

Unsaturated behavior of rammed earth: Experimentation towards numerical modelling

Parul Chauhan, Ahmad El Hajjar, Noémie Prime, Olivier Plé

To cite this version:

Parul Chauhan, Ahmad El Hajjar, Noémie Prime, Olivier Plé. Unsaturated behavior of rammed earth: Experimentation towards numerical modelling. Construction and Building Materials, 2019, 227, pp.116646 -. $10.1016/j.com$ buildmat.2019.08.027 . hal-03488326

HAL Id: hal-03488326 <https://hal.science/hal-03488326v1>

Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

[Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License](http://creativecommons.org/licenses/by-nc/4.0/)

¹ Unsaturated behavior of rammed earth : ² experimentation towards numerical modelling

³ Parul Chauhan, Ahmad El Hajjar, Noémie Prime, Olivier Plé

⁴ Univ. Grenoble Alpes, Universite Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambery, **France**

⁶ Abstract

⁷ This study concerns the coupled hydro-mechanical behavior of rammed earth, ⁸ which is a real difficulty for the development of this construction technique. ⁹ Unconfined compressive strength tests on samples conditioned at different ¹⁰ relative humidities were performed to determine the variation of **mechani-**¹¹ cal capacity with suction. Both compressive strength and Young's modulus ¹² increase with suction. Further, the effect of shear characteristics with the hy-¹³ dric conditions was studied by direct shear test. As suction induced cohesion ¹⁴ contributes a significant part of strength, the apparent cohesion reduced with ¹⁵ the reduction of suction. In addition, a considerable variation was observed ¹⁶ in the friction angle. Unconsolidated undrained triaxial tests on unsaturated ¹⁷ samples were performed to plot the failure envelope for a greater value of ¹⁸ normal stress and to **complete the** failure envelope. **These three test makes** ¹⁹ it possible to put in evidence a non-linearity in the failure envelope over all ²⁰ the suction range studied. Consolidated undrained triaxial tests on saturated ²¹ samples were performed to determine the intrinsic cohesion and intrinsic fric-²² tion angle. It was observed that Mohr-Coulomb criterion is not realistic for 23 rammed earth and the failure envelope is non-linear for unsaturated con-

Preprint submitted to Construction and Building Materials July 29, 2019

 ditions. Thus, a failure criterion was proposed in which both cohesion and ²⁵ friction angle are dependent on normal stress applied. The expression for Bishop's effective stress for unsaturated soil was evaluated from the results ₂₇ of triaxial and unconfined compressive strength test together. The non-linear failure criterion obtained for a particular suction can be extended to other suction states through Bishop's effective stress formulation. It can further be used for coupled hydro-mechanical modeling of rammed earth structures. 31 Keywords: Rammed earth, suction, hydro-mechanical behavior, unsaturated state, constitutive modeling

1. Introduction

 Rammed earth is a construction technique in which dense load-bearing walls are made by the dynamical compaction of moist sandy-loam soil in be- tween removable shuttering or formworks. It represents a sound alternative to conventional construction techniques, from both energetic and mineral re-³⁸ sources point of view and, thus, exactly fulfills the criteria for the urgent and intense ecological transitions needed for the sustainability of society. First, it has lower embodied energy than concrete or steel [1][2] (requires about 1% of energy needed for construction and transportation of concrete [3]), 42 and therefore is responsible for much lower $CO₂$ emission. Besides, if not stabilized by a binding agent, is recyclable and then does not need mineral ⁴⁴ resources. In addition, it has been shown that it has desirable hydro-thermal regulator properties for the building in use [3][4][5]. Finally, this material appears to have resistance (around 1 to 2 MPa according to New Zealand standard NZS: 1998 [6] and New Mexico code, 2001 [7]) which is sufficient

for building few storey structures.

⁴⁹ Despite these strong advantages **concerning** sustainability in the construc- tion domain, raw earth suffers from a significant sensitivity to liquid water variation, which makes its use difficult to be generalized. Indeed, mois- ture ingress induces changes in the consistency of the earth (from solid to plastic), and decrease of the mechanical rigidity and capacity. This hydro- mechanical coupling is essential to be understood and quantified both for new construction and preservation of historical buildings and monuments, which are very relevant nowadays. This link between mechanical behav-₅₇ ior and hydric conditions is better studied within the framework of un- $\frac{1}{58}$ saturated soil mechanics $\frac{8}{9}$ [9][10]. Hydro-mechanical coupling in rammed earth is more and more investigated thanks to experimental characterization [11][12][13][14][15][16][17] and numerical models proposed to reproduce these observations [18][19][20][21]. Indeed, various authors have already studied the influence of liquid water on the mechanical behavior of rammed earth, by considering suction as the governing internal stress variable in this un- saturated soil media. Jaquin et al. 2009 [11] analyzed the effect of suction on strength and stiffness characteristics through triaxial tests led on sam- ples conditioned at different hydric states. They conclude that there is an increase in strength and stiffness with a decrease in water content (in the $\epsilon_{\rm s}$ range of 5.5-10.2%). A ductile failure was observed for samples conditioned at low suction states, whereas a brittle failure was observed at high suction states. Bui et al. 2014 [13] investigated unconfined compressive strength and secant modulus test at a greater range of water content, from to 1-2\% (dry τ_2 state) to 11\% (compaction water content). Below a water content of 4\%,

 no significant change in strength was observed. However, the compressive $_{74}$ strength decreased from 2 to 0.1 MPa for water content increasing until 11%. This work thus identified, for the specific earth used, a critical hydric state τ ⁶ regarding the mechanical capacity. Beckett et al. 2012 [22], from unconfined ₇₇ compressive strength under different varying suction and temperature condi- $\frac{1}{78}$ tions, concluded that suction is the predominant factor influencing strength. In addition to increasing the strength, suction was also put in evidence to have an impact on other mechanical parameters. Champiré et al. 2016 [12], analyzed mechanical response under unload-reload cycles. At lower stress states, linear elasticity was observed, whereas at higher stress state residual plastic strains increased, at the same time than gradual degradation of stiff- ness, which is termed as damage. Further, both plastic strain and damage were dependent on the suction state. It was concluded that rammed earth exhibits a complex mechanical behavior which consists of elasto-plasticity and damage. Bui et al. 2014 [18], used Mazars's model to take into account 88 this complex behavior. El Nabouch at al. 2018 [23], also highlighted the ⁸⁹ difference in the shear parameters between the core of the layers and their 90 interface.

