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Mécanique et d’Informatique Industrielles et Humaines, ENSIAME École nationale
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Abstract

A tuning procedure for the model-free control paradigm introduced in

(Fliess and Join, 2013) is proposed. This controller requires an estimate of the

system dynamics usually obtained using an ALIEN filter, presented in (Fliess

and Sira-Ramı́rez, 2003). Several implementation issues of this ALIEN filter,

such as the order of the numerical quadrature, are discussed and overcome.
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Finally, the control law is applied to two systems: the low-level braking

system of a vehicle and its longitudinal speed control. Experimental results

on a real vehicle are provided and compared with a classic PI controller.

Keywords: Model-free control, intelligent controllers, longitudinal control,

tuning procedure, ALIEN filters.

1. Introduction

Using model-free control can be a risky project since the closed-loop sta-

bility can hardly be proven in general. However, it remains an appealing solu-

tion when a model is not available due to the system complexity or to its de-

velopment cost (engineering time and/or required hardware). Proportional-

Integral-Derivative (PID) controllers (see (Åstrom and Hägglund, 1995)) are

among the most popular model-free controller in industrial applications due

to their limited number of parameters and quite intuitive tuning for a large

class of systems (IFAC Industry Committee, 2015). The model-free control

(MFC) approach introduced by (Fliess and Join, 2013) extends the classic

PID framework and provides “intelligent”-PID controllers allowing to ac-

count for the unknown dynamics of the system. Hence, the considered MFC

structure provides a model-free feedforward control that can be used to im-

prove the reference tracking. It is also able to handle some complex nonlinear

control problems (Fliess and Join, 2009) at a low computational cost as these

control laws can be implemented on cheap and small programmable devices

(Join et al., 2013). Finally, as model-free control does not depend on a nom-

inal model, it can be seen as an implicitely robust control framework. It

has been sucessfully applied among others to energy management in build-
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ings supplied by solar photovoltaic panels (Bara et al., 2017) and to flapping

wings (Chand et al., 2016). Note that there exists a wide literature about

other model-free data-based control techniques, such as model-free adaptive

control (Hou and Jin, 2013), virtual reference feedback tuning (Guardabassi

and Savaresi, 2000; Campi et al., 2002), direct and indirect model reference

adaptive control (Narendra and Valavani, 1979), iterative feedback tuning

(Hjalmarsson et al., 1998), fuzzy control (Zimmermann, 1996) and neural-

network based control methods (Miller et al., 1995). See also (Hou and Wang,

2013) for a review of existing data-driven control approaches.

In this work, the brake and engine coordinated longitudinal control of a

vehicle is addressed. MFC framework is especially relevant in that case since

the dynamics of the low-level actuators are complex and unknown. On the

one hand, the vehicle propelling is ensured by an internal combustion engine

(ICE) controlled by the original engine control unit (ECU) of the vehicle.

On the other hand, the mechanical brakes are actuated using a hydraulic

actuator connected to the brake pedal. Therefore, the low-level dynamics is

highly complex. Moreover, the brake and throttle dynamics are very different

between them.

Existing work on MFC applied to the longitudinal dynamics of a vehicle

includes:

(i) simulation results based on actual driver data (Menhour et al., 2013),

(Menhour et al., 2015), (d’Andréa-Novel et al., 2016) and (d’Andréa-

Novel, 2018);

(ii) a combinaison with event-triggered control (Wang et al., 2011);
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(iii) a combination with Stop-and-Go strategies (Choi et al., 2009), (Villagra

et al., 2010), (Milanés et al., 2012a).

Reference (Join et al., 2008) which applies MFC for controlling the throttle of

an engine can also be mentioned. To the best of the author’s knowledge, only

(Milanés et al., 2012a,b) tested on an actual vehicle the coordinated control

of both actuators within a MFC framework. The authors compared MFC,

PID and fuzzy control for: (i) controlling the longitudinal lower-level of a

Stop-and-Go controller (Milanés et al., 2012a); (ii) for longitudinal control

at very low speed (Milanés et al., 2012b). More precisely, they account for

the use of two different MFC laws working alternatively: one for the throttle

and one for the brake.

