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Abstract

Predicting the expected performance of Wireless Sensor Networks (WSNs) is the key to their successful de-

ployment. This paper investigates the following fundamental problem: how to judiciously plan the physical and

the logical topologies of a WSN so that performance demands including network connectivity, sensing coverage

quality, reliability, and lifetime are all satisfied with the least possible cost. To handle the uncertainty related to

sensor connectivity and coverage, we devise a probabilistic-based communication cost model, and we exploit the

belief functions theory to define a generic evidence fusion scheme that captures several characteristics of real-world

applications. The uncertainty-aware cluster-based WSNs deployment problem is formulated as a multi-objective binary

nonlinear and non-convex optimization problem, and an efficient heuristic using genetic algorithms is investigated.

Using both simulations and testbed-based experiments, we show that the proposed deployment approach can fulfill

the user performance needs, which confirms that the deployment of real-world fusion-based WSNs with predictable

performance is possible.

Index Terms

Belief Functions Theory, Wireless Sensor Networks, Clustering, Fusion, Deployment, Coverage, Connectivity,

Detection, Surveillance Applications, False Alarm.

I. INTRODUCTION

Effectively managing Wireless Sensor Networks (WSNs) is a major challenge starting from the deployment phase

and throughout the entire lifetime of the network. Once a WSN is deployed, many optimization steps could be

performed to enhance its performance. Therefore, many researchers have focused on approaches that improve the

initial physical topology of the network such as the relocation of sensors [1].

An alternative approach is to focus on the logical topology of the WSN, which is formed by its communication

graph. Hierarchical (tiered) architectures and hierarchical routing protocols [2] are important techniques in this area

of research. In fact, picking the appropriate logical topology helps to reduce the radio interference, the probability

of losses of messages, and the waiting time before data transmission. In addition, it eases data aggregation,

which greatly decreases energy consumption, resulting in a prolonged network lifespan. Nevertheless, only a low
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improvement could be expected with this approach, as the logical topology is mainly constrained by the physical

topology of the network. Moreover, only a few metrics could be impacted by this approach. For instance, modifying

the logical topology has little to no impact on coverage as the latter is more related to the sensors’ positions.

As explained previously, many optimizations can be performed to enhance the performance of WSNs. Still, we

consider that the most significant optimizations are those accomplished at the pre-deployment step to build the

best possible topology that meets explicit performance requirements. In fact, the types, numbers, and locations of

sensors have to be duly planned in order that performance requirements in terms of coverage, connectivity, and

lifespan are all met while keeping the cost affordable. In the literature, this kind of deployment practice is referred

to as deterministic WSNs deployment. There has been much related research on the deterministic deployment of

WSNs in security monitoring [3], [4], [5]. These previous works are mainly based on a flat architecture. They focus

solely on the coverage rate (characterized by the detection probability) and do not consider the quality of coverage

(i.e., they ignore false alarms).

Recently, Tan et al. [6] showed that the quality of coverage is greatly enhanced by data fusion when utilizing

the collaboration among sensors. This has incited the development of new proposals [7], [8], [9], [10] that adopt

data fusion techniques. These proposals consider tiered architecture and use different tools such as optimal control

theory [7], [8], probability theory [9], [11], fuzzy theory [12], and Dempster-Shafer evidence theory [10]. Most of

these approaches enhance the performance of the WSN by taking advantage of the collaboration between sensors.

Nevertheless, these approaches do not take into account several deployment-related issues such as connectivity and

network lifespan. Furthermore, most of them do not specify how and where the data fusion process should be

handled, and how sensor data should be communicated to the fusion center. Therefore, practical situations are not

handled by this type of research. Moreover, other approaches [11], [12] consider the base station as the fusion

center. It is evident that this latter solution is not sustainable and could exhibit scalability issues.

In this work, we are attempting to bridge this gap by exploring simultaneously a cluster-based WSN architecture

and an efficient Dempster-Shafer based fusion scheme while considering a full set of deployment-related issues,

which is more suitable for surveillance applications. To the best of our knowledge, this paper is the first to

comprehensively addresses the problem of fusion-based deterministic WSNs deployment by jointly considering

sensing coverage quality, network connectivity, lifetime, reliability, and deployment cost. Consequently, the WSNs

deployment issue becomes more complex but has more practical significance. The key contributions of this work

are as follows.

1) The problem at hand is formulated as a nonlinear optimization problem with binary variables. Various aspects

of real-life applications including uncertain sensor measurements, sensor’s spatial distribution, unreliable

connectivity, sensor reliability, and harsh deployment environments are captured in this framework.

2) As the formalized problem is NP-hard, an efficient heuristic is developed to solve it.

3) Using both simulations and testbed-based experiments, we show that the proposed deployment approach can

fulfill the user performance needs.

The rest of this paper is structured as follows. Section II reviews related work. Section III summarizes the key
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concepts of the evidence fusion model and presents our communication cost prediction approach. The uncertainty-

aware cluster-based WSNs deployment problem is formalized in Section IV, and resolved in Section V. The

evaluation of our proposed approach via simulations and experiments is presented in Section VI. Finally, Section VII

draws the main conclusions of this paper.

II. RELATED WORK

The problem of cluster-based WSNs deployment could be approached in two different ways (levels), namely: at

the logical topology or rather at the physical topology. In this section, previous works related to both approaches

are discussed.

