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During a real-time hybrid simulation (RTHS), inevitable time delay of actuators when responding to a command will reduce the accuracy of test results and sometimes even cause unstable testing. The inner-loop controller of an actuator is generally capable of eliminating the effects due to small time-delays. However, if a test specimen behaves nonlinearly, accuracy of RTHS results will be impaired. In addition to the uncertainty of test specimens and transfer system, measurement noises of the displacement and force sensors also require a robust external controller for RTHS. In this paper, a robust linear-quadratic-gaussian (LQG) controller with a Loop Transfer Recovery (LTR) procedure and a polynomial-based feedforward prediction (FP) algorithm is proposed to compensate the adverse effects due to time delay and uncertainties within the RTHS testing system. The stability and robustness of the proposed controller are analysed in the frequency domain using the Nyquist curve and the Bode diagrams. Numerical simulations are then carried out on the benchmark problem using both the proposed robust and the conventional LQG controllers and their performance is compared using the nine evaluation criteria. It is demonstrated that the robust LQG (RLQG) controller outperforms the conventional LQG controller in terms of compensating the parameter uncertainties in the testing system and achieving accurate RTHS results.

INTRODUCTION

A structural system is divided into two parts in a real-time hybrid simulation (RTHS): the critical part is taken as an experimental substructure and the remainder of the structural system is simulated using a numerical model in a computer. Utilizing this substructuring method, the RTHS can physically test large-to full-scale specimens in a laboratory, and with relative accuracy it can emulate the dynamic response of a structural system [1-2].

High-quality control is required in RTHS to synchronize the variables at the substructuring interfaces between the experimental and the numerical substructures and to compensate for the additional actuator dynamics, nonlinearities, uncertainties and time-varying parameters in the experimental substructures. A dynamically substructured system (DSS) scheme was developed to obtain whole structural responses through substructural testing, which is the same principle as for RTHS. However, the DDS scheme approaches this principle from a different substructuring framework by synthesizing a synchronizing automatic controller based upon the conventional transfer function method. Various methods were continuously being developed based on the DDS scheme and applied to different types of RTHS experiments, through which the effectiveness and the robustness of the DDS scheme and its variations were verified [START_REF] Wagg | Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm[END_REF][START_REF] Lim | An adaptive control strategy for dynamic substructuring tests[END_REF][START_REF] Bonnet | Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies[END_REF][START_REF] Neild | Control issues relating to real-time substructuring experiments using a shaking table[END_REF][START_REF] Tu | Testing of dynamically substructured, base-isolated systems using adaptive control techniques[END_REF][START_REF] Stoten | A comparative study and unification of two methods for controlling dynamically substructured systems[END_REF][START_REF] Stoten | Adaptive control of dynamically substructured systems: the single-input single-output case[END_REF][START_REF] Yamaguchi | Synthesised H∞/μ Control Design for Dynamically Substructured Systems[END_REF].

Alternatively, robust RTHS controllers can be achieved when time delay in the actuator is properly compensated using the inverse-dynamics concept. An accurate dynamic model of the actuator is the key to the success when using these compensators, because the inverse of this model forms the basis of the compensator design [START_REF] Carrion | Model-based strategies for real-time hybrid testing[END_REF][START_REF] Jung | Performance of a real-time pseudo dynamic test system considering nonlinear structural response[END_REF][START_REF] Christenson | Large-Scale Experimental Verification of Semiactive Control through Real-time Hybrid Simulation[END_REF]. Among the different types of actuator models, the polynomial model is perhaps the most popular one. Horiuchi et al. [START_REF] Horiuchi | Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber[END_REF] firstly adopted a polynomial model and proposed a compensator based on a single-step-forward extrapolation. Since then, several compensators based on polynomial actuator models [START_REF] Darby | Stability and delay compensation for real-time substructure testing[END_REF][START_REF] Wallace | An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring[END_REF][START_REF] Tu | Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as a example[END_REF][START_REF] Ahmadizadeh | Compensation of Actuator Delay and Dynamics for Real-Time Hybrid Structural Simulation[END_REF][START_REF] Chen | Dual compensation strategy for real-time hybrid testing[END_REF] were proposed and adaptive features [START_REF] Wallace | An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring[END_REF][START_REF] Tu | Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as a example[END_REF] were added to address the time delay variation during RTHS. Another trend in robust RTHS controller design is to compensate the nonlinearity in the testing system, as the actuator's dynamics (including its time delay) changes with the nonlinear responses of the test specimen. Philips et al. [START_REF] Wu | Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation[END_REF] and Chen et al. [START_REF] Phillips | Model-Based Feedforward-Feedback Actuator Control for Real-time Hybrid Simulation[END_REF][START_REF] Chen | Adaptive model-based tracking control for real-time hybrid simulation[END_REF] proposed an improved model-based servo-hydraulic tracking control method with a feedforward-LQG controller to accurately track the desired displacement in real-time. Chen et al. [START_REF] Liu | A Novel Integrated Compensation Method for Actuator Dynamics in Real-time Hybrid Structural Testing[END_REF][START_REF] Chen | Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme[END_REF][START_REF] Chen | Improved Adaptive Inverse Compensation Technique for Real-Time Hybrid Simulation[END_REF] proposed a dual compensation scheme with an outer-loop proportional controller to tune the inner-loop inverse compensation based on the actuator tracking error. Wang et al. [START_REF] Wang | An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation[END_REF] and Chae et al. [START_REF] Chae | Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation[END_REF] proposed to use the first-order and second-order Taylor series to calculate the actuators' commands, respectively, during which the optimum Taylor series coefficients were determined using the least squares method.

