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Abstract

The need to have access to accurate short term forecasts is essential in order to
anticipate the energy production from intermittent renewable sources, notably
wind energy. For hourly and sub-hourly forecasts, benchmarks are based on
statistical approaches such as time series based methods or neural networks,
which are always tested against persistence. Here we discuss the performances
of downscaling approaches using information from Numerical Weather Predic-
tion (NWP) models, rarely used at those time scales, and compare them with
the statistical approaches for the wind speed forecasting at hub height. The aim
is to determine the added value of Model Output Statistics for sub-hourly fore-
casts of wind speed, compared to the classical time series based methods. Two
downscaling approaches are tested: one using explanatory variables from NWP
model outputs only and another which additionally includes local wind speed
measurements. Results of both approaches and of the classical time series based
methods, tested against persistence on a specific wind farm, are considered. For
both hourly and sub-hourly forecasts, adding explanatory variables derived from
observations in the downscaling models gives higher improvements over persist-
ence than the benchmark methods and than the downscaling models using only
the NWP model outputs.

Keywords: Wind speed forecasting, Very-short term, Wind energy
forecasting, Downscaling, Statistical model, Numerical Weather Prediction

1. Introduction1

Over the past two decades, the global energy market is turning increasingly2

to green energies. In this context, the wind energy sector has soared all over3

the world. Wind farms are located in more than 90 countries around the world,4
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9 of them with an installed capacity of more than 10 GW, and 30 with more5

than 1 GW across Europe, Asia, North America, Latin America and Africa. In6

2017, 52.5 GW of new wind power was installed across the globe, bringing total7

installed capacity up to 539 GW. In France, wind power installation increased8

by 14.04% in 2017 [1], especially thanks to the feed-in tariffs. The French main9

electricty utility company is under an obligation to purchase green electricity10

from smaller producers for a time period of 15 years. After this period, the11

producers have to sell their electricity on the competitive market. Every day a12

contract is established between the market and the producer about the quantity13

of electricity they will inject on the grid. This contract can be updated up to14

10 min in advance. If the difference between the contract and the production is15

too big, the producer will have to pay penalties. This framework prompts the16

producers to have accurate short term forecasts.17

Fortunately, Numerical Weather Prediction (NWP) models have improved18

significantly over the last 30 years. The forecast skill of the 3-days forecasts19

for the northern hemisphere rose from 85% to 98.5% between 1981 and 201320

and from 70% to 98.5% for the southern hemisphere [2]. Even though NWP21

models perform well for predicting large scale meteorological variables at short22

term, like mid-tropospheric pressure, they do not perform the same for variables23

having much variability at small scales, like surface winds. Large scale variables24

are well understood physically and efficiently modeled numerically but variables25

tied to phenomena occuring on smaller scale depend more on processes that are26

not resolved and so parametrized. This leads to significant model errors for27

variables like surface wind.28

Model error has several components: part comes from the inadequate rep-29

resentation of physical processes, e.g. uncertainties in the parametrizations30

used for boundary layer turbulence. This error should be reduced by improving31

parametrizations. Part of the error is numerical error, coming from the discrete32

representation of a continuous process. Also tied to the limited resolution is33

the representativity error, which occurs because of the difference of the value34

over a grid box and the value at a specific point. Downscaling method such35

as Model Output Statistics (MOS) are usually used to reduce representativity36

error [3]. Those models have been developed in weather forecast for several37

decades, based on NWP models outputs. A statistical relationship is determ-38

ined between observations and forecasts using past forecasts and corresponding39

observations, and then serves to improve predictions at that observation site.40

Downscaling models can be very interesting to get accurate forecasts at a41

specific location of a wind farm [4]. To do so, different downscaling models and42

different outputs of NWP models, climate data or, if applicable, recent surface43

observations can be used as explanatory variables for the near surface wind speed44

[5]. Amongst them, markers of large-scale systems (geopotential height, pressure45

fields) and boundary layer stability drivers (surface temperature, boundary layer46

height, wind and temperature gradient) can be used [6].47

However, for hourly and sub-hourly forecasts, downscaling methods are not48

commonly used because NWP models are only run once or twice a day due to49

the difficulty to gain information in short time and the associated high costs.50
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This usually limits its usefulness to forecasts with lead times longer than 6 hours51

at least. Persistence is the reference method for short term and very short term52

forecasts. It supposes that the wind speed at a certain future time will be the53

same as it is when the forecast is made. Statistical approaches are also used as54

benchmark for short and very short term generally. We can split this category55

into two sub-categories which are artificial intelligence methods such as Artificial56

