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low discrepancy sequences with Pascal triangle matrices modulo 2 to construct, a real number x such that the first N terms of the sequence (2 n x mod 1) n≥1 have discrepancy O((log N ) 2 /N ). This is the lowest discrepancy known for this kind of sequences. In this note we characterize Levin's construction in terms of nested perfect necklaces, which are a variant of the classical de Bruijn sequences. Moreover, we show that every real number x whose binary expansion is the concatenation of nested perfect necklaces of exponentially increasing order satisfies that the first N terms of (2 n x mod 1) n≥1 have discrepancy O((log N ) 2 /N ). For the order being a power of 2, we give the exact number of nested perfect necklaces and an explicit method based on matrices to construct each of them. The computation of the n-th digit of the binary expansion of a real number built from nested perfect necklaces requires O(log n) elementary mathematical operations.

Introduction and statement of results

A real number x is normal to an integer base b if every block of digits in {0, . . . , b -1}, of the same length, occurs in the base b expansion of x with the same limit frequency. Borel [START_REF] Borel | Les probabilités d'enombrables et leurs applications arithmétiques[END_REF][START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF] gave this definition more than 100 years ago and nowadays it is considered the most basic property of randomness for real numbers. A longstanding open question on normal numbers is what is the maximum achievable speed of convergence to normality [START_REF] Korobov | On completely uniform distributions and jointly normal numbers[END_REF]. The best result in this direction is due to M. B. Levin [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF] who exhibited, a construction of the binary expansion of a number with the best known speed of convergence to normality. Either this speed is already the maximum or, necessarily, it is within a logarithmic factor of the absolute maximum due to a result of Schmidt [START_REF] Schmidt | Irregularities of distribution[END_REF].

In this note we give two results. The first, Theorem 1, is a characterization of Levin's construction in terms of a variant of classical de Bruijn sequences [START_REF] De Bruijn | A combinatorial problem[END_REF], that we call nested perfect necklaces. Moreover, every real number x whose binary expansion is the concatenation of nested perfect necklaces of exponentially increasing order has the same speed of convergence to normality as that obtained by Levin's construction [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF]. Our second result, Theorem 2, gives the exact number of nested perfect necklaces of a given order.

The notion of speed of convergence to normality is formalized in the theory of uniform distribution modulo 1. For a sequence (x n ) n≥0 of real numbers in the unit interval the discrepancy of the first N elements is

D N ((x n ) n≥0 ) = sup 0≤α<β≤1 1 N # n : 0 ≤ n < N and α ≤ x n < β -(β -α) .
In [START_REF] Schmidt | Irregularities of distribution[END_REF] Schmidt showed that there is a constant C such that for every sequence (x n ) n≥0 of real numbers in the unit interval there are infinitely many N s such that

D N ((x n ) n≥0 ) > C log N N .
This is an optimal order of discrepancy since this lower bound is achieved by van der Corput sequences, see [START_REF] Kuipers | Uniform distribution of sequences[END_REF][START_REF] Drmota | Sequences, Discrepancies and Applications[END_REF][START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]. The property of Borel normality for real numbers can be defined in terms of uniform distribution. A sequence (x n ) n≥0 of real numbers in the unit interval is uniformly distributed exactly when lim N →∞ D N ((x n ) n≥0 ) = 0. We write {x} to denote x -x , the fractional part of x. For an integer b greater than 1, a real number x is normal to base b if and only if the sequence ({b n x}) n≥0 , is uniformly distributed in the unit interval. As said above, it is still unknown whether the optimal order of discrepancy can be achieved by a sequence of the form ({b n x}) n≥0 for some real number x [START_REF] Korobov | On completely uniform distributions and jointly normal numbers[END_REF][START_REF] Drmota | Sequences, Discrepancies and Applications[END_REF][START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]. The lowest discrepancy known for sequences of this form is O((log N ) 2 /N ) and it holds for a real number x constructed by Levin in [12, Theorem 2]. In that paper he uses Sobol-Faure sequences with the Pascal triangle matrix modulo 2, see [START_REF] Levin | On the upper bounds of discrepancy of completely uniform distributed and normal sequences[END_REF][START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF][START_REF] Faure | Discrépance de suites associées à un système de numération (en dimension s)[END_REF].

The known constructions of normal sequences based on classical de Bruijn sequences do not improve Levin's discrepancy bound: in [START_REF] Ugalde | An alternative construction of normal numbers[END_REF] it is proved that for each such sequence x the discrepancy of ({b n x}) n≥0 is O( (log log N )/N ), which is the same as that for almost all real numbers, see [START_REF] Gál | The discrepancy of the sequence {(2 n x)}[END_REF][START_REF] Philipp | Limit theorems for lacunary series and uniform distribution mod 1[END_REF][START_REF] Fukuyama | The law of the iterated logarithm for discrepancies of {θ n x}[END_REF].