The main objective of the aforementioned compensators [START_REF] Carrion | Model-based strategies for real-time hybrid testing[END_REF][START_REF] Jung | Performance of a real-time pseudo dynamic test system considering nonlinear structural response[END_REF][START_REF] Christenson | Large-Scale Experimental Verification of Semiactive Control through Real-time Hybrid Simulation[END_REF][START_REF] Horiuchi | Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber[END_REF][START_REF] Darby | Stability and delay compensation for real-time substructure testing[END_REF][START_REF] Wallace | An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring[END_REF][START_REF] Tu | Modelling and control issues of dynamically substructured systems: adaptive forward prediction taken as a example[END_REF][START_REF] Ahmadizadeh | Compensation of Actuator Delay and Dynamics for Real-Time Hybrid Structural Simulation[END_REF][START_REF] Chen | Dual compensation strategy for real-time hybrid testing[END_REF][START_REF] Wu | Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation[END_REF][START_REF] Phillips | Model-Based Feedforward-Feedback Actuator Control for Real-time Hybrid Simulation[END_REF][START_REF] Chen | Adaptive model-based tracking control for real-time hybrid simulation[END_REF][START_REF] Liu | A Novel Integrated Compensation Method for Actuator Dynamics in Real-time Hybrid Structural Testing[END_REF][START_REF] Chen | Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme[END_REF][START_REF] Chen | Improved Adaptive Inverse Compensation Technique for Real-Time Hybrid Simulation[END_REF][START_REF] Wang | An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation[END_REF][START_REF] Chae | Adaptive time series compensator for delay compensation of servo-hydraulic actuator systems for real-time hybrid simulation[END_REF] is to reduce the tracking errors. However, the requirement for the tolerance to uncertainties, and the acceptable range of the control accuracy of transfer systems (i.e., actuator or shaking table) are not clearly clarified. A major performance trade-off facing by the RTHS controller design is between the tracking error reduction and the increasing error caused by the sensor noises in the measurement. This performance trade-off was considered in some RTHS controller design [START_REF] Gao | Real-time hybrid simulation: from dynamic system, motion control to experimental error[END_REF][START_REF] Ou | Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation[END_REF][START_REF] Ning | Real-time Hybrid Simulation based on Inner-Loop H∞ Control[END_REF][START_REF] Wu | Sliding Mode Controller for Real-time hybrid Test[END_REF], and one example is the H∞ control method [START_REF] Gao | Real-time hybrid simulation: from dynamic system, motion control to experimental error[END_REF][START_REF] Ou | Robust integrated actuator control: experimental verification and real-time hybrid-simulation implementation[END_REF][START_REF] Ning | Real-time Hybrid Simulation based on Inner-Loop H∞ Control[END_REF]. The linear-quadratic-Gaussian (LQG) controller [START_REF] Wu | Sliding Mode Controller for Real-time hybrid Test[END_REF][START_REF] Yang | New optimal control algorithms for structural control[END_REF] provides a systematic procedure to address the aforementioned performance trade-off. The LQG controller was utilized in [START_REF] Yang | New optimal control algorithms for structural control[END_REF][START_REF] Yang | Application of optimal control theory to civil engineering[END_REF] the vibration control of civil engineering structures under random loadings, during which the trade-off between the reduction in structural responses and the increased requirement of control forces were considered. Wu et al. [START_REF] Wu | Numerical model of the servo-hydraulic loading system for rea l-time substructure testing[END_REF] employed the LQG to control the actuator in an RTHS, its superiority over the PID controller is proved by numerical simulations. Philips et al. [START_REF] Wu | Actuator dynamics compensation based on upper bound delay for real-time hybrid simulation[END_REF] utilized a feedback-LQG controller to improve robustness and alleviate the need of online modification of the feedforward controller under the changing specimen conditions. The robustness of the LQG controller can be further improved by using the Loop Transfer Recovery (LTR) procedure, which was proposed by Doyle et al. [START_REF] Doyle | Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis[END_REF] for the general multivariable feedback controller design in aeronautical engineering. Nevertheless, the application of the LQG controller and the LTR procedure to RTHS experiments have to meet the requirements of real-time processing and robustness at the same time.

In this paper, a robust LQG (RLQG) controller is proposed by combining the LQG and the LTR procedure to improve the robustness and accuracy of RTHS experiments. In addition, a polynomial-based forward prediction (FP) is used to compensate the time delay. The theoretical description of this controller is presented in Section 2. The benchmark problem is briefly presented in Section 3. Then, the robustness of the RLQG controller is analysed by the Nyquist curve and the Bode diagrams in Section 4. Numerical simulations are presented in Section 5 to demonstrate the performance of this controller on the benchmark problem as an example.

DESIGN OF THE RLQG CONTROLLER

A detailed description of the RLQG controller design is provided in this section. A block diagram demonstrating the major components of the RLQG controller is shown in Fig. 1, along with the RTHS testing system including both actuator and specimen highlighted in red.

The RLQG controller originated from the linear-quadratic-gaussian (LQG) controller, which includes a linear-quadratic-optimal-regulator (LQR) controller (shown in green in Fig. 1) and a state observer (shown in blue in Fig. 1). The design of the LQR controller and the state observer is presented in the Subsections 2.1 and 2.2, respectively. In Fig. 1, yn is the output of a numerical substructure. yGc is the command signal from the controller to the actuator-specimen system. xm is the measured displacement of the experimental substructure and xcom is the output of FP compensator. The objective of this RLQG controller is to make the measured displacement xm accurately tracking the output of the numerical substructure yn.

In theory, the state feedback gain matrix [K -kI] is determined in the LQR controller to be applied to the states that are obtained directly from the RTHS testing system. However, in practice, it is difficulty to accurately estimate the states because of the measurement noises and the disturbances within the testing system. A state observer is, therefore, introduced to estimate the state to be fed back. However, the conventional state observer will reduce the robustness of the LQG controller and the LRT procedure is therefore adopted to improve the performance of the state observer, as explained in Subsection 2.3. Subsection 2.4 describes the derivation of the RLQG controller (see the orange frame) in the discrete form. To further reduce the time delay effect in the RTHS system, the FP compensation, described in Subsection 2.5, is integrated that extrapolates the output of numerical substructure yn before it is sent to the LQR controller. 

