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Abstract

The need to have access to accurate short term forecasts is essential in order to
anticipate the energy production from intermittent renewable sources, notably
wind energy. For hourly and sub-hourly forecasts, benchmarks are based on
statistical approaches such as time series based methods or neural networks,
which are always tested against persistence. Here we discuss the performances
of downscaling approaches using information from Numerical Weather Predic-
tion (NWP) models, rarely used at those time scales, and compare them with
the statistical approaches for the wind speed forecasting at hub height. The aim
is to determine the added value of Model Output Statistics for sub-hourly fore-
casts of wind speed, compared to the classical time series based methods. Two
downscaling approaches are tested: one using explanatory variables from NWP
model outputs only and another which additionally includes local wind speed
measurements. Results of both approaches and of the classical time series based
methods, tested against persistence on a specific wind farm, are considered. For
both hourly and sub-hourly forecasts, adding explanatory variables derived from
observations in the downscaling models gives higher improvements over persist-
ence than the benchmark methods and than the downscaling models using only
the NWP model outputs.

Keywords: Wind speed forecasting, Very-short term, Wind energy
forecasting, Downscaling, Statistical model, Numerical Weather Prediction

1 1. Introduction

2 Over the past two decades, the global energy market is turning increasingly
3 to green energies. In this context, the wind energy sector has soared all over
4+ the world. Wind farms are located in more than 90 countries around the world,
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9 of them with an installed capacity of more than 10 GW, and 30 with more
than 1 GW across Europe, Asia, North America, Latin America and Africa. In
2017, 52.5 GW of new wind power was installed across the globe, bringing total
installed capacity up to 539 GW. In France, wind power installation increased
by 14.04% in 2017 [1], especially thanks to the feed-in tariffs. The French main
electricty utility company is under an obligation to purchase green electricity
from smaller producers for a time period of 15 years. After this period, the
producers have to sell their electricity on the competitive market. Every day a
contract is established between the market and the producer about the quantity
of electricity they will inject on the grid. This contract can be updated up to
10 min in advance. If the difference between the contract and the production is
too big, the producer will have to pay penalties. This framework prompts the
producers to have accurate short term forecasts.

Fortunately, Numerical Weather Prediction (NWP) models have improved
significantly over the last 30 years. The forecast skill of the 3-days forecasts
for the northern hemisphere rose from 85% to 98.5% between 1981 and 2013
and from 70% to 98.5% for the southern hemisphere [2]. Even though NWP
models perform well for predicting large scale meteorological variables at short
term, like mid-tropospheric pressure, they do not perform the same for variables
having much variability at small scales, like surface winds. Large scale variables
are well understood physically and efficiently modeled numerically but variables
tied to phenomena occuring on smaller scale depend more on processes that are
not resolved and so parametrized. This leads to significant model errors for
variables like surface wind.

Model error has several components: part comes from the inadequate rep-
resentation of physical processes, e.g. uncertainties in the parametrizations
used for boundary layer turbulence. This error should be reduced by improving
parametrizations. Part of the error is numerical error, coming from the discrete
representation of a continuous process. Also tied to the limited resolution is
the representativity error, which occurs because of the difference of the value
over a grid box and the value at a specific point. Downscaling method such
as Model Output Statistics (MOS) are usually used to reduce representativity
error [3]. Those models have been developed in weather forecast for several
decades, based on NWP models outputs. A statistical relationship is determ-
ined between observations and forecasts using past forecasts and corresponding
observations, and then serves to improve predictions at that observation site.

Downscaling models can be very interesting to get accurate forecasts at a
specific location of a wind farm [4]. To do so, different downscaling models and
different outputs of NWP models, climate data or, if applicable, recent surface
observations can be used as explanatory variables for the near surface wind speed
[5]. Amongst them, markers of large-scale systems (geopotential height, pressure
fields) and boundary layer stability drivers (surface temperature, boundary layer
height, wind and temperature gradient) can be used [6].

