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We work over the field with two elements. We establish a new correspondence between Mersenne polynomials and trinomials so that corresponding polynomials have the same number of irreducible factors. This allows us to get a partial but nontrivial result about the factorization of M 2h+1 + 1, for a Mersenne prime M and for a positive integer h.

Introduction

Let A ∈ F 2 [x] be a nonzero polynomial. We say that A is even if it has a linear factor and it is odd otherwise. We define a Mersenne polynomial over F 2 as a polynomial of the form 1 + x a (x + 1) b , for some a, b ∈ N * . If such a polynomial is irreducible, we say that it is a Mersenne prime.

Let ω(A) denote the number of distinct irreducible (or prime) factors of A over F 2 , let σ(A) denote the sum of all divisors of A and let ord(A) (the order or period of A [START_REF] Lidl | Finite Fields[END_REF]Chapter 3]). Observe that σ is a multiplicative function. If σ(A) = A, then we say that A is a perfect polynomial. The first examples of such polynomials are those of the form x 2 n -1 (x + 1) 2 n -1 = (x 2 + x) 2 n -1 , where n ∈ N. We call them trivial perfects. They are the only perfect polynomials A with ω(A) = 2 (if n ≥ 1). Note that we do not know (as in the integer case) whether there exist odd perfect polynomials (see [START_REF] Gallardo | Odd perfect polynomials over F 2 J. Théor[END_REF][START_REF] Gallardo | There is no odd perfect polynomial over F 2 with four prime factors[END_REF]).

Mersenne primes play an important role on (the known) nontrivial perfect polynomials over F 2 . Indeed, with two exceptions, they all have factorizations with only Mersenne primes as odd divisors (see e.g., [START_REF] Gallardo | Even perfect polynomials over F 2 with four prime factors[END_REF]). We are unable to describe a general form of such a polynomial, contrary to the integer case where any even perfect number n has exactly two distinct prime factors (n = 2 p-1 (2 p -1) with 2 p -1 a Mersenne prime number).

The polynomial 1 + x a (x + 1) b is obviously reducible when gcd(a, b) = 1 and it is square-free if and only if a and b are not both even (Lemma 2.1). So, we shall consider only the case in which gcd(a, b) = 1. We discover (Theorem 1.3) a new relation between Mersenne polynomials M ab := x a (x + 1) b + 1 with gcd(a, b) = 1 and trinomials T ab := x a+b + x b + 1, that is: r := ω(M ab ) = ω(T ab ). This is important since most known results about trinomials (and more general polynomials) are about the parity of r [START_REF] Fredricksen | A generalization of Swan's theorem[END_REF][START_REF] Kim | The parity of the number of irreducible factors for some pentanomials[END_REF][START_REF] Kim | Parity of the number of irreducible factors for composite polynomials[END_REF][START_REF] Swan | Factorization of polynomials over finite fields[END_REF]. Nevertheless, information on possible degrees of their factors may be seen in [START_REF] Marsch | Round trinomials[END_REF]. See Section 3 for more details.

Testing irreducibility for polynomials (in particular, trinomials) over a finite field remains difficult even if the problem has been addressed several times (see e.g., [START_REF] Brent | A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377[END_REF][START_REF] Brent | The great trinomial hunt[END_REF][START_REF] Fredricksen | On Trinomials x n + x 2 + 1 and x 8l±3 + x k + 1 irreducible over GF (2)[END_REF][START_REF] Marsch | Round trinomials[END_REF] and references therein).

We recall Conjecture 5.2 in [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF], about the factorization of σ(M 2h ) (and hence about that of M 2h+1 + 1 = (M + 1)σ(M 2h )): Conjecture 1.1. Let M be a Mersenne prime over F 2 . Then the polynomial σ(M 2h ) is divisible by a non Mersenne prime if and only if

(h ≥ 2 or M ∈ {1 + x + x 3 , 1 + x 2 + x 3 }).
The conjecture implies (see [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF]Corollary 5.3, and Theorem 1.1 ], [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF]) that all even perfect polynomials over F 2 which are products of Mersenne primes are indeed the nine of the eleven non-trivial known even perfect polynomials. This conjecture seems non-trivial. Even the special case, ω(σ(M 2h ) = 2, that we consider in the present paper requires some work to be done (see the proof of Theorem 1.4). An analogue (of Conjecture 1.1), in difficulty, over the integers might be the conjecture about the solutions of the Nagell-Ljunggren equation x n -1

x-1 = y q (see, e.g., [START_REF] Bennett | The Nagell-Ljunggren equation via Runge's method[END_REF][START_REF] Bugeaud | On the Nagell-Ljunggren equation (x n -1)/(x -1) = y q[END_REF]). The exact analogue (over F 2 [x]) of the latter is the equation Lemma 5] implies that the exponent q must equal 1, in this case.