In the present work, a cascading structure is suggested. At the high-level,

the MFC computes the total force to be applied to the chassis, which is split-

ted between the two different low-level controllers. At the low-level, another

MFC deals with the unknown dynamics of the braking circuit whereas the

engine control unit (ECU) remains in charge of the engine torque production.

Compared to (Milanés et al., 2012a), this work relies on ALIEN filters

introduced in (Fliess and Sira-Ramı́rez, 2003) to estimate the vehicle dy-

namics in order to be robust to noise measurements. Moreover, only the

intelligent-Proportional (i-P) controller is investigated and a methodology

for the tuning of the control parameters is also proposed.

The purpose of this work is then to discuss an effective way to implement

these MFC laws on an actual vehicle. The main contributions are the nu-

merical implementation of the ALIEN filters and the tuning procedure of the

model-free controllers.
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Figure 1: The experimental vehicle.

The rest of the paper is then organized as follows: first, in section 2,

the theoretical working principle of model-free control is recalled; then, sec-

tion 3 discusses the practical implementation details mentioned in the pre-

vious paragraph. In particular, a simple and efficient tuning procedure that

can be applied on an actual system without any prior simulation results is

introduced. The application to an internal combustion engine vehicle, shown

in Figure 1, is presented in section 4 and experimental results are discussed.

Finally, section 5 concludes this work.
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2. The model-free control paradigm

2.1. The ultralocal model

The principle of the model-free control paradigm introduced in (Fliess

and Join, 2013) is to replace a complex nonlinear model by an ultralocal

model given by (see Appendix A for more details):

y(ν)(t) = F (t) + αu(t) (1)

u is the control input, y is the observed output, ν is the order of the system,

F represents both the unmodeled dynamics and the disturbances and α is

a constant parameter chosen by the practitioner. In the rest of this work,

ν = 1 has been chosen by the practitioner. When there is no ambiguity, the

time dependency will be omitted. Furthermore, the sign of α should match

the sign of the actual system input gain. In the studied framework, α being

a constant, systems with time varying input gain that take values in both

R+ and R− are not considered.

2.2. Estimation of F̂

At each time step tk = kTs where Ts is the sampling time step of the

measurements, the dynamic F is estimated from the previous control inputs

u applied to the system and outputs y observed. The estimation of F at

time t, denoted F̂ , is assumed to remain constant over [t; t + T ]. Therefore,

using the model-free control approach requires to have a high measurement

frequency compared to the time constant of the system one wants to control.

A direct method for estimating F̂k at time tk is given by:

F̂k = ẏk − αuk−1 (2)
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However, measurements are usually noisy. Therefore, using a filter is

highly recommended. In the rest of the present communication, ALIEN2

filters introduced by (Fliess and Sira-Ramı́rez, 2003) are used. For a first-

order ultralocal model, one obtains Equation (3), where T denotes the time

window of the filter. The computation details can be found in Appendix B.

F̂k = − 6

T 3

∫ tk

tk−T
[(T − 2τ)y(τ) + ατ(T − τ)u(τ))] dτ (3)

2.3. Intelligent-PID controllers

The “intelligent” controllers have been introduced within the model-

free control paradigm (Fliess and Join, 2008). For a first-order system,

an intelligent-Proportional-Integral (i-PI) or an intelligent-Proportional (i-P)

controller given by Equation (4) and completed respectively by Equation (5)

and Equation (6) can be used:

u = − F̂ − ẏr
α

−K(e) (4)

(i− PI) K(e) = KP e+KI

∫ t

0

edτ (5)

(i− P ) K(e) = KP e (6)

where e = y − yr is the tracking error. KP and KI denote respectively the

proportional and the integral gains. Note that the reference yr must be a C1

signal. This can be enforced, for instance, using a first-order linear low-pass

filter on the original reference signal.

2ALgebra for Numerical Identification and Estimation
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Combining Equations (1) and (4) for ν = 1 leads to the following equation

for the tracking error e:

ė(t) = −αK(e(t)) + (F (t)− F̂ (t)) (7)

Therefore, if the estimation of F̂ is “good”, i.e. (F−F̂ ) ≈ 0, “intelligent”

controllers ensure the asymptotic stability of the closed-loop system. In

particular, an i-P controller is sufficient for α > 0 and Kp > 0 as the evolution

of the tracking error e is ruled by:

ė(t) = −αKP e(t) (8)

Thus in practice, the core of the i-P controller is the estimation of the

unknown signal F . It can be derived, as in (d’Andréa-Novel et al., 2010),

using a first order discretization of the output signal (in Equation (2)) and

its derivative. In that case, the structure of the i-P controller is equivalent

to a PI controller. Therefore the benefits of the i-P structure compared to a

classic PI comes from a good estimation of the unknown signal F . Hence the

discretization of the ALIEN filter needs to be studied carefully. Moreover, the

structure allows performing a feedforward control without explicitly needing

a model (although it requires a good estimation of the unknown signal F ).