However, for hourly and sub-hourly forecasts, downscaling methods are not
commonly used because NWP models are only run once or twice a day due to
the difficulty to gain information in short time and the associated high costs.
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This usually limits its usefulness to forecasts with lead times longer than 6 hours
at least. Persistence is the reference method for short term and very short term
forecasts. It supposes that the wind speed at a certain future time will be the
same as it is when the forecast is made. Statistical approaches are also used as
benchmark for short and very short term generally. We can split this category
into two sub-categories which are artificial intelligence methods such as Artificial
Neural Network (ANN) using past measurements as explanatory variables and
time series models such as Auto-Regressive Moving Average (ARMA) [7]. The
ANN models can represent a complex non-linear relationship and extract the
dependences between variables through the training process. Statistical meth-
ods are based on training with measurements and use differences between the
predicted and the actual wind speed to upgrade the model. Both approaches
constitute the reference methods for short term forecasts [§]. Usually ANN
models outperform time series models [9] even if some very good time series
models can supersede ANN methods [10, 11].

In this paper, we compare two configurations of downscaling models. One
using explanatory variables available from NWP models and another adding
explanatory variables derived from observations. In both cases, we compare the
results with persistence methods and with the benchmark methods. The paper
is organized in six parts. The next part describes the data and the different
models. In section 3 the downscaling methods are used for hourly forecasts
from 1 h to 11 h. Results of persistence, ARMA and ANN methods are also
shown for comparison with classical results found in the literature. In section
4, all methods are applied for sub-hourly forecasts from 10 min to 170 min at a
frequency of 10 min which are horizons much less investigated in the literature
than hourly horizons. In section 5, preliminary results on wind energy forecasts
are presented. In the last section, we discuss the results and conclude.

2. Data and methodology

Our aim is to forecast the wind speed at 100 m height using outputs from
ECMWF (European Centre for Medium-Range Weather Forecasts) for a given
wind plant using downscaling model. The wind farm is located in Bonneval,
a small town 100 km Southwest of Paris, France (48.20°N and 1.42°E). The
wind farm is operated by Zephyr ENR, a private company managing 5 other
wind farms. The Bonneval wind farm, called “Parc de Bonneval”, has been
implemented in 2006 and is composed of 6 Vestas V80-2 MW turbines. The
European Centre, ECMWF, provides global forecasts, climate reanalyses and
specific dataset. In our case, we retrieve the day-ahead forecasts at hour step
starting from analysis twice a day, at 0000 UTC and 1200 UTC. UTC is the
Universal Time Coordinate. At the location of the wind farm, the local time
is UTC+1 h in winter and UTC+2 h in summer. The downscaling model is
trained using 47 variables aiming at describing the boundary layer, winds and
temperature in the lower troposphere. Tables 1, 2 and 3 show the considered
variables. The targeted wind speed is computed by averaging the 10-minutes
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measurements over the years 2015 and 2016 of the considered wind farm. Spa-
tial averaging is performed by averaging the data of all turbines. To retrieve
measurements at the same interval than ECMWF forecasts, time averaging is
performed by averaging the 10-minutes measurements. The spatial resolution
of ECMWF forecasts is of about 16 km (0.125° in latitude and longitude). Ex-
planatory variables at the location of the farm are interpolated linearly from
the four nearest grid points.

| Altitude (m) | Variable Unit |
Zonal wind speed ms !
10 m /100 m Meridional wind speed ms !
9 m Temperature K
Dew point temperature K
Skin temperature K
Mean sea level pressure Pa
Surface Surface pressure Pa
Surface latent heat flux Jm™2
Surface sensible heat flux | J m™2
Boundary layer dissipation | J m™2
) Boundary layer height m

Table 1: Surface variables

Pressure level (hPa) \ Variable Unit
Zonal wind speed ms |

— . .
1000 b/ 925 b | gt 7
850 hPa / 700 hPa / eopotential heig m2 s

Divergence st
500 hPa Vorticity s—T
Temperature K

Table 2: Altitude variables

’ Altitude \ Variable \ Unit
10 m / 100 m | Norm of the wind speed | m s~!
Between 10 m Wind shear ms !
and 925 hPa [ Temperature gradient K