LQR controller

A numerical model of the actuator-specimen system must be identified for the LQR controller design. In general, an actuator attached to a nonlinear specimen remains a nonlinear system with nonlinearities from both the specimen and the actuator (i.e., the square root relationship among the oil pressure, flow, and oil leakage effects [2,[START_REF] Jung | Performance of a real-time pseudo dynamic test system considering nonlinear structural response[END_REF]). In this paper, only the uncertainty of the actuator-specimen system model is considered. A linear actuator-specimen transfer function model [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF] is adopted herein for the convenience of the later analysis. This transfer function is expressed as
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where B0, A0, A1, A2, A3, A4, and A5 are the parameters defined in [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF]. This transfer function is further expressed in the form of a differential equation as (2) By defining
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the state-space model of the actuator-specimen system is obtained:
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Because the actuator-specimen system model has no integrator (type-0 plant) [START_REF] Ogata | Modern Control Engineering[END_REF], which will result in steady state error under the step input. To ensure zero steady state error, an integrator is inserted in the feedforward path between the error comparator and the actuator-specimen to build a type-1 [START_REF] Ogata | Modern Control Engineering[END_REF] servo system, as shown in Fig. 1 (see the green frame). For the LQR controller, the actuator command is determined as

=  = - + = -  = - -  KX KX CX & Gc I com m com y k x x x ξ ξ (5) 
where
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is the feedback gain matrix of the state X of type-1 servo system, and
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consists of the state vector of specimen-actuator system X and ξ, which is a scalar representing the output of the integrator (a state variable of the system). Then, substituting Equation [START_REF] Bonnet | Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies[END_REF] in Equation ( 4), the state-space model of the equivalent regulation problem system becomes:
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The design of the LQR controller can be divided into two steps: the design of the Quadratic performance function J and the determination of the feedback gain matrix K . The Quadratic performance function is usually defined by a linear algebra equation of the system's state and the control input. Thus, the feedback control law, which is combined with the linear part of the regular form of the state-space equation [START_REF] Ogata | Modern Control Engineering[END_REF], can produce a stable and desirable system performance simply by employing linear system design approaches. The Quadratic performance function is defined as
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Then the feedback gain matrix K is obtained by solving the Riccati function [START_REF] Ogata | Modern Control Engineering[END_REF] when the performance function is given by Equation [START_REF] Tu | Testing of dynamically substructured, base-isolated systems using adaptive control techniques[END_REF]. In Equation [START_REF] Tu | Testing of dynamically substructured, base-isolated systems using adaptive control techniques[END_REF], the weight scalar R and the matrix Q are defined as 
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where ke and me are the stiffness and mass of the experimental substructure [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF], respectively; α, β, γ, δ, χ, and λ are the parameters to be designed. The control effect is not affected if the ratio of γ and χ is constant. Substituting Eq. ( 8) into Equation [START_REF] Tu | Testing of dynamically substructured, base-isolated systems using adaptive control techniques[END_REF], which represents the sum of the kinetic energy, the optimum feedback gain K is then determined according to the LQR algorithm, which will result in the minimum of Equation [START_REF] Tu | Testing of dynamically substructured, base-isolated systems using adaptive control techniques[END_REF]. The detailed derivation process can be found in reference [START_REF] Ogata | Modern Control Engineering[END_REF]. This optimum feedback gain matrix K also can be computed using the command 'lqr' in the MATLAB toolbox [START_REF]MATLAB, version 8.3 (R2014a[END_REF] with the inputs as shown below:
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The open-loop transfer function 0 ( ) g jω of the LQR controller based on Equation ( 6) is shown below which will be utilized later in the stability and robustness analysis:
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State observer

The state of the system usually cannot be directly observed whereas a state observer is used to observe the state of the system. LQG controller is the assemble of the LQR controller and the state observer.

When the observability condition is satisfied, the state observers can be designed. As shown in Fig. 1, the state observer estimates the state variables based on the measured displacement of the experimental substructure xm and the command signal from the controller to the actuator-specimen system yGc. Thus, we define the mathematical model of the observer [START_REF] Ogata | Modern Control Engineering[END_REF] to be

E E E ˆˆˆ= + ( ) ( ) + = + - = - + -= - X AX B K CX A K C X B K CX & & Gc m Gc m com m com y x y x x x x ξ ( 11 
)
where KE is the observer gain matrix. It is a weighting matrix to the correction term involving the difference between the measured displacement of the experimental substructure xm and the estimated displacement of the experimental substructure = CX m x , X denotes the estimate of the state vector X, and ˆm

x denotes the estimate of the measured displacement of the experimental substructure xm. This is a full state observer. And the observer error and its derivative are defined as = e X X [START_REF] Jung | Performance of a real-time pseudo dynamic test system considering nonlinear structural response[END_REF] whose characteristic equation [START_REF] Ogata | Modern Control Engineering[END_REF] can be obtained as
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The optimum values in matrix KE will make error vector e asymptotically stable and sufficiently quickly converge to obtain the accurate state estimation. The observer gain matrix KE can also be obtained by using the lqe2 function in the MATLAB Toolbox [START_REF]MATLAB, version 8.3 (R2014a[END_REF] with the inputs as shown below:

E = 2( , , , , ) e e lqe Q R K A B C ( 14 
)
where Qe is the covariance matrix of the system noises, and Re is the covariance matrix of the measurement noises.

The LQG controller model may now be expressed as Ĝc I y k ξ = -+ KX [START_REF] Darby | Stability and delay compensation for real-time substructure testing[END_REF] Combining Equations ( 15) and [START_REF] Carrion | Model-based strategies for real-time hybrid testing[END_REF] 
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is the assemble of the estimate of the state vector X and an intermediate variable ξ.

The open-loop transfer function of the state observer based on Equation ( 11) is
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The open-loop transfer function of the LQG controller based on Equation ( 16) is
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Although the state observer itself can be designed to have a good robustness to the noises and disturbances, a robust state observer may reduce the robustness of the LQG controller [START_REF] Doyle | Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis[END_REF][START_REF] Ogata | Modern Control Engineering[END_REF]. The LTR procedure is therefore adopted herein to improve the controller's robustness as discussed next.

LTR procedure

The open loop transfer function [START_REF] Ahmadizadeh | Compensation of Actuator Delay and Dynamics for Real-Time Hybrid Structural Simulation[END_REF] designed in Section 2.2 can be recovered to target open-loop transfer function [START_REF] Yamaguchi | Synthesised H∞/μ Control Design for Dynamically Substructured Systems[END_REF] by a modified state observe design procedure [START_REF] Doyle | Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis[END_REF]. The covariance matrix Qe in Equation ( 14) is replaced by Q1, which is defined as Q1=qQe, q is a scalar parameter. When q→∞, the open-loop transfer function of the LQG controller will be close to the open-loop transfer function of the LQR controller as
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Parameters in KE can be calculated using the lqe2 function from the MATALB Toolbox [START_REF]MATLAB, version 8.3 (R2014a[END_REF], similar to how it was used in Equation ( 14):
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The open-loop transfer function of the RLQG controller is the same as Equation [START_REF] Ahmadizadeh | Compensation of Actuator Delay and Dynamics for Real-Time Hybrid Structural Simulation[END_REF].