P n -1 P -1 = Q q , where P, Q ∈ F 2 [x] with P irreducible and n ≥ 3 odd. It is trivial since [7,
We shall see (Lemma 4.6) that for any h, σ(M 2h ) is square-free and it is not a Mersenne prime (even if it may be irreducible). We then consider the first possible case, i.e., ω(σ(M 2h )) = 2 in Theorem 1.4. Observe that Lemma 4.6 proves that ω(σ(M 2h )) > 1. Lemma 4.10 shows that it suffices to prove this theorem in the case where 2h + 1 is a prime number (see also the computational part of [START_REF] Gallardo | On even (unitary) perfect polynomials over F 2[END_REF]).

In order to prove Theorem 1.4, we require Lemma 4.2 that depends on Corollary 3.3, which in turn follows from Theorem 1.3. Notation 1.2. In the rest of the paper, for S ∈ F 2 [x] with deg(S) = s, we denote by: S the polynomial obtained from S with x replaced by x + 1: S(x) = S(x + 1), S * the reciprocal polynomial of S (with S(0) = 0):

S * (x) = x s S( 1 x ),
α l (S) the coefficient of x s-l in S, 0 ≤ l ≤ s.

Our main results are:

Theorem 1.3. Let a, b ∈ N * such that gcd(a, b) = 1, M ab := 1 + x a (x + 1) b and T ab := x a+b + x b + 1. Then ω(M ab ) = ω(T ab ).
In particular, M ab is irreducible over F 2 if and only if T ab is irreducible.

Theorem 1.4. Let h ∈ N * such that p = 2h + 1 is prime, M a Mersenne prime such that M ∈ {1 + x + x 3 , 1 + x 2 + x 3 } and ω(σ(M 2h )) = 2. Then, σ(M 2h
) is divisible by a non Mersenne prime.

The condition gcd(a, b) = 1 of Theorem 1.3 is important: Lemma 12]) but M aa = 1 + x a (x + 1) a is reducible.

Remark 1.5. If gcd(a, b) = 1, then Theorem 1.3 fails. For example, if a = b = 3 k ≥ 3 then T aa = 1 + x a + x 2a is irreducible ([10,

Proof of Theorem 1.3

In this section, we prove that the Mersenne polynomial M ab := 1 + x a (x + 1) b and the trinomial T ab := x a+b + x b + 1 have the same number of irreducible factors whenever gcd(a, b) = 1.

By direct computations, we get 

T := x n + x k + 1 and Q := x n + (x + 1) k the reciprocal polynomial of M ab i.e., Q = (M ab ) * .
Lemma 2.2. The polynomials T and Q are both square-free so that they have distinct roots in a suitable extension.

Proof. Differentiating T and Q, we get immediately gcd(T,

T ) = 1 = gcd(Q, Q ). Lemma 2.3. If T (α) = 0 then Q(α k ) = 0. Proof. T (α) = 0 implies α n = α k + 1 and (α k ) n = α nk = (α k + 1) k . Hence, Q(α k ) = 0. Denote by R 1 (resp. R 2 ) the set of the n (distinct) roots of T (resp. of Q) in a suitable extension of F 2 . Lemma 2.4. For any α 1 , α 2 ∈ R 1 , α 1 k = α 2 k implies that α 1 = α 2 . Proof. If α k 1 = α k 2 , then α n 1 = α k 1 +1 = α k 2 +1 = α n 2 , (α 1 /α 2 ) k = 1 and (α 1 /α 2 ) n = 1. Therefore, the order d of (α 1 /α 2 ) divides gcd(n, k) = 1. We conclude that d = 1 and α 1 = α 2 . Corollary 2.5. If Q(β) = 0, then there exists α such that β = α k and T (α) = 0. In other words, the map: α → α k is a bijection between R 1 and R 2 .
Proof. This map is one to one (Lemma 2.4) and #R 1 = #R 2 = n. Theorem 1.3 is a consequence of the following proposition. Proposition 2.6. i) If T 1 is an irreducible factor of T with deg(T 1 ) = r ≤ n, then Q has an irreducible factor of the same degree. ii) Conversely, if Q 1 is an irreducible factor of Q with deg(Q 1 ) = r ≤ n, then T has an irreducible factor of the same degree.