Neural Network (ANN) using past measurements as explanatory variables and57

time series models such as Auto-Regressive Moving Average (ARMA) [7]. The58

ANN models can represent a complex non-linear relationship and extract the59

dependences between variables through the training process. Statistical meth-60

ods are based on training with measurements and use differences between the61

predicted and the actual wind speed to upgrade the model. Both approaches62

constitute the reference methods for short term forecasts [8]. Usually ANN63

models outperform time series models [9] even if some very good time series64

models can supersede ANN methods [10, 11].65

In this paper, we compare two configurations of downscaling models. One66

using explanatory variables available from NWP models and another adding67

explanatory variables derived from observations. In both cases, we compare the68

results with persistence methods and with the benchmark methods. The paper69

is organized in six parts. The next part describes the data and the different70

models. In section 3 the downscaling methods are used for hourly forecasts71

from 1 h to 11 h. Results of persistence, ARMA and ANN methods are also72

shown for comparison with classical results found in the literature. In section73

4, all methods are applied for sub-hourly forecasts from 10 min to 170 min at a74

frequency of 10 min which are horizons much less investigated in the literature75

than hourly horizons. In section 5, preliminary results on wind energy forecasts76

are presented. In the last section, we discuss the results and conclude.77

2. Data and methodology78

Our aim is to forecast the wind speed at 100 m height using outputs from79

ECMWF (European Centre for Medium-Range Weather Forecasts) for a given80

wind plant using downscaling model. The wind farm is located in Bonneval,81

a small town 100 km Southwest of Paris, France (48.20◦N and 1.42◦E). The82

wind farm is operated by Zephyr ENR, a private company managing 5 other83

wind farms. The Bonneval wind farm, called “Parc de Bonneval”, has been84

implemented in 2006 and is composed of 6 Vestas V80-2 MW turbines. The85

European Centre, ECMWF, provides global forecasts, climate reanalyses and86

specific dataset. In our case, we retrieve the day-ahead forecasts at hour step87

starting from analysis twice a day, at 0000 UTC and 1200 UTC. UTC is the88

Universal Time Coordinate. At the location of the wind farm, the local time89

is UTC+1 h in winter and UTC+2 h in summer. The downscaling model is90

trained using 47 variables aiming at describing the boundary layer, winds and91

temperature in the lower troposphere. Tables 1, 2 and 3 show the considered92

variables. The targeted wind speed is computed by averaging the 10-minutes93
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measurements over the years 2015 and 2016 of the considered wind farm. Spa-94

tial averaging is performed by averaging the data of all turbines. To retrieve95

measurements at the same interval than ECMWF forecasts, time averaging is96

performed by averaging the 10-minutes measurements. The spatial resolution97

of ECMWF forecasts is of about 16 km (0.125◦ in latitude and longitude). Ex-98

planatory variables at the location of the farm are interpolated linearly from99

the four nearest grid points.100

Altitude (m) Variable Unit

10 m / 100 m Zonal wind speed m s−1

Meridional wind speed m s−1

2 m Temperature K
Dew point temperature K

Surface

Skin temperature K
Mean sea level pressure Pa

Surface pressure Pa
Surface latent heat flux J m−2

Surface sensible heat flux J m−2

- Boundary layer dissipation J m−2

Boundary layer height m

Table 1: Surface variables

Pressure level (hPa) Variable Unit

1000 hPa / 925 hPa /
850 hPa / 700 hPa /

500 hPa

Zonal wind speed m s−1

Meridional wind speed m s−1

Geopotential height m2 s−2

Divergence s−1

Vorticity s−1

Temperature K

Table 2: Altitude variables

Altitude Variable Unit
10 m / 100 m Norm of the wind speed m s−1

Between 10 m
and 925 hPa

Wind shear m s−1

Temperature gradient K

Table 3: Computed variables

2.1. Parametric approach and low cost assimilation101

Downscaling statistical methods have been widely investigated since several102

decades in order to forecast the wind speed, usually from few to several hours103
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[12, 13, 14]. In this paper, we consider a parametric approach, using linear104

regression. This method has been developed for NWP downscaling in the study105

by Alonzo et al. [15]. Non-parametric approaches such as random forests have106

also been tested in this study. The results between the two approaches do not107

differ significantly for the longest horizons. However, for the shorter horizons108

(<1 h), considered in this paper, the parametric approach give better results. It109

is also an easier method to implement and a faster one. That is why we choose110

to focus on this method. The parametric approach supposes a relation between111

the target at time t, ŷt and the m explanatory variables at time t, X1,t, ..., Xm,t:112

ŷt = β0 +

m∑
k=1

βkXk,t + ε (1)

where βi, i ∈ {0, ...,m}, are the model parameters to be estimated and ε is113

the residual.114

Among the explanatory variables, X1,t, ..., Xm,t, some provide more import-115

ant information and some may be correlated. Thus, a stepwise regression (for-116

ward selection) is performed to only keep the most important uncorrelated vari-117

ables [15]. This is an iterative regression, which consists in adding variables118

from the set of explanatory variable based on the Bayesian Inference Criterion119