91 This study aims to investigate further the effect of suction on different me-⁹² chanical parameters to define a constitutive hydro-mechanical model able to ₉₃ quantify the main features of the rammed earth material. For this purpose, we chose to adopt the concepts of unsaturated soil mechanics, in which many constitutive developments already exist and could be applied to our material. The work presented in this article gathers, in one hand, the presentation of a subsequent experimental campaign led at the material scale and on the other hand analysis of the results of the hydro-mechanical tests which can 99 be a step forward towards coupled modeling.

 The first section is thus devoted to the description of the earth used in this work, and the manufacture of the samples, which are representative of the compacted structure element, and the hydric conditions applied.

 The second section presents the extensive experimental campaign. The influ-¹⁰⁴ ence of suction was studied for unconfined compressive strength and Young's 105 modulus determined through simple compression test, and shear parameters (cohesion and friction angle) analyzed through direct shear tests and unsat- urated triaxial tests. These shear parameters are essential in soil mechanics, although very few studies about rammed earth focus on it. Higher values of normal stresses were applied on the triaxial test, which helps to obtain the failure envelope for a greater range of normal stress. Intrinsic shear param-¹¹¹ eters were evaluated by saturated triaxial tests. Based on this experimental analysis, the final section proposes a synthesis of these hydro-mechanical ₁₁₃ tests, which can help to obtain a coupled constitutive model able to pre-114 dict the coupled behavior. Although our work is adapted for rammed earth construction, it is also suitable for other types of compacted earth technique.

2. Material and specimen preparation

2.1. Geotechnical characterization of the material

 The material used in this study was procured from an existing construc- tion site in the Auvergne-Rhone Alpes region of France. The particle size 120 distribution of this earth shows that it contains 40% sand, 53% silt, and $121 \frac{7}{6}$ clay. From figure 1, it is clear that the grain size distribution curve is

122 not enclosed within the spindle proposed by BS $1377-2:1990$ [24]. The spindle ¹²³ provides a criterion to identify suitable soils for rammed earth constructions ¹²⁴ based on the shape of the particle size distribution. It is known that these ¹²⁵ specifications are often not followed by rammed earth and that, particle size ¹²⁶ distribution is not the determining parameter for selection of soil as rammed ¹²⁷ earth material. Some basic characterization tests for soil were performed. 128 The Atterberg limit were evaluated as: liquid limit $w_l = 27.42\%$, plastic limit ¹²⁹ w_p = 16.39%, giving a plasticity index defined as $I_p = w_l - w_p = 11.03\%$. Ac-¹³⁰ cording to the French Classification GTR (Guide de Terrassements Routier) 131 for fine soils (more than 35 $\%$ of grains passing 80 μ m and no grain size over 132 50 mm), it is low plastic silt $(I_p < 12\%)$. In order to finely characterize the 133 clay, the activity $(A_c = I_p/f)$ where I_p is the plasticity index and f is the 134 percentage of soil passing 2 μ m sieve. The activity was found equal to 1.48, 135 and is in the active range $(1.25 < A_c < 2.0)$ and can be considered as slightly 136 active. The cation exchange capacity (CEC) of 2.6 $cmol/kg$ and Specific ¹³⁷ surface area (S_{sp}) equal to $14.7m^2/g$ were obtained. It suggests a very low 138 percentage or absence of swelling clays (high S_{sp} and CEC).

¹³⁹ 2.2. Preparation of specimen

¹⁴⁰ 2.2.1. Compaction

 In order to determine the water content to be added for optimum com- paction, Standard Proctor test was done. A range of optimum moisture 143 content $(11.8\%$ to $13.4\%)$ to obtain maximum dry density was observed, and finally, optimum moisture content of 12.5 % was chosen for preparation of soil (figure 2). The earth was prepared at optimum moisture content and placed in an air-tight container for moisture homogenization.

Figure 1: Grain size distribution and the guidelines by BS 1377 [24]

147

Figure 2: Results of Normal Proctor test

 148 For the unconfined compressive strength (UCS) test, unconsolidated undrained 149 triaxial (in unsaturated state) and consolidated undrained triaxial (in satu-150 rated state) test, $46 (21+21+4)$ cylindrical samples were prepared in a mold ¹⁵¹ which gives a diameter of 5cm and height of about 10cm. This gives a slen-¹⁵² derness ratio of about 2. From the literature [25][26], it appears that for a

 slenderness ratio of about 2, the compressive strength does not depend on the geometry, but on the method of compaction and the material. Here, ¹⁵⁵ a method of **static** double compaction was used for sample preparation. A compaction pressure of 5 MPa was chosen, as it is the standard pressure for Compressed Earth Blocs (CEB). Firstly, 80% of the total compaction pres- sure, i.e., 4MPa was applied gradually from one side, and then 100% of the total compaction pressure, i.e., 5MPa was applied from both sides, accord- ing to the methodology proposed by Bruno et al. 2015 [27]. This method gives a sample with more homogeneous density in contrast to the classical dynamic compaction method, where a gradient of density is observed, the layer of the earth being denser at top and looser at the bottom. Since in this study, the effect of suction is being analyzed on the mechanical properties, it is necessary to fix other influencing parameters. Using this method, there is better control of the compaction pressure, and the samples were produced with excellant repeatablity. The average dry density and the standard devia-¹⁶⁸ tion from the average for each group of samples are shown in Table 1. These values lie within the range of dry density for earthen structures $(1700 \ kg/m^3)$ 170 to 2200 kg/m^3 [28]). Thus, even though the method of compaction differs from the actual method of compaction in the field, it is a material which is representative of rammed earth.

₁₇₃ A similar method of double compaction with same compaction pressure of 5 ¹⁷⁴ MPa was used to prepare prismatic specimens for performing Direct shear tests (DST). A total of 63 $\left[9 \right]$ (samples at each suction state) x 7 (different ¹⁷⁶ suction conditions) samples were prepared this way. A prismatic mold was 177 used to obtain samples of size 60mm x 60mm x 30mm. Samples of these 178 dimensions were tested considering the mechanical capacity of the shear de-vice.

180	It is important to note that the optimum moisture content depends on
181	the method of compaction and energy imposed. The energy of compaction in
182	the double compaction method is about 710 kJ/m^3 , and for standard Proc-
183	tor, the energy is about 569 kJ/m^3 . The optimum water content obtained
184	by standard Proctor is generally higher than required for rammed earth con-
185	struction. Still, the dry density is the most important parameter influencing
186	the strength properties [29] and the objective is to approach the dry density
187	as in a rammed earth wall (dry density for rammed earth wall of the stud-
188	ied soil is about 1900 kq/m^3). Thus the optimum moisture content obtained
189	from the standard Proctor can be used for the method of double compaction.