A. Clustering approaches

Clustering approaches [2], [13] target the logical topology of the network. More precisely, they target the routing

layer. The main idea of these approaches is to group the sensors into clusters to achieve network scalability.

Additionally, clustering has numerous advantages. It can conserve communication bandwidth, and reduce energy

dissipation by using fusion schemes to minimize the number of messages forwarded to the sink. However, clustering

approaches care mostly about network connectivity and route stability, without much concern about critical design

goals of WSNs such as coverage [2], [14]. For these reasons, in the remainder of this paper, we will not discuss

such approaches.

B. Deterministic sensor placement approaches

We refer to deterministic deployment strategies that exploit the clustering principle as cluster-based deterministic

deployment strategies. There has been little research in this area. Previous deployment approaches have adopted

simplistic combination techniques such as averaging. Recently, Xing et al. [15] showed by means of probability

theory that value fusion enhances the coverage of WSNs.

Chang et al. [9] considered both detection probabilities and false alarm rates under a value fusion scheme [6],

and formulated the WSNs deployment problem as a nonlinear and non-convex optimization problem. To solve this

latter problem, they suggested the application of the constrained simulated annealing, which is a discrete global

minimization algorithm of a high computational complexity. This limits their approach to rather small networks. To

overcome this limitation, they devised a relatively low computational complexity heuristic. Simulation results were

provided for the validation of the proposed method. Using the above-mentioned value fusion approach [6], Zhang

et al. [16] presented a scheme to achieve barrier coverage in a hybrid wireless sensor network. The worst-case

complexity of the proposed scheme is O(n4) where n is the number of sensors.

Ababnah et al. [17] used the optimal control theory to formulate the deterministic deployment of WSNs as an

optimal control problem, with the sensors’ positions acting as control variables. In [7], this nonlinear optimal control

problem was linearized and solved under several approximations while considering a value fusion scheme. The time

complexity of the devised solution is O(3n6+4n4). In another recent work, a similar algorithm was introduced by
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Ababnah et al. [8] where the decision fusion rule was implemented via the majority rule. The time complexity of the

suggested algorithm is O(3n6+4n4). Table I presents a comparative overview of the above-discussed cluster-based

deterministic deployment approaches.

TABLE I

A COMPARISON AMONG CLUSTER-BASED DETERMINISTIC DEPLOYMENT STRATEGIES.

Ref. Fusion scheme Primary objective Secondary objective Constraint Complexity

[7] Value fusion Maximize detection performance - Fixed number of sensors O(3n6 + 4n4)

[8] Decision fusion Maximize detection performance - Fixed number of sensors O(3n6 + 4n4)

[9] Value fusion Maximize detection performance Minimize the number of sensors - O(en
2

)

[9] Value fusion Maximize detection performance Minimize the number of sensors - O(n2mem)*

[16] Value fusion Strong barrier coverage Minimize the number of active Fixed number of static O(n4)

sensors and mobile sensors

* m is the mean number of spots within the impact region.

It is worth noting that previous works [7], [8], [9] rely on simplistic fusion approaches, and disregard completely

several issues and challenges involved in the design of WSNs such as harsh deployment environments and sensor

reliability. Very recently, in [10], we have considered a radically different approach by exploiting the belief functions

theory [18] that allows taking into consideration not only the uncertainty in sensor data but also many aspects of

real-life applications. More precisely, we have defined an evidence-based sensing mode where the sensor’s output

is modeled by a belief function rather than a Bayesian probability distribution. In addition, we have described the

process of constructing belief functions from raw data returned by sensors [10]. This belief functions theory based

fusion scheme has been exploited to devise a fusion-based deterministic deployment approach. Obtained results

showed that significant improvement could be achieved when exploiting evidence combination.

The major drawbacks of all above-discussed fusion-based deterministic deployment approaches [7], [8], [9], [10]

are:

• Although the generated topologies are hierarchical, the exact location of the cluster-heads is not determined.

Indeed, these approaches focus on generating clusters, where each cluster comprises one cluster-head. However,

they do not explicitly designate the cluster-heads within the clusters.

• Although sensors are supposed to collaborate, these approaches completely ignore network connectivity.

• The network lifespan issue is not addressed.

In the present paper, we tackle all of the above-mentioned drawbacks while investigating different mathematical

tools. First, to handle the uncertainty in sensor data (caused by measurement errors due to the hardware or the

environment), we exploit a belief functions theory based fusion scheme. Second, to take into consideration both

network connectivity and lifespan, we devise a probabilistic-based model that allows an accurate prediction of

communication cost and network lifespan. The next section describes these models in more detail.
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III. COVERAGE, CONNECTIVITY, AND LIFESPAN MODELS

In this section, we present the mathematical models considered in this work. First, we summarize the key

concepts of the evidence-based sensing model that we have proposed very recently in [10]. Second, we present our

probabilistic-based communication cost model.

A. Coverage model

Unlike prior efforts, we consider an evidence-based decision scheme. In this latter, sensor nodes do not generate

binary decisions but produce belief functions instead. In this section, we detail our method for constructing and

manipulating these belief functions also referred to as basic belief masses (bbm).

1) Evidence construction: In surveillance applications, the main aim is to detect whether a target/event is present

or not. The process of detection depends not only on the actual presence of the target/event but also on the RoI

characteristics and the sensor’s capabilities. Therefore, when a target/event is present in the RoI, the WSN will

either correctly detect it or will miss it. From a modeling perspective, two states are necessary to express this fact:

θ0 (target/event present and not detected) and θ1 (target/event present and detected). Consequently, our Frame of

Discernment (FoD) is the set Θt = {θ0, θ1}.