(BIC). At each step, a model is built by adding one variable among the remain-120

ing ones. The added variable which minimizes the BIC of the model is chosen.121

The procedure is repeated as long as the BIC decreases.122

Two configurations are tested. The first one, denoted LRno−obs, consists in123

a classic downscaling using the explanatory variables retrieved from ECMWF124

outputs. The second one, denoted LRobs, consists in adding the error between125

the observed wind speed at time t0, i.e. when the forecast is launched, and the126

forecasted wind by ECMWF at time t as explanatory variable.127

In the first case only one model is fitted. In the second case a model is fitted128

at each hour in order to take into account the error between the forecasted wind129

at time t and the observations at time t0 precisely. For the second model, after130

the variable selection step, between 14 and 21 variables remain, depending on131

the horizon. This low cost assimilation has been performed and compared to132

the classical downscaling in Alonzo et al. [15]. For a 3 h lead-time, they can133

improve the forecast up to 9.3% by considering the initial error.134

2.2. Benchmark135

For short term predictions, statistical methods are the most used and are136

always compared to persistence [7]. Persistence assumes that the wind speed at137

time t will be the same as it was at time t0.138

The statistical approach aims at finding the relationship between past and fu-139

ture observations using measurements (and possibly exogenous variables). They140

can be split in two sub-categories: time series based models which are easy to141

model and cheap to develop and artificial neural network which can deal with142

non-linearity but which is known as black box model.143
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Time series models are mainly based on Auto-Regressive Moving Averaged144

(ARMA) models [16]. An ARMA(p, q) model aims at predicting the wind speed145

at time t, using a linear combination of the p previous wind speed values, the q146

previous residuals and potentialy m exogenous variables (in that case we define147

the model as ARMAX). The most sophisticated models are ARIMAX(p, d, q) for148

Auto-Regressive Integrated Moving Averaged EXogenous. They aim at remov-149

ing the non-stationarity of the data by applying an initial d-order differencing150

step as follow151

ŷt =

p∑
i=1

Φi∆
dyt−i +

q∑
j=1

θjεt−j +

m∑
k=1

βkXk,t (2)

where yt−i is the observed wind speed at time t− i, Φi, θj , βk are the model152

parameters, ∆d is the d-order lag operator defined in equation (3), εt−j is the153

residual at time t− j, and Xk,t is the kth explanatory variable at time t, which154

can be an output from NWP. However, in this study, benchmark methods only155

use endogenous parameters. Models with exogenous parameters have been in-156

vestigated but they do not differ significantly for the considered lead times.157

∆dyt = (yt − yt−1)−
d−1∑
i=1

(yt−i − yt−(i+1)), d = 1, ..., n (3)

Artifical neural networks (ANN) are models inspired by the biological neural158

networks. They are based on interconnected groups of nodes, divided in layers.159

Each connection can transmit a signal from one artificial neuron to another. An160

artificial neuron that receives a signal can process it and transmit it to another161

neuron. Usually, this signal is a real number and the output of each artificial162

neuron is computed by some non-linear function, called activation function, of a163

weighted sum of its input. The weights and the activation function are updated164

through the training process [17, 18]. Those models are very useful to model165

complex non-linear relationships and extract dependences between variables.166

To quantify the performance of the models, we used two indicators. The167

Normalized Root Mean Square Error (NRMSE) defined in (4), which is often168

used and facilitates comparisons with classical scores. The second indicator is169

the improvements over persistence, defined in (5), that is to say the decrease170

of the RMSE between the considered model and the persistence method. This171

skill score is referred to as ∆RMSE .172

NRMSE =

√
1
N

N∑
i=1

(ŷi − yi)2

Ȳ
(4)

∆RMSE = −RMSEmodel −RMSEpersistence

RMSEpersistence
(5)

where, ŷi is the i-th wind forecast and yi is the corresponding observation.173
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N refers to the number of forecasts that have been done to compute the skill174

score and Ȳ is the mean of the observed wind speed over the same sample.175

By removing the normalization we obtained the skill score RMSE. When ŷi is176

forecasted using persistence, it refers to RMSEpersistence. When it is forecasted177

by any other model, it refers to RMSEmodel where the model is clearly identified178

(among ECMWF, LRno−obs, LRobs, ARMA and ANN).179

3. Performances for hourly forecasts180

In this section, the downscaling methods are used for hourly forecasts and181

tested against the commoly used ANN and ARMA methods. Hourly forecasts182

have been largely studied in the literature and the results are compared to183

published reference skill scores.184

All the models are trained using hourly averaged of the past observations of185

the year 2015 and 2016. For the ANN model we used as input hourly averaged186

of the last 6 hours. Then, we fit different models depending on the number of187

layers in the network and on the number of neurons in the hidden layers. We188

fixed the seed in order to remove the uncertainty due to the stochastic nature of189

the models. The best ANN is a two-layers model with 10 neurons in the hidden190

layer. For the ARMA model, several models have been fitted depending on the191

orders p and q of the model. We chose the model that minimizes the Bayesian192

Inference Criterion which is an ARMA(6,3). To evaluate the models, the hourly193

averaged of the measurements of the year 2017 are used.194

Figure 1 displays the NRMSE depending on the forecast lead times (1 h to195

11 h) for persistence, ECMWF forecasts, ARMA and ANN models and for our196

methods LRno−obs and LRobs. One can note that, for models that use obser-197

vations as input, performances deteriorate with lead time whereas it remains198

constant for models that do not. For the 1 h forecast, all the methods that199

consider measurements as explanatory variables outperform ECMWF and the200

downscaling model LRno−obs. The only method outperforming all the others for201

all time horizons is LRobs even if for the 1 h forecast this method gives similar202

