ 2 u 0 }.
The reaction terms f and g are assumed of class C 1 , polynomially bounded on Σ, (f (r, s), g(r, s)) ∈ Σ for all (r, s) ∈ ∂Σ, that is, r,s), for all r, s such that λ 1 s = a 21 r + a 22 s and a 21 f (r, s) + a 22 g(r, s) ≤ λ 2 g(r, s), for all r, s such that λ 2 s = a 21 r + a 22 s, and positive constants C and α > a 22 -λ 1 sufficiently close to a 22 -λ 1 ,

     λ 1 g(r, s) ≤ a 21 f (r, s) + a 22 g(
a 21 f (u, v) + Cg(u, v) ≤ C 1 (a 21 u + αv + 1), for all u, v ∈ Σ,
where C 1 is a positive constant. Kouachi [START_REF] Kouachi | Invariant regions and global existence of solutions for reactionndiusion systems with a full matrix of diffusion coeffi cients and nonhomogeneous boundary conditions[END_REF] proved the following result.

Theorem 2.9. Assume that the above conditions are satisfied and that a 11 f (r, s)+ a 22 > a 12 + a 21 . Then the system ( 31)-( 34) admits a global solution.

Proof. The proof is based on the fact that the function

L(t) = Ω H p (u(x, t), v(x, t)) dx, where H p (u, v) = p i=0 C i p θ i u i v p-i , C i p are the binomial coefficient, θ i = θ (p-i) 2 , i = 0, 1, . . . , p, θ 1 is the positive constant 2 √ a 11 + a 22 -a 12 + a 21 θ = (a 11 + a 22 ).
Finally, we want to mention the nice paper of Kuiper [START_REF] Kuiper | Positively invariant regions for strongly coupled reactionndiusion systems with a balance law[END_REF] who studied non-linear systems with full matrix of diffusion coefficients and with nonlinear boundary conditions.

In the second part of the paper, we present results concerning anomalous diffusion-reaction systems with a balance law.

Very recently, it is found that reaction-diffusion systems with time/space fractional derivative(s) describe practical situations (chemical, physical, biological, etc). In the next section, we present the results for such systems with a balance law.

The Case of Anomalous Diffusions

Hereafter, we will present results concerning a system with spatial fractional diffusions and a system with temporal fractional derivatives.

Fractional Diffusions

As reaction-diffusion systems are less documented, we will dwell a while on the tools needed for their studies.

Let the nonlocal operator (-∆) γ/2 , 0 < γ < 2 be defined by

(-∆) δ/2 u(x) = F -1 (|ξ| δ F(u)(ξ))(x), u ∈ S(R N ),
where S(R N ) is the Schwartz space and F is the Fourier transform, or equivalently by the formula

(-∆) δ/2 u(x) = C N P V R N u(x) -u(y) |x -y| N +δ dy.

Diagonal Systems

We start with the reaction anomalous diffusion system (in short (A-RDS))

u t + a(-∆) α/2 u = -f (u, v), v t + b(-∆) β/2 u = +f (u, v),
where f is assumed to be locally Lipschitz and satisfying the conditions:

f (0, v) ≥ 0, f (u, 0) ≥ 0, and |f (u, v)| ≤ L(R)|v| k + M (R), u, v ≥ 0, |u| ≤ R.
It may describe a chemical reaction taking place in a fractal medium.

We will use the notations :

Q T = R N × (0, T ), ||u|| p p = R N |u| p dx, ||u|| p p,T = Q T
|u| p dxdt, and the preliminary results.

Let S δ (t) := e -t(-∆) δ be the semigroup generated by the forward problem (for short (FP)):

Ψ t + (-∆) δ Ψ = 0, x ∈ R N , t > 0, Ψ(x, 0) = Ψ 0 (x), x ∈ R N . Lemma 1. Let 1 ≤ r ≤ p ≤ ∞ and Ψ(x) ∈ L r (R N ).
Then the solution of (FP) satisfies the estimate

||(-∆) ν/2 S δ (t)Ψ(x)|| p ≤ Ct -ν 2δ -N 2δ ( 1 r -1 p ) ||Ψ|| r , (35) 
for δ > 0, ν ≥ 0.

Let ϕ satisfy the backward problem (for short (BP)) (ϕ(x, 0) = ϕ 0 (x) is not known):

-ϕ t + (-∆) β/2 ϕ = ϑ, (x, t) ∈ Q T , 0 < β < 2, ϕ(x, T ) = 0, x ∈ R N .
Lemma 2.