The uncertain raw sensory data can be translated into basic belief masses as follows: for a sensor si and relatively

to a target/event at point p ∈ RoI , three inputs are defined: the mass assigned to no detection mΘ
t

di/p
(θ0), the mass

assigned to detection mΘ
t

di/p
(θ1), and the unassigned mass mΘ

t

di/p
(θ0, θ1). By definition, the summation of the three

belief masses always equals one. Therefore, although three masses are considered, there are only two independent

ones. For instance, we can choose mΘ
t

di/p
(θ0) and mΘ

t

di/p
(θ1). The mass mΘ

t

di/p
(θ1) reflects the belief in a target/event

presence at a location p, the bbm mΘ
t

di/p
(θ0) represents the opposite, and the bbm mΘ

t

di/p
(θ0, θ1) quantifies the sensor

uncertainty.

Given a sensor si that believes, with a degree of belief bdi/p
, that there is a target/event located at p, the following

mapping is used to compute the probability masses:

mΘ
t

di/p
(x) =







































(1− ui) · (1 − bdi/p
) if x = {θ0},

(1− ui) · bdi/p
if x = {θ1},

ui if x = {θ0, θ1},

0 if x = {∅}.

where ui ∈ [0, 1] is the uncertainty associated with the sensor si decision.

As explained above, when a target/event is actually not present in the RoI, the WSN could report a false detection.

Such a decision is called a false alarm. From a modeling perspective, two states are necessary to express this fact:

θ2 (target/event absent and not detected), θ3 (target/event absent and detected). Therefore, the FoD is the set

Θnt = {θ2, θ3}. Assuming that a sensor si has a false alarm rate bfi , its uncertain sensory data are translated into
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basic belief masses by defining a belief function mΘ
nt

f on Θnt as follows:

mΘ
nt

fi (x) =







































(1− ui) · (1 − bfi) if x = {θ2},

(1− ui) · bfi if x = {θ3},

ui if x = {θ2, θ3},

0 if x = {∅}.

It should be noted here, that both formulations mΘ
t

di/p
and mΘ

nt

fi
meet Appriou’s axioms [19].

2) Decision combination: Decisions collected from multiple sensors are combined through the combination

operation for final decision making. To combine distinct pieces of evidence on the same FoD, different combination

rules could be used such as the Dempster-Shafer’s rule of combination [18], Yager’s rule [20], and the Proportional

Conflict Redistribution rules [21]. In this work, we consider the Dempster-Shafer’s rule of combination. For

N sensors, the combination of the N belief functions mΘ
t

d1
, . . . ,mΘ

t

dN
using the Dempster-Shafer’s rule of combination

yields the following belief function mΘ
t

d :

mΘ
t

d (θ0) = 1−∏N
i=1

(1−mΘ
t

di
(θ0)) · kd

mΘ
t

d (θ1) = 1−∏N
i=1

(1−mΘ
t

di
(θ1)) · kd

mΘ
t

d (Θt) =
∏N

i=1
mΘ

t

di
(Θt) · kd

(1)

where

kd =
1

∏N
i=1

(1−mΘt

di
(θ0)) +

∏N
i=1

(1−mΘt

di
(θ1))−

∏N
i=1

mΘt

di
(Θt)

In the same way, the combination of the N belief functions mΘ
nt

f1
, . . . ,mΘ

nt

fN
using the Dempster-Shafer’s rule

of combination yields a bba mΘ
nt

f that has the following expression:

mΘ
nt

f (θ2) = 1−∏N
i=1

(1 −mΘ
nt

fi
(θ2)) · kf

mΘ
nt

f (θ3) = 1−∏N
i=1

(1 −mΘ
nt

fi
(θ3)) · kf

mΘ
nt

f (Θnt) =
∏N

i=1
mΘ

nt

fi
(Θnt) · kf

(2)

where

kf =
1

∏N
i=1

(1−mΘnt

fi
(θ2)) +

∏N
i=1

(1−mΘnt

fi
(θ3))−

∏N
i=1

mΘnt

fi
(Θnt)

3) Decision making: When decisions must be taken, the belief function undergoes a transformation called the

pignistic transformation. This latter generates a probability distribution also known as the pignistic probability

function. In this work, two pignistic transformations (referred to as BetPd/p and BetPf/p) are constructed, relatively

to a location p ∈ RoI , to allow the creation of the probabilities required for decision making. The pignistic

transformation (BetPd/p) of the belief function mΘ
t

d is represented as follows:

BetPΘ
t

d/p(θ0) = mΘ
t

d (θ0) +
1

2
mΘ

t

d (θ0, θ1)

BetPΘ
t

d/p(θ1) = mΘ
t

d (θ1) +
1

2
mΘ

t

d (θ0, θ1)
(3)
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Likewise, the pignistic transformation (BetPf/p) of the bba mΘ
nt

f is represented as follows:

BetPΘ
nt

f/p (θ2) = mΘ
nt

f (θ2) +
1

2
mΘ

nt

f (θ2, θ3)

BetPΘ
nt

f/p (θ3) = mΘ
nt

f (θ3) +
1

2
mΘ

nt

f (θ2, θ3)
(4)

We define the concept of (α,β)-coverage that allows quantifying the quality of coverage delivered by a WSN as

follows.