NRMSE compared to persistence, ANN and ARMA. However, the longer the203

time horizon, the more significant the improvements of our methods over the204

references (ANN, ARMA, persistence).205

The improvements over persistence of all methods are displayed in Fig 2. One206

can see that both reference methods, ARMA and ANN, perform very similarly.207

The two models, overperform persistence at every horizon and the improvements208

slightly increase with time from 2.7% for the first hour to 15.3% for the eleventh.209

Those results are consistent with those found in the literature. For instance, in210

[19], Torres et al., used ARMA model to predict hourly averaged wind speed211

1 h to 10 h lead time for five sites in Spain. They found NRMSE improvements212

over persistence ranging between 2% and 5% for 1 h lead time and between213

12% and 20% for 10 h lead time. In [20], Sfetsos compares the performances of214

an ARIMA(2,1,2) and an ANN using measurements collected in Crete, Greece.215

Hourly averaged wind speed forecasts with ANN model overperform persistence216

by 4.7% while ARIMA overperforms persistence by 2.3%.217
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Figure 1: Performances of downscaling statistical models for hourly forecasts
from 1 h to 11 h in two configurations against the performances of ECMWF
and the benchmark method. LRno−obs displays the downscaling of explanat-
ory variables from ECWMF outputs only. LRobs shows the results when the
error between the measurments at t0 and the 100-m wind speed forecasted by
ECMWF at t is adding as explanatory variable. Results of persistence, ANN
and ARMA are added.

Compared to these reference results, LRno−obs and LRobs are significantly218

better. After the fifth hour, ECMWF, LRno−obs and LRobs are better than219

persistence by more than 40%. For the first lead time, corresponding to t0+1 h,220

LRobs performs better than persistence by 8.6% which is better than ARMA221

(∆RMSE = 2.7%) and ANN (∆RMSE = 0.1%). The improvements remain222

significantly better than ECMWF and LRno−obs until the third hour.223

The performance shift at t0 + 2 h between the observations based methods224

and the downscaling methods can easily be explained. At short lead times, an225

accurate initial state provided by the observations is a key. At longer lead times,226

the observations no longer constrain the forecast and NWP forecast then provide227

the needed information. Moreover, at longer lead times, ARMA and ANN228

models are no longer based on lattest measurements but on previous forecasts.229

This feature explains why LRobs outperforms all other methods at all lead times.230

4. Performances for sub-hourly forecasts231

In this section, we focus on very short term forecasts which is the key object-232

ive of this work. We apply the same methods as in section 3 to forecast 10 min233

averaged winds up to 3 h ahead. Again, a model is fitted at each hour using234

ECMWF hourly forecasts and the hourly averaged of the measurements. In235
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Figure 2: Comparison of the improvements over persistence in percentage for
ECMWF forecasts and the downscaling models from 1 h to 11 h in the two con-
figurations. LRno−obs corresponds to the downscaling with explanatory vari-
ables from ECWMF outputs only. LRobs shows the results when the error
between the measurments at t0, the time when the forecast is launched, and the
100-m wind speed forecasted by ECMWF at t is added as an explanatory vari-
able. Improvements of ECMWF, ARMA and ANN methods are also included.
For ECMWF and the downscaling models, the value of the improvement cor-
responds to the extremity of each bar while for ARMA and ANN it corresponds
to the center of the circle and triangle, respectively.

order to retrieve 10-min forecasts, the explanatory variables are linearly inter-236

polated every 10 min. Then, to retrieve the prediction for all hours h at minutes237

0, 10 and 20, we apply the model calibrated at hour h. To retrieve the prediction238

for all hours h at minutes 30, 40 and 50, we apply the model calibrated at hour239

h + 1. However, the calibration leads to an issue with LRobs. For 10 min and240

20 min, LRobs is doing exactly the same as persistence. Indeed, the model fitted241

at time t0 puts all the weight on the forecasted wind speed by ECMWF and on242

the initial error. As this model is used at 10 min and 20 min, the results are243

exactly the results of persistence. To let the model outperforms persistence, one244

solution is to do a linear regression using only past observations for the first two245

horizons. Hereafter, LRobs denotes a linear regression over past measurements246

for time 10 min and 20 min and a linear regression over ECMWF outputs and247

the error at time t0 for the remaining time. For the reference methods ANN and248