Implementing the RLQG controller

The RLQG controller proposed in this paper is based on the LQG controller and added with the LTR procedure to improve its robustness. The RLQG controller can be rewritten from Equation ( 16)
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The discrete time model [START_REF] Åström | Computer-controlled systems theory and design[END_REF] of the LQG controller is written as
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where A * d, B * d, and C * d are determined using the MATLAB command 'c2d' [START_REF] Åström | Computer-controlled systems theory and design[END_REF], which converts a model from continuous time (defined by A % , B % , and C % ) to discrete time by the Tustin's method [START_REF] Åström | Computer-controlled systems theory and design[END_REF].
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is the controller state vector at time t=(k+1)Δt (k is the discrete index, and Δt is the simulation sampling duration), ( )=[ ( )
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com
x k is the output of FP compensator, and ( ) m x k is the measured displacement of the experimental substructure; both are at time t=kΔt.

FP compensation method

The RLQG controller is aimed to cancel the adverse effects to the RTHS testing system due to uncertainties. To compensate the residual time delay, the polynomial-based forward prediction (FP) compensation algorithm [START_REF] Wallace | Real-time dynamic substructuring for mechanical and aerospace applications; control techniques and experimental methods[END_REF] is applied as shown in Fig. 1 (the purple frame), which determines the output of FP compensator before it is sent to the RLQG controller , +1 1 1 ( )
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where P is the forward prediction step, a is the coefficient matrix determined using the least square fitting based on the output vector of numerical substructure of the previous n steps.
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where [•] -1 is the pseudo-inverse of the matrix, the parameter n must be larger than or equal to the order of the polynomial N+1, the upper/top limit of n depends on the parameters N and the maximum signal frequency fmax, whose relationship is discussed in details in the reference [START_REF] Wallace | Real-time dynamic substructuring for mechanical and aerospace applications; control techniques and experimental methods[END_REF]. Increasing n will smooth the command history and decrease the noises' effect. The larger the value of N, the better fitting of the polynomial. However, the FP algorithm tends to be unstable when the value of N is too large. Therefore, N is usually set between 2~4. The parameter P is the prediction step, which is constant during a test and can be determined by dividing the time delay τ by the simulation sampling duration Δt.

BENCHMARK PROBLEM

The actuator-specimen model of the benchmark problem is defined in Equation (1) whose parameters, and their associated uncertainties are described in reference [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF]. Numerical simulations of RTHS (i.e., vRTHS) were conducted in the time domain using the vRTHS tools programmed in Matlab TM , which are part of the benchmark problem provided as well.

A laboratory-size model of a typical three-story steel frame structure is the prototype structure in the benchmark problem. For RTHS, the reference model is partitioned into numerical and experimental substructures. Five partitioning cases are defined in the benchmark problem by varying the parameters of the reference structure, as summarized in Table 1. Based on the predictive stability indicator [START_REF] Maghareh | Predictive stability indicator: A novel approach to configuring a real-time hybrid simulation[END_REF], partitioning cases 1-4 are slightly sensitive to the experiment setup to desynchronization, and partitioning case 5 is moderately sensitive. Case 5 is specifically designed and added here to demonstrate the robustness of the proposed RLQG+FP controller. The response of the entire structural model is numerically simulated and the power spectral of the reference displacement of the first floor x1 is determined and shown in Fig. 2. It can be seen that the main frequency content of this reference displacement is from 0~20 Hz. This frequency range is referred in the bandwidth design of the controller system, as discussed in Sections 4.2 and 4.3. 

STABILITY AND ROBUSTNESS ANALYSIS OF THE RLQG CONTROLLER

The stability and robustness analysis of the LQR, LQG controller and the proposed RLQG controllers are presented in this section, whose designs are explained in Subsections 2.1, 2.2, and 2.3, respectively. The parameters used herein for the three controllers are determined based on the parameters of the benchmark problem model, as summarized in 

Stability and robustness theorem

When design the LQR, LQG and RLQG controllers, the frequency condition for the optimum tuning system must be satisfied [START_REF] Zhen | Linear system theory (Second Edition)[END_REF]. This frequency domain condition can also be expressed in a geometrical form as: Theorem Ⅰ [START_REF] Zhen | Linear system theory (Second Edition)[END_REF]:

The curve of open-loop frequency response 0 ( ) g jω from ω=0 to ω=∞ in the complex plane must not intersect the unit circle Γ(-1,j0), and the curve g0(jω) has a finite tangent point with the unit circle. The optimum tuning system must satisfy the following two requirements according to theorem Ⅱ: Theorem Ⅱ [START_REF] Zhen | Linear system theory (Second Edition)[END_REF]: (ⅰ) with less than ±60° phase margin; (ⅱ) with (1/2,∞)gain margin, where the phase margin and the gain margin are defined as: Gain margin=1/|g0(jωα)|, when ∠g0(jωα)=180° (25)

Phase margin=θ, when |g0(jωα)|=1

(26)