Proof. i): We may put:

T 1 = (x + α)(x + α 2 ) • • • (x + α 2 r-1 ) ∈ F 2 [x], where each α 2 j ∈ R 1 , α 2 i = α 2 j if i = j, α 2 r = α. Set Q 1 = (x + α k )(x + (α k ) 2 ) • • • (x + (α k ) 2 r-1 ) ∈ F 2 [x]. Lemmas 2.3 and 2.4 imply that each (α k ) 2 j ∈ R 2 , (α k ) 2 i = (α k ) 2 j if i = j, (α k ) 2 r = α k . So, Q 1 is an irreducible factor of Q.
ii): analogous proof by considering Corollary 2.5.

Some consequences of Theorem 1.3

We give several results obtained by combining that theorem with works of Zierler, Swan, Fredricksen, Hales and Sweet, and Canaday. More precisely: -Corollaries 2 and 3 in [START_REF] Zierler | On x n + x + 1 over GF (2)[END_REF] imply Corollary 3.1, -Lemmas 2 and 3 in [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF] imply Corollary 3.2, -Corollary 5 in [START_REF] Swan | Factorization of polynomials over finite fields[END_REF] implies Corollary 3.3, -Theorem 1 in [START_REF] Fredricksen | A generalization of Swan's theorem[END_REF] implies Corollary 3.6. Furthermore, we relate that theorem with some OEIS sequences. Corollary 3.1. For a given integer n ≥ 2, define the binary polynomials T (n) :=

x n + x + 1 and M (n) := x n-1 (x + 1) + 1 ∈ F 2 [x]
. Then for any nonnegative integer k, one has: We recall Theorem 1 in [START_REF] Fredricksen | A generalization of Swan's theorem[END_REF] (as Lemma 3.4) before proving Corollary 3.6.

(a) ω(M (2 2 k )) = ω((T (2 2 k )) = 2 2 k -k-1 (b) ω(M (2 3 k + 1)) = ω((T (2 3 k + 1)) = 2 3 k +1 3 k+1 . Corollary 3.2. i) 1 + x + x 2 m +1 is irreducible if and only if m ∈ {0, 1, 3}. ii) 1 + x 2 m -1 + x 2 m is irreducible if and only if m ∈ {1, 2}.
Lemma 3.4. Let n ∈ N * , g ∈ F 2 [x], p n = x n + g, h n = xg -ng, r n = ω(p n ) and π = ord(h n ).
Then if p n is square-free and n sufficiently large, we have:

r n ≡ r n+lcm(8,4π) mod 2.
Remark 3.5. Set k := deg(g), l := deg(h n ) and u := k -l. After reading the proof of Theorem 1 in [START_REF] Fredricksen | A generalization of Swan's theorem[END_REF], we may deduce that "n sufficiently large" means:

i) n > max(k, 4t -1) if n -k is odd and h n = x t • n , with n (0) = 1. ii) n > k + 4u if n -k is even.
Note also that π depends only on the parity of n. -If b is odd and a even, then n is odd and

h n = xg -ng = x b + g = 1. So, l = 0, u = k, π = ord(h n ) = 1
and lcm(8, 4π) = 8. We may apply this lemma for a + b = n > k + 4u = 5k = 5b.

-If a and b are both odd, then n is even and 

h n = xg -ng = x b . So, t = b, n = 1, π = ord(h n ) = ord(x b • 1) = ord(1)

Contribution to some OEIS sequences Theorem 1.3 allows us to best understand some related OEIS sequences in [20]:

-A057749 : prime degrees of absolutely reducible trinomials: i.e., primes p such that x p + x k + 1 is reducible over F 2 for all k ∈ {1, . . . , p -1}, -A272486 : natural numbers n ≥ 2 such that the polynomial x n-k (x + 1) k + 1 over F 2 is reducible for all k ∈ {1, . . . , n -1}, -A267918 : natural numbers n ≥ 6 such that the Mersenne polynomial M n-5•5 , i.e., x n-5 (x + 1) 5 + 1 is irreducible over F 2 . Indeed, we can obtain from the first sequence, all primes n in the second sequence. The third sequence may be deduced by finding irreducible trinomials of the form x n + x 5 + 1.