Table 3: Computed variables

2.1. Parametric approach and low cost assimilation

Downscaling statistical methods have been widely investigated since several

decades in order to forecast the wind speed, usually from few to several hours



[12, 13, 14]. In this paper, we consider a parametric approach, using linear
regression. This method has been developed for NWP downscaling in the study
by Alonzo et al. [15]. Non-parametric approaches such as random forests have
also been tested in this study. The results between the two approaches do not
differ significantly for the longest horizons. However, for the shorter horizons
(<1 h), considered in this paper, the parametric approach give better results. It
is also an easier method to implement and a faster one. That is why we choose
to focus on this method. The parametric approach supposes a relation between
the target at time ¢, 7, and the m explanatory variables at time ¢, X1 4, ..., Xp ¢

Ye = Bo+ Zﬁka,t +e (1)

k=1

where §;, i € {0,...,m}, are the model parameters to be estimated and ¢ is
the residual.

Among the explanatory variables, X ¢, ..., X, ¢, some provide more import-
ant information and some may be correlated. Thus, a stepwise regression (for-
ward selection) is performed to only keep the most important uncorrelated vari-
ables [15]. This is an iterative regression, which consists in adding variables
from the set of explanatory variable based on the Bayesian Inference Criterion
(BIC). At each step, a model is built by adding one variable among the remain-
ing ones. The added variable which minimizes the BIC of the model is chosen.
The procedure is repeated as long as the BIC decreases.

Two configurations are tested. The first one, denoted LR, ,—ops, consists in
a classic downscaling using the explanatory variables retrieved from ECMWF
outputs. The second one, denoted LR,s, consists in adding the error between
the observed wind speed at time tg, i.e. when the forecast is launched, and the
forecasted wind by ECMWF at time t as explanatory variable.

In the first case only one model is fitted. In the second case a model is fitted
at each hour in order to take into account the error between the forecasted wind
at time ¢ and the observations at time tq precisely. For the second model, after
the variable selection step, between 14 and 21 variables remain, depending on
the horizon. This low cost assimilation has been performed and compared to
the classical downscaling in Alonzo et al. [15]. For a 3 h lead-time, they can
improve the forecast up to 9.3% by considering the initial error.

2.2. Benchmark

For short term predictions, statistical methods are the most used and are
always compared to persistence [7]. Persistence assumes that the wind speed at
time ¢ will be the same as it was at time tg.

The statistical approach aims at finding the relationship between past and fu-
ture observations using measurements (and possibly exogenous variables). They
can be split in two sub-categories: time series based models which are easy to
model and cheap to develop and artificial neural network which can deal with
non-linearity but which is known as black box model.
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Time series models are mainly based on Auto-Regressive Moving Averaged
(ARMA) models [16]. An ARMA(p, ¢) model aims at predicting the wind speed
at time ¢, using a linear combination of the p previous wind speed values, the g
previous residuals and potentialy m exogenous variables (in that case we define
the model as ARMAX). The most sophisticated models are ARIMAX(p, d, q) for
Auto-Regressive Integrated Moving Averaged EXogenous. They aim at remov-
ing the non-stationarity of the data by applying an initial d-order differencing
step as follow

P q m
Ge= @Ay i+ e+ > BeX (2)
i=1 j=1 k=1

where y;_; is the observed wind speed at time ¢ — ¢, ®;,0;, 81 are the model
parameters, A? is the d-order lag operator defined in equation (3), ;_; is the
residual at time t — 7, and X}, is the k™ explanatory variable at time ¢, which
can be an output from NWP. However, in this study, benchmark methods only
use endogenous parameters. Models with exogenous parameters have been in-
vestigated but they do not differ significantly for the considered lead times.

d—1

Adyt = (yt - il/t71) - (ytfi - yt—(i+1))7 d=1,..,n (3)
1

3

Artifical neural networks (ANN) are models inspired by the biological neural
networks. They are based on interconnected groups of nodes, divided in layers.
Each connection can transmit a signal from one artificial neuron to another. An
artificial neuron that receives a signal can process it and transmit it to another
neuron. Usually, this signal is a real number and the output of each artificial
neuron is computed by some non-linear function, called activation function, of a
weighted sum of its input. The weights and the activation function are updated
through the training process [17, 18]. Those models are very useful to model
complex non-linear relationships and extract dependences between variables.