Stability and robustness analysis of the LQR and LQG controllers

Using the parameters defined in Table 2 of the two controllers, the Nyquist curves and the Bode diagrams of the LQR and the LQG controllers for the benchmark problem are shown in Fig. 3 based on their respective open-loop transfer function defined in Equations ( 10) and [START_REF] Ahmadizadeh | Compensation of Actuator Delay and Dynamics for Real-Time Hybrid Structural Simulation[END_REF]. In addition, the Nyquist curve and the Bode diagram of the state observer are also included in Fig. 3 based on its transfer function defined in Equation ( 17). The Nyquist curve of the LQR controller shown in Fig. 3(a) in red has only two tangent points within the unit circle Γ(-1,j0). This curve defined by g0(jω) satisfies the robustness requirements according to Theorems I, and Ⅱ. From Fig. 3(b), the phase margin Pm is greater than 60°, and the gain margin Gm is infinite. The slope of the LQR controller curve around the crossing frequency is approximately -20dB, which implies good robustness [START_REF] Anderson | Optimal Control, Linear Quadratic Methods[END_REF]. The controller bandwidth is 474 rad/s, which is approximately 4 times of 125.6rad/s (i.e., 20Hz, the largest frequency of input signal). The Nyquist curves of the LQG controller (blue) and the state observer (green) are also shown in Fig. 3(a). Both curves have only one tangent point within the unit circle Γ(-1, j0) at the origin and infinite phase margin, which can also be observed in Fig. 3(b). This infinite phase margin of the LQG controller does not meet the robustness requirement according to the Theorem Ⅱ (ⅱ) [START_REF] Zhen | Linear system theory (Second Edition)[END_REF], although the state observer has infinite gain and phase margin, which meet the robustness requirement based on the same theorem. It can be seen from Fig. 3(b) that the LQG g0(jω) curve decreases more rapidly than the LQR curve and its gain margin Gm is less than that of the LQR controller. This reveals that the LQG controller has poor robustness even though it is designed based on the combination of a robust LQR controller and a robust state observer [START_REF] Anderson | Optimal Control, Linear Quadratic Methods[END_REF]. The RLQG controller is, therefore, proposed for the RTHS benchmark problem to address this conflict in the robustness performance of the LQG controller, whose stability and robustness analysis is presented next.

Stability and robustness analysis of the RLQG controller

The Nyquist curve and the Bode diagram of the RLQG controller are shown in Fig. 4, where the blue and red lines represent the RLQG and LQR controllers, respectively. From Fig. 4(a), it can be seen that the RLQG controller has no tangent point within the unit circle Γ(-1,j0), so it has an infinity gain margin which can also be seen in Fig. 4(b). This infinite gain margin of the RLQG controller after adopting the LTR procedure satisfies the robustness requirement according to Theorem Ⅱ(i). Fig. 4(c) shows that the RLQG g0(jω) curve decreases more rapidly than the LQR curve and the slope of the RLQG curve around the crossing frequency is also approximately -20 dB, the gain margin Gm of the RLQG controller is recovered to infinity as for the LQR controller. The infinite gain margin of the RLQG controller shows that it has the same robustness as the LQR controller. The system bandwidth is 383rad/s, which is approximately 3 times 125.6rad/s (i.e., 20Hz, the largest frequency of the input signal). Although, the RLQG controller has a slightly smaller phase margin than the LQR controller, which implies that it has less tolerance to time delay than the LQR and LQG controllers, a fixed time delay compensation such as the FP algorithm can address this issue. To this end, the RLQG controller proposed in this paper is considered to have adequate robustness for the benchmark problem.

NUMERICAL SIMULATION

Numerical simulations of the benchmark problem using the LQG controller and the proposed RLQG controller combined with the FP compensator were conducted. The simulation time step Δt=1/4096 sec. The same parameters listed in Table 2 for the LQG and RLQG controllers are used in the numerical simulation. The parameters of the FP compensator are the same when applied to the two controllers, which are N=3, n=10. The time delay is 0.01 s, when only the RLQG controller is used, which satisfies the maximum time delay of 10ms required in the benchmark problem (Section 3.4 in [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF]). The prediction step P is therefore set to 0.01/(1/4096)=40.96. The simulation results of the virtual RTHS (vRTHS) using the LQG+FP and the RLQG+FP controllers are presented and compared below.

Displacement response and tracking error time histories

Displacement time histories of the reference model and the RTHS are shown in Fig. 5 for all five partitioning cases. As can be seen from the response comparison in the range of 9.54-9.6 seconds, the RTHS responses using the RLQG+FP controller follow the reference model responses better than that using the LQG+FP controller. The entire time histories of the reposes are not shown in Fig. 5 because similar observations can be made in other segments. The tracking error between 5-10 seconds of the two controllers are shown in Fig. 5 for comparison. The absolute values of the tracking errors of the RLQG+FP controller are less than those of the LQG+FP controller in all 5 cases. And the RLQG errors experience less fluctuation than the LQG errors. The larger fluctuation in the LQG errors explains the larger difference between the responses obtained from the vRTHS using the LQG+FP and the reference model when compared to the RLQG+FP controller. Therefore, both the time history responses and the tracking error comparison demonstrate that the RLQG+FP controller is more robust than the LQG+FP controller for the five cases defined in Table 2. 

Nine Evaluation Criteria Values

To consistently compare the controller's performance proposed for the benchmark problem, nine evaluation criteria are defined in [START_REF] Silvaa | Benchmark Control Problem for Real-Time Hybrid Simulation[END_REF]. The values of these nine evaluation criteria were computed based on the vRTHS responses and are listed in Table 3, where white cells show the results of the RLQG+FP controllers and grey cells show the results of the LQG+FP controllers for easy comparison. The detail data of these nine evaluation criteria are listed as A1-A10 in Appendix A.

As can be seen from Table 3, the J1 values are zeros for all 5 cases for the RLQG controller demonstrating its capability to achieve accurate control result even when a fixed FP compensator is used. In addition, J2 and J3 values of all 5 cases are less than 3%, which echo the good match between the reference model responses and the vRTHS responses shown in Fig. 5. The variances (Std. dev.) of the J2 and J3 values are very small revealing the robustness of the RLQG controller when it is applied to five partitioning cases. The variance values of J4-J9 are relatively larger than those of J2 and J3. This maybe be attributed to the uncertainties of the experimental substructure stiffness ke that not only affects the control accuracy, but also affects the restoring force feedback to the numerical substructure, which in turn results in relatively larger errors in the global response of the reference model. Nevertheless, the mean values of these criteria (J4-J9) are generally less than 5%, within the acceptance level for most vRTHS.