Definition 1. Let α ∈ [0, 1] and β ∈ [0, 1] be two constants, a location p ∈ RoI is (α,β)-covered if:

BetPΘ
t

d/p(θ1) ≥ α

BetPΘ
nt

f/p (θ3) ≤ β
(5)

In [10], we have demonstrated that the false alarms rate generated by a WSN could be minimized or lessened

to zero by assuming the above-described evidence-based fusion approach. We have also shown how this latter can

be straightforwardly expanded to handle deployment-related problems such as harsh deployment environments and

sensor reliability.

B. Probabilistic-based communication cost model

It is customary to assume a binary connectivity model according to which two sensors are able to communicate

directly if the Euclidean distance separating them is less than or equal to a communication range Rc [22]. This

binary model simplifies the analysis by approaching the network connectivity problem from a geometric perspective,

it remains however limited and not realistic. In fact, empirical research [23] demonstrate that there are no clear-cut

boundaries between successful and failed communications.

In practice, the received wireless signal strength is susceptible to noise, interference, and other wireless radio

channel impediments. Usually, the variation in received signal strength is characterized in terms of path loss and

shadowing. The former describes the amount of wireless signal loss (attenuation) between a receiver and a transmitter

whereas the latter is caused by obstacles between the transmitter and receiver that attenuate signal strength through

absorption, reflection, scattering, and diffraction.

Empirical measurements have demonstrated that shadowing could be approximated by a zero-mean normal

distribution with a standard deviation of σǫ. As each environment has unique characteristics, most radio wave

propagation models adopt a mixture of empirical and analytical approaches. For a wide range of environments, the

log-normal shadowing path loss model [24] is one of the most used radio wave propagation models. It is given by:

PL(d) = PL(d0) + 10γ log10(
d

d0
) + ǫ (6)

where PL(d0) is the path loss (in dB) at a reference distance d0, PL(d) is the path loss (in dB) at an arbitrary

distance d > d0, γ is the path loss exponent (could varies from 2 in free space to 6 inside buildings), and ǫ is a

zero-mean Gaussian distributed random variable (in dB) with a standard deviation σǫ. This latter is used only when

there is a shadowing effect; otherwise, it is zero.



8

The received signal strength (Pr) at a distance d is usually represented with the following formula:

Pr(d) = Pt − PL(d)

= Pt − PL(d0)− 10γ log10(
d
d0

)− ǫ
(7)

Fig. 1 illustrates an analytical propagation model for γ = 2, σǫ = 4, PL(d0) = 55dB, d0 = 1 and an output power

Pt = 0dBm (e.g., CC2420).

0 5 10 15 20 25 30 35 40
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

distance (m)

P
r

(d
B

m
)

Fig. 1. Channel Model, γ = 2, σǫ = 4, Pt = 0dBm.

According to Equation 7, Pr(d) is Gaussian where Pr(d) ∼ N (Pt − PL(d0)− 10γ log10(
d
d0

), σǫ). Considering

two sensors si and sj located at distance d from each other, the probability of a successful transmission between

si and sj can be easily calculated as follows:

P [Pr(d) > SSmin] = Q

(

SSmin − (Pt − PL(d0)− 10γ log10(
d
d0

))

σǫ

)

(8)

A transmission is considered successful if its received signal strength is greater than a certain threshold SSmin

which is the minimum acceptable signal strength. Q(.) denotes the complementary cumulative distribution function

(CCDF) of a standard Gaussian random variable:

Q(x) =
1√
2π

∫ +∞

x

e
−t2

2 dt

Hence, for a successful communication between si and sj , the expected number of retransmissions nRT is:

nRT (d) =
1

P [Pr(d) > SSmin]
(9)

Fig. 2 illustrates the connectivity model formulated above. It clearly shows that in the connectivity range, the

received signal strength by some areas is lower than SSmin. Whereas, outside the connectivity range, the received

signal strength by some area is higher than SSmin. As stated before, this model captures the fact that there are no

clear-cut boundaries between successful and failed communications.
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Fig. 2. 2D visualization of the connectivity model.

On the basis of the connectivity model described above, we can define the communication cost of a link and by

extension that of a cluster as follows.

Definition 2. The expected number of retransmissions (denoted nRT ) required for a successful transmission between

two nodes si and sj represents the communication cost of the link ij (hereafter denoted Lcij), given by:

Lcij = nRT (||ij||) = 1

P [Pr(||ij||) > SSmin]

Definition 3. The summation of all communication cost of the links connecting the cluster members to the cluster-

head (denoted h) represents the cluster’s communication cost (hereafter denoted Cc), given by:

Cch =
∑

si∈ cluster members

Lcih

IV. PROBLEM FORMALIZATION

This section formalizes the uncertainty-aware cluster-based WSNs deployment problem while considering the

evidence-based sensing model and the communication cost model, both described in the previous section.

A. Network model and assumptions

The set T ⊆ RoI is defined by the locations of the targets/events that appear in the RoI. These known locations

are referred to as target points. T is determined based on the user needs. For instance, target points could be hand-

picked if a priori information about the possible locations of targets/events is available. Otherwise, target points

could be uniformly scattered over the RoI.

The set D ⊆ RoI is defined by the locations that could host the sensors. These locations are referred to as

deployment points. We assume that, for each target point t ∈ T, only a subset of deployed sensors (hereafter

denoted N(t)) participate in the fusion process. N(t) ⊆ D is a design parameter, which is determined by the user.