Remark 1. Under the assumption that the∞-norm of the estimation error

||F − F̂ ||∞ is bounded (which is weaker than the perfect estimation assump-

tion widely encountered in the literature), it is still possible to prove the

stability (convergence in a ball centered in 0) as shown in Appendix C.
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3. Applying model-free control on an actual system

In order to apply the model-free control paradigm on an actual system,

it is necessary to have a good estimation of the unknown signal F . For that

purpose, two main difficulties need to be overcome. First, the numerical im-

plementation of the ALIEN filter is not straightforward but it is crucial if one

wants to achieve good performances in particular at steady-state. This will

be discussed in section 3.1. Secondly, the performances of model-free control

laws are highly influenced by the value of parameter α, in particular during

transient phases. Therefore, a tuning procedure is proposed in section 3.2.

3.1. Numerical implementation of ALIEN filters

One of the main difficulty for applying the MFC paradigm defined previ-

ously on an actual system is to compute numerically the ALIEN filter given

by Equation (3). First of all, it is important to provide the actual control u

that was applied on the system, and not the one send by the controller as

they might differ due to filters or limitations on the actuators.

Theorem 1. In order to have a perfect estimation of F at steady-state, the

numerical quadrature to compute Equation (3) should be at least of order 2.

Proof. Assume that the system has reached its steady state, denoted by the

subscript ∞. In this case, Equation (1) becomes:

F∞ = −αu∞ (9)

and the expression of the ALIEN filter given by Equation (3) becomes:

F̂∞ = − 6

T 3

∫ t

t−T
P2(τ) dτ (10)
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where P2(τ) = Ty∞+(−2y∞+αTu∞)τ−αu∞τ 2 is a second order polynomial

in τ .

The order of accuracy n of a quadrature rule is defined as the biggest inte-

ger value such that the numerical approximation is correct for any polynomial

of degree less or equal to n (Dahlquist and Björck, 2008), which concludes

the proof.

Thus, a classic numerical approximation such as the trapezoidal rule

which is of order 1 is not sufficient: in that case the estimation error F − F̂ is

equal to +1
2

(
Ts
T

)2
F (see Appendix D). However choosing T >> Ts enables

to improve the accuracy in this particular case.

Therefore, Equation (3) should be approximated using one of the two

Simpson’s rules given by Equations (11) and (12), which are both of order 3:

• Simpson’s 1/3 rule (or three-point Newton-Cotes quadrature rule)∫ b

a
f(x)dx ≈ b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
(11)

• Simpson’s 3/8 rule (or four-point Newton-Cotes quadrature rule)∫ b

a
f(x)dx ≈ b− a

8

(
f(a) + 3f

(
a+ b

3

)
+ 3f

(
2(a+ b)

3

)
+ f(b)

)
(12)

Newton-Cotes formulas generalize the Simpson rule for interpolation with

arbitrary degree polynomials. However, in practice, using high-degree poly-

nomials for interpolation can lead to instability. This is referred as Runge’s

phenomenon (Schlömilch et al., 1901). Therefore, cutting the computation

of the integral into subdivisions is recommended.
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In the rest of this work, the time window T = 2kTs (with k ∈ N∗) of the

ALIEN filter is chosen such that [0, T ] can be subdivided into subsegments

where the rule given by Equation (11) can be applied.

3.2. Tuning procedure

In this subsection, a tuning procedure for the parameter α will be pre-

sented as it also plays an important role in limiting the estimation error, in

particular during the transient phases.