Here we characterize the construction given by Levin in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF]Theorem 2] in terms of combinatorics of words and with a refinement of the so called perfect necklaces introduced in [START_REF] Álvarez | Perfect necklaces[END_REF]. Fix an alphabet A. A word is a finite sequence of symbols and a necklace, or circular word, is the equivalence class of a word under rotations. For positive integers k and m, we call a necklace (k, m)-perfect if each word of length k occurs in it exactly m times at positions which are different modulo m (for any convention on the starting point). The length of a (k, m)-perfect necklace is m|A| k where |A| denotes the cardinality of the alphabet A. In this note we consider the modulus m being a power of 2.

Notice that for m = 1, the (k, m)-perfect necklaces are exactly the de Bruijn sequences of order k. For the binary alphabet the word 0011 is a (1, 2)-perfect necklace. Both words 00110110 and 00011011 are (2, 2)-perfect necklaces. The segments in Champernowne sequence which are the concatenation in lexicographic order of all words of length k is a (k, k)-perfect necklace. For instance the following word is a (3, 3)-perfect necklace (the spacing is just for the readers convenience), 000 001 010 011 100 101 110 111 More generally, every arithmetic sequence with difference coprime with the alphabet size yields a perfect necklace [START_REF] Álvarez | Perfect necklaces[END_REF]Theorem 5].

A word w is a (k, m)-nested perfect necklace if for each integer = 1, 2, . . . , k, each block of w of length m|A| starting at a position congruent to 1 modulo m|A| is a ( , m)-perfect necklace. An alternative recursive definition of nested perfect necklaces is as follows. A word w is a (k, m)-nested perfect necklace if, first, it is a (k, m)-perfect necklace; and, second, either k = 1 or whenever w is factorized

w = w 1 • • • w |A| with each word w i of length m|A| k-1 , then each word w i is a (k -1, m)-nested perfect necklace.
Notice that each (k, m)-nested perfect necklace is not an equivalence class closed under rotations, but it is a single word, with a unique initial position. The word 00110110 is a (2, 2)-nested perfect necklace because it is a (2, 2)-perfect necklace and both words 0011 and 0110 are (1, 2)-perfect necklaces. The four words 0000111101011010 0011110001101001 0001111001001011 are (2, 4)-nested perfect necklaces. Both the concatenation of the first two and the concatenation of the last two are [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF][START_REF] De Bruijn | A combinatorial problem[END_REF]-nested perfect necklaces. The concatenation of all of them is a (4, 4)-nested perfect necklace. The concatenation of all words of the same length in lexicographic order yields a perfect necklace that is not a nested perfect necklace. The statement of our first result is as follows.

Theorem 1. The binary expansion of the number x defined by Levin in [12, Theorem 2] using the Pascal triangle matrix modulo 2 is obtained as the concatenation of (m, m)-nested perfect necklaces for m = 2 d with d = 0, 1, 2, . . .. Conversely, for every number x whose binary expansion is the concatenation of (m, m)-nested perfect necklaces for m = 2 d with d = 0, 1, 2 . . ., the discrepancy

D N (({b n x}) n≥0 ) is O((log N ) 2 /N ).
The result of Theorem 1 holds for any base b that is a prime number, but we can not prove that it holds for arbitrary integer bases. Actually in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF]Theorem 2] Levin gives a construction of the base b expansion of a number that is normal to base b, for any arbitrary base b, not just for base 2. For each integer d = 0, 1, . . . he considers Pascal triangle up to row m = 2 d and he takes the entries modulo 2. Then he defines a new matrix by taking these entries modulo b. We have not been able to prove that the considered submatrices of such a matrix have non-zero determinant, as required.

To see that the result of Theorem 1 holds for any base b that is a prime number consider for each integer d = 0, 1, . . ., the Pascal triangle up to row m = b d , take it modulo b (instead of modulo 2) and call it M d . All the considered sub-matrices have determinant 1 before reducing modulo b. Therefore, they also have determinant 1 modulo b. A similar argument proves that every number x whose b-ary expansion is the concatenation of (m, m)-nested perfect necklaces for m = b d with d = 0, 1, 2 . . . is such that the sequence (b n x mod 1) has the stated discrepancy bound. Unfortunately this argument fails when b is not prime (among the things that fail, the matrix M d is not upper triangular anymore).

The computation of a sequence that is a concatenation of nested perfect necklaces of increasing exponential order is very low: To compute an (m, m)-nested perfect necklace we need one fixed square matrix of size m × m and we perform 2 m multiplications, one per vector of size m × 1. Each of these multiplications require O(m) mathematical operations and they produce a vector of size m × 1, hence m symbols. Thus, the n-th symbol of such a sequence occurs in an (m, m)-nested perfect necklace for m in O(log n). The computation of just the n-th symbol then requires just O(log n) many mathematical operations. Now consider the field F 2 with two elements. We introduce a family of 2 m-1 matrices of dimension m × m over F 2 obtained by rotating the columns of the Pascal triangle matrix modulo 2. We identify words of two symbols with vectors and, for each matrix M in this family, we construct a nested perfect necklace by concatenating the words of the form M w ⊕ z, where w ranges over all words over F 2 of length m in lexicographic order, ⊕ is the addition of vectors and z is a fixed word over F 2 of length m. Such a necklace is called an affine necklace. Our second result is as follows.