As will be discussed in more detail in Section VI, N(t) is mainly constrained by the communication overhead.

We also assume two user-defined inputs αp and βp associated with each target point p ∈ T. αp is the minimum

target/event detection probability threshold, whereas βp is the maximum false alarm rate threshold. In the case of

a uniform (α,β)-coverage, only two values α and β are defined for the whole set T.
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B. Problem formulation

The uncertainty-aware cluster-based WSNs deployment problem is defined as the problem of determining the

minimum number of sensors and their locations such that the set of target points T is (α,β)-covered while considering

the evidence-based sensing model presented in Section III-A. Deployment-related issues such as network lifespan

and connectivity may be included by considering the probabilistic-based communication cost model defined in

Section III-B. In this work, besides the sensing quality, we consider the communication cost and lifespan objectives.

Thus, we have to simultaneously optimize sensing quality, communication cost, and network lifespan.

Since transmission consumes more energy than any other process, we have to ensure that our sensor placement has

reliable links and the overall number of unnecessary retransmissions is minimized. For that, we have to guarantee that

the formed clusters minimize the communication cost as defined in Section III-B. These objectives are competing

with each other, and therefore, we have Pareto-optimal solutions. For instance, the (α,β)-coverage objective will

tend to scatter the network topology to minimize the sensing overlap, whereas the communication cost objective

will favor topologies where sensors are not located too far from each other to minimize communication cost and

enhance the network lifespan.

Our aim is to generate a good cluster topology where each sensor can transmit directly to the cluster-head. It

should be noted here that the expected communication activities carried out by the cluster-heads would lead to

excessive energy consumption. To deal with this heavy energy burden of cluster-heads at least two solutions are

likely. The first solution is to deploy cluster-heads that are more energy-rich as compared to the sensor nodes. As

the positions occupied by cluster-heads are known, the second solution is to redeploy a cluster-head once its energy

level reaches a minimum threshold.

The generated topology should ensure full (α,β)-coverage and satisfies the network connectivity constraint while

consuming less energy. Additionally, the sensors in the same cluster should be highly connected, and less connected

to the sensors in other clusters. There are other problems to be tackled when using clustering methods, such as

the number of orphans (isolated) sensors, the number of orphans cluster-heads, and the cluster size, to name few.

Consequently, besides the sensing quality objective, we look for the optimal network topology that best:

• Reduces cluster-heads number;

• Reduces the orphans sensors number (guarantees that each sensor has at least one cluster-head in its vicinity);

• Reduces the orphans cluster-heads number (guarantees that each cluster-head has some sensors in its vicinity);

• Reduces the overlapping areas of clusters (strives to distribute or select the cluster-heads in such a way that

there is a minimum overlapping).

• Reduces unnecessary retransmissions overall number.

Formally, the problem at hand is as follows:
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min
∑

p ∈ D

xp

min
∑

p ∈ cluster-heads

xp

min
∑

p ∈ isolated sensors

xp

min
∑

p ∈ isolated cluster-heads

xp

min
∑

cluster-heads

cluster-heads overlapping

min max
h ∈ cluster-heads

(Cch)

s.t. BetPΘ
t

d/p(θ1) ≥ αp , ∀p ∈ T

BetPΘ
nt

f/p (θ3) ≤ βp , ∀p ∈ T

xp ∈ {0, 1} , ∀p ∈ D

This formulation improves the cluster connectivity as well as the cluster lifetime, and therefore, the network lifetime.

The position of the sink(s) could be easily considered in this formulation. For instance, the straightforward approach

is to minimize the distances between the cluster-heads and the sink(s). It is interesting to note that the issue at

hand is a binary nonlinear and non-convex multi-objective optimization problem. In the following, we investigate

a multi-objective optimization technique to find the global Pareto-optimal solutions.

V. SENSOR PLACEMENT ALGORITHM

Many conflicting objectives typify the nonlinear and non-convex optimization problem described in the previous

section. Consequently, it is far essential to deal with that problem as a multi-objective optimization problem. In

such a problem, there is usually no single optimal solution, but rather a set of alternative solutions known as the

Pareto-optimal solution set, which is the set of solutions such that attempting to improve any objective function

would necessarily worsen the other objective values. Pareto-optimal solutions could be obtained for the problem at

hand by using multi-objective optimization methods.

Classical optimization methods are limited in handling multi-objective optimization problems, as they transform

the multi-objective optimization problem into a single objective optimization problem to find only a single Pareto-

optimal solution. In this work, we investigate the multi-objective genetic algorithm (GAs). The advantage of this

latter is that it can find the whole Pareto-optimal solutions in a single run [25]. A number of multi-objective

GAs were developed in the last few years. Among the existing GAs for effectively dealing with multi-objective

optimization problems, the most prominent ones are the Pareto archived evolutionary strategy (PAES) [26], the

Strength Pareto evolutionary algorithm (SPEA-2) [27], and the Non-dominated sorting genetic algorithm (NSGA-

II) [28]. It has been shown that NSGA-II can converge to the true Pareto-optimal front while ensuring a good
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distribution of Pareto-optimal solutions [28]. Furthermore, the complexity of NSGA-II is lower than that of other

multi-objective GAs. For that, on the basis of NSGA-II, we devise a new algorithm to solve our multi-objective

optimization problem. In the remainder of this paper, this algorithm will be referred to as MGEBDA (Multi-Objective

Genetic Evidence-Based Deployment Algorithm).