Let us write the actual output signal dynamics where F (t) and α(t) are

two unknown functions of time:

ẏ = F (t) + α(t)u (13)

In that case:

F = F (t) + (α(t)− α)u (14)

u = −
(
F̂ − ẏr
α

)
−K(e) (15)

where K(e) is the correction on the tracking error. Combining Equation (13)

with (15) and choosing K(e) = 0, i.e. considering only the feedforward term

of the control law, leads to:

ẏ =
α(t)

α
ẏr +

(
F (t)− α(t)

α
F̂

)
(16)

Assuming a perfect estimation of F , i.e. F̂ = F , Equation (14) and Equa-

tion (16) become Equation (17). Therefore, in theory, any value of α should

work. Nevertheless, if F̂ = F , the solution of Equations (1) and (4) is inde-

pendent of the control: the control u cannot be computed anymore.

ẏ = ẏr (17)
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However, in practice, the estimation F̂ is subject to some dynamics, and

the closed-loop cannot be reduced to Equation (17). As the quality of the

controller depends mostly on the estimation error (F − F̂ ), the value of α

needs to be choosen carefully, as close to the real gain of the system, to avoid

big variations of F .

If α→ +∞, the control u given by Equation (15) is reduced to K(e). In

other words, the controller is reduced to a classic proportional one.

If α → 0+, the control u depends mostly on the estimation F̂ . As F

depends on u, the behavior of the closed-loop mostly depends both on the

unknown system dynamics and the ALIEN filter dynamics. The resulting

dynamics is quite unpredictable and this situation should be avoided.

It should be noticed that when α is close to the input gain F (t), F

is almost independent of u and its estimation becomes easier in practice,

leading to a smaller estimation error.

Therefore, tuning α becomes quite straightforward for a stable open-loop

system: the practitioner should set K(e) = 0 and observe, for different values

of α, the reponse of the system to the control law:

u = −
(
F̂ − ẏr
α

)
(18)

Starting with an α large enough, the control will be almost zero. Then,

decreasing the value of α will increase the control value until the desired

closed-loop response given by Equation (17) is achieved. If α is decreased

too much, the control amplitude will become too high and the system may

oscillate. The tuning guidelines of α are summarized in Table 1.

Once α has been chosen correctly, the gains of K(e) have to be tuned. It
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Initialization:

set K(e) = 0;

choose α large enough;

Feedforward Tuning

Rule n◦1: run the experiment; while the average value of | ẏ − ẏr |
decreases, decrease α and repeat rule n◦1;

Rule n◦2: if the system output oscillates around the setpoint, in-

crease α;

Feedback Tuning

Rule n◦1: increase Kp progressively until (i) tracking error | y−yr |
is low and (ii) disturbances are rejected.

Table 1: Model-free controller tuning guidelines

can be noticed that the feedforward control only ensures a good tracking of

the reference derivative. K(e) is used to track the reference and its tuning

is similar to the one of classic P and PI controllers. In practice, an i-P

controller is usually sufficient. The disturbances are implicitely embedded

within the unknown term F in the model given by Equation (1) and are

therefore estimated by the ALIEN filter. Thus, they are rejected by the

control law of Equation (18). The correcting term K(e) is mostly used to

overcome the error due to initial conditions and estimation errors of F due

to the dynamics of the filter.
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4. Application to the longitudinal control of an actual vehicle: ex-

perimental results

The longitudinal control of a vehicle is used as an illustration of the

proposed method. The structure of the vehicle prototype used for the exper-

iment is depicted in Figure 2. All the sensors and actuators are connected

to the CAN bus and work with a fixed sampling period of 10ms. The vehi-

cle velocity is provided by the original sensor of the vehicle located on the

gearbox output shaft. The propelling is ensured by the torque produced by

the engine which is controlled by the Engine Control Unit (ECU). The ICE

torque, which dynamics is unknown, is transmitted to the wheels through

the clutch and the gearbox which are controlled by the Gearbox Control

Unit (GCU). This unit is independent and operates using its own unknown

rules. The braking circuit comprises the brake pedal, the master cylinder,

the Electronic Stability Program (ESP) block and the mechanical brakes.

The brake pedal is actuated using an hydraulic cylinder. Two control inputs

are available to control the vehicle velocity: ub that controls the hydraulic

cylinder pressures of the brakes and uice the ICE torque setpoint.