Table 1: Average dry density and standard deviation from the average for UCS, DST, and triaxial samples

2.2.2. Hydric Conditions and hygroscopic characterization

 For the initial control of suction, liquid-vapor equilibrium method was used. The saturated aqueous solution of different salts (table 2) are used to control the relative humidity of the air around the samples by liquid-vapor

¹⁹⁵ equilibrium. The exchange of water occurs in terms of water vapor based on ¹⁹⁶ Kelvin's thermodynamical equilibrium:

$$
s = u_a - u_w = -\frac{\rho_w.R.T}{g.M_w} \ln(RH) \tag{1}
$$

Table 2: Different saline solutions and the relative humidity and corresponding suction imposed

Salt		KOH CH_3CO_2K $MqCl_2$ $NaBr$ $NaCl$ KCl K_2SO_4					
$RH(\%)$	9	22.51		32.8 57.6 75.3 84.34 97.3			
\parallel Suction (MPa) 331.3		205.3	153.4 75.9		39	23.4	-3.8

197

198 where, s is the suction defined as difference of pore air pressure (u_a) and 199 pore water pressure (u_w) at a given temperature T (in Kelvin, K), R is uni-200 versal gas constant $(R = 8.3143 \text{ J/mol/K})$, g is acceleration due to gravity, ²⁰¹ M_w is the molar mass of water $(M_w = 0.018Kg/mol)$, ρ_w is the bulk den-²⁰² sity of water $(\rho_w = 1000Kg/m^3)$ and RH is the relative humidity, which is ²⁰³ defined as the ratio of partial vapor pressure P in the considered atmosphere 204 and the saturation vapor pressure P_o at a particular temperature.

²⁰⁵ The suction equilibration of the 21 cylindrical specimens (for UCS test) is ₂₀₆ shown in the figure 3. The 21 samples were distributed in **7 different relative** ²⁰⁷ humidity boxes equilibrated at the following relative humidities $9\%, 22.51\%$, ²⁰⁸ 32.8%, 57.6%, 75.3%, 84.34% and 97.3% (see table 2) in group of 3 samples ₂₀₉ (similar method was used for **unsaturated triaxial samples and direct shear** ₂₁₀ samples). The samples were weighed regularly to follow the variation of water

²¹¹ content with time. Every time, the saturation of the saline solutions were ²¹² checked, in order to ensure that samples equilibrate to the desired suction ²¹³ states. The equilibrium in the samples is supposed to be achieved when the ²¹⁴ variation of mass becomes less than 0.05% for more than 24 hours. The ²¹⁵ samples which were equilibrated at relative humidity less than 60% i.e., the ²¹⁶ ambient relative humidity for this region of France, the equilibration time was $_{217}$ less than two weeks. For samples at a higher relative humidity (lower suction ²¹⁸ values), it took them more than a month for moisture balance. From the 219 graph, it was seen that, samples equilibrated with $NaBr$ salt $(RH = 57.6\%)$ 220 achieve a final water content which is less than the samples with $MgCl_2$ salt $_{221}$ (RH = 32.8%), which is inconsistent considering that NaBr impose higher 222 relative humidity than $MgCl_2$. The saturation of these solutions was checked 223 at posteriori and was found that $MgCl_2$ saline solution was not saturated. 224 Thus, it applies an unknown suction value. In the further sections, the results ₂₂₅ from this batch are not included (for results of UCS). Also, the samples placed 226 in the K_2SO_4 box (RH = 97.3%, s = 3.8 MPa) are not fully equilibrated. ₂₂₇ For **saturated** triaxial test, the samples after preparation by a similar ²²⁸ method of double compaction and were placed inside an air-sealed plastic

₂₂₉ bag for a few days. The **hydric state of these samples before testing was not** ²³⁰ essential to control since they will be first saturated before testing.

²³¹ In order to obtain the soil-water retention curve (figure 4), 3 centimetric ²³² samples with dry mass ranging from 5g to 8g, were compacted by a similar ²³³ method of double compaction. Firstly, the samples were air-dried at ambient ₂₃₄ conditions (temperature = $25^{\circ}C$ and RH = 62%), then placed inside the ₂₃₅ oven at 70[°]C for sufficient duration of time (few days) until the mass was

Figure 3: Moisture content variation with time during the suction equilibration in humidity controlled boxes for samples of UCS test directly placed in RH boxes after manufacture

²³⁶ stabilized. Then, the samples were placed in the KOH saline solution box 237 with the lowest relative humidity (9%) . When the samples were equilibrated ²³⁸ i.e., mass variation is less than 0.05% in 24 hrs, they were transferred to the ₂₃₉ next higher relative humidity box. Points for sorption curve are obtained by ²⁴⁰ this method. Once equilibrium was reached in the last box with the highest ²⁴¹ relative humidity (97.3%), the samples were again transferred towards lower ²⁴² relative humidity boxes. In this way, the points for the desorption curve are 243 obtained. Hysteresis is observed in the soil water retention curve. A differ-244 ence of 0.42% volumetric water content at the maximum is observed which 245 corresponds to a relative difference of around 10 %.

Figure 4: Soil-water retention curve showing both sorption and desorption path.

3. Apparent and intrinsic mechanical parameters

3.1. Influence of suction on apparent mechanical parameters

 In this section, results from unconfined compressive strength (UCS) test, ²⁴⁹ direct shear test (DST) and **unsaturated** triaxial test are presented to study the variation of parameters like UCS, initial tangent modulus, apparent co-²⁵¹ hesion and friction angle with suction. The analysis in these tests is done in terms of total stresses, whereas for the evaluation of the intrinsic parameters in the further section, the effective stress concept was used.

3.1.1. Unconfined compressive strength test

 Unconfined Compressive strength (UCS) test was performed on the 21 ₂₅₇ samples. The samples were compressed with strain control at the rate of $258 \frac{0.005 \text{ mm/s}}{s}$ to remain in quasi-static condition. As a global trend of the variation of UCS with suction, it can be seen on figure 5a that, the com-pressive strength decreases significantly with the decrease of suction. The UCS value varies from 1.8 MPa to 6.7 MPa for suction increasing from 3.8 MPa to 331.3 MPa. It can be related to the gain of resistance of the earth structures in a building from the date of manufacture (corresponding to a water content of around 11-13%) up to a long time state, after several weeks $_{265}$ of drying (with a water content of about 2%). Inversely, this can also be related to the loss of mechanical strength for unusual water entry in the material. Firstly, 2 samples from a batch were compressed to obtain the compressive strength. Then, 1 out of every 3 samples (represented as tri- angular marking) from the batch, was compressed with unload-reload cycles in order to obtain Young's modulus. The unload-reload cycles were done at 30%, 60%, and 90% of the average compressive strength of the previous two samples. Still, the point of unloading cannot be stated surely as the compressive strength increased with cycles. These samples have higher com- pressive strength (about 30-40% higher) compared to the average strength of samples at the same suction tested without unload-reload cycles. It can be due to the additional compaction of the rammed earth samples during unloading-reloading and consequently a higher density state. The compres- sive strength observed at the ambient relative humidity of around 60% for ₂₇₉ European latitude was around 3 MPa. This value is consistent with what was observed in the literature [30].