Comparing the J1-J9 values of the RLQG+FP and the LQG+FP controllers in Table 3, it can be seem that generally the nominal values of RLQG+FP are smaller than that of the LQG+FP controller, while the variances (Std. dev.) of the J1-J9 values using the RLQG+FP are much smaller than of those of the LQG+FP controller (usually less than 1/10). Both the small nominal values and the variances of the RLQG+FP controller demonstrate its superior robustness when compared to the LQG+FP controller. To facilitate easy visual comparison of the evaluation criteria values among different partitioning cases when using the RLQG+FP controller, Fig. 6 is provided. It can be seen that J4-J9 values of case 1 (red) are smaller than those of case 4 (black), which indicates that the lightly damped structure is more sensitive to the parameter uncertainties compared to highly damped structure. J4-J9 values of case 5 (cyan) are the largest among the five cases because the reference model of this case has the smallest damping, further proves that damping has a great effect on the accuracy of the RTHS results. It is interesting to see that J2-J3 values of case 4 are smaller than those of case 1 and J2-J3 values of case 5 are the smallest. This phenomenon can deduce that for the same tracking error of different displacement command yn value (as is seen from Fig. 6), the lower the damping of the reference model, the smaller the values of J2 and J3. From Fig. 6, J2-J7 values of case 3 (green) are smaller than those of case 4, which indicates that the larger the mass ratio between the experimental substructure and the numerical substructure, the more sensitive of the RTHS results to the parameter uncertainties. These results also agree with the predictive stability indicator (PSI) analysis, in which PSI of case 3 and case 1 are smaller than that of case 4 and PSI of case 5 is the smallest in Table 2. Figure 6. vRTHS evaluation criteria for cases 1, 2, 3, 4, and 5.

CONCLUSION

A robust LQG (RLQG) controller is proposed in this paper to accurately control the RTHS system, and it is implemented in the benchmark problem with parameter uncertainties. The design of the RLQG controller is presented focusing on its integration of several existing control methods and strategies. The stability and robustness of the RLQG controller are analyzed using the Nyquist curve and Bode diagram with gain and phase margins. The stability and robustness analysis show that the RLQG controller has a high level of robustness with an infinite gain margin. Numerical simulations of RTHS are performed on the benchmark problem, considering five partitioning cases. The simulation results demonstrate that the RLQG controller is more robust than the than LQG controller and when applied in RTHS of the benchmark problem, RLQG yields more accurate response histories than the LQG when compared to the responses of the reference model. The sensitivity of the RTHS results to the damping and the mass ratio between the experimental substructure and the numerical substructure is observed, which may help future RTHS partition design to achieve higher accuracy. 
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Figure 5 .
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Table 1 :

 1 RTHS partitioning cases.

	Partitioning	Reference	Reference	Predictive	Sensitivity of
	configuration	floor mass	modal damping	stability indicator	experiment setup to
		(kg)	(%)	[42]	desynchronization
	Case 1	1000	5	1.05~1.1	slightly sensitive
	Case 2	1100	4	0.9~1	slightly sensitive
	Case 3	1300	3	0.9	slightly sensitive
	Case 4	1000	3	0.8~0.9	slightly sensitive
	Case 5	950	2	0.6~0.7	moderately sensitive

Table 2

 2 

	below.

Table 3 :

 3 vRTHS evaluation criteria for cases 1, 2, 3, 4, and 5 for El Centro earthquake excitation

		Case (#)	J1 (msec)	J2 (%)	J3 (%)	J4 (%)	J5 (%)	J6 (%)	J7 (%)	J8 (%)	J9 (%)	Method
		Nominal value	0	2.89	2.344 3.409 2.621 1.799 1.806 0.976 0.981	RLQG +
	1	Std. dev. Nominal value	0 0.414	0.026 0.056 0.058 0.043 3.798 3.941 8.787 5.66	0.13 7.225 7.249 3.803 3.799 0.128 0.069 0.069	FP LQG +
		Std. dev.	0.484	0.567 0.771 2.281 1.219 2.238 2.247 1.114 1.115	FP
	2	Nominal value Std. dev. Nominal value	0 0 0.295	2.711 2.256 3.157 2.594 1.629 1.635 0.895 0.888 RLQG+ FP 0.021 0.042 0.036 0.045 0.088 0.089 0.048 0.05 LQG 4.069 4.406 8.789 5.615 7.418 7.436 4.141 4.134 +
		Std. dev.	0.413	0.854 1.107	1.85	1.005 1.625	1.63	0.95	0.95	FP
	3	Nominal	0	1.752 1.596 3.057 2.616 2.501 2.501 1.742 1.741	RLQG

Table A -

 A Table A-4: vRTHS evaluation criteria for cases 4 for El Centro earthquake excitation, using a RLQG controller improved with a FP compensator. 5: vRTHS evaluation criteria for cases 5 for El Centro earthquake excitation, using a RLQG controller improved with a FP compensator.