Theorem 2. For each m = 2 d with d = 0, 1, 2, . . . there are 2 2m-1 binary (m, m)nested perfect necklaces and they are exactly the affine necklaces.

Affine necklaces

We consider transformations on words obtained as linear maps over the field F 2 with two elements. We identify the words of length n over F 2 with the column vectors of dimension n × 1 over F 2 . More precisely, we always identify the word a 1 • • • a n where a i ∈ F 2 with the column vector (a 1 , . . . , a n ) t ∈ (F 2 ) n×1 where t denotes transpose of vectors and matrices. Suppose w 1 , . . . , w k is a sequence of words, each of them of length n and M is a n×n-matrix over F 2 , we may consider the concatenation (M w 1 )(M w 2 ) • • • (M w k ). In this writing, the matrix M is multiplied with each word w i considered as a column vector, and the resulting column vector is viewed again as a word of length n. Similarly, the component-wise sum of vectors in F 2 is used directly on words of the same length. It is denoted by the symbol ⊕.

We assume that the alphabet is F 2 = {0, 1} and that the modulus m is always a power of 2, namely m = 2 d for some non-negative integer d. We define a family of matrices that we will use to construct explicitly some nested perfect necklaces. We start by defining by induction on d an m × m-matrix M d for each d ≥ 0 by

M 0 = (1) and M d+1 = M d M d 0 M d .
The matrices M 1 and M 2 are then

M 1 = 1 1 0 1 and M 2 =     1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1     .
The matrix M d is a variant of Pascal's triangle modulo 2 in square form, we prove it in Lemma 3 below. This matrix is almost the one used by Levin in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF] because we have reversed the order of the columns. This definition of the matrix M d allows us to identify words with column vectors, which is not the case in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF].

For every d, the matrix M d is upper triangular, that is (M d ) i,j = 0 for 1 ≤ j < i ≤ 2 d . The following lemma states that the upper part of the matrix M d is the beginning of the Pascal triangle modulo 2 also known as the Sierpiński triangle. Lemma 3. For all integers d, i, j such that d ≥ 0 and

1 < i ≤ 2 d and 1 ≤ j < 2 d , (M d ) i,j = (M d ) i-1,j ⊕ (M d ) i,j+1 .
Proof. The proof is carried out by induction on d. For d = 0, the result is trivially true because there are no such i and j. For d = 1, the result trivially holds. Suppose that the result holds for M d and let i, j be integers such that 1 < i ≤ 2 d+1 and 1 ≤ j < 2 d+1 . If i = 2 d + 1 and j = 2 d , the three entries (M d+1 ) i,j , (M d+1 ) i-1,j and (M d+1 ) i,j+1 lie in the same quarter of the matrix M d+1 and the result follows from the inductive hypothesis. Otherwise, the result follows from the following facts. For each integer d ≥ 1, the entry (M d ) i,j is equal to 1 if either i = 1 or j = 2 d (first row and last column) and it is equal to 0 if i = 2 d or j = 1 (last row and first column) and (M d ) 1,1 = (M d ) 2 d ,2 d = 1 (intersection of the two previous cases). These facts are easily proved by induction on d.

We now introduce a family of matrices obtained by applying some rotations to columns of the matrix M d . Let σ be the function which maps each word

a 1 • • • a n to a n a 1 a 2 • • • a n-1 obtained
by moving the last symbol to the front. Since words over F 2 are identified with column vectors, the function σ can also be applied to a column vector.

Let n 1 , . . . , n m be a sequence of integers such that n m = 0 and

n i+1 ≤ n i ≤ n i+1 + 1 for each integer 1 ≤ i < m. Let C 1 , . . . , C m be the columns of M d , that is, M d = (C 1 , . . . , C m ). Define M n1,...,nm d = σ n1 (C 1 ), . . . , σ nm (C m ) .
The following are the eight possible matrices M n1,...,nm d for d = 2 and m = 2 2 .

M 0,0,0,0 2 M 1,0,0,0 2 M 1,1,0,0 2 M 2,1,0,0 2     1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1         0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 1         0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1         0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1     M 1,1,1,0 2 M 2,1,1,0 2 M 2,2,1,0 2 M 3,2,1,0 2     0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1         0 0 0 1 0 1 1 1 1 1 0 1 0 0 1 1         0 0 0 1 0 0 1 1 1 1 0 1 0 1 1 1         0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1    
Let m = 2 d for some d ≥ 0 and let k be some integer such that 1 ≤ k ≤ m. Let w 1 , . . . , w 2 m be the enumeration in lexicographic order of all words of length m over F 2 . Let z be a word over F 2 of length m and let

w i = w i ⊕ z for 1 ≤ i ≤ 2 m .
Let M be a matrix of the form M n1,...,nm d as above. Then, the concatenation

(M w 1 )(M w 2 ) • • • (M w 2 k )
is called an (k, m)-affine necklace. In the sequel we refer to this necklace as the (k, m)-affine necklace obtained from the matrix M = M n1,...,nm d and the vector z. Note that setting z = M z gives M w i = M w i ⊕ z which justifies the terminology. In Lemma 4 each possible matrix M = M n1,...,nm d is proved to be invertible and therefore each vector z is equal to M z for some vector z. Note that for k = 2 d and = 0, the sub-matrix in the statement of the lemma, is the whole matrix M n1,...,nm d , which is invertible.