[61] Let 1 < q < ∞ and assume that ϑ ∈ L q (Q T ). Then problem (BP) has a unique solution ϕ such that

ϕ t ∈ L q (Q T ), (-∆) β/2 ϕ ∈ L q (Q T ).
Moreover, there exists a constant C(q, T ), independent of ϕ, such that

||ϕ|| q,T + ||(-∆) β/2 ϕ|| q,T + ||ϕ 0 || q ≤ C(q, T )||ϑ|| q,T . (36) 
Lemma 3.

[58] Let (X , || . ||) be a Banach space and A be a positive operator on X . Then, for 0 ≤ ρ < σ < γ, there exists a constant C ρ,σ,γ such that, for x ∈ D(A γ ) ( the domain of A γ ),

||A σ x|| ≤ C ρ,σ,γ ||A γ x|| (σ-ρ)/(γ-ρ) ||A ρ x|| (γ-σ)/(γ-ρ) . (37) 
Lemma 4. [START_REF] Lopez-Mimbela | Local time and Tanaka formula for a multitype Dawson-Watanabe super-process[END_REF] Let f α i , t > 0 be the transition density of the symmetric

α i -stable process in R N , e -t|ξ| α i = R N e i(x,ξ) f α i (t, x) dx, i = 1, 2
, where ( , ) is the inner product in R N . If α 1 ≤ α 2 , then there exists a constant K ≥ 1 such that, for every t > 0 and x ∈ R N ,

f α 2 (x, t) ≤ Kf α 1 (x, t α 1 α 2 ). (38) 
Moreover, if t ≥ 1, then

f α 2 (x, t) = Kt N ( 1 α 1 -1 α 2 ) f α 1 (x, t) ≤ Kt N α 1 f α 1 (x, t), x ∈ R N . (39) 
Local solutions to (A-RDS)

Theorem 3.1. (local existence). Let 0 < α, β ≤ 2. Given u 0 , v 0 ∈ C 0 (R N ), there exists a mild solution (u, v) ∈ C([0, T max [; C 0 (R N ) × C 0 (R N ))
of problem (A-RDS) satisfying the integral equations

u(t) = S α (t)u 0 - t 0 S α (t -s)f (u(s), v(s)) ds, v(t) = S β (t)v 0 + t 0 S β (t -s)f (u(s), v(s)) ds.
Moreover, lim

t-→Tmax {t + ||(u, v)|| (L ∞ ((0,t)×R N ) 2 } = +∞.
Theorem 3.2. Assume that u 0 , v 0 ∈ C 0 (R N ), u 0 , v 0 ≥ 0 a.e on R N . Let f satisfy the above conditions. Then problem (A-RDS) admits a nonnegative global solution.

Proof. As u 0 , v 0 ≥ 0, we have u ≥ 0 and v ≥ 0 and the estimate ||u|| p,T ≤ ||u 0 || p,T .

• Bound of v (duality argument).

Case 1: ( 0 < α ≤ β ≤ 2).

We have

(u + v) t + (-∆) β/2 (u + v) + (-∆) α/2 u -(-∆) β/2 u = 0.
Whereupon,

Q T (u + v)(-ϕ t + (-∆) β/2 ϕ) = R N (u 0 + v 0 )ϕ 0 + Q T u((-∆) β/2 ϕ -(-∆) α/2 ϕ).
or

Q T (u + v)ϑ = R N (u 0 + v 0 )ϕ 0 + Q T u((-∆) β/2 ϕ -(-∆) α/2 ϕ).
Using Lemma 2, we get ||ϕ|| q + ||ϕ|| q,T ≤ C||ϑ|| q,T , ||(-∆) β/2 ϕ|| q,T ≤ C||ϑ|| q,T .