ARMA, the training is performed directly using the 10-minutes measurements.249

The procedure applied to choose the models is the same as in section 3. For250

the ARMA models, we fitted several models depending on the orders p and q251

of the models and we select the model which minimizes the Bayesian Inference252
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Criterion (BIC). This is an ARMA(4,2). For the ANN we fitted several models253

depending on the number of layers and the number of neurons per layer. The254

best model is an ANN with 4 layers and 10 neurons per layers. Moreover, we255

used as input the 10-min measurements over the past hour.256

4.1. Statistical skill performances257

Figure 3 displays the NRMSE as a function of the time horizon, from 10 min258

to 170 min, for persistence, ECMWF forecasts, LRno−obs and LRobs forecasts259

and reference methods ARMA and ANN.260
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30
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Sub-hourly Forecasting of Wind Speed and Wind Energy – Section 4.1 Fig. 3

Persistence

ECMWF

LRno−obs

LRobs

ARMA

ANN

Figure 3: Performances of the different models for sub-hourly forecasts from
10 min to 170 min in two configurations against the performances of ECMWF
and the benchmark method. LRno−obs displays the downscaling of explanat-
ory variables from ECWMF outputs only. LRobs shows the results when the
error between the measurments at t0 and the 100-m wind speed forecasted by
ECMWF at t is adding as explanatory variable. Results of persistence, ANN
with 4 layers and 10 neurons per layer and an ARMA(4,2) are added.

At this time scale the differences between the models are smaller than for261

longer lead times but the hierarchy between them remains the same. It is hard262

to distinguish the best model at 10 min and 20 min but after 30 min, LRobs263

is significantly better. For times between 30 min and 2 h, it provides clearly264

the best forecasts, with NRMSE less than 20%. For lead times of 2 to 3 h, its265

performance gradually converges to that of LRno−obs.266

Figure 4 is similar to figure 2 for lead times ranging between 10 min and267

170 min. Only LRobs overperforms persistence at every horizons. Again it268

is the model giving the best improvements. The differences with ARMA are269

not extremely significant for the first lead times especially at 20 min (1.5% for270

LRobs and 1.3% for ARMA). After 20 min, LRobs is by far the best model. The271
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Figure 4: Comparison of the improvements over persistence in percentage for
ECMWF forecasts and the downscaling models from 10 min to 170 min in the
two configurations. LRno−obs displays the downscaling of explanatory variables
of ECWMF outputs only. LRobs shows the results when the error between the
measurments at t0 and the 100-m wind speed forecasted by ECMWF at t is
adding as explanatory variable. At 10 min and 20 min, LRobs denotes a linear
regression over the last 45 measurements. Improvements of ECMWF, ARMA
and ANN methods are added. For ECMWF and the downscaling models, the
value of the improvement corresponds to the extremity of each bar while for
ARMA and ANN it corresponds to the center of the circle and triangle, respect-
ively.

improvement over persistence is 6.9% at 30 min 33.3% at 170 min. If ECMWF,272

LRno−obs and LRobs converge with each other with time, ECMWF and LRno−obs273

start to outperform persistence only from 80 min and 70 min respectively.274

4.2. Case studies275

Such nowcasting method should be used for decision-making process. There-276

fore, a statistical quantification of the performances is not enough to evaluate277

the usefulness of the method. Figure 5 and 6 display forecasted time series with278

two starting dates: the 15th of January 2017 at 00:00 UTC and the 15th of July279

2017 at 01:00 UTC. Those dates have been choosen because the mean wind280

speed is around 6 m s−1. This is the mean wind speed at “Parc de Bonneval”281

over the years 2015, 2016 and 2017 so those dates represent common situations.282

For both dates, a prediction using LRobs and ECMWF models are shown. The283

measurements and confidence intervals are also included.284

In both cases, three degrees of confidence are shown. Each of them are285

defined depending on the lead time and on the predicted wind speed. For each286
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lead time, we consider wind speed bins of 1 m s−1. For each prediction we287

compute the difference : ŷt−yt, where ŷt is the forecasted wind speed by LRobs,288

at time t and yt is the measured wind speed at time t. Those differences are289

stored in the corresponding bin depending on ŷt and t. Using the data of the290

years 2015 and 2016, we compute for each couple lead time/wind speed bin291

a distribution of error. We compute, for each couple, three intervals: the 10%292

confidence interval, the 25% confidence interval and the 50% confidence interval.293
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Figure 5: Forecasted time series starting on the 15th of January 2017, 00:00 UTC
to 02:50 UTC. ECMWF and LRobs forecasts are compared to the observations.
The 10%, 25% and 50% confidence intervals are added.