Contribution to the proof of Theorem 1.4

The most interesting and surprising consequence is that Theorem 1.3 is key to the proof of our second main result Theorem 1.4, that proves one part of Conjecture 1.1. Proof. One has 1 + x + x n = 1 + x(1 + x n-1 ) = 1 + x a (x + 1) b if and only if a = 1 and b = n -1 = 2 m , m ≥ 0. The result follows from Corollary 3.2. Proof. One has x α + (x + 1) α = M = 1 + x u (x + 1) v which is irreducible so that gcd(u, v) = 1.

Lemma 4.2. i) If

M = 1 + x(x + 1) 2 m +1 is irreducible, then m ∈ {0, 1, 2}. ii) If M = 1 + x(x + 1) 2 m -1 is irreducible, then m ∈ {1, 2}. Proof. i): The polynomial M = 1 + x 2 m +1 (x + 1) = 1 + x 2 m +1 + x 2 m +2 is
-If α is even (resp. α is odd but not prime), then we get the contradiction: 0 = M (resp. M is reducible).

-If α is an odd prime, then u + v = deg(M ) = α -1 is even, so that u and v are both odd. Differentiating, we get: [START_REF] Bennett | The Nagell-Ljunggren equation via Runge's method[END_REF][START_REF] Beard | Perfect polynomials revisited[END_REF], (4, 3), (9, 1), [START_REF] Fredricksen | A generalization of Swan's theorem[END_REF][START_REF] Fredricksen | On Trinomials x n + x 2 + 1 and x 8l±3 + x k + 1 irreducible over GF (2)[END_REF]

x α-1 + (x + 1) α-1 = x u-1 (x + 1) v-1 . It follows that u = 1 = v and α -1 = 2. Lemma 4.4. If Q := x α + (x + 1) β is a Mersenne prime, with α = β, then (α, β), (β, α) ∈ {(2, 1), (3, 1),
}. More precisely, Q, Q ∈ {1 + x + x 2 , 1 + x + x 3 , 1 + x 3 + x 4 , 1 + x + x 9 }. Proof. Put Q = x α + (x + 1) β = M = 1 + x u (x + 1) v
which is irreducible. First, α and β are not both even, since M = 0. We may suppose that α > β (consider Q if α < β). In this case, Q is the reciprocal S * of the Mersenne polynomial S = 1+x α-β (x+1) β . Therefore, S and S * = Q = M are both Mersenne prime. Corollary of Lemma 7 in [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF] and Lemma 8 in [START_REF] Canaday | The sum of the divisors of a polynomial[END_REF] give our result. 

First reductions.

In this section, we put M := x a (x + 1) b + 1, with M irreducible (so that gcd(a, b) = 1, a or b is odd). We may assume that a is odd, without loss of generality (consider M if b is odd). Lemma 4.6. For any positive integer h, σ(M 2h ) is square-free and it is not a Mersenne prime.

Proof. See Lemma 2.6 in [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF], for the square-freeness. If σ(M 2h ) is a Mersenne prime, then

M 2h + • • • + M + 1 = σ(M 2h ) = M 1 = 1 + x a1 (x + 1) b1 . Thus, M divides x a1 (x + 1) b1 , which is impossible. Remark 4.7. Observe that σ(M 2h ) may be irreducible. Example: M = 1 + x + x 3 , h = 6.
We prove Theorem 1.4 by contradiction. So, for h ∈ N * , we suppose that: [START_REF] Gallardo | Characterization of Sporadic perfect polynomials over F 2[END_REF], Corollary 3.3). This contradicts the fact that U 2h splits over F 2 . 