Making use of inequality [START_REF] Kouachi | Existence of global solutions to reaction-diffusion systems with nonhomogeneous boundary conditions via a Lyapunov functional[END_REF] with ρ = 0, σ = α/2, and γ = β/2, we obtain

||(-∆) α/2 ϕ|| q,T ≤ ||(-∆) β/2 ϕ|| α β q,T ||ϑ|| 1-α β q,T ≤ C||ϑ|| α β q,T ||ϑ|| 1-α β
q,T ≤ C||ϑ|| q,T . Also, we have the estimates

Q T |u(-∆) β/2 ϕ| ≤ ||u|| p,T + ||(-∆) β/2 ϕ|| q,T , p + q = pq, Q T |u(-∆) α/2 ϕ| ≤ ||u|| p,T + ||(-∆) α/2 ϕ|| q,T , ≤ C(||u|| p,T + ||ϑ|| q,T ), p + q = pq.
Finally, we have

Q T (u + v)ϑ ≤ C(||u 0 + v 0 || p + ||u|| p,T + ||ϑ|| q,T + ||ϕ 0 || q ).
It then follows by duality that

||u + v|| p,T ≤ C(||u 0 + v 0 || p + ||u|| p,T + ||ϑ|| q,T + ||ϕ 0 || q ).
Therefore, for all p < ∞, the L p -norm of v remain bounded on Q Tmax . From the polynomial growth assumptionn on f , it follows that f (u, v) is also in

L p (Q Tmax ) for all p ∈ (1, ∞). For p > (N + 1)/2, we deduce that v ∈ L ∞ (Q Tmax ) and ||v|| ∞,Tmax ≤ C||f (u, v)|| p,Tmax < +∞.
Consequently, T max = +∞.

Case 2: ( 0 < β ≤ α ≤ 2). This case can be handled in the same way as Case 1.

Case of no restriction on f : ( 0 < β ≤ α ≤ 2).

Theorem 2. Assume that u 0 , v 0 ∈ C 0 (R N ), u 0 , v 0 ≥ 0 a.e on R N . Let f satisfy the conditions (C1) and (C2). Then problem (A-RDS) admits a nonnegative global classical solution.

Proof. Let S δ (t) := e -t(-∆) δ be the semigroup generated by (-∆) δ on R N and e -t|ξ| α = R N e i(x,ξ) f α (t, x) dx. Then we have u

(x, t) = S α (t)u 0 (x) -F α (x, t), v(x, t) = S β (t)v 0 (x) + F β (x, t),
where

F δ (x, t) = Q T f δ (y, s)u(x -y, t -s)f (v(x -y, t -s)) dyds, δ = α, δ = β.
As u ≥ 0, we have

0 ≤ F α (x, t) ≤ S α (t)u 0 (x) ≤ C||u 0 || ∞ . 20 
Using Lemma 4 for t ≥ 1, we obtain

F β (x, t) = Q T f β (y, s)u(x -y, t -s)f (v(x -y, t -s)) dyds ≤ KT N α Q T f α (y, s)u(x -y, t -s)f (v(x -y, t -s)) dyds ≤ KT N α F α (x, t) ≤ CT N α ||u 0 || ∞ .
So v is bounded for any finite t, whereupon the solution is global.

The case of triangular system

it is shown in [START_REF] Ahmad | On nonlinear nonlocal systems of reaction diffusion equations[END_REF] that there exists a global solution for the triangular system

u t + a(-∆) α 2 u = -f (u)g(v), t > 0, x ∈ R N , (40) 
v t + c(-∆) α 2 u + d(-∆) α 2 v = +f (u)g(v), t > 0, x ∈ R N , (41) 
subject to the initial conditions

u(x, 0) = u 0 (x) ≥ 0, v(x, 0) = v 0 (x) ≥ 0, x ∈ R N . (42) 
The nonlinerarities f : [0, +∞) -→ [0, +∞) and g : [0, +∞) -→ [0, +∞) are assumed to be locally Lipschitzian and satisfying the conditions:

(C1) f (0) = 0 ≤ g(0);

(C2) there exists a positive number k ≥ 1 such that:

g(v) ≤ Cv k for all v ≥ 0. Let H s q = H s q (R N )(s ≥ 0, 1 ≤ q ≤ ∞) be defined by H s q = H s q (R N ) = {f ∈ L q (R N )|(1 -∆) s/2 f ∈ L q (R N )}. Definition 3.1. A pair of functions (u, v) on [0, T ) × R N is called a mild solution of (40)-(41) in [0, T ) if the following assumptions hold: (i) u, v ∈ C((0, T ); L 1 (R N ) ∩ L ∞ (R N )); (ii) (u, v) satisfies the system of integral equations u(t, x) = (S α (t, •) * u 0 )(x) - t 0 S α (t -s, •) * f (u(s, •))g(v(s, •)) ds,
maximum principle [START_REF] Luchko | Maximum principle for the generalized time-fractional diffusion equation[END_REF].