Therefore, the considered control structure, see Figure 3, comprises two

parts. First, a high-level velocity controller computes the total force uv to be

generated by both the brakes and the engine according to the actual vehicle

velocity yv and the reference velocity yvr and acceleration ẏvr . According to

the braking capability of the ICE (estimated by the ECU), this high-level

control signal is then split into two signals: uice, the ICE torque setpoint,

which is sent to the original vehicle ECU, and yrb , the brake pedal position

setpoint, which is sent to the brake model-free controller only when ICE-
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Figure 2: Structure of the vehicle powertrain to be controlled.

Figure 3: Considered cascading control structure.

based braking is not enough to reach the total force uv. A static map is

used to approximately convert the braking force into brake pedal position.
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In practice, the actual braking force differs significantly from the static map

data due to thermal effect, unknown dynamics of the master cylinder and

hydraulic braking system.

4.1. Brake control

The brake system consists of an hydraulic actuator that pushes or pulls

the brake pedal. The position of the latter determines the pressure gener-

ated by the master cylinder on the brake disk. The master cylinder and

the brake pedal are connected together through a pushrod subject to some

stiction which makes the system very difficult to model. Also, the brake

pedal dynamics is non-linear due to the master cylinder’s resistive force.

The objective is to control the brake pedal position yb by opening the valves

(ub ∈ [−80; 80]%) located respectively at the top and at the bottom of the hy-

draulic actuator. The system is described in Figure 4. The main difficulties

to control such a system are: (i) the possible occurence of limit cycles due to

pushrod stiction; (ii) reduced stability margin due to communication delays;

(iii) variations of the system gain due to the return spring and the internal

pressure of the master cylinder; (iv) unpredictable variations of the system

gain over time due to the pressure of the tank and the pump. Note that

the system is subject to a known 20ms communication delay. The so-called

“position” signal is generated by a control unit on the CAN bus. When the

brake pedal is fully released, the “position” signal is 700; when it is fully

pressed, the signal is 1600.

The open-loop response of the system to different input steps is depicted

in Figure 5 and illustrates the non-linear behavior of the system. The cumu-

lated effect of stiction and communication delays induces a response “delay”
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between 60ms and 180ms.

Figure 4: Description of the brake system: the brake pedal (1) pushes the master cylinder

(4) through the pushrod (2); the pressure of the fluid increases and activates the brakes

on the brake disk (5). (3) is the fluid reservoir. The hydraulic actuator is used to control

the brake pedal position.
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Figure 5: Open-loop response of the brakes (experimental data).

The MFC law was applied using the tuning method suggested in sec-

tion 3.2 while the vehicle is at standstill with the engine turned on. The

overall tuning takes only a few minutes. First, the proportional gain KP is

set to 0. The system being at the rest position, a reference signal is gener-

ated and the open-loop responses are recorded for different values of α (see
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Figure 6), starting from α = 10000 and decreasing its value until the output

and the control signal starts to oscillate (at α = 200, Figure 7). Finally, the

value of α is obtained : α = 800. Then, the proportional gain KP is increased

such that the dynamics of the output error is acceptable, see Figure 8. The

final tuning of the i-P controller is then α = 800, KP = 2× 10−3.
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Figure 6: Tuning of parameter α for the brake system.

The obtained i-P controller is then compared to a PI controller using

the same reference signal. The PI controller tuning is KP = 5× 10−2 and

KI = 5× 10−3. The reference position of the brake pedal is shown in red in

Figure 9. The i-P controller performance is sligtly better than the PI one: it

has been observed that it provides slightly lower steady-state error.

On a practical point of view, i-P controller has a simpler tuning procedure

than the PI one. The α parameter is obtained in a systematic way. Then
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Figure 7: Feedforward response for α = 200 of the brake system.

0 2 4 6 8 10 12 14 16 18
600
800

1,000
1,200
1,400
1,600

time (s)

po
si

tio
n

(-
)

setpoint 0 5×10−4 10×10−4 20×10−4

Figure 8: Tuning of parameter KP for the brake system.

the KP parameter is tuned empirically whereas for the PI, both parameters

needs to be tuned at the same time.

In the rest of this work, the brake system will be controlled using the i-P

controller with the parameter values obtained in this section.