M =         P k m -k k m m
Proof. Let m = 2 d be the number of rows and columns of M . By Lemma 3, each entry M i,j for 1 < i ≤ m and 1 ≤ j < m of the matrix M satisfies either M i,j = M i-1,j ⊕ M i,j+1 if n j = n j+1 (the column C j has been rotated as much as the column C j+1 ) or M i,j = M i-1,j ⊕ M i-1,j+1 if n j = n j+1 + 1 (the column C j has been rotated once more than the column C j+1 ).

Let P be the sub-matrix in the statement of the lemma as shown in Figure 1. To prove that P is invertible we apply transformations to make it triangular. Note that all entries of the last column are 1. The first transformation applied to P is as follows. The row L 1 is left unchanged and the row L i for 2 ≤ i ≤ k is replaced by L i ⊕ L i-1 . All entries of the last column but its top most one become zero. Furthermore, each entry is P i,j is replaced by either P i,j+1 or P i-1,j+1 depending on the value n j -n j+1 . Note also that the new values of the entries still satisfy either P i,j = P i-1,j ⊕ P i,j+1 or P i,j = P i-1,j ⊕ P i-1,j+1 depending on the value n j -n j+1 . The second transformation applied to P is as follows. The rows L 1 and L 2 are left unchanged and each row

L i for 3 ≤ i ≤ k is replaced by L i ⊕ L i-1 .
All entries of the second to last column but its two topmost ones are now zero. At step n for 1 ≤ n < k, rows L 1 , . . . , L n are left unchanged and each row

L i for n + 1 ≤ i ≤ k is replaced by L i ⊕ L i-1 .
After applying all these transformations for 1 ≤ n < k, each entry P i,j for i + j = k + 1 satisfies P i,j = 1 and each entry P i,j for i + j > k + 1 satisfies P i,j = 0. It follows that the determinant of P is 1 and that the matrix P is invertible.

Affine necklaces are nested perfect necklaces

We introduce the notions of upper and lower border of a matrix M n1,...,nm d . Let m = 2 d for some d ≥ 0 and let M be one matrix M n1,...,nm d . An entry M i,j for 1 ≤ i, j ≤ m is said to be in the upper border (respectively lower border ) of M if M i,j = 1 and M k,j = 0 for all k = 1, . . . , i -1 (respectively for all k = i + 1, . . . , m). For instance, the upper border of the matrix M 0,...,0 d = M d is the first row and its lower border is the main diagonal. The following formula pictures in boldface the upper and lower borders of the matrix M 3,3,2,1,1,1,0,0 3 :

M 3,3,2,1,1,1,0,0 3 =             0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1            
We gather now some easy facts about the upper and lower borders of a matrix M n1,...,nm d . Both borders start in the unique entry 1 of the first column. The upper border ends in the top most entry of the last column and the lower border ends in the bottom most entry of the last column. The upper border only uses either East or North-East steps and the lower border only uses either East or South-East steps. The upper border uses a East step from column C j to column C j+1 if n j = n j+1 and uses a North-East step if n j = n j+1 + 1. Furthermore, whenever the upper border uses an East (respectively North-East) step to go from one columns to its right neighbour, the lower border uses a South-East (respectively East) step. This is due to the fact that the distance from the upper border to the lower border in the i-th column is i -1. Proof. The proof is similar to that of Lemma 4. Let P be the sub-matrix in the statement of the lemma, a picture appears in Figure 2. We apply transformations to the sub-matrix P to put it in a nice form such that the determinant is easy to compute. Just to fix notation, we suppose that the sub-matrix P is obtained by selecting rows L r+1 , . . . , L r+k and columns C s+1 , . . . , C s+k . The hypothesis is that the entry M r+k,s+k is in the upper border of M . Note that the upper borders of M and P coincide inside P . We denote by j 1 , . . . , j t the indices of the columns of P in 1, . . . , k which are reached by a North-East step of the upper border. This means that j 1 , . . . , j t is the sequences of indices j such that n s+j-1 = n s+j + 1. By convention, we set j 0 = 1, that is, the index of the first column of P .

The first transformation applied to the matrix P is the following. The columns C 1 , . . . , C jt-1 and C k are left unchanged and each column C j for j t ≤ j ≤ k -1 is replaced by C j ⊕C j+1 . All entries of the first row but its right most one become zero. Furthermore, each entry P i,j for j t ≤ j ≤ k -1 is replaced by P i-1,j . The second transformation applied to the matrix P is the following. The columns C 1 , . . . , C jt-1-1 and C k-1 , C k are left unchanged and each column C j for j t-1 ≤ j ≤ k -2 is replaced by C j ⊕ C j+1 . The first row remains unchanged and all entries of the second row but the last two become 0. We apply t transformations like this one using successively j t , j t-1 , . . . , j 1 . Then k -t -1 further steps are made using then j 0 = 1 each time. After applying all these transformations, each entry P i,j for i + j = + 1 satisfies P i,j = 1 and each entry P i,j for i + j < + 1 satisfies P i,j = 0. It follows that the determinant of P is 1 and that the matrix P is invertible.