(1) σ(M 2h ) = j∈J M j , where M j = 1 + x aj (x + 1) bj is irreducible, M i = M j . We set U 2h := σ(σ(M 2h )) = σ( j∈J M j ) = j∈J σ(M j ) = j∈J x aj (x + 1) bj , which splits over F 2 . Lemma 4.8. One has : a ≥ 2 or b ≥ 2. Proof. If a = b = 1, then M = 1 + x + x 2 . Thus M divides U 2h (see
Proof. u + v = j (a j + b j ) = deg(U 2h ) = deg(M 2h ) = 2h(a + b) which is even. By Lemma 4.5, v 1 = α 1 (x u (x + 1) v ) = α 1 (U 2h ) = 0.
Hence, v is even so that u is also even.

The result below shows that it suffices to consider the case where 2h + 1 is prime.

Lemma 4.10. Assume that σ(M 2h ) is a product of Mersenne primes. If 2h + 1 = pw, for some odd prime p, then σ(M p-1 ) and (M p ) w-1 + • • • + (M p ) + 1 are both products of Mersenne primes.

Proof. Put 2h + 1 = pw. One has:

(M + 1) • σ(M p-1 ) • ((M p ) w-1 + • • • + (M p ) + 1) = M 2h+1 + 1 = (M + 1) • i M i .
Lemma 4.11. Let p ≥ 7 be a prime number such that σ(x p-1 ) =

i∈J V i is reducible, with V i irreducible. Then i) deg(V i ) = deg(V j ) = (p -1)/d, where d is the order of 2 modulo p. ii) deg(V i (M )) = deg(V j (M )) = (a + b)(p -1) d . iii) gcd(V i (M ), V j (M )) = 1 if i = j. iv) V i (M ) is not Mersenne for any i.
Proof. i): see Theorem 2.47 in [START_REF] Lidl | Finite Fields[END_REF], ii) follows from i), iii) is true since σ(M p-1 ) = i V i (M ) is square-free. iv) Suppose that V i (M ) = 1 + x mi (x + 1) ni . The irreducibility of V i implies that x divides 1 + V i (x). So, M divides 1 + V i (M ) = x mi (x + 1) ni , which is impossible.

We get from our assumption (1) and from Lemma 4.11:

Corollary 4.12. If ω(σ(M p-1 )) ≤ 2, then σ(x p-1 ) is irreducible.

Lemma 4.13. i) If σ(M p-1 ) = i M i , with M i = 1 + x ai (x + 1) bi , then p divides 2 d -1 where d = gcd i (a i + b i ). ii) d ≥ 2.
Proof. For each i, denote by γ i a primitive element of the extension field We shall always suppose that 2h + 1 = p is prime and that ω(σ(M 2h )) = 2, so that σ(M 2h ) = M 1 M 2 , where M = 1 + x a (x + 1) b (with a odd) and M i = 1 + x ai (x + 1) bi , i ∈ {1, 2}. Moreover, a 1 + a 2 and b 1 + b 2 are both even (Corollary 4.9). We denote by A , as usual, the formal derivative of A ∈ F 2 [x] relative to x. Put: h = 2 m s ≥ 1, where m ≥ 0 and s odd. ii) One has:

F 2 (γ i ) := F 2 [x]/M i . For some 1 ≤ t i ≤ 2 ai+bi -2, M i (γ ti i ) = 0 so that (M (γ ti i )) p = 1, with M (γ ti i ) = 1. It follows that M (γ ti i ) is of order p in F 2 (γ i ).
(M 1 M 2 ) = x a1-1 (x + 1) b1-1 + x a2-1 (x + 1) b2-1 = M 1 + M 2 . iii) M (M + 1) 2 m+1 (M s-1 + • • • + M + 1) 2 m+1 = (M + 1) 2 (M 1 M 2 ) .
Proof. i): We apply Corollary 4.12. Thus σ(M p-1 ) = M 1 M 2 implies that σ(x p-1 ) is irreducible. So, the order of 2 modulo p is equal to p -1. But, 2 d ≡ 1 mod p. It follows that p -1 divides d = gcd i (a i + b i ). So, for any i, a i + b i is even. We get our result because gcd(a i , b i ) = 1. 