4.2. Longitudinal speed control of the vehicle

In order to control the longitudinal speed of the vehicle, a model-free

control approach is also used. The objective is to control the longitudinal

speed of the vehicle yv by computing uv, the total wheel force requested. As

depicted in Figure 3, the actual total wheel force applied to the vehicle is
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Figure 9: Comparison between PI and i-P controllers for the brake system

subject to the dynamics of the low-level controllers. Although the velocity

control is not highly challenging, it is still subject to the following difficulties:

(i) at low speed, for small uice, as the GCU controls the vehicle velocity at

10km/h using the clutch, the system is not controllable; (ii) during propelling,

the system becomes non controllable when the clutch is open during a gear

shift sequence; (iii) the low-level ICE torque is poorly controlled by the ECU

and causes thus disturbances on the control signal.

Tests were performed on the track presented in Figure 10. The track

altitude profile is depicted in Figure 11. The disturbance caused by the slope

at the beginning of the track forces to use the brakes in order to maintain

the vehicle at standstill.

In order to test the control law, the reference speed is composed of suc-
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Figure 10: Top view of the open road test field track.
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Figure 11: Altitude of the track.

cessive steps of ±10m/s triggered every 10s. This raw reference signal is then

smoothen using a second-order filter with time constant 0.4s to obtain a C1

speed reference, denoted yr and shown in red in Figures 12 to 15.

4.2.1. Tuning of the control parameters

The procedure suggested in section 3.2 has been applied for the tuning

of α . Throughout this subsection, the time window of the ALIEN filter T is

chosen equal to 0.1s which is a good tradeoff between noise filtering and the

filter bandwidth. The results obtained for different values of α using only
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the feedforward control law (KP = 0) are shown in Figure 12. For a better

clarity, the absolute value of the tracking error e is displayed in Figure 13.

For large α values such as α ∈ [1, 1000], the control amplitude is too

low. In such situations, the gearbox control unit hands over the clutch and

the engine to maintain the vehicle speed at approximatively 12km h−1. This

feature is standard for vehicle equipped with an automatic transmission.

The reference tracking is improved by decreasing α. Acceptable values are

between 0.005 and 0.01. As expected, when α is too low (α = 1× 10−3),

the closed loop becomes unstable and the experiment is stopped earlier for

safety reasons. At this stage of the tuning procedure, α = 0.008 is chosen.
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Figure 12: Tuning of the α parameter for the high-level controller.

The second part of the tuning procedure consists in choosing KP such

that the system output smoothly tracks the reference signal. If a perfect

estimation for F̂ is assumed, then the closed-loop pole lay at −αKP (see

Equation (8)). The closed-loop response should be perfectly damped. In

practice, as shown in Figure 14, it is not the case as some overshoots for
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Figure 13: Absolute value of the tracking error e = y−yr for different values of α (KP = 0)

for the high-level controller.

large KP can be observed. KP = 100 is chosen as a trade-off between the

closed-loop response time and overshoots.
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Figure 14: Response of the model-free controller for different values of KP and α = 0.008.

After a fine tuning of the parameters, the following final values are ob-

tained for the i-P controller: α = 0.006 and KP = 100. The results are

shown in blue in Figure 15.
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4.2.2. Comparison with a PI controller

Finally, the i-P controller is compared with a PI controller which is one

of the most widespread controller. The main objective of this study being

to propose a manual tuning of the controller, a similar approach has been

used for the PI controller. Therefore, PID tuning methods have not been

used even though there exists some model-free methods in the literature

such as Iterative Feedback Tuning (Hjalmarsson et al., 1998), Direct Model

Reference Adaptive Control (Pirabakaran and Becerra, 2001) and Virtual

Reference Feedback Tuning (Formentin et al., 2014). The PI controller has

been hand-tuned to obtain a fast closed loop response without too much

overshoots over the chosen setpoint profile: the ICE engine should only be

used to manage the accelerations whereas the deceleration phases could be

manage using only the ICE engine brake and the mechanical brakes. The

results are shown in Figure 15. First, between t ∈ [0, 10]s, both the i-P and

the PI controllers are able to reject the disturbance due to the initial slope.

Then, the i-P controller provides a faster tracking of the reference than the

PI. This is due to the feedforward term ẏr included in the control law, see

Equation (4). The PI controllers exhibits a 26% overshoots on the first step at

t = 15.2s. The i-P controller overshoot is only 7.8% at t = 14.0s. Due to the

system non-linearities, the other overshoots are smaller for both controllers.