A. Problem Representation

In MGEBDA, the number and locations of sensors (members and cluster-heads) are specified by an individual

which is a candidate sensor placement. This latter is simply modeled by a bit string of length L = 2|D| where each

two bits represent a deployment point p ∈ D with the following meaning: (i) ”00” no sensor to be deployed, (ii)

”01” or ”10” a regular sensor to be deployed, and (iii) ”11” a cluster-head to be deployed. To exploit this linear

representation, a transformation from 2D (or even 3D) to 1D space is necessary. For instance, the linear horizontal

(or vertical) coding (Fig. 3(a)) is a straightforward transformation. Other transformations such as the Z-order curve

and the Hilbert space-filling curve (Fig. 3(b)) could also be applied as they preserve fairly well locality. Fig. 3

shows the binary representation of a placement of two sensors and one cluster-head within a 2D 4 × 4 RoI (here

D = RoI) using two transformations.

X

Y

00010000 00000000 00001100 01000000

(a) Linear horizontal mapping.

X

Y

00010000 00010000 11000000 00000000

(b) Hilbert curve mapping.

Fig. 3. Example of a sensor placement representation.

B. Constraints Handling

In this work, we adopt the idea of the constrained-domination principle [28] to handle constraints. The idea of

this approach is based on a simple modification of the definition of the domination relationship between any two

solutions xp and xq .

Definition 4. Given two solutions xp and xq , xp is said to constrain-dominate xq , if any of the following conditions

is true:

(i) xp is feasible and xq is not;

(ii) xp and xq are both infeasible, but xp has a smaller overall constraint violation;

(iii) xp and xq are both feasible and xp dominates xq .
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The previously-defined constrained-domination principle ensures that any infeasible solution has a smaller non-

domination rank than all feasible solutions, which are ranked based on their level of non-domination according

to the values of the objective function [28]. However, between two infeasible solutions, the solution with a lower

constraint violation is favored.

C. Genetic Operators

As in NSGA-II, MGEBDA uses the bitwise mutation with a small probability pm. However, unlike NSGA-II

that uses the one-point crossover, MGEBDA combines three crossover operators: uniform, two-point, and one-

point crossover (Fig. 4). The frequency with which MGEBDA applies the crossover operators is controlled by the

crossover rate pc.

One-point crossover

00000001110000000000000000010000
00010000000000000000110001000000

Two-point crossover Uniform crossover

Parents

Children Children Children

00010000010000000000000000010000
00000001100000000000110001000000

00000001110000000000000000010000
00010000000000000000110001000000

00000001100000000000000000010000
00010000010000000000110001000000

00000001110000000000000000010000
00010000000000000000110001000000

00010001110000000000100001000000
00000000000000000000010000010000

Fig. 4. Crossover operators used in MGEBDA.

D. Evolution Engine

MGEBDA uses the evolution engine of NSGA-II. Selection can be done based on the crowding distance operator

as follows: a sensor placement xp wins the tournament with another sensor placement xq if:

(i) xp has higher rank than xq , or

(ii) xp and xq have the same rank, but xp has a larger crowding distance than xq .

Regarding the replacement strategy, the elitism is implemented by applying the constrained non-dominating

sorting on the union of offspring and parent populations. As a result of this operation, the entire population will be

sorted into fronts. The new population for the next generation is filled up with the lower ranking fronts solutions

while favoring the ones with the largest crowding distance.
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E. Description of MGEBDA

Algorithm 1 outlines the pseudo-code of the proposed sensor placement algorithm.

Algorithm 1 MGEBDA

Input: external parameters (D, T, coverage model, ...) and internal parameters (population size N , pm, pc, ...)

Output: Pareto-optimal solutions

1: Initialize the first population (of size N ) using randomly generated sensor placements

2: while (stopping conditions are not met) do

3: Compute the objective values

4: Assign rank to sensor placements using the constrained non-dominating criteria ⊲ using Definition 4

5: Compute the crowding distance of each sensor placement

6: Apply the evolution engine to select the sensor placements from the population

7: Produce new sensor placements by employing the genetic operators with their respective probabilities

8: Apply the evolution engine to create the next population

9: end while

10: Return the population’s first front

VI. PERFORMANCE EVALUATION

The effectiveness and efficiency of the proposed deployment approach are evaluated by carrying out numerical

simulations and testbed-based experiments.

A. Numerical experiments

In this section, we carry out numerical experiments to assess the performance of the proposed deployment

approach. First, MGEBDA performances are analyzed for different criteria settings. Second, we evaluate the impact

of the fusion radius on the performance of the proposed deployment approach. Finally, we assess the repercussion of

the requested connectivity reliability on the deployment cost. MGEBDA implementation is based on the ParadisEO

framework [29]. We consider that the deployment and target points are regularly spaced on a grid, therefore the

RoI is a k × k grid. Unless otherwise specified, false alarm and detection requirements are assumed uniform over

the RoI, with α = 0.9 and β = 0.01. The simulations parameters are described in Table II.

To evaluate the MGEBDA performance or multi-objective algorithms in general, several metrics appeared in the

literature [30]. However, most of the recent proposals [30] consider that the global Pareto front of the multi-objective

optimization under study is known which is not our case. Furthermore, the few metrics that can be employed when

considering the global Pareto front is unknown, such as the spread metrics, only judge the uniformity of solution

points over different subregions without pointing out the overall quality of solutions.

