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This paper presents a set of new explicit analytical solutions for determining the transient surface temperature of semi-infinite solids subjected to a non-uniform axisymmetric circular heat source. The uniform heat flux, semi-elliptic one and flux with singularity (equivalent to a uniform temperature in steady-stae) are considered. These solutions are simple to use and can therefore be applied in many industrial areas such as electronic components, laser treatments and any problem of diffusion other than heat transfer. They can also be used to study the constriction phenomenon. Validations of these analytical solutions by comparison with numerical modeling are performed and show an excellent agreement. We show that for the same case of heat flux distribution, surface temperatures at two different radii can be connected by an explicit analytical transfer function which does not require the knowledge of the flux imposed by the heat source.

Introduction

The problem of conduction in solids subjected to a disk heat source was studied by several authors. Often, the authors considered the case of the steady state (conduction) [START_REF] Carslaw | Conduction of heat in solids[END_REF][START_REF] Bardon | Heat transfer at solid-solid interface: basic phenomenon[END_REF][START_REF] Degiovanni | Résistance thermique de contact en régime permanent. Influence de la géométrie du contact[END_REF][START_REF] Laraqi | Thermal resistance for random contacts on the surface of a semi-infinite heat flux tube[END_REF][START_REF] Hocine | Comportement thermique d'un disque tournant soumis à des sources de chaleur surfaciques discrètes[END_REF][START_REF] Bauzin | Three-dimensional analytical calculation of the temperature in a brake disc of a high-speed train[END_REF]. Few works have been devoted to the transient regime (diffusion) [START_REF] Carslaw | Conduction of heat in solids[END_REF][START_REF] Beck | Heat Conduction Using Green's Functions[END_REF][START_REF] Degiovanni | Thermal contacts in transient states : a new model and two experiments[END_REF][START_REF] Laraqi | Thermal impedance and transient temperature due to a spot of heat on a halfspace[END_REF]. The knowledge of the transitient evolution of the temperaure is necessary for many reasons such as the determination of time scales, the characterization of materials, the control and optimization of thermal systems, etc. Analytical solutions, when they can be obtained to solve these problems, are very powerful and accurate tools for performing these studies. The other alternative is the use of numerical methods, but these are often difficult to implement (mesh optimization) and require long computing times while being less accurate.

In this paper, we present some new explicit analytical solutions to determine the transient surface temperature of solids subjected to a non-uniform axisymmetric circular heat source. Several forms of surface heat flux distribution are investigated. Validations of these analytical solutions by comparison with numerical modeling are performed and show an excellent agreement. Analysis of the thermal behavior of the solid are also discussed.

Another important interest of these solutions is that they allow the connection of the temperatures at two different radii (for the same case of heat flux distribution) by an explicit analytical transfer function which does not require the knowledge of the flux imposed by the heat source.

Governing equations

Consider a semi-infinite medium (Figure 1) initially at the zero reference temperature and suddenly subjected on its surface ( z0  ) to a non-uniform surface heat flux   r  over the disk of radius a . The rest of this surface is adiabatic.

We want to determine the transient evolution of the surface temperature under these conditions. as shown in Figure 2. In order to compare the results of these three configurations, the total flux emitted by the heat source will be considered the same.

The practical application of case (b) is the contact between a ball and a plane. Hertz's theory shows that the pressure distribution is semi-elliptic with a maximum at the center and zero at the edges. The heat flux is therefore also of the same shape.

Cases (a) and (c) are the classic reference cases considered in the literature for a uniform flux and a uniform temperature respectively.

The governing equations of this problem are 
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Analytical solutions

3.1-General solution

To solve the system of equations (1) we apply the infinite Hankel transform and the Laplace transform respectively as follows:

    0 0 T rT r, z, t J r dr    and   pt p 0 L T T Te dt     (2) 
The system of equations (1) becomes:

  2 22 2 T q T 0 z       , with 2 p q     T z 0        a 0 z0 0 T g J d z               (1a)
Its solution can be written under the form

      2 z a p 0 2 0 e T z g J d p               (3)
By applying the convolution product and the inverse Hankel transform to eq.( 3), we obtain: 

                2 
                               (3b) And, if also   r  is a constant such as   0 r    , eq. (3b) becomes:       zz 0 01 0 a z z d T r, z, t J r J a e erfc t e erfc t 2 2 t 2 t                                   (3c)
Eq. (3c) is consistent with this given by [1,p. 264] and [7,p. 240].

The transformed surface temperature for   g t 1  and then 1 g p  can be derived from eq. ( 3)

      a 0 2 0 T z 0 J d pp            (4) 
We apply to equation ( 4) the inverse transforms of Hankel and Laplace to obtain the surface temperature   T r,0, t as follows

        a 1 0 p 0 2 00 1 T r,0, t J r L J d d pp                          (5) 
By performing the Laplace inverse transformation, equation ( 5) becomes:

          a 00 00 1 T r,0, t J r erf t J d d                  (6) Knowing that     erf u 1 erfc u 
, equation ( 6) can be written in the following form:

                a 00 00 a 00 00 1 T r,0, t J r J d d 1 J r erfc t J d d                                 (7) 
The first right-hand term of equation ( 7), which does not contain the time t , corresponds to the solution of the stationary regime. The second term, which contains the time t in the function

  erfc t
 , corresponds to the transient regime. This term tends to zero when time t tends to infinity. Indeed,   erfc 0  .