For a word w we write w n to denote the word given by concatenation of n copies of w. The following lemma states that each (k, m)-nested perfect necklace can be transformed into another (k, m)-nested perfect necklace which starts with 0 m . Lemma 6. Let w be a word of length m2 k and let z be a word of length m. The word w is a (k, m)-nested perfect necklace if and only if the word w ⊕ z 2 k is a (k, m)-nested perfect necklace.

Proof. Note first that both words w and z 2 k have a length of m2 k . Let w be the word w ⊕ z 2 k . Let be an integer such that 1 ≤ ≤ k and let v be a block of w of length m2 starting at a position j congruent to 1 modulo m2 . The corresponding block of w at the same position j is of course v = v ⊕ z 2 . By hypothesis, this later block v is a ( , m)-nested perfect necklace. We claim that v is also a ( , m)-nested perfect necklace.

Let i be such that 1 ≤ i ≤ m and let u any word of length . Let t be the block of zz of length starting at position i and consider the word u = u ⊕t. This word u has an occurrence in the necklace v at a position j congruent to i modulo m. It follows that u = u ⊕ t has an occurrence at the same position j in v . Since each word u has such an occurrence for each possible i and v has length m2 , v is a ( , m)-nested perfect necklace.

We can now prove that the all the (k, m)-affine necklaces are (k, m)-nested perfect necklaces.

Proposition 7. Let k, m, d be integers such that d ≥ 0, m = 2 d and 1 ≤ k ≤ m. Each (k, m)-affine necklace is a (k, m)-nested perfect necklace.
The proof of Proposition 7 follows and extends that of [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF]Lemma 5] but we use a different notation.

Proof. It suffices of course to prove the result for k = m. By Lemma 6, it may be assumed that the vector z in the definition of affine necklaces is the zero vector. Let M be one of the matrices M n1,...,nm d , let w 1 , . . . , w 2 m be the enumeration in lexicographic order of all words of length m over F 2 and suppose that the (m, m)-affine necklace w is the concatenation (M w 1 )(M w 2 ) • • • (M w 2 m ). Let k be an integer such that 1 ≤ k ≤ m and let w be a block of w of length m2 k starting at a position congruent to 1 modulo m2 k . The word w is thus equal to a concatenation of the form (M

w p2 k +1 ) • • • (M w (p+1)2 k ) for some fixed integer p such that 0 ≤ p ≤ 2 m-k -1. We claim that w is a (k, m)-perfect necklace.
To prove the claim, it must be shown that for each integer such that 0 ≤ < m, each word u of length k has exactly one occurrence in w with a starting position congruent to + 1 modulo m (we write + 1 rather than because positions are numbered from 1). We suppose that the word u and the integer such that 0 ≤ < m are fixed. We distinguish two cases depending on whether + k ≤ m or not.

We first suppose that k + ≤ m. It follows that the wanted occurrence of u must be fully contained in a single word M w p2 k +q for 1 ≤ q ≤ 2 k . More precisely it must lie in the positions + 1, . . . , + k of M w p2 k +q . In that case, the claim boils down to showing that there is exactly one integer q such that u occurs in positions + 1, . . . , + k of M w p2 k +q . Let us recall that p is fixed and that q ranges in 1, . . . , 2 k . Since w i is the base 2 expansion of i -1 with m bits, w p2 k +q has a factorization of the form x p y q-1 , where x p and y q-1 are the base 2 expansions of p and q -1 with m -k and k bits, respectively.

M =         P N
The occurrence of u in w p2 k +q is now translated into linear equations by introducing the following two matrices N and P (see above). Let N and P be the following sub-matrices of the matrix M . The k × m -k matrix N is obtained by selecting the k rows L +1 , . . . , L +k and the m -k columns C 1 , . . . , C m-k . The k × k matrix P is obtained by selecting the same k rows L +1 , . . . , L +k and the k columns C m-k+1 , . . . , C m . The word u occurs in the positions + 1, . . . , + k of M w p2 k +q if and only if u = N x p +P y q-1 where words u, x p and y q-1 are considered as columns vectors of respective dimensions k, m -k and k. Since x p is fixed and P is invertible by Lemma 4, there is exactly one solution for y q-1 and thus one solution for q. This proves the claim when k + ≤ m.

We suppose that + k > m. The wanted occurrence of u must then overlap two consecutive words M w p2 k +q and M w p2 k +q+1 where p2 k +q+1 should be understood as p2 k + 1 if q = 2 k . Let us write u = u 1 u 2 where u 1 and u 2 have length m -and + k -m. The wanted occurrences exist if u 1 occurs at positions + 1, . . . , m of M w p2 k +q and u 2 occurs at positions 1, . . . , + k -m of M w p2 k +q+1 with the same convention for p2 k + q + 1. As in the previous case, these occurrences are translated into linear equations. For that purpose, we introduce the following four matrices.