To assess the performance of MGEBDA for different parameter settings and for the reasons discussed above,

we propose to plot the Pareto fronts to enable an enhanced visual inspection including the locations of the fronts,
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TABLE II

SIMULATIONS PARAMETERS

Parameters Values

k 10− 100

α, β 0.9, 0.01

Fusion radius 2− 9

SSmin, γ, σǫ −70dBm, 2, 4dB

PL(d0), d0, Pt 55dB, 1m, 0dBm

popSize 100, 400

maxGen 100, 250

the number of points in each front, and their distribution. For illustration purpose, the objectives considered in

the deployment problem were grouped into two objective functions F1 and F2. The F1 function measures the

deployment cost along with the degree of detection rate constraints dissatisfaction and the degree of false alarm

rate constraints dissatisfaction. The F2 function measures all other objectives. Both functions, F1 and F2, are to be

minimized.

1) Impact of the key parameters: In this section, some experiments are performed to illustrate the impact of a

couple of different criterion settings on the MGEBDA performance. Precisely, we analyze the effect of the population

size and the number of maximum generations on the MGEBDA performance. For that, first all other criteria are

fixed, but the number of maximum generations is increased from 100 to 250. Second, we increase the population

size from 100 to 400 while keeping all other parameters unchanged.

Fig. 5 shows one of the ten runs of MGEBDA with different parameters settings. First, this figure shows the

ability of MGEBDA to converge to the true Pareto front and to find various solutions in the front. Second, increasing

the size of the population and/or the number of maximum generations help MGEBDA to converge very close to the

true Pareto-optimal front and maximize the number of elements of the Pareto-optimal set found. For instance, with

100 and 250 generations, MGEBDA finds 35 and 81 Pareto-optimal solutions, respectively. A large population size

and/or a large number of maximum generations will undoubtedly raise the convergence of MGEBDA. However,

it will require more computations per generation which slows the execution of MGEBDA. It is worth mentioning

that for large-scale scenarios, an estimation of the required number of sensors and cluster-heads could speed up the

convergence time; this could be achieved by exploiting approaches such as [31]. We have also analyzed the effect

of these parameters on various RoI. We found a population size of 2 × L and a number of maximum generations

of 500 to be a good trade-off.

2) Impact of fusion radius: As discussed previously, one of the most important design criteria of the fusion

model is the user-defined fusion radius, which is essentially constrained by the communication overhead. In this

section, various numerical results are given to provide a good understanding of the fusion radius impact.
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(a) Pareto frontier with different number of maximum genera-

tions.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1

F
2

 

 

popSize =100
popSize = 400

(b) Pareto frontier with different population size.

Fig. 5. Pareto frontier for MGEBDA with different parameters settings.

To determine the impact of the fusion radius on the deployment and communications costs, the radius is varied

from 2 to 9 in a 20× 20 RoI. Fig. 6 shows, as a function of the fusion radius, the deployment and communication

costs (as stated by Definitions 2 and 3) needed for full uniform (0.9, 0.01)-coverage. It is worth to note that as

several Pareto-optimal solutions can be found by MGEBDA, each run the best solution is considered in terms of

cost of deployment.
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Fig. 6. Costs vs. fusion radius.
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Fig. 6 shows the impact of the fusion radius on the performance in terms of deployment and communication

costs. Two observations are worth noting. First, when the fusion radius is increased from 2 to 6, the deployment

cost rapidly dropped from 114 to 32, and then increases gradually to reach 70 when the fusion radius became larger.

Second, the communication cost increases exponentially with the increase of the fusion radius from 2 to 9. This is

due to the fact that with the increase of the fusion radius, more distant sensors pay off the data fusion, leading to an

improved sensing quality and a lower deployment cost in terms of both sensors and cluster-heads. Fig. 7 illustrates

the network topologies generated by MGEBDA while considering two fusion radii. As can be seen in this figure,

a fusion scheme with a fusion radius of 6 uses fewer sensors and cluster-heads as compared to a fusion scheme

with a fusion radius of 2.
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(a) Fusion radius of 2.
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(b) Fusion radius of 6.

Fig. 7. Generated topologies vs. fusion radius.

Nevertheless, the information quality of the sensors distant from the target point decreases with the increase of

the fusion radius. Therefore, their fusion leads inevitably to inferior detection performance, which increases the

deployment cost. Consequently, a longer distance between the sensors and their cluster-head results in a higher

communication cost.

3) The effect of the requested connectivity reliability: Through this experiment, we analyze the impact of the

requested connectivity reliability on the deployment cost (i.e., the number of deployed sensors and cluster-heads).

For that, in a 20×20 RoI, we vary the minimum acceptable signal strength (SSmin) and we analyze the deployment

cost. Table III summarizes the obtained results.

We notice that increasing the requested connectivity reliability does not increase the number of regular sensors.

However, the structure of the generated topology, in terms of clusters distribution, was highly affected. In fact,

we can clearly see that increasing the requested connectivity reliability increases the number of cluster-heads and

therefore increases the number of clusters. This can be explained by the fact that to ensure a high connectivity
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TABLE III

THE EFFECT OF THE REQUESTED CONNECTIVITY RELIABILITY.

SSmin (dBm) Number of sensors Number of CHs

-90 28 5

-60 27 8

-50 27 9

reliability, the distances separating sensors members and their corresponding cluster-heads are required to be small

in order to guarantee links with good quality which, inevitably, reduce the size of the clusters. Nevertheless, these

good links help to reduce the communication cost of the network. To summarize, when increasing the requested

connectivity reliability, MGEBDA tends to generate small clusters (in terms of distances separating sensor members

and their corresponding cluster-heads).