To quantify the performance of the models, we used two indicators. The
Normalized Root Mean Square Error (NRMSE) defined in (4), which is often
used and facilitates comparisons with classical scores. The second indicator is
the improvements over persistence, defined in (5), that is to say the decrease
of the RMSE between the considered model and the persistence method. This
skill score is referred to as ArysE.

NRMSE = _ (4)

RMSEmodel - RMSEpersistence
RMSEpersistence

(5)

ARJV[SE = -

where, ¥; is the i-th wind forecast and y; is the corresponding observation.



N refers to the number of forecasts that have been done to compute the skill
score and Y is the mean of the observed wind speed over the same sample.
By removing the normalization we obtained the skill score RMSE. When y; is
forecasted using persistence, it refers to RM S Epersistence- When it is forecasted
by any other model, it refers to RM S E,y,qe; where the model is clearly identified
(among ECMWF, LR,,0—obs, LRops, ARMA and ANN).

3. Performances for hourly forecasts

In this section, the downscaling methods are used for hourly forecasts and
tested against the commoly used ANN and ARMA methods. Hourly forecasts
have been largely studied in the literature and the results are compared to
published reference skill scores.

All the models are trained using hourly averaged of the past observations of
the year 2015 and 2016. For the ANN model we used as input hourly averaged
of the last 6 hours. Then, we fit different models depending on the number of
layers in the network and on the number of neurons in the hidden layers. We
fixed the seed in order to remove the uncertainty due to the stochastic nature of
the models. The best ANN is a two-layers model with 10 neurons in the hidden
layer. For the ARMA model, several models have been fitted depending on the
orders p and ¢ of the model. We chose the model that minimizes the Bayesian
Inference Criterion which is an ARMA(6,3). To evaluate the models, the hourly
averaged of the measurements of the year 2017 are used.

Figure 1 displays the NRMSE depending on the forecast lead times (1 h to
11 h) for persistence, ECMWF forecasts, ARMA and ANN models and for our
methods LR, ,_ops and LRyps. One can note that, for models that use obser-
vations as input, performances deteriorate with lead time whereas it remains
constant for models that do not. For the 1 h forecast, all the methods that
consider measurements as explanatory variables outperform ECMWF and the
downscaling model LR,,,_ops- The only method outperforming all the others for
all time horizons is LRyps even if for the 1 h forecast this method gives similar
NRMSE compared to persistence, ANN and ARMA. However, the longer the
time horizon, the more significant the improvements of our methods over the
references (ANN, ARMA, persistence).

The improvements over persistence of all methods are displayed in Fig 2. One
can see that both reference methods, ARMA and ANN, perform very similarly.
The two models, overperform persistence at every horizon and the improvements
slightly increase with time from 2.7% for the first hour to 15.3% for the eleventh.
Those results are consistent with those found in the literature. For instance, in
[19], Torres et al., used ARMA model to predict hourly averaged wind speed
1 h to 10 h lead time for five sites in Spain. They found NRMSE improvements
over persistence ranging between 2% and 5% for 1 h lead time and between
12% and 20% for 10 h lead time. In [20], Sfetsos compares the performances of
an ARIMA(2,1,2) and an ANN using measurements collected in Crete, Greece.
Hourly averaged wind speed forecasts with ANN model overperform persistence
by 4.7% while ARIMA overperforms persistence by 2.3%.
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Figure 1: Performances of downscaling statistical models for hourly forecasts
from 1 h to 11 h in two configurations against the performances of ECMWF
and the benchmark method. LR,,_.ps displays the downscaling of explanat-
ory variables from ECWMF outputs only. LR,,s shows the results when the
error between the measurments at ¢y and the 100-m wind speed forecasted by
ECMWF at t is adding as explanatory variable. Results of persistence, ANN
and ARMA are added.