3.2-Case (a): uniform heat flux denity

:   0 r   
In this case, we have:

      a 0 01 0 a J d J a          (8a)
The surface temperature, given by equation ( 7) can be written as follows

            01 01 00 00 J r J a erfc t J r J a aa T r,0, t d d                 (9a) 
Eq. ( 9a) is consistent with that given by [7, p. 240]. Authors of this reference give a solution for the transient part of eq. (9a) under a double series form which is valid for a large time.

In the following we develop an exact explicit analytical solution which is valid regardless of the time and the radius.

Consider the first term on the right of equation (9a). We have:

        2 2 01 2 0 2 a 1 1 a F , ;2; r a 2r 2 2 r J r J a d 1 1 r F , ;1; r a 22 a                       (10a)
To determine an explicit expression of the second term on the right of equation (9a), let us first consider the product of the two Bessel's functions. Indeed, we have:

        k k 22 2k 1 01 2 k0 1 a r a J r J a F k, k;2; 2 k! k 1 4 r                             (11a)
So, we can write:

            k 22 k 2 01 k0 0 2k 0 ar 1 F k, k;2; J r J a erfc t 4 r a d 2 k! k 1 erfc t d                                     (12a)
We also know that:

        2k k 1/2 0 k1 erfc t d 2k 1 t             (13) 
By replacing all the terms in equation (9a), we obtain the final solution under the following forms:

      2 0 2 k k 22 2 k0
a a 1 1 a T r a,0, t F , ;2; 2r 2 2 r

1 1 a a r F k, k;2; k! 2k 1 4 t 2t r                                          (14a)       2 0 2 k k 22 2 k0 a 1 1 r T r a,0, t F , ;1; 22 a 1 1 a a r F k, k;2; k! 2k 1 4 t 2t r                                           (15a)
The transient surface temperature at the centre of the heat source can be deduced from equation (9a)

        1 1 00 00 J a erfc t Ja aa T 0,0, t d d                (16a)   2 0 a 1 a 1 3 a T 0,0, t 1 F ,1; , 2; 2 2 4 t 2t                   (17a)
The stationnary surface temperature at the centre of the heat source becomes In this case, we have:

  0 a T 0,0,    ( 
        a 3/2 2 01 3/2 0 Ja J d a 2 a           (8b)
The surface temperature, given by equation ( 7) can be written as follows

            0 3/2 0 3/2 1 00 J r J a erfc t J r J a a T r,0, t d d 2                        (9b)
Consider the first term on the right of equation (9b). We have:

        3/2 2 2 0 3/2 2 0 2 2a 1 1 5 a F , ; ; r a 222 3r r J r J a d a 1 r F , 1;1; r a 2 22 a                         (10b)
To determine an explicit expression of the second term on the right of equation (9b), let us first consider the product of the two Bessel's functions. Indeed, we have:

        k 3/2 2k 2 2k 3/2 0 3/2 2 k0 1 a 4 r 5 a J r J a F k, k; ; 2 k! k 1 2 2 3 r                              (11b)
So, we can write:

            k 3/2 2k 2 0 3/2 2 k0 0 2k 0 J r J a erfc t 1 4 a r 5 a d F k, k; ; 2 k! k 1 2 2 3 r erfc t d                                              (12b)
By using equation ( 13) and replacing all the terms in equation (9b), we obtain the final solution under the following forms:

      2 1 2 1/2 k k 2 2 2 2 k0 a a 1 1 5 a T r a,0, t F , ; ; 3 r 2 2 2 r 1 2 a r 5 a F k, k; ; 4 t k! 2k 1 4 t 2 r                                                    (14b)       2 1 2 1/2 k k 2 2 2 2 k0 a 3 1 r T r a,0, t F , 1;1; 3 4 2 a 1 2 a r 5 a F k, k; ; 4 t k! 2k 1 4 t 2 r                                                      (15b)
The transient surface temperature at the centre of the heat source can be deduced from equation (9b)

        3/2 3/2 1 00 J a erfc t Ja a T 0,0, t d d 2                       (16b)   22 1 a 2 a 1 3 5 a T 0,0, t F ,1; , ; 4 4 t 2 2 2 4 t 3                   (17b)
The stationnary surface temperature at the centre of the heat source becomes   In this case, we have:

1 a T 0,0, 4     ( 
      a 1/2 2 0 0 Ja J d a 2 a          (8c)
The surface temperature, given by equation ( 7) can be written as follows