	a RLQG controller improved with a FP compensator. 14 0 1.75 1.59 3.22 2.73 5 0 1.63 1.84 5.56 4.09	2.71 5.31	2.71 5.31	1.88 2.96	1.88 2.95
	15 6	0 0	1.75 1.65	1.6 1.90	3.02 5.18	2.59 3.92	2.45 4.88	2.45 4.88	1.71 2.73	1.71 2.71
	Number 16 7	J1 0 0	J2 1.75 1.66	J3 1.58 1.91	J4 3.15 5.28	J5 2.73 3.92	J6 2.59 5.05	J7 2.59 5.05	J8 1.8 2.82	J9 1.8 2.81
	(#) 17 8	(msec) 0 0	(%) 1.76 1.64	(%) 1.61 1.87	(%) 2.99 5.55	(%) 2.58 4.08	(%) 2.4 5.31	(%) 2.4 5.31	(%) 1.67 2.97	(%) 1.67 2.95
	1 18 9	0 0 0	2.7 1.75 1.61	2.25 1.6 1.76	3.16 3.14 6.33	2.59 2.68 4.55	1.65 2.62 6.09	1.65 2.62 6.10	0.91 1.82 3.40	0.90 1.82 3.39
	2 19 10	0 0 0	2.71 1.77 1.62	2.28 1.61 1.80	3.17 2.9 6.20	2.64 2.45 4.47	1.67 2.32 5.99	1.68 2.32 5.99	0.92 1.62 3.34	0.91 1.62 3.33
	3 20 11	0 0 0	2.68 1.76 1.66	2.18 1.6 1.91	3.24 3.03 5.13	2.63 2.59 3.84	1.79 2.46 4.86	1.8 2.46 4.86	0.99 1.72 2.71	0.98 1.72 2.70
	4 21 12	0 0 0	2.71 1.75 1.62	2.26 1.59 1.79	3.17 3.1 6.10	2.61 2.62 4.43	1.64 2.58 5.86	1.65 2.58 5.86	0.90 1.8 3.27	0.90 1.79 3.25
	5 Table A-3: vRTHS evaluation criteria for cases 3 for El Centro earthquake excitation, using 0 2.7 2.21 3.2 2.65 1.73 1.73 0.95 0.94 13 0 1.62 1.82 5.78 4.21 5.51 5.52 3.08 3.06
	6 a RLQG controller improved with a FP compensator. 0 2.7 2.23 3.17 2.61 14 0 1.65 1.86 5.38 3.99	1.67 5.12	1.68 5.13	0.92 2.86	0.92 2.85
	7 15	0 0	2.71 1.64	2.26 1.87	3.14 5.52	2.55 4.05	1.6 5.29	1.61 5.29	0.88 2.95	0.87 2.94
	8 Number 16	0 J1 0	2.7 J2 1.64	2.27 J3 1.88	3.17 J4 5.47	2.63 J5 4.05	1.66 J6 5.23	1.66 J7 5.23	0.91 J8 2.92	0.90 J9 2.90
	9 (#) 17	0 (msec) 0	2.73 (%) 1.65	2.3 (%) 1.88	3.12 (%) 5.36	2.6 (%) 3.97	1.56 (%) 5.12	1.57 (%) 5.12	0.86 (%) 2.86	0.85 (%) 2.84
	10 1 18	0 0 0	2.7 2.24 1.62	2.24 2.12 1.81	3.19 3.71 5.97	2.6 2.8 4.32	1.7 2.97 5.72	1.71 2.97 5.72	0.93 1.5 3.19	0.93 1.5 3.18
	11 2 19	0 0 0	2.72 2.22 1.63	2.25 2.08 1.83	3.13 3.87 5.79	2.52 2.92 4.24	1.54 3.16 5.55	1.54 3.17 5.55	0.85 1.59 3.10	0.84 1.59 3.08
	12 3 20	0 0 0	2.76 2.25 1.61	2.36 2.11 1.79	3.12 3.7 6.03	2.59 2.83 4.37	1.51 2.95 5.77	1.51 2.96 5.77	0.83 1.49 3.22	0.82 1.49 3.20
	13 4 21	0 0 0	2.69 2.25 1.66	2.2 2.11 1.87	3.14 3.6 5.45	2.55 2.75 4.03	1.61 2.79 5.23	1.61 2.8 5.23	0.88 1.41 2.92	0.88 1.41 2.90
	14 5	0 0	2.75 2.25	2.29 2.13	3.09 3.65	2.48 2.76	1.43 2.9	1.44 2.91	0.79 1.47	0.78 1.47
	15 6	0 0	2.73 2.27	2.26 2.16	3.18 3.57	2.67 2.74	1.67 2.78	1.67 2.79	0.91 1.41	0.90 1.41
	Earthquake Engng Struct. Dyn. 1992; 21:779-792. 2. Williams DM, Williams MS, Blakeborough A. Numerical modeling of a servo-hydraulic 16 0 2.69 2.23 3.17 2.63 1.7 1.7 0.93 0.93 7 0 2.22 2.04 3.96 3.02 3.27 3.28 1.65 1.64 J9 17 0 2.73 2.3 3.13 2.56 1.54 1.55 0.85 0.84 8 0 2.25 2.12 3.67 2.81 2.91 2.92 1.47 1.47 Number J1 J2 J3 J4 J5 J6 J7 J8 J9 (%) 1 0 2.89 2.35 3.38 2.6 1.75 1.75 0.95 18 0 2.68 2.19 3.2 2.61 1.75 1.76 0.96 0.96 9 0 2.23 2.08 3.81 2.87 3.11 3.12 1.58 1.57 (#) (msec) (%) (%) (%) (%) (%) (%) (%) (%) 0.95 2 0 2.89 2.34 3.43 2.65 1.86 1.86 1.01 19 0 2.73 2.3 3.1 2.56 1.52 1.52 0.83 0.82 10 0 2.24 2.12 3.72 2.83 2.94 2.95 1.48 1.48 1 0.2 3.56 3.55 7.54 5.09 5.95 5.97 3.16 3.16 1.01 3 0 2.92 2.41 3.31 2.54 1.57 1.58 0.85 20 0 2.7 2.27 3.15 2.6 1.62 1.63 0.89 0.88 11 0 2.23 2.07 3.82 2.89 3.12 3.13 1.57 1.57 2 0 4.36 4.69 9.89 6.42 8 8.02 4.3 4.3 0.86 4 0 2.86 2.26 3.44 2.62 1.86 1.87 1.01 21 0 2.7 2.25 3.16 2.59 1.65 1.66 0.91 0.90 12 0 2.24 2.1 3.67 2.78 2.91 2.92 1.47 1.47 3 0.5 2.75 2.4 5.28 3.51 4.16 4.17 2.19 2.18 1.01 5 0 2.9 2.38 3.38 2.59 1.73 1.74 0.94 Table A-2: vRTHS evaluation criteria for cases 2 for El Centro earthquake excitation, using 13 0 2.26 2.14 3.58 2.73 2.8 2.8 1.41 1.41 4 0.2 3.94 4.05 8.37 5.66 6.63 6.65 3.52 3.52 0.95 6 0 2.94 2.44 3.33 2.57 1.62 1.63 0.88 a RLQG controller improved with a FP compensator. 