To obtain the nonnegativity of v, observe that

v - c a -d u t + d(-∆) α/2 v - c a -d u = a + c -d a -d f (u)g(v).
As a + c > d, an application of the maximum principle [START_REF] Luchko | Maximum principle for the generalized time-fractional diffusion equation[END_REF] yields the nonnegativity of v.

Theorem 3.5. We have u, v ∈ C((0, T );

L 1 (R N ) ∩ L ∞ (R N )), for any 0 < T < ∞.
SThen, the solution of the system ( 41)-( 42) is global.

Remark.

One is tempted to consider the more general system

u t + a(-∆) α 2 u = -f (u)g(v), t > 0, x ∈ R N , v t + c(-∆) δ 2 u + d(-∆) γ 2 v = +f (u)g(v), t > 0, x ∈ R N .
However, the first problem that will be faced is the non-negativity of v.

The case of time fractional derivatives

In [START_REF] Alsaedi | Global existence and asymptotic behavior for a time fractional reaction-diffusion system[END_REF], a fractional time derivatives modification of the system of Martin has been studied. The system reads

c D β t u -∆u = -uf (v), t > 0, x ∈ Ω, c D β t v -d∆v = +uf (v), t > 0, x ∈ Ω, (43) 
supplemented with the boundary and initial conditions

u ν (x, t) = v ν (x, t)(x, t) = 0 on ∂Ω × R + , (44) u 
(x, 0) = u 0 (x), v(x, 0) = v 0 (x) in Ω, ( 45 
)
where Ω is a regular bounded domain in R N (N ≥ 1) with smooth boundary ∂Ω, ν denotes the normal derivative on ∂Ω, d is a positive constant and u 0 and v 0 are nonnegative functions, c D β t , denotes the Caputo fractional derivative of order β ∈ (0, 1) defined for a differentiable function as

c D β t f (t) = 1 Γ(1 -β) t 0 f (τ ) (t -τ ) β dτ.
The main result of [START_REF] Alsaedi | Global existence and asymptotic behavior for a time fractional reaction-diffusion system[END_REF] reads: Theorem 3.6. Let u 0 , v 0 ∈ D(A) be such that u 0 and v 0 are nonnegative and bounded functions. Then the system ( 43)-( 44)-( 45) admits a unique global strong solution which satisfies u ≥ 0, v ≥ 0, u(., t) ∞ ≤ u 0 ∞ E β (-γt β ), γ > 0, t > 0, v(., t) -

1 | Ω | Ω (u 0 + v 0 ) dx ∞ ≤ CE β (-γt β ), t > 0,
where C is a positive constant and E β (z) is the Mittag-Leffler function defined by

E β (z) = +∞ k=0 z k Γ(βk + 1)
, β > 0, z ∈ C.

Proof. First, as the initial data is nonnegative, the solution is nonnegative by simple use of the maximum principle.

As uf (v) ≥ 0, we immediately get

u(., t) ∞ ≤ E β (-dt β A)u 0 ∞ ≤ u 0 ∞ ; (46) 
therefore, u is uniformly bounded. For the L ∞ bounds of v, we proceed as follows. The function w = du + v satisfies

c D β t w + Aw = (d -1) c D β t u, ( 47 
)
where A is the laplacian with domain

D(A) = u ∈ L 2 (Ω) / u ν = 0; Au 2 L 2 (Ω) = +∞ k=1 |λ k (u, ϕ k )| 2 < +∞ ,
where 0 = λ 0 ≤ λ 1 ≤ λ 2 ≤ .. are the eigenvalues of A and {ϕ n } n≥0 denotes the orthonormal eigenfunction system corresponding to {λ n } n≥0 ( Aϕ n = λ n ϕ n ). Applying J β t to both sides of (47), we get

J β t C D β t w + J β t Aw = (d -1)J β t c D β t u. (48) 
As J β t c D β t f (t) = f (t) -f (0), c D β t J β t f (t) = f (t), t > 0, and J β t A = AJ β t , it follows that c D β t J β t w + AJ β t w = (d -1)(u -u 0 ) + w 0 .