 An example of a stress-strain curve along with the unload-reload cycles is shown in figure 6a for a sample conditioned at 84.34% relative humidity. The Initial tangent modulus (E_{tan}) was evaluated from the initial slope of the stress-strain curve. The variation of the initial tangent modulus (expressed as the average of 3 tests at the same suction) with suction is shown in figure

(a) Variation of compressive strength with suction, samples compressed with unload-reload cycles shown with triangular marking

(b) Variation of Shear strength with suction at a constant normal stress

Figure 5: Influence of suction on UCS and shear strength

 6b. A significant effect is observed with a decrease in suction. This behavior is also consistent with the literature [13][12][21]. The trend is similar to the variation of the compressive strength. The initial Young's modulus decreases almost 3 times as the suction reduces from 331.3 MPa to 3.8 MPa.

(a) Determination of Inital tangent modulus E_{tan} and Secant modulus E_{sec} for one test at RH= 84.34%, s= 23.4 MPa

Figure 6: Results of Unconfined compressive strength test

²⁹⁸ 3.1.2. Direct shear tests

²⁹⁹ In this study, an effort was made to enrich the classical building material ³⁰⁰ approach in which only compressive strength and rigidity of the material are ³⁰¹ classically determined, we chose to investigate mechanical parameters which 302 are more able to describe the **strength properties** of this unstabilized unsat-₃₀₃ urated soil: **i.e.** cohesion and friction angle, which are essential parameters ³⁰⁴ in soil mechanics. Direct shear tests were thus conducted to determine the 305 parameters of soil such as c and ϕ . Rammed earth is a construction material, ₃₀₆ but here is being analyzed as an unsaturated compacted soil. To correctly ³⁰⁷ describe it, we thus need to determine its cohesion and friction angle, and 308 quantify the effect of the suction state on these parameters.

309 Very few studies focus on the shear parameters of rammed earth [18][31][32] and none on the influence of hydric conditions on these parameters. So, in the present work, direct shear tests were conducted on different conditioning 312 relative humidities to determine the variation of c and ϕ with suction. In this regard, 3 series of 21 samples each were subjected to the shear test. The series differ in the normal stress value applied (table 3) varying from 0.139 to 0.556 MPa. These values were chosen as traditional rammed earth wall are loaded by stresses of 0.1 - 0.3 MPa at the wall base [30].

317

³¹⁸ Direct shear tests were conducted on these samples at a shear rate of $319 \, 1mm/min$ with the automatic acquisition of both shear force and shear dis-³²⁰ placement every second. A shear stress-deformation curve for 3 tests at a $_{321}$ relative humidity of 32.8% (Series 3) is shown in figure 7a. The shear modulus

	Load (kg) Normal stress (MPa) Series 1 Series 2 Series 3		
	0.139	∗	
10	0.278		
15	0.417	\ast	
20	0.556	\ast	

Table 3: Normal load and stress applied in various series for a particular suction state

 for all 3 samples sheared at different normal stress shows a low discrepancy, as it was observed for the majority of the tests. There is a brittle failure upon attaining the shear strength. In this test, there is no control over the drainage conditions and no mechanism to measure the pore pressure, but it is a quick test, so we suppose that suction does not vary significantly. Using the shear strength and normal stress, Mohr-coulomb envelope can be drawn in order to evaluate the apparent values of both cohesion and friction angle (figure 7b).

Figure 7: Direct Shear Test result for Series 3 (s=153.4 MPa, $RH = 32.8\%)$)

³³⁰ For each suction state, 3 series (3 samples for each series) have been

 tested, i.e., 9 samples (table 3). Each series gives a value of apparent co-332 hesion and friction angle. The variation of cohesion and friction angle with $\frac{333}{2}$ imposed suction conditions is shown in figure 8 a and 8 b respectively, along with error bars expressed as the standard deviation of 3 results for different series. The cohesion of the samples increases with suction, which is justifi- able from the theory of generalized effective stress, as there is an additional capillary cohesion induced by the partial saturation of the earth, which con- tributes a significant part of the shear strength. It can be seen that there is a lower standard deviation for higher relative humidities. This was also observed in the unconfined compression strength test (figure 5). This can probably be explained by the fact that a dry state of the material induces a fragile behavior. In consequence, the failure is more localized and thus is affected by small defaults in the matter, and its random distribution is responsible for a dispersion of the strength results. On the contrary, wet- ter samples are ductile, which induces a plastic failure concerning the global ³⁴⁶ mass of the material. In this case, defaults have less influence, and the results **present lower discrepancy**. There is also a significant variation observed for the friction angle which varies from 43◦ to 63◦ when suction varies from 3.8 MPa to 331.3 MPa.

 In figure 5b , shear strength is plotted against suction at constant normal stress. It can be observed that the rate of increase of shear strength with suction is very high at the lower suction, and this rate tends to decrease as we approach higher suction values. The explanation of this behavior can be found in literature [33][34][35]. Vanapalli et al. [33] compared the shear strength behavior with the soil water retention curve (figure 9). There is a

Figure 8: Variation of apparent shear parameters from direct shear tests with 3 results for each suction state (a and b) and unsaturated triaxial test with 1 result for each suction state (c and d)

 linear increase of shear strength up to the air-entry value of suction. Further, there is a non-linear increase of shear strength up to the residual suction value and then depending on the soil, the strength may increase, decrease, or remain constant upon the increase in suction. On the one hand, for sand and silt water content at residual condition is very low, and it may not transmit suction effectively. Thus, even a substantial increase in suction will not in-362 crease shear strength. On the other hand, clay has well defined residual point and even at very high value of suction, there exists considerable water, which helps in effective transmission of suction, which leads to increase in strength. Since the soil in this study is predominantly sand and silt, at a higher value

Figure 9: Results of Vanapalli et al. 1996 [33]