Figure 5 displays a winter prediction. It starts on the 15th of January 2017294

and ranges from 00:00 UTC to 02:50 UTC. For this forecast, the mean of the295

observed wind speed is around 5.93 m s−1 and the mean of the forecasted wind296

speed is around 6.30 m s−1 for LRobs and 5.12 m s−1 for ECMWF model. In297

this case, ECMWF underestimates the wind speed while LRobs overestimates it.298

However, the LRobs overestimation is lower than ECMWF underestimation. It299

is clear that this model gives a more accurate prediction than ECMWF model.300

The mean absolute error, defined in equation (6), is around 0.45 m s−1 for301

the downscaling model and around 0.80 m s−1 for the ECMWF forecast. This302

corresponds to a normalised mean absolute error of 7.65% for LRobs and of303

13.57% for ECMWF. This difference is due to the bias correction using LRobs.304

In terms of variability, a clear lack is visible. It seems to be slightly corrected305

by LRobs but this is essentially due to the fact that several models are fitted.306

Consequently when a new models is used there is a rupture in the linearity of307
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the prediction.308

MAE :=
1

N

N∑
i=1

|ŷi − yi| (6)
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Figure 6: Forecasted time series starting on the 15th of July 2017, 01:00 UTC
to 03:50 UTC. ECMWF and LRobs forecasts are compared to the observations.
The 10%, 25% and 50% confidence intervals are added.

Figure 6 displays a summer prediction. It starts on the 15th of July 2017,309

from 01:00 UTC to 03:50 UTC. In this case, the mean of the observed wind310

speed is around 6.80 m s−1 and the mean of the forecasted wind speed is around311

6.21 m s−1 for LRobs and around 5.05 m s−1 for ECMWF model. This time,312

both models understimate the wind speed but the underestimation is strongly313

corrected by LRobs. Again, the lack of variability is slightly corrected by the314

use of several models. However, this lack of variability is a reccurent problem315

in the forecasts. Even with random forests, which are non-parametric models,316

the variability remains low. The problem comes from the fact that ECWMF317

outputs are hourly data and in order to retrieve data at a frequency of 10 min,318

a linear interpolation is made. This creates a huge lack of variability relative319

to the real 10 min observations. For the this forecast, the MAE is around320

0.59 m s−1 for LRobs which corresponds to a normalised mean absolute error321

around 8.67%. This is lower than for ECMWF forecast for which the MAE322

is around 1.75 m s−1. This corresponds to a normalised mean absolute error323

around 25.76%. Again this difference is due to the bias correction using LRobs.324

From Figs. 5 and 6, an “obvious alternative” would be to simply correct the325

whole wind forecast time series of the weather model ECMWF by the delta326

to the observations at the initial point. We computed the skill scores of this327
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“obvious alternative” and it shows that at any time step LRobs overperforms this328

model (figure not shown).329

5. From wind speed to wind energy forecasts330

The next step would be to provide forecasts of the wind energy directly.331

To do so, two approaches are possible. The direct approach, which consists332

in training the models directly using the production data and the indirect ap-333

proach which consists in forecasting first the wind speed, then converting it into334

production using power curves.335

Both approaches have advantages and drawbacks depending on the target.336

For instance, if the target is the wind energy at each turbines, the direct ap-337

proach requires to build one model for each turbines while the indirect approach338

just needs one model to predict the wind speed and the power curves of each339

turbine. The indirect approach is a modular approach, less turbine dependent340

than the direct approach. However, if the target is the wind energy at the farm341

scale, the direct approach can avoid error accumulation and it requires only one342

step, in contrast to two for the indirect approach.343

As a preliminary in the present paper, results are shown for the forecasts of344

the mean power output, by the indirect approach, over the wind farm. Both345

approaches have been tested and they give similar results. For instance, the346

NRMSE of the direct approach is 8.11% while the NRMSE of the indirect ap-347

proach is 7.95% after 30 min. After 60 min it is 10.05% for the direct approach348

and 10.02% for the indirect approach and after 170 min it is 11.19% for the349

direct approach and 10.92% for the direct approach. We used LRobs, the best350

model shown previously, to predict the wind speed from 10 min to 170 min and351

then we used a power curve, computed at the farm scale using data averaged352

over the six turbines, to produce a wind energy forecast. This wind farm’s power353

curve is computed by dividing the averaged wind speed data set into 0.5 m s−1
354

intervals. The quantiles of the distribution of the wind farm power of each in-355

terval are computed. Finally, the power curve is retrieved by fitting the means356

of each interval, as shown in figure 7.357

Figure 8 illustrates a wind energy forecasts. It displays a forecasted time358

series of wind energy starting from the 15th of January 2017 at 00:00 UTC,359

corresponding to the same time series than in part 4.2. As previously, the wind360

speed is forecasted by LRobs and then the forecasted power is retrieved using361

the computed power curve shown in figure 7. The different confidence intervals362

computed using the power curve in figure 7 are added with the same color code363

than in figures 5 and 6. In figure 8, we can see that LRobs forecasts is very close364

to measurements and inside the confidence intervals.365

More generally, figure 9 shows the statistical performances of the different366

models for the wind energy forecast. Again it is hard to distinguish the best367

model for short lead time but LRobs overperforms the other methods.368
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Sub-hourly Forecasting of Wind Speed and Wind Energy – Section 4.1 Fig. 7