M =         P 2 N 2 P 1 N 1
The matrices N 1 and P 1 are obtained by selecting the rows L +1 , . . . , L m and the columns C 1 , . . . , C m-k for N 1 and C m-k+1 , . . . , C m for P 1 . The matrices N 2 and P 2 are obtained by selecting the rows L 1 , . . . , L +k-m and the columns C 1 , . . . , C m-k for N 2 and C m-k+1 , . . . , C m for P 2 (see above). The two words w p2 k +q and w p2 k +q+1 are then factorized w p2 k +q = x p y q-1 and w p2 k +q+1 = x p y q where x p is the base 2 expansion of p with 2 m-k bits and words y q-1 and y q are the base 2 expansions of q -1 and q (understood as 0 if q = 2 k ) with 2 k bits. The occurrences of u 1 and u 2 do exist as wanted if and only if these two equalities hold,

u 1 = N 1 x p + P 1 y q-1 , u 2 = N 2 x p + P 2 y q
Notice that the first equation involves y q-1 while the second one involves y q . These two words are strongly related in the sense that each one determines the other. For each i such that 0 ≤ i ≤ k, the i right most bits of either y q-1 or y q determine the i right most bits of the other. This is due to the fact that either adding or subtracting 1 can be performed on the bits from right to left. For that reason, we will show that the equations u 1 = N 1 x p + P 1 y q-1 and u 2 = N 2 x p + P 2 y q have a unique solution in q by successively computing the bits of q -1 and q from right to left.

We actually describe a strategy for solving the two equations. This strategy is based of the upper and lower borders of the matrix M . The main ingredient is that between two consecutive columns C j and C j+1 , one of the two borders uses a step which is not horizontal, that is, either North-East for the upper border or South-East for the lower border.

The right most bit of y q-1 and y q can be found as follows. Either the upper border or the lower border makes a non horizontal step from C m-1 to C m . It means that either the first row or the last row of M has the form (0, . . . , 0, 1). This row can be used to find the right most bit of y q-1 and y q as it is the first row the equation u 1 = N 1 x p + P 1 y q-1 or the last row of the equation u 2 = N 2 x p + P 2 y q . The second right most bit of y q-1 and y q can be found as follows. Either the upper border or the lower border makes a non horizontal step from C m-2 to C m-1 . It means that one row of M has the form (0, . . . , 0, 1, * ). It can be used to find the second right most bit of y q-1 and y q as it is one row of one of the two equations.

This process can be continued using at each step a row of either the first or the second equation. In the process rows of the first equation are used from the first to the last while rows of the second equation are used from the last to the first. This process can be continued until the rows of one the equations have been exhausted. By symmetry, it can be assumed that all rows of the second equation have been used. Suppose that the left most n bits of y q-1 and y q have still to be found. Then the last n rows of the first equations have not been used. Considering the known bits as constants, the matrix involving the r unknown bits is a matrix as in Lemma 5. By this lemma, this matrix is invertible and these last r bits can be found in a unique way. This proves the claim when + k > m and finishes the proof of the proposition.

of G k has two incoming and two outgoing edges. It follows from the definition of the graph G k , that each (k, m)-nested perfect necklace can be interpreted as a Hamiltonian cycle in G k and that each (k + 1, m)-nested perfect necklace as an Eulerian cycle in G k .

Let w be a (k, m)-affine necklace. Then w determines a Hamiltonian cycle C in G k . Since C visits each node of G k exactly once, it uses one outgoing edge of each node. Any (k, m)-nested perfect necklace w such that ww is a (k + 1, m)-nested perfect necklace induces an Hamiltonian C cycle which cannot use an edge of C. Otherwise, it would not be possible to build an Eulerian cycle from C and C and ww would not be a (k + 1, m)-nested perfect necklace. If there is no (k, m)-affine necklace w such that ww is a (k +1, m)-nested perfect necklace the lemma trivially holds. Suppose now that there exists at least one such w . Since the graph G k \ C has only one outgoing edge from any vertex, any (k, m)-nested perfect necklace w such that ww is a (k +1, m)-nested perfect necklace must be of the form σ p (w ) for some integer p ≥ 0. Since both Hamiltonian cycles C and C induced by w and w must start from a vertex in F k 2 × {1} it follows that m divides p. By Lemma 11, the only possible choices for p are 0 and m2 k-1 . This proves that there is at most one such w different from w .

We can now give the number of (k, m)-affine necklaces.

Proposition 13. Let m = 2 d for some d ≥ 0. For each integer k such that 1 ≤ k ≤ m, the number of (k, m)-affine necklaces is exactly 2 k+m-1 .