The overshoots of the PI controller can be reduced at the price of a slower

tracking. Finally, the overall controller performances can be measured using

the root mean square (RMS) of the tracking error. Data are given in Table 2.

The i-P performs 36% better than the PI.

According to the authors’ experience, the tuning of the PI controller was
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less intuitive than the i-P and did require more time and experimental trials.

The system dynamics is strongly affected by the engaged gear. As the chosen

PI controller has fixed gain, the final tuning has been chosen to average the

performances over the gears 1 to 3 used in this experiment. Better tuning

can be obtained on individual gears at the price of worse performance on the

other gears. On the contrary, the tuning of the i-P controller was relatively

straightforward with the procedure proposed in section 3.2. Moreover, it is

less sensible to gear changes since the system dynamics is implicitly captured

through the estimation of the unknown F .

During acceleration phases, gear shifts occur as shown in Figure 15. They

are engaged by the GCU whose control law is unknown. During this period,

the clutch is opened. Therefore, the system is not controllable as the en-

gine torque generated is not transmitted to the wheels. During deceleration

phases, gear shifts happen too but do not impact the controllability of the

system as the brakes can still be applied.

Controller PI i-P

RMSE (km/h) 2.32 1.48

Table 2: Comparison of the root mean square of the tracking error between PI and i-P

controllers.

5. Conclusion and perspectives

This work discussed the design of model-free controllers based on ALIEN

filters and their application on an actual vehicle. In particular, several im-
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Figure 15: Comparison of the speed profile between the i-P and PI controllers.

portant implementation details such as the required order for the numerical

quadrature used to compute the ALIEN filters and the tuning of the control

law parameters are presented. While the order of the numerical quadrature

used to implement the ALIEN filter impacts the steady-state error, the tun-

ing of the α parameter affects the transient behavior. Consequently, this

paper provides general guidelines for an efficient implementation of model-

free controllers. It has to be pointed out that this tuning procedure can

be performed directly on the actual system without any prior simulations.

Nevertheless, such a procedure should be followed with sufficient care as the

order of magnitude of α and KP are unknown in practice.

The MFC laws were used to control both the brake system and the lon-

gitudinal speed of an actual vehicle. The results illustrated the ability of

this approach to control a system with unknown or complex dynamics. Due
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to the model-free feedforward action, the tuning becomes easier than for a

classic PID.

Future works include a generalization of the tuning method to systems of

any order (ν > 1) and the development of a procedure to estimate the order

ν when almost no information about the system is available. Moreover, more

challenging applications such as the lateral control of an actual vehicle using

model-free control are thought.

Appendix A. Deriving the ultralocal model

Consider a system where y is the output and u the input. It can be written

as an input-output differential equation in the form of Equation (A.1) where

E is a function not necessarily linear but assumed to be sufficiently smooth.

E(t, y, ẏ, ..., y(m), u, u̇, ..., u(n)) = 0 (A.1)

If there exist ν ∈]0;m[ such that ∂E
∂y(ν)

6= 0, the implicit function theorem

yields then locally to:

y(ν) = E (t, y, ẏ, ..., y(ν−1), y(ν+1), ..., y(m), u, u̇, ..., u(n)) (A.2)

In practice, ν is always equal to 1 or 2.

Appendix B. ALIEN filters

ALIEN filters were introduced in (Fliess and Sira-Ramı́rez, 2003). They

are based on operational calculus (see (Yoshida, 1984)). In order to obtain

Equation (3), the following operations were made.
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Starting from Equation (1) with ν = 1, assuming that F is a piecewise

constant function, apply the Laplace transform:

sY (s) =
Fs
s

+ αU(s) + y(0) (B.1)

Then, get rid of the initial condition y(0) by multiplying by d
ds

on both

sides. In order to obtain an equation only composed of terms in the form of

Equation (B.2) and Equation (B.3) for which the inverse Laplace transforms

are known, multiply both side by s−2. This leads to Equation (B.4).

c

sα
, α ≥ 1, c ∈ C ⇒ c

tα−1

(α− 1)!
, t > 0 (B.2)

1

sα
dnY

dsn
⇒ (−1)n

(α− 1)!