Computed power curve

Figure 7: Computed power curve at the farm scale. For each 0.5 m s−1 intervals,
the boxplots of the distribution are shown in green. The whiskers correspond
to the first and the ninth decile. The means of each interval are fitted in order
to retrieve the power curve.
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Figure 8: Forecasted time series of wind energy starting from the 15th of January
2017 at 00:00 UTC. LRobs forecasts are compared with the measurements. First,
the wind speed is forecasted by LRobs and then the forecasted power is retrieved
using an averaged power curve. The 10%, 25% and 50% confidence intervals are
added.
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Figure 9: Performances of the different models for sub-hourly forecasting of wind
energy from 10 min to 170 min in two configurations against the performances
of ECMWF and the benchmark methods. The models are exactly the same
than figure 3. The power curve shown in figure 7 is used to compute the wind
energy forecast. The NRMSE is normalized by the nominal power (2000 kW).

6. Conclusion369

In this paper, we have developed and tested approaches that combine stat-370

istical models and output from Numerical Weather Prediction (NWP) models371

in order to forecasts the 100 m wind speed and the wind energy production at372

sub-hourly time scales. Traditionally, the main methods used for those time373

scales are time series based methods using only local observations, while Nu-374

merical Weather Prediction (NWP) models are preferred for lead times longer375

than 6 h at least [21]. However for the case of the considered wind farm (“Parc376

de Bonneval”, 100 km Southwest of Paris, France) we have used 3 years of377

data to show that the European Centre for Medium-Range Weather Forecasts378

(ECMWF) performs well even for short lead times. After 80 min the direct379

output of ECMWF forecasts gives better results than the classical time series380

based methods and improves persistence from 5.0% to 28.9%. Taking into ac-381

count those good performances, we have considered a parametric approach to382

downscale the model outputs at farm scale using a linear regression. In order383

to have better results for lead time shorter than 80 min, we have corrected384

ECMWF forecasts by providing as explanatory variable the error between the385

forecasted wind speed and the initial measurement. This low cost assimilation386

lets the linear regression to overperform all other methods. If the improvements387

over the traditional time series based models may not be important for the first388

lead times, 0.2% at 10 min, they become significant with time, from 5.3% at389
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30 min to 30.1% at 170 min.390

For the wind energy forecasts we considered an indirect approach. The fore-391

casted wind speed provided by the downscaling model with low cost assimilation392

is used to retrieve wind energy forecasts using a computed power curve. Again,393

this model overperforms all other methods at all lead times, from 2.3% to 29.7%.394

In order to illustrate the model performances, case studies for specific times are395

shown. Wind speed and wind energy forecasted time series are presented. The396

associated confidence intervals are also display. We choose to add the 50%, 25%397

and 10% confidence intervals because their range, from 0.20 m s−1 to 1.5 m s−1,398

correspond to the appropriate accuracy for wind energy producers. For instance,399

a 90% confidence would have been statistically better but not accurate enough400

to be useful. For the wind speed, a lack of variability is visible in the fore-401

casts compared to the measurements. This is due to the hourly frequency of402

the ECMWF outputs used as predictors in the dowscaling model. This lack403

of variability has less impact on the wind energy forecasted time series. The404

inertia of the turbines generates much less variability in term of measured power405

than in term of observed wind speed which is measured by anemometers. The406

forecasted wind energy time series are smoother and the predictions are closer407