Proof. We assume the integer m to be fixed and we let t k denote the number of (k, m)-affine necklaces. By Lemma 8, t 1 is equal to 2 m and by Lemma 9, t m is equal to 2 2m-1 . It follows from Lemma 12 that t k+1 ≤ 2t k for each integer k such that 1 ≤ k < m. None of these inequalities can be strict because otherwise t m would be strictly less than 2 2m-1 . So, for each integer k such that 1 ≤ k ≤ m, t k+1 = 2t k , hence, t k = 2 k+m-1 .

The results above allows us to prove the wanted inclusion. Proposition 14. Each (k, m)-nested perfect necklace is a (k, m)-affine necklace.

Proof. Fix m, let s k be the number of (k, m)-nested perfect necklaces and let t k be the number of (k, m)-affine necklaces. By Proposition 7, s k ≤ t k holds for each integer k such that 1 ≤ k ≤ m. To prove the statement, it suffices to prove that s k = t k for each integer k such that 1 ≤ k ≤ m. We prove it by induction on k. By Lemma 8, s 1 = t 1 = 2 m . We suppose s k = t k and we prove that s k+1 = t k+1 . Each (k + 1, m)-nested perfect necklace can be written as ww where w and w are two (k, m)-nested perfect necklaces. Since s k = t k , w and w are also (k, m)-affine necklaces. By Lemma 12, there are at most two possible choices of w for each w. This proves that t k+1 ≤ 2t k . Since s k+1 = 2s k by Proposition 13 and s k+1 ≤ t k+1 , the equality s k+1 = t k+1 holds. 5. Proof of Theorems 1 and 2 5.1. Proof of Theorem 1. For each integer d = 0, 1, . . . consider the Pascal triangle up to row m = 2 d and take the entries modulo 2. Notice that Levin's construction in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF]Theorem 2] is the concatenation of blocks obtained using this matrix for increasing m = 2 d with d = 0, 1, 2, . . .. Hence, each block of the constructed binary sequence is an (m, m)-affine necklace and, as we proved in Proposition 7, each block is an (m, m)-nested perfect necklace.

Conversely, assume that the binary expansion of a given real x can be split in consecutive blocks such that each block is an (m, m)-nested perfect necklace for m = 2 d with d = 0, 1, 2, . . .. In each (m, m)-nested perfect necklace, each block of length m occurs exactly m times at different positions modulo m. This statement implies directly the result of Lemma 5 in [START_REF] Levin | On the discrepancy estimate of normal numbers[END_REF] which is the key lemma of the proof. For any given interval (0, γ) Levin bounds how many of the first N terms of the sequence (2 n x mod 1) n≥1 are in (0, γ). Given N there are positive integers k and R such that N = k-1 d=1 2 d 2 2 d + R with 0 ≤ R < 2 k 2 2 k ; hence, 2 k is O(log N ). The main error term in the discrepancy bound comes from the last R terms, which Levin splits in two ways. First, by considering 2 k many subsequences, each of these comes from projecting the terms that have the same congruence modulo 2 k . Second, by dividing each of these subsequences in 2 k many segments. Thus, Levin 
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  bounds the error in a multiplicative way, obtaining O(2 k × 2 k ). Since 2 k is O(log N ) this explains the term O((log N ) 2 ) in the discrepancy bound stated in Theorem 1. It is carefully counted in Levin's chain of estimates [12, Lemma 5], [12, Corollaries 1 and 2] and the end of the proof of [12, Theorem 2]. 5.2. Proof of Theorem 2. It follows from Propositions 7, 13 and 14. Becher Departamento de Computación, Facultad de Ciencias Exactas y Naturales & ICC Universidad de Buenos Aires & CONICET, Argentina vbecher@dc.uba.ar Olivier Carton Institut de Recherche en Informatique Fondamentale Université Paris Diderot, France Olivier.Carton@irif.fr
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Nested perfect necklaces are affine necklaces

We show that all (k, m)-nested perfect necklaces are (k, m)-affine necklaces. Since the other inclusion has been already proved, it suffices to show that they have the same cardinality. The next lemma shows that for k = 1, they coincide. Proof. There are exactly 2 m-1 matrices M n1,...,nm d . Indeed, the sequence n 1 , . . . , n m is fully determined by the sequence n 1 -n 2 , . . . , n m-1 -n m of m -1 differences which take their value in {0, 1}. There are also 2 m possible values for the word z in F m 2 . This proves that the number of (m, m)-affine necklaces is bounded by 2 2m-1 . It remains to show that two (m, m)-affine necklaces obtained for two different pairs (M, z) and (M , z ) are indeed different. Let w 1 , . . . , w 2 d be the enumeration in lexicographic order of all words of length m over F 2 . Let M and M be two matrices of the form M n1,...,nm d . Let z and z be two words over F 2 of length m and let u i = w i ⊕ z and u i = w i ⊕ z for 1 ≤ i ≤ 2 m . Let w and w be the two concatenations (M u 1 )

We suppose that w = w . Since both matrices M and M are invertible by Lemma 4, M u i (respectively M u i ) is the zero vector if and only if u i (respectively u i ) is the zero vector, that is, z = w i (respectively z = w i ). It follows then that z = z and thus u i = u i for 1 ≤ i ≤ 2 m . Note that the vector u i ranges over all possible vectors of length m.