Compared to these reference results, LR,,,—ops and LRps are significantly
better. After the fifth hour, ECMWF, LR, ,_oss and LR, are better than
persistence by more than 40%. For the first lead time, corresponding to tg+1 h,
LR,ps performs better than persistence by 8.6% which is better than ARMA
(Armse = 2.7%) and ANN (Agpmse = 0.1%). The improvements remain
significantly better than ECMWEF and LR,,,_ops until the third hour.

The performance shift at tg + 2 h between the observations based methods
and the downscaling methods can easily be explained. At short lead times, an
accurate initial state provided by the observations is a key. At longer lead times,
the observations no longer constrain the forecast and NWP forecast then provide
the needed information. Moreover, at longer lead times, ARMA and ANN
models are no longer based on lattest measurements but on previous forecasts.
This feature explains why LR,ps outperforms all other methods at all lead times.

4. Performances for sub-hourly forecasts

In this section, we focus on very short term forecasts which is the key object-
ive of this work. We apply the same methods as in section 3 to forecast 10 min
averaged winds up to 3 h ahead. Again, a model is fitted at each hour using
ECMWEF hourly forecasts and the hourly averaged of the measurements. In
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Figure 2: Comparison of the improvements over persistence in percentage for
ECMWEF forecasts and the downscaling models from 1 h to 11 h in the two con-
figurations. LR,,_ops corresponds to the downscaling with explanatory vari-
ables from ECWMF outputs only. LR,ps shows the results when the error
between the measurments at tg, the time when the forecast is launched, and the
100-m wind speed forecasted by ECMWF at t is added as an explanatory vari-
able. Improvements of ECMWF, ARMA and ANN methods are also included.
For ECMWF and the downscaling models, the value of the improvement cor-
responds to the extremity of each bar while for ARMA and ANN it corresponds
to the center of the circle and triangle, respectively.

order to retrieve 10-min forecasts, the explanatory variables are linearly inter-
polated every 10 min. Then, to retrieve the prediction for all hours h at minutes
0, 10 and 20, we apply the model calibrated at hour h. To retrieve the prediction
for all hours i at minutes 30, 40 and 50, we apply the model calibrated at hour
h + 1. However, the calibration leads to an issue with LR,;s. For 10 min and
20 min, LRps is doing exactly the same as persistence. Indeed, the model fitted
at time ¢y puts all the weight on the forecasted wind speed by ECMWEF and on
the initial error. As this model is used at 10 min and 20 min, the results are
exactly the results of persistence. To let the model outperforms persistence, one
solution is to do a linear regression using only past observations for the first two
horizons. Hereafter, LR,;s denotes a linear regression over past measurements
for time 10 min and 20 min and a linear regression over ECMWF outputs and
the error at time ¢ for the remaining time. For the reference methods ANN and
ARMA, the training is performed directly using the 10-minutes measurements.
The procedure applied to choose the models is the same as in section 3. For
the ARMA models, we fitted several models depending on the orders p and ¢
of the models and we select the model which minimizes the Bayesian Inference
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Criterion (BIC). This is an ARMA(4,2). For the ANN we fitted several models
depending on the number of layers and the number of neurons per layer. The
best model is an ANN with 4 layers and 10 neurons per layers. Moreover, we
used as input the 10-min measurements over the past hour.

4.1. Statistical skill performances

Figure 3 displays the NRMSE as a function of the time horizon, from 10 min
to 170 min, for persistence, ECMWF forecasts, LR,,o_ops and LR,ps forecasts
and reference methods ARMA and ANN.

<
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Figure 3: Performances of the different models for sub-hourly forecasts from
10 min to 170 min in two configurations against the performances of ECMWF
and the benchmark method. LR,,_.s displays the downscaling of explanat-
ory variables from ECWMF outputs only. LR,,s shows the results when the
error between the measurments at ¢y and the 100-m wind speed forecasted by
ECMWEF at t is adding as explanatory variable. Results of persistence, ANN
with 4 layers and 10 neurons per layer and an ARMA(4,2) are added.