367 3.1.3. Unsaturated triaxial tests

³⁶⁸ To confirm and complete the results, **unsaturated** triaxial tests were per- formed on 21 samples conditioned at 7 different suction states (relative hu- midity). For each suction suction state, 3 samples were tested at 3 different 371 confining pressures (σ_3) i.e. 0.2 MPa, 1 MPa and 1.5 MPa. These values of σ_3 were chosen to plot the Mohr-Coulomb failure envelope at a higher range of normal stress as compared to the direct shear test to obtain the failure envelope at higher normal stresses. Also, the triaxial test has advantages such as there is no pre-defined failure surface during the test as in the direct shear test. For this reason, it is more representative of soil behavior. Using the 3 Mohr circles at each suction state, apparent values of cohesion (c) and 378 friction angle (ϕ) were determined. The variation of c and ϕ as shown in figure 8 is similar to the one observed in the direct shear test. The cohesion value increases from 0.5 MPa to 1.8 MPa with suction, whereas there is no $_{381}$ significant alteration in the friction angle (31 \degree to 37 \degree). It appears that values

382 of c and ϕ at a particular suction state are different for direct shear tests ³⁸³ (done at lower normal stress) and **unsaturated** triaxial tests (done at higher ³⁸⁴ normal stress). This behavior indicates that there is non-linearity in the fail-385 ure envelope ($\tau - \sigma_n$ plane). This non-linearity will be further discussed in ³⁸⁶ the further section.

 Finally, figure 10 shows all the results obtained from UCS, DST, and UU 388 triaxial test for 7 different suction states in $\tau - \sigma_n$ plane. It gives a global idea of the various tests performed and helps to plot the failure envelope at a higher range of normal stress.

³⁹¹ 3.2. Intrinsic shear parameters

³⁹² In order to explain the effect of hydric state on these failure parameters, 393 we need to investigate the intrinsic parameters c' and ϕ' which are indepen-³⁹⁴ dent of suction. CU saturated triaxial test was carried at 4 different confining 395 pressures i.e. $\sigma_3 = 100 \text{ kPa}$, 200 kPa, 300 kPa, and 1500 kPa along with the ₃₉₆ measurement of pore water pressure during the shearing (figure 11b). The 397 samples were saturated by a method of stepped saturation. Before the sat-³⁹⁸ uration stage, it was made sure that air bubbles were removed from all the ³⁹⁹ connections and pressure meters connected for the cell pressure and pore wa-⁴⁰⁰ ter pressure. After mounting the samples in the triaxial cell, a cell pressure ⁴⁰¹ increment of 100 kPa was applied, and the evolution of pore water pressure ⁴⁰² was monitored. The saturation of the sample was checked by Skempton's 403 parameter $B = \Delta u / \Delta \sigma_3$, if B value was less than 0.95 (meaning that the ⁴⁰⁴ sample is not yet saturated), the pore water pressure increased to maintain ⁴⁰⁵ effective stress at 10 kPa. This low value of effective stress was chosen not ⁴⁰⁶ to affect the soil structure. Further, the specimen saturation was rechecked

Figure 10: Results of DST, UCS and UU Triaxial test for all suction states

- 407 with the same procedure by raising the cell pressure by intervals of 100 kPa
- 408 until reaching saturation. Typically, $B \geq 0.95$ confirm full specimen satura-
- ⁴⁰⁹ tion. In the second stage, the sample was allowed to consolidate at different

⁴¹⁰ confining pressures ($\sigma'_3 = 100 \text{ kPa}, 200 \text{ kPa}, 300 \text{ kPa}, \text{and } 1500 \text{ kPa}$). Finally, ⁴¹¹ the sample was sheared at a displacement rate of 0.1428 mm/min [36] until failure. The results of these tests are shown in figure 12 in p'-q plane, where in the triaxial conditions p' and q are defined as:

$$
p' = (\sigma_1' + 2\sigma_3')/3\tag{2}
$$

$$
q = (\sigma_1' - \sigma_3')
$$
 (3)

 A highly ductile failure was observed for all the samples (figure 11a), and according to ASTM D 4767-95 [36], the failure point is defined as the ⁴¹⁷ state of maximum effective stress obliquity i.e., maximum σ'_1/σ'_3 . As the 418 failure surface in p'-q and $\tau - \sigma$ plane represent the same failure state, the geometrical relation between these two allow us to compute the intrinsic parameters. The failure criteria in p'-q plane is defined as:

$$
q = k + Mp'
$$
\n⁽⁴⁾

with $M = 6\sin\phi'/(3 - \sin\phi')$ and $k = Mc'/tan\phi'$ From these equations, 422 the effective parameters were evaluated as $c' = 43.91$ kPa and $\phi' = 32.53^{\circ}$, which are good from a soil mechanics point of view. These value obtained are similar to Gerard et al. 2015 [17], which is justifiable as the particle size distribution of both soil used is similar.

 It is interesting to note that, the apparent cohesion at different suction state ⁴²⁷ (from **unsaturated** triaxial) is significantly higher than the intrinsic cohesion (figure 8). However, the apparent friction angle values are quite similar to the intrinsic friction angle. This supports the fact that, with an increase in

Figure 11: Variation of devaitoric stress (a) and pore water pressure (b) for 4 saturated samples at $\sigma_3 = 100$ kPa, 200 kPa, 300 kPa, and 1500 kPa

 suction, the capillary induced cohesion increases and contributes a significant part to the strength. However, the part of shear strength that is due to friction between the particles does not vary so much as it is mostly dependent on the compaction state.

434 The comparison between the intrinsic and apparent (from direct shear test,

Figure 12: Failure envelope from 4 consolidated undrained triaxial test to determine intrinsic shear parameters

435 figure 8) shear parameters shows that c is significantly higher than c' , which 436 is due to the additional suction induced cohesion. ϕ is also higher than ϕ' . 437 This is due to the fact that ϕ is evaluated in direct shear test at a normal ⁴³⁸ stress range of 0.139 - 0.556 MPa. Due to the non-linearity in the Mohr- α_{439} Coulomb failure envelope, the value of ϕ evaluated from the initial part of ⁴⁴⁰ the curve is significantly higher.