Lemma 12 will show how (k, m)-affine necklaces can be concatenated with (k, m)affine necklaces to get (k + 1, m)-perfect necklaces. The next two lemmas are intermediate steps towards the proof. The first states that each rotation of a column of M d is a linear combination of some columns to its right. Lemma 10. Let d ≥ 0 be integer and let (C 1 , . . . , C 2 d ) be the columns of the matrix M d . For any integers i, k such that 1 ≤ i ≤ 2 d and k ≥ 0, the vector

Proof. The result is proved by induction on the difference 2 d -i.

The proof is now by induction on the integer k. The result for k = 0 is trivially true. By Lemma 3 applied to the column C i+2 d of the matrix M d+1 , the equality σ(C i ) ⊕ C i = C i+1 holds. We apply Lemma 3 to the column C i+2 d of the matrix M d+1 because this column has period 2 d and its first half is the column C i of M d . This proves the result for k = 1. Suppose now that the result is true for some k ≥ 1. Applying σ to both terms of the equality and replacing first σ(C i ) by the value C i ⊕ C i+1 and second each σ(C j ) by the value given by the inductive hypothesis gives the result for k + 1.

The next lemma shows for each (k, m)-affine necklace, there is just one possible way of rotating it to get another (k, m)-affine necklace. Proof. Since |w| = m2 k and σ |w| (w) = w, we may assume that 0 ≤ p ≤ m2 k . The result holds if either p = 0 or p = m2 k . Therefore we assume that 1 ≤ p ≤ m2 k -1. Let w 1 , . . . , w 2 m be the enumeration in lexicographic order of all words over F 2 of length m. Since w is an affine necklace, it is a concatenation (M u 1 )

where M is a matrix M n1,...,nm d and u i is equal to w i ⊕ z for each integer 1 ≤ i ≤ 2 k and for some fixed vector z. Since σ p (w) is also an affine necklace, it is a concatenation (M u 1 ) • • • (M u 2 k ) where M is a matrix M n1,...,nm d and u i is equal to w i ⊕z for each integer 1 ≤ i ≤ 2 k and for some other fixed vector z . For each such that 0 ≤ < m, consider the vector M u 1 ⊕M u 1+2 . Since u 1 ⊕u 1+2 = w 1 ⊕w 1+2 and since w 1+2 is the vector having a single 1 in position m -, M u 1 ⊕ M u 1+2 is equal to the column C m-of the matrix M . Since M and M are two matrices of the form M n1,...,nm d , the column C m-of M is equal to σ t (C m-) where C m- is the corresponding column of M and t is some integer. Since m divides p, the necklace σ p (w) is also equal to

where i = 1 + p/m. We consider the word w i which is the base 2 expansion of i -1 with m bits. Let be the greatest integer such that 2 divides i -1 = p/m. The integer i -1 is equal to 2 (2r + 1) for some non-negative integer r. We claim that = k -1.

Suppose by contradiction that < k -1. The integer r satisfies thus r ≥ 0 and the base 2 expansion of 2r+1 is u1 where u the base 2 expansion of r. The word w i is then equal to 0 m-k u10 where 0 m-k is the block leading zeros due to i ≤ 2 k and u is the base 2 expansion of r with k--1 digits. We consider the word w i+2 . This word is equal to 0 m-k u 0 +1 where u is the base 2 expansion of r +1 with k --1 digits. Computing M u i ⊕ M u i+2 = M w i ⊕ M w i+2 gives C 2 d -⊕ R where R is a non-zero linear combination of C m-k , . . . , C m--1 . This linear combination R cannot be equal to zero because the words u and u are different. The vector M u i ⊕ M u i+2 is also equal to M u 1 ⊕ M u 1+2 = C m-= σ t (C m-). By Lemma 10, this vector is equal to C m-⊕ R , where R is a linear combination of C m-+1 , . . . , C m . This is a contradiction: the equality R = R is impossible because, by Lemma 4, the matrix M is invertible.

We are now ready to show that each (k, m)-affine necklace can be extended by at most two (k, m)-affine necklaces to get a (k + 1, m)-perfect necklace.

Lemma 12. Let m = 2 d for some d ≥ 0 and let k be an integer such that 1 ≤ k ≤ m. Let w be a (k, m)-affine necklace. There are at most two (k, m)-affine necklaces w such that ww is a (k + 1, m)-perfect necklace.

Proof. We use the characterization of (k, m)-perfect necklaces as cycles in appropriate graphs G k (variants of de Bruijn graphs) given in [START_REF] Álvarez | Perfect necklaces[END_REF]. Consider the directed graph G k whose vertex set is F k 2 × {1, . . . , m} and whose transitions are defined as follows. There is an edge in G k from (u, i) to (u , i ) if first there are two symbols a and b in F 2 such that ua = bu and second i ≡ i + 1 mod m. The condition on u and u means that u and u are respectively the prefix and the suffix of length k of the word v = ua = bu of length k + 1. Therefore, the edges of the graph G k can be identified with the words of length k + 1 over F 2 . Note that each vertex