to measurements.408

Acknowledgements. The authors would like to thank the French company Zephyr409

ENR for providing the data of the “Parc de Bonneval” and for supporting this410

research. This work also contributes to TREND-X program on energy transition411

at Ecole Polytechnique and was also supported by the ANR project FOREWER412

(ANR-14-538 CE05-0028).413

References.414

[1] L. Fried, L. Qiao, S. Sawyer, Global Wind Report, Global Wind Energy415

Council.416

URL https://gwec.net/members-area-market-intelligence/417

reports/418

[2] P. Bauer, A. Thorpe, G. Brunet, The Quiet Revolution of Numerical419

Weather Predicion, Nature 525 (2015) 47–55. doi:10.1038/nature14956.420

[3] H. R. Glahn, D. A. Lowry, The Use of Model Output Statistics (MOS) in421

Objective Weather Forecasting, Journal of Applied Meteorology 11 (1972)422

1203–1211. doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.423

[4] N. S. Wagenbrenner, J. M. Forthofer, B. K. Lamb, K. S. Shannon,424

B. W. Butler, Downscaling Surface Wind Prediction From Numerical425

Weather Prediction Models in Complex Terrain With WindNinja, At-426

mospheric Chemistry and Physics 16 (2016) 5229–5241. doi:10.5194/427

acp-16-5229-2016.428

[5] R. L. Wilby, M. L. Wigley, D. Conway, P. D. Jones, H. B. C., J. Main,429

D. S. Wilks, Statistical Downscaling of General Circulation Model Output:430

17



A Comparison of Methods, Water Ressources Research 34 (1998) 2995–431

3008. doi:10.1029/98WR02577.432

[6] T. Salameh, P. Drobinski, M. Vrac, P. Naveau, Statistical Downscaling433

of Near-Surface Wind Over Complex Terrain in Southern France, Met-434

eorology and Atmospheric Physics 103 (2009) 253–265. doi:10.1007/435

s00703-008-0330-7.436

[7] S. S. Soman, H. Zareipour, O. Malik, P. Mandal, A Review of Wind437

Power and Wind Speed Forecasting Methods With Different Time Hori-438

zons, Proceedings of the 2010 North American Power Symposium, Arling-439

ton, September 26-28 (2010) 1–8doi:10.1109/NAPS.2010.5619586.440

[8] W.-Y. Chang, A Literature Review of Wind Forecasting Methods, Journal441

of Power and Energy Engineering 2 (2014) 161–168. doi:10.4236/jpee.442

2014.24023.443

[9] A. More, M. C. Deo, Forecasting Wind With Neural Network, Marine444

Structures 16 (2003) 35–49. doi:10.1016/S0951-8339(02)00053-9.445

[10] E. Cadenas, W. Rivera, Wind Speed Forecasting in the South Coast of446

Oaxaca, México, Renewable Energy 32 (2007) 2116–2128. doi:10.1016/447

j.renene.2006.10.005.448

[11] E. Cadenas, O. A. Jaramillo, W. Rivera, Analysis and Forecasting of449

Wind Velocity in Chetumal, Quintana Roo, Using the Single Exponen-450

tial Smoothing Method, Renewable Energy 35 (2010) 925–930. doi:451

10.1016/j.renene.2009.10.037.452

[12] R. L. Wilby, C. W. Dawson, The Statistical DownScaling Model: Insight453

From One Decade of Application, International Journal of Climatology 33454

(2013) 1707–1719. doi:10.1002/joc.3544.455

[13] M. Zamo, L. Bel, O. Mestre, J. Stein, Improved Grided Wind Speed Fore-456

casts by Statistical Postprocessing of Numerical Models with Block Re-457

gression, Weather and Forecasting 31 (2016) 1929–1945. doi:10.1175/458

WAF-D-16-0052.1.459

[14] R. J. Davy, M. J. Woods, C. J. Russell, P. A. Coppin, Statistical Down-460

scaling of Wind Variability from Meteorological Fields, Boundary Layer461

Meteorology 135 (2010) 161–175. doi:10.1007/s10546-009-9462-7.462

[15] B. Alonzo, R. Plougonven, M. Mougeot, A. Fischer, A. Dupré, P. Drob-463

inski, From Numerical Weather Prediction Outputs to Accurate Local464

Wind Speed: Statistical Modeling and Forecasts, Proceedings of Forecast-465

ing and Risk Management for Renewable Energy, Paris, June 7-9 (2017)466

23–44doi:10.1007/978-3-319-99052-1_2.467

18



[16] B. G. Brown, R. W. Katz, A. H. Murphy, Time Series Models to Simu-468

late and Forecast Wind Speed and Wind Power, Journal of Applied Met-469

eorology 23 (1984) 1184–1195. doi:10.1175/1520-0450(1984)023<1184:470

TSMTSA>2.0.CO;2.471

[17] C. A. L. Bailer-Jones, R. Gupta, H. P. Singh, An Introduction to Artificial472

Neural Network, Automated Data Analysis in Astronomy (2001) 51–68.473

[18] C. A. L. Bailer-Jones, D. J. C. MacKay, P. J. Withers, A Recurrent Neural474

Network for Modelling Dynamical Systems, Network: Computation in475

Neural Systems 9 (1998) 531–548.476

[19] J. L. Torres, A. Garcia, M. De Blas, A. De Fransisco, Forecast of Hourly477

Averaged Wind Speed with ARMA Models in Navarre, Solar Energy 79478

(2005) 65–77. doi:10.1016/j.solener.2004.09.013.479

[20] A. Sfetsos, A Novel Approach for the Forecasting of Mean Hourly Wind480

Speed Time Series, Renewable Energy 27 (2002) 163–174. doi:10.1016/481

S0960-1481(01)00193-8.482

[21] J. Jung, R. P. Broadwater, Current Status and Future Advances for Wind483

Speed and Power Forecasting, Renewable and Sustainable Energy 31 (2014)484

762–777. doi:10.1016/j.rser.2013.12.054.485

19