⁴⁴¹ 4. Towards constitutive modeling

⁴⁴² Linear Mohr-Coulomb failure criterion is the most common criterion for ⁴⁴³ modeling the behavior of rammed earth and was used in different research 444 [20][37][38] [21][30]. However, this model has various limitations. For an over-⁴⁴⁵ consolidated soil, the failure envelope is not a straight line but a curved line 446 which is concave towards the normal stress axis $[39][40][41]$. Also, in the un-⁴⁴⁷ saturated samples due to higher confining stresses, the degree of saturation

 can increase leading to change in consistency of the sample and affecting ⁴⁴⁹ the behavior. Here, the linear Mohr-Coulomb failure envelope is not totally ⁴⁵⁰ suitable in the case of rammed earth as the intrinsic mechanical behavior is changing. Moreover, it is essential to incorporate the role of suction and generalize the failure criteria as initially proposed by Gerard et al. 2015 [17]. To take into account the non-linearity of the failure envelope, we have used modified Mohr-Coulomb criteria according to Shen et al. [42], in which 455 cohesion c and friction angle ϕ are described as a function of normal stress 456 (σ_n). The expression for the shear strength remains the same, whereas c and ϕ are dependent on normal stress. The following functions were used to describe the shear parameters.

$$
\phi = \phi_0 (1 - \sqrt{\frac{\sigma_n}{2\sigma_c}}) \tag{5}
$$

459

$$
c = c_0 + (\sigma_c - c_0) \frac{\sigma_n}{2\sigma_c} \tag{6}
$$

460 where, c_0 is apparent cohesion, ϕ_0 is apparent friction angle and σ_c is the ⁴⁶¹ critical confining pressure which is defined as the normal stress after which ⁴⁶² the shear strength does not increase. The non-linear Mohr-Coulomb failure ⁴⁶³ envelope was plotted from Mohr circles for UCS and **unsaturated** triaxial 464 tests. The parameter σ_c was adjusted for all the suction states to fit the data ⁴⁶⁵ and is mentioned in table 4. From figure 13, the failure envelope is plotted 466 for $s = 205.2$ MPa, $RH = 22.51\%$, parameter $\sigma_c = 6.5MPa$ is chosen to fit 467 the data set. The values of c_0 and ϕ_0 are used from the direct shear tests. ⁴⁶⁸ It is to be noted that, the results from UCS test **performed** with cycles are ⁴⁶⁹ not used here. It is because, in reality, due to unload-reload cycles, higher 470 strength was observed and it is considered that it does not represent the same

⁴⁷¹ material.

Table 4: Values of the parameter σ_c corresponding to each suction state

Suction (MPa) 331.3 205.3 153.4 75.9 39 23.4 3.8				
σ_c (MPa) 8.35 6.5 6.4 5.3 4.8 4.7 2.5				

Figure 13: Non-linear failure envelope plotted for $s = 205.2$ MPa and RH = 22.51 % using the results of UCS, DST and **unsaturated** triaxial test

⁴⁷² In figure 14, the failure envelope for all the suction states is plotted. Here, ⁴⁷³ we can observe its evolution with both normal stress and suction. The failure 474 envelope from the **saturated** triaxial test has also been shown to observe ⁴⁷⁵ the influence of the suction state on the failure envelope compared to the ⁴⁷⁶ saturated state. This influence is represented by the vertical shift between 477 the saturated triaxial criterion and unsaturated triaxial ones.

Figure 14: Failure envelope plotted for all suction states, where for the unsaturated states net normal stress $\sigma_n = \sigma - u_a$ and for the saturated state $\sigma_n = \sigma - u_w$

⁴⁷⁸ 4.1. Generalised effective stress

⁴⁷⁹ The stress state variables represent the state of equilibrium of the system. ⁴⁸⁰ For unsaturated soils, there are 2 different approaches to define the system ⁴⁸¹ and completely analyze the mechanical response. The first approach uses 2 ⁴⁸² independent stress state variables out of the 3 state variables for unsaturated 483 soils i.e. net vertical stress $(\sigma - u_a)$, effective stress for saturated soils $(\sigma - u_w)$ 484 and matric suction $(u_a - u_w)$. Commonly, $\sigma - u_a$ and $u_a - u_w$ are used. The 485 second approach is generalized effective stress approach in which single effec-486 tive stress defines the stress state of a multi-phase porous medium. The first ⁴⁸⁷ approach allows to model behavior as a collapse for loose soil where only ⁴⁸⁸ the suction variation can cause failure. Since we have a highly compacted ⁴⁸⁹ soil, the generalized effective stress approach is more suitable. Here we use 490 Bishop's effective stress $|43|$:

$$
\sigma'_{ij} = \sigma_{ij} + \chi s \delta_{ij} \tag{7}
$$

⁴⁹¹ where, σ'_{ij} is the effective stress tensor, σ_{ij} is the net stress tensor, s is 492 the suction, δ_{ij} is the Kronecker delta($\delta_{ij}=0$ if $i \neq j$, else = 1) and χ is the ⁴⁹³ effective stress parameter which is a function of degree of saturation.

494 To evaluate χ as a function of degree of saturation, first, we need to use the 495 intrinsic shear parameters c' and ϕ' in the same approach as Gerard et al. 496 [17]. According to Bishop 1960 [43], in the effective stress state reference, $\frac{497}{497}$ the normal stress shifts by an amount χs . It means that even for UCS 498 test with $\sigma_3 = 0$, in effective stress reference it is being internally stressed λ_{499} by an amount χs . To evaluate χ , failure envelope from **saturated** triaxial ₅₀₀ is overlapped with Mohr circles from UCS and **unsaturated** triaxial test in ⁵⁰¹ effective stress reference.

 $\text{Finally, } \chi s \text{ is evaluated geometrically from figure 15 by using } \sigma_3' = \chi s \text{ for }$ 503 UCS and $\sigma'_3 = \sigma_3 + \chi s$ for unsaturated triaxial test. 504

$$
\chi s = \frac{r - c'.\cos\phi'}{\sin\phi'} - r - \sigma_3 \tag{8}
$$

where $r = \frac{\sigma_1 - \sigma_3}{2}$ 505 where $r = \frac{\sigma_1 - \sigma_3}{2}$ and $\sigma_3 = 0$ for UCS test. The value of χ was evaluated ⁵⁰⁶ for each test and averaged (3 samples) for each suction state. It is plotted ⁵⁰⁷ with the corresponding degree of saturation in log-log scale in figure 16. This ⁵⁰⁸ gives the following relationship

$$
log \chi = \alpha log S_r \tag{9}
$$

Figure 15: Determination of expression for χs using **saturated** triaxial test and mohr circles from **unsaturated** triaxial test and UCS ($\sigma_3 = 0$) using the methodology of Gerard et al .2015 [17]

509

$$
\chi = (S_r)^{\alpha} \tag{10}
$$

510 The value of α evaluated from this method is equal to 1.8802 . This value is similar compared to Gerard et al. 2015 [17]. It can be justified from the fact the particle size distribution in both the studies are similar. The expression for Bishop's effective stress is written as:

$$
\sigma'_{ij} = \sigma_{ij} + (S_r)^{1.8802} s \delta_{ij} \tag{11}
$$

Figure 16: Determination of relation between χ and S_r

5. Conclusion

 In the present study, a methodology to study the hydric influence on mechanical behavior is presented. The apparent mechanical parameters and intrinsic parameters were studied to provide a synthesis to define input pa-rameters for a hydro-mechanical predictive model.