M = (M 1 M 2 ) . Lemma 4.16. If M = M 1 = 1 + x + x 2 , then M 1 divides σ(M 2 ) and a 1 = b 1 = 1. Proof. If M 1 (α) = 0, then α 3 = 1 = (α 2 ) 3 . Thus M (α) = 1+α a •(α 2 ) b = 1+α a+2b . Since a+2b ≡ 0, 1, 2 mod 3 and M = M 1 , we get M (α) ∈ {α, α 2 }. So, (M (α)) 3 = 1 and M 1 divides M 3 + 1 = (M + 1)σ(M 2 ). Proposition 4.17. If σ(M 2 ) = M 1 M 2 then M 1 = 1 + x + x 2 , M = 1 + x + x 3 and M 2 = 1 + x 3 + x 4 . -If b 2 > 2 r , then M (M + 1) 2 m+1 -1 = x a1 (x + 1) b1+2 r [1 + x a2 (x + 1) b2-2 r ].
Thus, M = 1 + x a2 (x + 1) b2-2 r , a = a 2 . So we get the contradiction: a 1 = (2 m+1 -1)a > a = a 2 > a 1 .

-If b 2 < 2 r , then M (M + 1) 2 m+1 -1 = x a1 (x + 1) b1+b2 [x a2 + (x + 1) 2 r -b2 ]. Thus, x a2 + (x + 1) 2 r -b2 = M is a Mersenne prime, with a 2 odd. Lemma 4.4 implies that a 1 + 2 r = a 2 ∈ {1, 3, 9}. Thus, a 1 = 1. It is impossible because a 1 = (2 m+1 -1)a > a. 

Lemma 2 . 1 .

 21 i) M ab is square-free if and only if a and b are not both even. ii) M ab is reducible whenever gcd(a, b) = 1. Now, we suppose that gcd(a, b) = 1. Set n := a+b, k := b (so that gcd(n, k) = 1),

Corollary 3 . 3 .

 33 If gcd(a, b) = 1, then in the following cases, the integer ω(M ab ) is even (so that M ab is reducible): i) a and b are both odd, (a + b)b/2 ≡ 0, 1 mod 4 ii) b is even, b ≥ 4 and a + b ≡ ±3 mod 8 iii) b = 2 and a ≡ -3, -1 mod 8.

Corollary 3 . 6 .

 36 For given positive coprime integers a, b, set M ab := x a (x + 1) b + 1 and r(a, b) := ω(M ab ).Then r(a, b) ≡ r(a + 4b, b) mod 2 if b is even, r(a, b) ≡ r(a + 8, b) mod 2 if b is odd, a even and a > 4b, r(a, b) ≡ r(a + 8, b) mod 2 if a, b are both odd and a > 3b -1. Proof. Put n := a + b and consider the trinomial T ab = x a+b + x b + 1 = x n + x b + 1 "associated" to M ab . One has r(a, b) = ω(p n ) = ω(x n + g), where g = x b + 1. We know that p n is square-free (Lemma 2.1). We may apply Lemma 3.4 by taking account Remark 3.5. Here, k = b and n -k = a. -If b is even, then n -k and n are both odd, h n = xg -ng = g = x b + 1. So, t = 0 and π = ord(h n ) = b which is even. Hence, lcm(8, 4π) = 4b. The condition n > max(k, 4t -1) is always satisfied since n > k.

  = 1 and lcm(8, 4π) = 8. We may apply this lemma for a+ b = n > max(k, 4t -1) = max(b, 4b -1) = 4b -1.Remark 3.7. The above conditions on a and b are not all necessary. For example, we see by direct (Maple) computations that r(a, b) ≡ r(a + 4b, b) mod 2, for any 1 ≤ b ≤ 100 and 3 ≤ a ≤ 100 such that b is odd and gcd(a, b) = 1.

4 . 4 4. 1 .Lemma 4 . 1 .

 44141 Proof of Theorem 1.Preliminaries. Some of the following results are obvious or well known. The only Mersenne prime of the form 1 + x + x n are 1 + x + x 2 , 1 + x + x 3 and 1 + x + x 9 .

Lemma 4 . 3 .

 43 reducible for any m ≥ 3, since it has an even number of irreducible factors over F 2 (see Corollary 3.3-i)). ii): Apply Corollary 3.2 on M . If x α + (x + 1) α is a Mersenne prime, then α = 3.

Lemma 4 . 5 .

 45 Let r ∈ N * and S ∈ F 2 [x] such that no irreducible polynomial of degree at most r divides S. Then α l (σ(S)) = α l (S), for any 1 ≤ l ≤ r.Proof. One has: σ(S) = S + T , where deg(T ) ≤ deg(S) -r -1. We are done.