The function W (x, t) := J β t w is then the solution of c D β t W + AW = (d -1)u + u 0 + v 0 [START_REF] Morgan | Global existence for semilinear parabolic systems[END_REF] Using ( 55) and ( 56), we obtain the estimate f (v) L q p ((0,T );L ∞ (Ω))

≤ M 1 ( Mv q ∞ T p q + C q (T )) + M 2 T p q

≤ M (1 + T p q ). ( 57 
)
As u is bounded, we obtain the estimate

v ∞ ≤ v 0 ∞ + C βΓ(β) t 0 (t -s) β-1 f (v) ∞ ds.
Using the Hölder inequality and (57), it holds, for β > p q , t 0 (t -s) β-1 f (v) ∞ ds ≤ t 0 (t -s) (β-1)q q-p ds q-p q f (v) L q p ((0,t);L ∞ (Ω))

≤ M t β (1 + t -p q ).
Hence, for any t > 0, we have

v ∞ ≤ M (1 + t β ). (58) 
Consequently, there is a unique globally bounded solution.

Large time estimate of u.

As c D β t v(x, t) -∆v(x, t) ≥ 0, [START_REF] Wang | Abstract fractional Cauchy problems with almost sectorial operators[END_REF] we have

v(x, t) ≥ +∞ n=0 (v 0 , ϕ n )E β (-λ n t β )ϕ n (x), (60) 
where (., .) is the usual scalar product in L 2 (Ω). As lim t→+∞ E β (-λ n t β ) = 0, for λ n > 0 [START_REF] Krägeloh | Two families of functions related to the fractional powers of generators of strongly continuous contraction semigroups[END_REF], we obtain

lim t→+∞ +∞ n=0 (v 0 , ϕ n )E β (-λ n t β )ϕ n (x) = (v 0 , ϕ 0 )ϕ 0 = Ω v 0 dx. (61) 
In view of ( 59) and ( 60), we obtain that for t T > 0,

v(x, t) ≥ 1 |Ω| Ω v 0 dx. (62) 
So, there exists a positive constant γ such that f (v) ≥ γ, for all t T.

(63)
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As argued in [START_REF] Kakehi | Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian[END_REF], one can easily prove the following result.

If T > 0 is sufficiently small, then the system ( 40)-( 41) admits a unique mild solution

Following the lines of [START_REF] Kakehi | Blowup and global existence of a solution to a semilinear reaction-diffusion system with the fractional Laplacian[END_REF], we have the existence of strong solutions. Theorem 3.4. Assume that 1 < α < 2. Let (u, v) be the mild solution of ( 40)- [START_REF] Kuiper | Positively invariant regions for strongly coupled reactionndiusion systems with a balance law[END_REF] Proof. As (u, v) exists locally, the positivity of u follows by applying the as w 0 = du 0 +v 0 , supplemented with the initial condition W (0) := J β t w(t)| t=0 = 0 as w is continuous. Now, wee define two bounded linear operators M and P by

We clearly have

Using the estimate E β (-

, for some δ > 0, and the fact that Pu and P(u 0 + v 0 ) are bounded, we get

thanks to the estimate [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF]).

On the other hand, as W (0) = 0, c D β t PW = D β t PW , the function PW satisfies the equation

with the forcing term θ := (d -1)Pu + P(u 0 + v 0 ) and the initial condition J 1-β t W (0) = J 1 t w(t)| t=0 = 0. As u, u 0 and v 0 are bounded, we can assert that θ ∈ L q ((0, T ); L q (Ω)) for q > 1. In view of a maximal regularity result of Bajlekova [START_REF] Bajlekova | Fractional evolution equations in Banach spaces[END_REF], there exists a positive constant C q (T ) such that

Therefore, as D β t PW = Pw = P(du + v), we obtain

To estimate Mv, we first observe that

By writing v = Mv + Pv, we have

Consequently, we have

We then clearly have u(x, t) ≤ u 0 ∞ E β (-γt β ), for all t T.

To prove the estimate v(., t) -

we begin by noticing that

where C is a positive constant. So, it follows that

Combining (66) and (68), the desired estimate follows.

Remark.

In the light of the recent results of Kim and col. [START_REF] Kim | An L q (L p )-theory for the time fractional evolution equations with variable coefficients[END_REF], it will be interesting to study the existence of globally bounded solutions of the system c D σ t u + a(-∆)

, t > 0, x ∈ R N , where c D η t is the Caputo time fractional derivative of order 0 < η < 1.