 It has been proposed to work with more homogeneously compacted samples by a method of double compaction instead of the traditional method of dy- namic compaction. Using this technique, the compaction pressure is better controlled, and samples are repeatable. Although this method differs from the actual method in the field, the dry density obtained is the range for tra-ditional earth construction, and thus, is representative.

 Matric suction is a state parameter which directly translates any hydric so- licitation inside the material. The samples were conditioned to 7 different suction states using the method of liquid-vapor equilibrium before they were tested.

 Unconfined compressive strength test was performed, with and without unload- reload cycles. The compressive strength and initial tangent modulus were found to increase with suction. Besides, it was found, that the compressive strength of samples which were compressed with unload-reload cycles was higher, indicating that the strength of rammed earth can still be improved by additional compaction.

 Direct shear tests were performed with the same technique for sample prepa- ration and control of hydric conditions. A brittle failure was observed upon attaining the shear strength. The shear modulus for samples sheared at dif-ferent normal stress (but at same suction state) showed very less discrepancy. Cohesion and friction angle were determined at different hydric state using the Mohr-coulomb envelope. The cohesion of the sample increased with suc- tion, due to the presence of additional capillary cohesion, which is induced by the partial saturation. There was less deviation in the results for samples at lower suction states (wet state), where more ductile failure occurs. On the other hand, for samples at higher suction states (dry state), brittle failure occurred, which is more localized, and small defaults affected the results. A similar observation was found for results of UCS.

⁵⁴⁷ The apparent shear parameters were also evaluated with **unsaturated** triaxial test at 7 different suction states. The failure envelope, using this test, was plotted at a higher range of normal stress as compared to DST. It indicated that shear strength predicted from the Mohr-Coulomb criteria using DST is ⁵⁵¹ overestimated and in fact, the failure envelope is non-linear. This non-linearity ₅₅₂ was predominantly due to the unsaturated state of the samples rather than ₅₅₃ over-consolidation. Non-linearity was introduced in the shear strength equa-₅₅₄ tion by varying the cohesion and friction angle with normal stress. Finally, ₅₅₅ intrinsic shear parameters were determined using **saturated** triaxial test. By using the failure criterion in effective stress state reference and Mohr circles ₅₅₇ for UCS and **unsaturated** triaxial test, a log-log relation was observed be- tween χ and S_r . It helped in calculating the effective stress parameter and thus, obtaining the Bishop's effective stress relationship.

 By obtaining the global failure envelope and effective stress equation, it is a step-forward for coupled hydro-mechanical constitutive modeling of rammed earth, which can intrinsically introduce the effect of suction in the failure ₅₆₃ criterion. The future scope will be to estimate, for a given earth building

₅₆₄ submitted to given hydric variations, whether the strains remain admissible, and if the resistance of the structure is sufficient or not.

6. Acknowledgment

 We want to acknowledge ISTerre Grenoble and Chambery for the evalu- ation of Cation Exchange Capacity (CEC) and Specific surface area of our material.

References

- [1] B. Little, T. Morton, Building with earth in scotland: Innovative design and sustainability, Scottish Executive Central Research Unit Edinburgh (2001) .
- [2] J. Morel, A. Mesbah, M. Oggero, P. Walker, Building houses with lo- cal materials: means to drastically reduce the environmental impact of construction, Building and Environment 36 (10) (2001) 1119–1126. doi:10.1016/s0360-1323(00)00054-8.
- [3] D. Gallipoli, A. Bruno, C. Perlot, N. Salmon, Raw earth construction: is there a role for unsaturated soil mechanics, Proceedings of Unsaturated Soils: Research & Applications (2014) 55–62.
- [4] D. Allinson, M. Hall, Hygrothermal analysis of a stabilised rammed earth test building in the uk, Energy and Buildings 42 (6) (2010) 845– 852. doi:10.1016/j.enbuild.2009.12.005.
- [5] C. Beckett, D. Ciancio, A review of the contribution of thermal mass to thermal comfort in rammed earth structures, ICSBE-2012: International Conference on Sustainable Built Environment (2012).
- [6] S. N. Zealand, NZS 4297:1998 Engineering design of earth buildings 4297 (1998) 60.
- [7] J. Tibbets, Emphasis on rammed earth—the rational, Interaméricas Adobe Builder 9 (2001) 4–33.
- [8] A. Tarantino, A possible critical state framework for unsaturated com- pacted soils, Géotechnique 57 (4) (2007) 385–389. doi:10.1680/geot. 2007.57.4.385.
- [9] D. Toll, A framework for unsaturated soil behaviour, Géotechnique 40 (1) (1990) 31–44. doi:10.1680/geot.1990.40.1.31.
- [10] D. Toll, B. Ong, Critical-state parameters for an unsaturated residual sandy clay., Géotechnique. 53 (1) (2003) 93–103. doi:10.1680/geot. 53.1.93.37255.
- [11] P. A. Jaquin, C. E. Augarde, D. Gallipoli, D. G. Toll, The strength of unstabilised rammed earth materials, Géotechnique 59 (5) (2009) 487– 490. doi:10.1680/geot.2007.00129.
- [12] F. Champiré, A. Fabbri, J. C. Morel, H. Wong, F. McGregor, Impact of relative humidity on the mechanical behavior of compacted earth as a building material, Construction and Building Materials 110 (2016) 70–78. doi:10.1016/j.conbuildmat.2016.01.027.
- [13] Q. B. Bui, J. C. Morel, S. Hans, P. Walker, Effect of moisture content on the mechanical characteristics of rammed earth, Construction and 608 Building Materials 54 (2014) 163-169. doi:10.1016/j.conbuildmat. 2013.12.067.
- [14] P. A. Jaquin, C. E. Augarde, L. Legrand, Unsaturated characteristics of rammed earth, Unsaturated Soils: Advances in Geo-Engineering (1995) (2008) 417-422. doi:10.1201/9780203884430.ch53.
- [15] E. Araldi, E. Vincens, A. Fabbri, J.-P. Plassiard, Identification of the mechanical behaviour of rammed earth including water content in- ϵ_{15} fluence, Materials and Structures 51 (4) (2018) 88. doi:10.1617/ s11527-018-1203-2.
- [16] C. Beckett, C. Augarde, D. Easton, T. Easton, Strength characterisation of soil-based construction materials., Géotechnique. 68 (5) (2018) 400– 409. doi:10.1680/jgeot.16.p.288.
- [17] P. Gerard, M. Mahdad, A. Robert McCormack, B. François, A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions, Construction and Building Materials 95 (2015) 437-447. doi:10.1016/j.conbuildmat.2015.07.100.
- [18] T. T. Bui, Q. B. Bui, A. Limam, S. Maximilien, Failure of rammed earth walls: From observations to quantifications, Construction and Building 626 Materials 51 (2014) 295-302. doi:10.1016/j.conbuildmat.2013.10. 053.
- [19] B. François, L. Palazon, P. Gerard, Structural behaviour of unsta- bilized rammed earth constructions submitted to hygroscopic condi- tions, Construction and Building Materials 155 (2017) 164–175. doi: 10.1016/j.conbuildmat.2017.08.012.
- [20] L. Miccoli, D. V. Oliveira, R. A. Silva, U. Müller, L. Schueremans, Static behaviour of rammed earth: experimental testing and finite element μ_{634} modelling, Materials and Structures 48 (10) (2015) 3443–3456. doi: 10.1617/s11527-014-0411-7.
- [21] H. Nowamooz, C. Chazallon, Finite element modelling of a rammed earth wall, Construction and Building Materials 25 (4) (2011) 2112– 2121. doi:10.1016/j.conbuildmat.2010.11.021.
- [22] C. Beckett, C. Augarde, The effect of relative humidity and temperature on the unconfined compressive strength of rammed earth (2012) 287– 292doi:10.1007/978-3-642-31116-1_39.
- [23] R. El-Nabouch, Q.-B. Bui, O. Plé, P. Perrotin, Characterizing the shear parameters of rammed earth material by using a full-scale direct shear box, Construction and Building Materials 171 (2018) 414–420. doi: 10.1016/j.conbuildmat.2018.03.142.
- [24] BS 1377: 1990—Methods of Test for Soils for Civil Engineering Pur-poses. British Standards Institute, London (1990).
- [25] J.-E. Aubert, A. Fabbri, J. Morel, P. Maillard, An earth block with a compressive strength higher than 45 mpa!, Construction and Building