At this time scale the differences between the models are smaller than for
longer lead times but the hierarchy between them remains the same. It is hard
to distinguish the best model at 10 min and 20 min but after 30 min, LRps
is significantly better. For times between 30 min and 2 h, it provides clearly
the best forecasts, with NRMSE less than 20%. For lead times of 2 to 3 h, its
performance gradually converges to that of LR, ops-

Figure 4 is similar to figure 2 for lead times ranging between 10 min and
170 min. Only LR,y overperforms persistence at every horizons. Again it
is the model giving the best improvements. The differences with ARMA are
not extremely significant for the first lead times especially at 20 min (1.5% for
LRops and 1.3% for ARMA). After 20 min, LR, is by far the best model. The

10
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Figure 4: Comparison of the improvements over persistence in percentage for
ECMWEF forecasts and the downscaling models from 10 min to 170 min in the
two configurations. LR,,_ops displays the downscaling of explanatory variables
of ECWMF outputs only. LR,ps shows the results when the error between the
measurments at tg and the 100-m wind speed forecasted by ECMWF at t is
adding as explanatory variable. At 10 min and 20 min, LR,;s denotes a linear
regression over the last 45 measurements. Improvements of ECMWEF, ARMA
and ANN methods are added. For ECMWF and the downscaling models, the
value of the improvement corresponds to the extremity of each bar while for
ARMA and ANN it corresponds to the center of the circle and triangle, respect-
ively.

improvement over persistence is 6.9% at 30 min 33.3% at 170 min. If ECMWF,
LR, 0—obs and LRyps converge with each other with time, ECMWF and LR,,0—ops
start to outperform persistence only from 80 min and 70 min respectively.

4.2. Case studies

Such nowcasting method should be used for decision-making process. There-
fore, a statistical quantification of the performances is not enough to evaluate
the usefulness of the method. Figure 5 and 6 display forecasted time series with
two starting dates: the 15" of January 2017 at 00:00 UTC and the 15" of July
2017 at 01:00 UTC. Those dates have been choosen because the mean wind
speed is around 6 m s~!'. This is the mean wind speed at “Parc de Bonneval”
over the years 2015, 2016 and 2017 so those dates represent common situations.
For both dates, a prediction using LR.»s and ECMWEF models are shown. The
measurements and confidence intervals are also included.

In both cases, three degrees of confidence are shown. Each of them are
defined depending on the lead time and on the predicted wind speed. For each

11



lead time, we consider wind speed bins of 1 m s~!. For each prediction we

compute the difference : 3; —y;, where ¥; is the forecasted wind speed by LRyps,
at time t and y; is the measured wind speed at time ¢. Those differences are
stored in the corresponding bin depending on g; and ¢. Using the data of the
years 2015 and 2016, we compute for each couple lead time/wind speed bin
a distribution of error. We compute, for each couple, three intervals: the 10%
confidence interval, the 25% confidence interval and the 50% confidence interval.

8
—>— ECMWF Uncertainty=50%

— 7 —o— LR,y Uncertainty=75%
~
g ¢ —&— Measurements Uncertainty=90%
g
= 5-
8
& 4 -
<
k=
= 37

2 -

2017-01-15 12:00:00 2017-01-15 13:30:00 2017-01-15 15:00:00

Date

Figure 5: Forecasted time series starting on the 15" of January 2017, 00:00 UTC
to 02:50 UTC. ECMWF and LR, forecasts are compared to the observations.
The 10%, 25% and 50% confidence intervals are added.