B. Testbed-based experiments

To more investigate the actual benefit of our proposed deployment approach, we have developed a PIR based

wireless sensor network testbed termed as ArduiNet. This motion detection testbed is based on the Arduino

platform [32] which is an open-source electronics prototyping platform. In the sequel, the testbed architecture

and its components are detailed, along with experimental evaluations.

1) Software, hardware, and system architecture: Fig. 8 shows an ordinary ArduiNet node. It comprises an

Arduino UNO board, a PIR motion sensor, an XBee module (IEEE 802.15.4), and a Wireless Proto shield. Here,

an analog PIR Phidgets 1111 0 sensor (Panasonic AMN23111) is connected to the Arduino Uno board. The PIR

sensor detects sudden changes in the infrared landscape within its field of view. These changes are caused by the

movement of a person (or object) whose temperature varies from that of the surroundings.

Power

Arduino UNO with 

 Wireless Proto shield

PIR Phidgets 1111_0

Radio module

Fig. 8. An ordinary ArduiNet node.
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A 2.4m× 4m lab room was used to host our ArduiNet deployment. To do so, a two-dimensional metallic grid

was installed on the roof in order to hold the ArduiNet nodes as can be seen in Fig. 9. The intersections of the

grid lines are our deployment points (Fig. 9).

Deployment points

ArduiNet nodes

Fig. 9. System architecture.

In the sequel, we discuss the acquired results. We describe how to construct mass functions from the analog PIR

Phidgets 1111 0 raw sensory data. Then, we evaluate the performance of ArduiNet as a fusion-based surveillance

system enriched with the proposed approach.

2) Constructing mass functions: We employ the simple approach described in [10] to create belief functions

from sensing data. Fig. 10 shows a set of belief functions for the considered PIR sensor performing in our lab

room. This sensor returns a measure around 500 when there is no motion. Measures out of the 400 to 600 range

correspond to motion detection with a high probability. Before the exploitation of ArduiNet, the set of belief

functions is constructed empirically by observing the measures returned during several experiments. During the

exploitation phase of ArduiNet, each time the cluster-head receives a measure, it performs a projection on the

previously constructed set to acquire the corresponding mass function. For example, if the ArduiNet node returns a

measure of 100 (see Fig. 10), then the resulting bba will have three focal sets: m({θ0}) = 0.05, m({θ1}) = 0.94,

and m(Θ) = 0.01.

3) The performance of ArduiNet: As explained previously, the ArduiNet is endowed with the proposed approach

to build a fusion-based surveillance system. The experimental performances of this latter are discussed in this

section.

The leading idea of the proposed approach is to deploy and use the WSN according to the physical and logical

topologies that were established during the pre-deployment phase by the sensor placement algorithm fed with the

design objectives. Actually, for different physical and logical topologies, the WSN performances are estimated by

simulations before its deployment, and the best possible configuration that meets the user requirements is selected.

After that, the WSN real-world deployment and usage must adhere to the selected topologies. For example, Fig. 11

shows a visualization of a sensor placement outputted by the sensor placement algorithm for the lab room scenario

with (0.90, 0.01)-coverage.
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Fig. 10. Example of a set of mass functions related to the analog PIR sensor Phidgets 1111 0.
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Fig. 11. A visualization of MGEBDA’s output for the lab room scenario.

In the experimental tests, we deploy and use ArduiNet as defined by the MGEBDA’s output. We allow a

person to walk inside the testbed lab room through several paths at different speeds, and we measure the achieved

(α,β)-coverage. As explained above, each cluster-head locally makes the detection decision based on the received

measurements. The described experiments are repeated more than five thousand times. Table IV illustrates a summary

of the obtained results.

The obtained results show that the achieved detection probability is greater than the requested ones, in both cases.

Moreover, a zero false positive rate is acquired. These results are due to the fact that the devised evidence fusion

scheme can remarkably improve (α, β)-coverage through the collaboration of nearby sensors. Furthermore, these
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TABLE IV

EXPERIMENTAL RESULTS

Scenarios Scenario #1 Scenario #2

Requested (α,β)-coverage (0.90, 0.01) (0.95, 0.01)

Deployment cost 26 29

Achieved (α,β)-coverage (0.92, 0.00) (0.96, 0.00)

experiments were accomplished in an indoor area, thus a very low false positive rate was expected. The results

of these additional tests confirm the previously obtained results. The proposed deployment approach manages to

achieve the requested user requirements in terms of both detection and false alarm rates.

VII. CONCLUSION

Deployment is of the utmost importance in the process of developing WSNs solutions for real-life applications as

it decides the available resources and their configuration for system setup. This, in turn, plays a key role in network

performance. In this paper, a robust uncertainty-aware cluster-based deterministic deployment approach has been

presented. This work presents a contribution to the current literature by providing a comprehensive deployment

approach that considers a set of factors involved in the deployment of WSNs. The considered factors reflect

several characteristics of real-world applications such as uncertain sensor measurements, the spatial distribution

of sensors, unreliable connectivity, harsh deployment environments, and sensor reliability. The described approach

was evaluated by both simulation and testbed experiments. The obtained results show that the proposed approach

facilitates the deployment of real-world fusion-based wireless sensor networks while achieving the expected network

performances.
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