14 0 2.24 2.09 3.61 2.75 2.8 2.81 1.41 1.41 5 0.2 3.58 3.62 7.72 5.12 6.15 6.17 3.26 3.26 0.88 7 0 2.9 2.37 3.37 2.62 1.73 1.74 0.93 15 0 2.23 2.1 3.76 2.85 3.01 3.02 1.52 1.52 6 0.2 3.14 2.94 6.44 4.27 5.03 5.05 2.67 2.66 0.94 8 0 2.88 2.32 3.41 2.6 1.8 1.8 0.98 Number J1 J2 J3 J4 J5 J6 J7 J8 J9 16 0 2.25 2.16 3.64 2.77 2.88 2.89 1.46 1.46 7 1.7 4.43 4.45 14.13 8.35 12.94 12.99 6.47 6.47 0.98 9 0 2.85 2.26 3.54 2.71 2.08 2.08 1.12 (#) (msec) (%) (%) (%) (%) (%) (%) (%) (%) 17 0 2.24 2.14 3.68 2.81 2.92 2.93 1.47 1.47 8 0.7 3.58 3.83 9.48 5.81 8.17 8.2 4.25 4.24 Number J1 J2 J3 J4 J5 J6 J7 J8 J9 1.13 10 0 2.87 2.27 3.49 2.69 1.98 1.98 1.07 1 0 1.75 1.58 3.04 2.62 2.48 2.48 1.73 1.73 18 0 2.24 2.1 3.84 2.92 3.14 3.15 1.59 1.59 9 0 3.78 3.91 7.59 5.29 5.83 5.85 3.12 3.12 (#) (msec) (%) (%) (%) (%) (%) (%) (%) (%) 1.07 11 0 2.92 2.41 3.34 2.55 1.62 1.63 0.88 2 0 1.75 1.6 3.06 2.6 2.52 2.52 1.76 1.76 19 0 2.26 2.12 3.68 2.76 2.96 2.97 1.5 1.5 10 0 4.89 5.2 12.47 7.76 10.48 10.51 5.61 5.61 1 0.2 2.98 3.42 10.1 7.78 9.47 9.47 6.62 6.63 0.89 12 0 2.88 2.3 3.47 2.66 1.94 1.95 1.05 3 0 1.75 1.6 2.99 2.55 2.43 2.43 1.69 1.69 20 0 2.24 2.11 3.72 2.82 2.99 3 1.51 1.51 11 0 3.9 4.28 7.73 5.43 5.88 5.9 3.2 3.2 2 0 2.54 2.77 6.64 5.5 5.89 5.89 4.09 4.1 1.06 13 0 2.9 2.4 3.39 2.6 1.76 1.77 0.96 4 0 1.75 1.6 3.06 2.63 2.49 2.49 1.74 1.73 21 0 2.24 2.05 3.85 2.89 3.17 3.18 1.6 1.6 12 0.7 4 4.22 9.67 5.98 8.09 8.12 4.24 4.23 3 0.7 3.38 3.77 12.8 9.53 12.25 12.25 8.6 8.62 0.96 14 0 2.9 2.36 3.39 2.61 1.75 1.76 0.95 5 0 1.76 1.6 3.01 2.55 2.46 2.46 1.71 1.71 13 0.2 2.81 2.5 5.51 3.73 4.33 4.34 2.28 2.27 4 0 3.05 3.48 10.3 7.86 9.65 9.65 6.74 6.76 0.96 15 0 2.85 2.27 3.46 2.65 1.9 1.91 1.03 6 0 1.75 1.59 3.12 2.67 2.58 2.58 1.8 1.8 14 0 4.16 4.61 8.58 5.92 6.66 6.68 3.61 3.61 5 0 2.49 2.77 7.84 6.15 7.18 7.18 5.01 5.02 1.03 16 0 2.93 2.4 3.37 2.6 1.68 1.69 0.92 7 0 1.76 1.61 3.11 2.69 2.56 2.56 1.78 1.78 15 0.7 3.86 4.1 9.32 5.81 7.82 7.84 4.09 4.08 6 2.2 5.13 5.48 24.52 17.93 24.08 24.09 17.1 17.16 0.92 17 0 2.91 2.4 3.36 2.6 1.7 1.71 0.92 8 0 1.73 1.56 3.23 2.81 2.69 2.69 1.87 1.87 Number J1 J2 J3 J4 J5 J6 J7 J8 J9 16 0.5 3.26 3.28 7.64 4.82 6.37 6.39 3.34 3.33 7 0.5 3.48 3.98 12.35 9.34 11.73 11.73 8.23 8.25 0.93 18 0 2.85 2.29 3.47 2.65 1.94 1.95 1.06 9 0 1.75 1.59 3 2.55 2.42 2.42 1.69 1.69 (#) (msec) (%) (%) (%) (%) (%) (%) (%) (%) 17 0.7 3.45 3.59 8.4 5.25 7.05 7.08 3.69 3.68 8 0 3.66 4.14 12.26 9.2 11.54 11.54 8.06 8.08 1.06 19 0 2.87 2.31 3.45 2.64 1.88 1.89 1.02 10 0 1.74 1.59 3.13 2.71 2.57 2.57 1.79 1.79 1 0 1.65 1.89 5.40 4.01 5.15 5.16 2.88 2.87 18 0 4.38 4.9 9.48 6.49 7.53 7.56 4.1 4.1 9 0 2.88 3.17 7.75 6.31 7 7 4.86 4.87 1.03 20 0 2.88 2.32 3.42 2.66 1.86 1.87 1.01 11 0 1.77 1.63 2.89 2.45 2.31 2.31 1.61 1.61 2 0 1.63 1.83 5.77 4.20 5.54 5.54 3.10 3.08 19 0.7 3.63 3.88 8.97 5.54 7.6 7.62 3.96 3.95 10 0 3.17 3.54 9.3 7.22 8.56 8.56 5.96 5.97 1.02 21 0 2.9 2.37 3.38 2.63 1.76 1.77 0.96 12 0 1.75 1.59 2.96 2.53 2.38 2.38 1.66 1.66 3 0 1.67 1.91 4.92 3.73 4.63 4.63 2.59 2.57 20 0 3.58 3.61 7.04 4.94 5.35 5.37 2.86 2.86 11 0 3.76 4.21 11.61 9 10.85 10.86 7.55 7.56 0.96 Table A-1: vRTHS evaluation criteria for cases 1 for El Centro earthquake excitation, using 13 0 1.75 1.6 3.05 2.6 2.5 2.5 1.74 1.74 4 0 1.64 1.86 5.62 4.12 5.40 5.41 3.02 3 21 1.5 4.71 5.16 13.28 7.68 11.7 11.74 5.95 5.95 12 0 3.37 3.88 9.89 7.85 9.19 9.19 6.35 6.37
					25