Figure 5 displays a winter prediction. It starts on the 15" of January 2017
and ranges from 00:00 UTC to 02:50 UTC. For this forecast, the mean of the
observed wind speed is around 5.93 m s~! and the mean of the forecasted wind
speed is around 6.30 m s~! for LRys and 5.12 m s~! for ECMWF model. In
this case, ECMWF underestimates the wind speed while LR ;s overestimates it.
However, the LR,ps overestimation is lower than ECMWEF underestimation. It
is clear that this model gives a more accurate prediction than ECMWEF model.
The mean absolute error, defined in equation (6), is around 0.45 m s~! for
the downscaling model and around 0.80 m s~! for the ECMWF forecast. This
corresponds to a normalised mean absolute error of 7.65% for LR,ys and of
13.57% for ECMWF. This difference is due to the bias correction using LR ps.
In terms of variability, a clear lack is visible. It seems to be slightly corrected
by LR.ps but this is essentially due to the fact that several models are fitted.
Consequently when a new models is used there is a rupture in the linearity of
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the prediction.
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Figure 6: Forecasted time series starting on the 15" of July 2017, 01:00 UTC
to 03:50 UTC. ECMWFEF and LR, forecasts are compared to the observations.
The 10%, 25% and 50% confidence intervals are added.

Figure 6 displays a summer prediction. It starts on the 15" of July 2017,
from 01:00 UTC to 03:50 UTC. In this case, the mean of the observed wind
speed is around 6.80 m s~! and the mean of the forecasted wind speed is around
6.21 m s~' for LRoys and around 5.05 m s~! for ECMWF model. This time,
both models understimate the wind speed but the underestimation is strongly
corrected by LRyps. Again, the lack of variability is slightly corrected by the
use of several models. However, this lack of variability is a reccurent problem
in the forecasts. Even with random forests, which are non-parametric models,
the variability remains low. The problem comes from the fact that ECWMF
outputs are hourly data and in order to retrieve data at a frequency of 10 min,
a linear interpolation is made. This creates a huge lack of variability relative
to the real 10 min observations. For the this forecast, the MAE is around
0.59 m s~! for LRyys which corresponds to a normalised mean absolute error
around 8.67%. This is lower than for ECMWF forecast for which the MAE
is around 1.75 m s~!'. This corresponds to a normalised mean absolute error
around 25.76%. Again this difference is due to the bias correction using LRps.

From Figs. 5 and 6, an “obvious alternative” would be to simply correct the
whole wind forecast time series of the weather model ECMWEF by the delta
to the observations at the initial point. We computed the skill scores of this
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“obvious alternative” and it shows that at any time step LR,ps overperforms this
model (figure not shown).

5. From wind speed to wind energy forecasts

The next step would be to provide forecasts of the wind energy directly.
To do so, two approaches are possible. The direct approach, which consists
in training the models directly using the production data and the indirect ap-
proach which consists in forecasting first the wind speed, then converting it into
production using power curves.

Both approaches have advantages and drawbacks depending on the target.
For instance, if the target is the wind energy at each turbines, the direct ap-
proach requires to build one model for each turbines while the indirect approach
just needs one model to predict the wind speed and the power curves of each
turbine. The indirect approach is a modular approach, less turbine dependent
than the direct approach. However, if the target is the wind energy at the farm
scale, the direct approach can avoid error accumulation and it requires only one
step, in contrast to two for the indirect approach.

As a preliminary in the present paper, results are shown for the forecasts of
the mean power output, by the indirect approach, over the wind farm. Both
approaches have been tested and they give similar results. For instance, the
NRMSE of the direct approach is 8.11% while the NRMSE of the indirect ap-
proach is 7.95% after 30 min. After 60 min it is 10.05% for the direct approach
and 10.02% for the indirect approach and after 170 min it is 11.19% for the
direct approach and 10.92% for the direct approach. We used LR, the best
model shown previously, to predict the wind speed from 10 min to 170 min and
then we used a power curve, computed at the farm scale using data averaged
over the six turbines, to produce a wind energy forecast. This wind farm’s power
curve is computed by dividing the averaged wind speed data set into 0.5 m s~*
intervals. The quantiles of the distribution of the wind farm power of each in-
terval are computed. Finally, the power curve is retrieved by fitting the means
of each interval, as shown in figure 7.