 Materials 47 (2013) 366–369. doi:10.1016/j.conbuildmat.2013.05. 068.

- [26] P. Walker, Characteristics of pressed earth blocks in compression, in: Proceedings of the 11th international brick/block masonry conference, Shanghai, China, 1997, pp. 14–16.
- [27] A. W. Bruno, D. Gallipoli, N. Salmon, A. W. Bruno, D. Gallipoli, J. Mendes, Briques de terre crue : procédure de compactage haute pression et influence sur les propriétés mécaniques, 33èmes Rencon- tres de l'AUGC, ISABTP/UPP, Anglet, 27 au 29 Mai 2015 (2015) 1– 9doi:hal-01167676.
- [28] P. Walker, R. Keable, J. Martin, V. Maniatidis, Rammed earth: design and construction guidelines, BRE Bookshop Watford, UK (2005).
- [29] M. Olivier, Le matériau terre, compactage, comportement, application aux structures en bloc sur terre, Ph.D. thesis, Lyon, INSA (1994).
- [30] W. P. Maniatidis V, Structural capacity of rammed earth in compres- sion, Journal of Materials in Civil Engineering 20 (3) (2008) 230–238. doi:10.1061/(asce)0899-1561(2008)20:3(230).
- [31] A. Corbin, C. Augarde, Investigation Into the Shear Behaviour of Rammed Earth Using Shear Box Tests, First International Conference On Bio-based Building Materials (2015) 93–98doi:10.1371/journal. -pone.0018239.
- [32] J. S. J. Cheah, P. Walker, A. Heath, T. K. K. B. Morgan, Evaluat-ing shear test methods for stabilised rammed earth, Proceedings of the
- Institution of Civil Engineers Construction Materials 165 (6) (2012) $325-334$. doi:10.1680/coma.10.00061.
- [33] S. K. Vanapalli, D. G. Fredlund, D. E. Pufahl, A. W. Clifton, Model for the prediction of shear strength with respect to soil suction, Cana- σ ₆₇₇ dian Geotechnical Journal 33 (3) (1996) 379–392. arXiv:arXiv:1011. 1669v3, doi:10.1139/t96-060.
- ϵ_{679} [34] J. K. M. Gan, D. G. Fredlund, H. Rahardjo, Determination of the shear strength parameters of an unsaturated soil using the direct shear test, Canadian Geotechnical Journal 25 (3) (1988) 500–510. doi:10.1139/ t88-055.
- [35] D. G. Fredlund, A. Xing, M. D. Fredlund, S. L. Barbour, The re- lationship of the unsaturated soil shear to the soil-water character- istic curve, Canadian Geotechnical Journal 33 (3) (1996) 440–448. doi:10.1139/t96-065.
- [36] ASTM D 4767-95: Standard Test Method for Consolidated Undrained Triaxial Compression Test for cohesive soils.
- [37] L. Miccoli, A. Drougkas, U. Müller, In-plane behaviour of rammed earth under cyclic loading: Experimental testing and finite element mod- elling, Engineering Structures 125 (2016) 144–152. doi:10.1016/j. engstruct.2016.07.010.
- [38] T.-T. Bui, Q.-B. Bui, A. Limam, J.-C. Morel, Modeling rammed earth wall using discrete element method, Continuum Mechanics and Thermo-695 dynamics (1-2) (2016) 523–538. doi:10.1007/s00161-015-0460-3.
- [39] A. Bishop, D. Webb, P. Lewin, Undisturbed samples of london clay from the ashford common shaft: strength–effective stress relationships, Geotechnique 15 (1) (1965) 1–31. doi:10.1680/geot.1965.15.1.1.
- [40] A. Penman, Shear characteristics of a saturated silt, measured in triaxial compression, Geotechnique 3 (8) (1953) 312–328. doi:10.1680/geot. 1953.3.8.312.
- [41] J. Atkinson, Stress path tests to measure soil strength parameters for shallow landslips, Proc. 11th ICSMFE, AA Balkema, Brookfield, VT, 1985 2 (1985) 983–986.
- [42] B. Shen, J. Shi, N. Barton, Journal of Rock Mechanics and Geotechnical Engineering An approximate nonlinear modified Mohr-Coulomb shear strength criterion with critical state for intact rocks, Journal of Rock Mechanics and Geotechnical Engineering (4) (2018) 645–652. doi:10. 1016/j.jrmge.2018.04.002.
- [43] A. W. Bishop, The principal of effective stress, Norwegian Geotechnical Institute 32 (1960) 1–5.