Corollary 4 . 9 .

 49 The integers u = j∈J a j and v = j∈J b j are both even.

Lemma 4 .

 4 15. i) The integer p -1 divides a 1 + b 1 and a 2 + b 2 so that a 1 , a 2 , b 1 , b 2 are all odd.

4 . 3 .

 43 ii): by direct computations since a 1 + a 2 and b 1 + b 2 are both even. iii) follows from differentiating σ(M 2h ), since a 1 , a 2 , b 1 , b 2 are all odd. Case p = 2h + 1 = 3. Here, m = 0 and s = 1 so that

Lemma 4 .

 4 24. Q is not of the form x v1 (x + 1) u1+2 r .Proof.If Q = x v1 (x + 1) u1+2 r , then a 2 = a 1 and b 2 = b 1 + 2 r > b 1 , b 1 = β + 1 + (2 m+1 -2)b > b. As in Lemma 4.23, one has: M (M +1) 2 m+1 -1 = x a1 (x+1) b1 [x 2 r + x a2 (x + 1) b2 ].We get similar contradictions as in the proof of Lemma 4.23, by considering the three cases: a 2 = 2 r , a 2 > 2 r and a 2 < 2 r . 4.4.2. Case s ≥ 3. In this case, h = 2 m s, with m ≥ 0. Put s = 2k + 3, k ≥ 0.Lemma 4.25. The following holds: i) M s-1 +• • •+M +1 is of the form x c +(x+1) d , with c, d = 2 r , and ii) (2) M (M + 1)(M k + • • • + M + 1) 2 = 1 + x c + (x + 1) d .Proof. i): Lemma 4.15-iii) implies that Q = (M 1 M 2 ) does not split. We get our result by direct computations, from Lemma 4.19. ii): follows from i).

Corollary 4 . 26 .

 426 The case s ≥ 3 does not happen.Proof. We get contradictions by differentiating both sides of (2) in Lemma 4.25-ii): -If c, d are both even, thenM (M k + • • • + M + 1) 2 = 0. -If c is even and d odd, then M (M k + • • • + M + 1) 2 = (x + 1) d-1 . -If c is odd and d even, then M (M k + • • • + M + 1) 2 = x c-1 . -If c, d are both odd, then M (M k + • • • + M + 1) 2 = x c-1 + (x + 1) d-1 . Hence M divides x c-1 + (x + 1) d-1 , which is impossible.

  Hence p divides 2 ai+bi -1. Therefore, p divides gcd i (2 ai+bi -1) = 2 d -1 and d ≥ 2. We also get M (γ ti i ) = γ wi i , with 1 ≤ w i ≤ 2 ai+bi -2, so that γ wip Remark 4.14. Lemma 4.13 remains true if we replace each M i by an irreducible polynomial P i of degree a i + b i .

	that 2 ai+bi -1 divides pw i and hence	2 ai+bi -1 p	divides w i .	i	= 1. It follows

Proof. Since M = (M 1 M 2 ) with a 2 , b 2 both odd, we obtain: x a-1 (x + 1) β = (M 1 M 2 ) = 1 + x a2-1 (x + 1) b2-1 , where β ∈ {b -1, b} is even.

-If a ≥ 2, then a 2 -1 = 0 and β = 0. Thus, x a-1 = 1 + (x + 1) b2-1 so that a -1 = b 2 -1 = 2 m , and M = 1 + x 2 m +1 (x + 1). Lemma 4.2 implies that m ∈ {1, 2} since a is odd. By direct computations, we see that σ(M 2 ) is not a product of Mersenne primes.

-

Here, h = 2 m s ≥ 2, where m ≥ 0 and s odd. Put

Lemma 4.18. Suppose that Q = 0 and u 1 ≤ u 2 . Then Q splits over F 2 if and only if one of the following conditions holds:

Proof. By direct computations with 6 cases:

Proof. By direct computations. 

We shall prove that no case described in Lemma 4.21 happens. -If b 2 = 2 r , then b 2 = 1 since b 2 is odd. Hence M (M + 1) 2 m+1 -1 = x a1 (x + 1) b1+1 [1 + x a2 ], which is impossible.