Figure 8 illustrates a wind energy forecasts. It displays a forecasted time
series of wind energy starting from the 15 of January 2017 at 00:00 UTC,
corresponding to the same time series than in part 4.2. As previously, the wind
speed is forecasted by LR,ps and then the forecasted power is retrieved using
the computed power curve shown in figure 7. The different confidence intervals
computed using the power curve in figure 7 are added with the same color code
than in figures 5 and 6. In figure 8, we can see that LR,;s forecasts is very close
to measurements and inside the confidence intervals.

More generally, figure 9 shows the statistical performances of the different
models for the wind energy forecast. Again it is hard to distinguish the best
model for short lead time but LR, overperforms the other methods.
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Figure 7: Computed power curve at the farm scale. For each 0.5 m s~! intervals,
the boxplots of the distribution are shown in green. The whiskers correspond
to the first and the ninth decile. The means of each interval are fitted in order
to retrieve the power curve.
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Figure 8: Forecasted time series of wind energy starting from the 15" of January
2017 at 00:00 UTC. LR forecasts are compared with the measurements. First,
the wind speed is forecasted by LR,;s and then the forecasted power is retrieved

using an averaged power curve. The 10%, 25% and 50% confidence intervals are
added.
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Figure 9: Performances of the different models for sub-hourly forecasting of wind
energy from 10 min to 170 min in two configurations against the performances
of ECMWF and the benchmark methods. The models are exactly the same
than figure 3. The power curve shown in figure 7 is used to compute the wind
energy forecast. The NRMSE is normalized by the nominal power (2000 kW).

6. Conclusion

In this paper, we have developed and tested approaches that combine stat-
istical models and output from Numerical Weather Prediction (NWP) models
in order to forecasts the 100 m wind speed and the wind energy production at
sub-hourly time scales. Traditionally, the main methods used for those time
scales are time series based methods using only local observations, while Nu-
merical Weather Prediction (NWP) models are preferred for lead times longer
than 6 h at least [21]. However for the case of the considered wind farm (“Parc
de Bonneval”, 100 km Southwest of Paris, France) we have used 3 years of
data to show that the European Centre for Medium-Range Weather Forecasts
(ECMWF) performs well even for short lead times. After 80 min the direct
output of ECMWF forecasts gives better results than the classical time series
based methods and improves persistence from 5.0% to 28.9%. Taking into ac-
count those good performances, we have considered a parametric approach to
downscale the model outputs at farm scale using a linear regression. In order
to have better results for lead time shorter than 80 min, we have corrected
ECMWEF forecasts by providing as explanatory variable the error between the
forecasted wind speed and the initial measurement. This low cost assimilation
lets the linear regression to overperform all other methods. If the improvements
over the traditional time series based models may not be important for the first
lead times, 0.2% at 10 min, they become significant with time, from 5.3% at
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30 min to 30.1% at 170 min.

For the wind energy forecasts we considered an indirect approach. The fore-
casted wind speed provided by the downscaling model with low cost assimilation
is used to retrieve wind energy forecasts using a computed power curve. Again,
this model overperforms all other methods at all lead times, from 2.3% to 29.7%.
In order to illustrate the model performances, case studies for specific times are
shown. Wind speed and wind energy forecasted time series are presented. The
associated confidence intervals are also display. We choose to add the 50%, 256%
and 10% confidence intervals because their range, from 0.20 ms~! to 1.5 m s~ 1,
correspond to the appropriate accuracy for wind energy producers. For instance,
a 90% confidence would have been statistically better but not accurate enough
to be useful. For the wind speed, a lack of variability is visible in the fore-
casts compared to the measurements. This is due to the hourly frequency of
the ECMWFEF outputs used as predictors in the dowscaling model. This lack
of variability has less impact on the wind energy forecasted time series. The
inertia of the turbines generates much less variability in term of measured power
than in term of observed wind speed which is measured by anemometers. The
forecasted wind energy time series are smoother and the predictions are closer
to measurements.
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