∫ T

0

(T − τ)α−1τny(τ) dτ (B.3)

Y (s)

s2
+

1

s

dY

ds
= −Fs

s4
+ α

1

s2
dU

ds
(B.4)

Applying Equation (B.2) and Equation (B.3) to Equation (B.4) leads to

Equation (3).

Appendix C. Stability proof for bounded estimation errors

Set xk = x(tk) = x(kTs) where x is a time-dependent variable and con-

sider a discrete version of Equation (7) with K(e) = KP e (i-P controller).

The derivative of the error at time k, denoted ėk, is approximated by a for-

ward Euler scheme: ėk = (ek+1 − ek)/Ts. The following equation on the error

is thus obtained:

ek+1 = (1− TsαKP )ek + Ts(Fk − F̂k) (C.1)
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Set A = (1− TsαKP ), B = Ts and fk = (Fk − F̂k). Iterating from t = 0, one

obtains (see (Kermani et al., 2012)):

ek = Ake0 +
k−1∑
i=0

AiBfk−1−i (C.2)

Assume that the ∞-norm of the estimation error is bounded. In this case,

∀k ∈ N, |fk| ≤ fmax = |F − F̂ |max. Thus, Equation (C.2) becomes:

|ek| ≤ |Ake0|+
k−1∑
i=0

|A|i|B|fmax

= |Ake0|+ (1− |A|)−1(1− |A|k)|B|fmax (C.3)

If KP and α are well chosen (i.e. 2
Ts
> αKP > 0), for sufficiently large k,

|Ak| ≈ 0, thus for any δ > 0 sufficiently small (see Proof below for further

details):

|ek| ≤ (1 + δ)

∣∣∣∣ 1

αKP

∣∣∣∣ |F − F̂ |max (C.4)

Therefore, the system is stable as the tracking error ek remains in a ball

B
(

0,
∣∣∣fmaxαKP

∣∣∣) of radius fmax
αKP

centered in 0.

Proof. Let δ > 0. Choosing KP and α such that |A| < 1, i.e. 2
Ts
≥ αKP ≥ 0,

leads to |A|k −→
k→+∞

0.

Therefore,

∀ε > 0,∃K ∈ N∗,∀k ∈ N∗, k ≥ K ⇒ |A|k < ε (C.5)

Hence, Equation (C.3) leads to:

∀ε > 0,∃K ∈ N∗,∀k ≥ K, |ek| < ε|e0|+ (1 + ε)
∣∣∣fmaxαKP

∣∣∣ (C.6)
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In particular, choosing ε = 1(
1+|e0|

∣∣∣ αKPfmax

∣∣∣)δ > 0 which is defined as fmax 6= 0

leads to the presented results. Thus:

∀δ > 0, ∃K ∈ N∗, ∀k ∈ N∗, k ≥ K, |ek| ≤ (1 + δ)
∣∣∣ 1
αKP

∣∣∣ fmax (C.7)

Appendix D. Numerical quadrature of ALIEN filters with trape-

zoidal rule

Equation (3) is an analog equation which needs to be approximated nu-

merically. A common approach used to discretize an integral is the trape-

zoidal rule. Let’s define N = bT/Tsc+1. Set Yk = y(tk) and Uk = u(tk) with

tk = kTs, for k ∈ J0;N − 1K. The trapezoidal rule applied to Equation (3)

gives:

− 6

T 3

∫ T

0

[(T − 2τ)y(τ) + ατ(T − τ)u(τ))] dτ ≈ (D.1)

−6Ts
T 3

N−2∑
k=0

[
(T − 2(k +

1

2
)Ts)

(
Yk + Yk+1

Ts

)]

−6Ts
T 3

N−2∑
k=0

[
(k +

1

2
)Ts(T − (k +

1

2
)Ts)

(
αk+1Uk+1 + αkUk

Ts

)]
At steady-state, ẏ = 0 and u is constant, thus Fexact = −αu. The analog

expression of the ALIEN filter given by Equation (3) leads to:

F̂filter = − 6

T 3

∫ T

0

[(T − 2τ)y + τ(T − τ)αu)] dτ = −αu (D.2)

However, the numerical quadrature of the integral using the trapezoidal rule

leads to an estimation error F − F̂ at steady-state. More precisely:

F̂trap = −αu− 1

2

(
Ts
T

)2

αu (D.3)
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