            0 1/2 0 1/2 2 00 J r J a erfc t J r J a aa T r,0, t d d 2                     (9c) 
Consider the first term on the right of equation (9c). We have:

          1 2 2 0 1/2 2 0 2 2 sin a / r 2 a 1 1 3 a F , ; ; r a 222 ra r J r J a d 1r F ,0;1; r a 2a 2 2a a                          (10c)
To determine an explicit expression of the second term on the right of equation (9c), us first consider the product of the two Bessel's functions. Indeed, we have:

        k 1/2 2k 2 0 1/2 2 k0 1 2 a 3 a r J r J a F k, k; ; 2 k! k 1 2 2 r                             (11c)
So, we can write:

            k 1/2 2k 2 0 1/2 2 k0 0 2k 0 J r J a erfc t 1 2 a 3 a r d F k, k; ; 2 k! k 1 2 2 r erfc t d                                        (12c)
By using equation ( 13) and replacing all the terms in equation (9c), we obtain the final solution under the following forms:

      2 2 2 1/2 k k 2 2 2 2 k0 a a 1 1 3 a T r a,0, t F , ; ; r 2 2 2 r 1 2 a r 3 a F k, k; ; 4 t k! 2k 1 4 t 2 r                                                    (14c)       1/2 k k 2 2 2 2 2 k0 1 a 2 a r 3 a T r a,0, t F k, k; ; 2 4 t k! 2k 1 4 t 2 r                                              (15c)
The transient surface temperature at the centre of the heat source can be deduced from equation (9c) The stationnary surface temperature at the centre of the heat source becomes   2 a T 0,0, 2

        1/2 1/
    (18c)

Results and analysis

To reduce the number of parameters, all results are presented under a dimensionless form. For this, we use the following dimensionless quantities:

* r r a  , * 2 t t a   , * 0 T T a    (19)
To validate our analytical solutions, we carried out a numerical modeling of the three studied cases. The case (c), for which the flux density is infinite at the radius ra  , has required a particular analysis to take account of the singularity phenomenon. Indeed, we proceeded to a mesh by zones. A very thin mesh has been assigned to zones centered around the singularity ( ra  ).

The analytical solution gives results almost instantaneously (about 10 terms ensures the convergence of the series). Numerically, computation times are much longer because: mesh optimization (several tests) and numerical calculations (of the order of tens of minutes). The case with singularity (case c) requires a prohibitive calculation time (of the order of the hour).

Figures 3(a), 3(b) and 3(c) compare the surface temperatures for the three heat flux distributions studied at different times t*. The analytical and numerical results are in a good agreement. As can be expected, the maximum temperatures for cases (a) and (b) are located in the center of the source ( r0  ), and in * r1  (i.e. ra  ) for the case (c). Moreover, the calculations corresponding to the case (c) show that the temperature becomes quickly uniform over the entire surface of the source ( ra  ). Figures 4(a and 2 ) are presented in the figure 5 for the three studied cases. We can consider that beyond * r2  the cases have almost the same temperature. This means that the effect of the non-uniformity of the heat source is strongly reduced and then we can identify the average heat flux by using an inverse method [START_REF] Bauzin | Identification of the heat flux generated by friction in an aircraft braking system[END_REF]. Another important interest of these solutions is that they allow the connection of the temperatures at two different radii for the same case by an explicit analytical transfer function. Indeed, the solutions given by the equations (14a), (14b), (14c) are written under the form:

    0 a T r,0, t f r, t    (20) 
Where   f r, t is an explicit known function. So, if we consider two radii 1 r and 2 r , we can write: Otherwise, if the heat flux density is also a function of time, then we have to use the convolution product as shown in eq. (3a).

Fig. 5: Surface temperature evolution at differents radii for the three studied cases

Conclusion

We have presented in this paper new analytical solutions to determine the transient surface temperature for non-uniform disc heat sources. We tested their validity by comparison with numerical modeling. These solutions can be easily implemented in any math softwares, such as Maple, Matlab, Mathematica, since they use hypergeometric functions that are known in these softwares. The computation times are extremely short as the series converge for very few terms (often less than 10 terms).
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 1 Fig.1: Geometry and boundary conditions of the studied problem We will consider in that follows three configurations of distribution of the heat flux density   r 
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 12 Fig. 2: Heat flux density distributions (with the same total heat flux)
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 33 Case (b): semi-elliptic heat flux density:To have a total heat flux identical to the case (a), one must have:
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 34 Case (c): heat flux density with singularity (equivalent to isothermal heat source in steady-state):To have a total heat flux identical to cases (a) and (b), one must have:

  Figures 3(a), 3(b) and 3(c) compare the surface temperatures for the three heat flux distributions studied at different times t*. The analytical and numerical results are in a good agreement. As can be expected, the maximum temperatures for cases (a) and (b) are located in the center of the source ( r0  ), and in * r1  (i.e. ra  ) for the case (c). Moreover, the calculations corresponding to the case (c) show that the temperature becomes quickly uniform over the entire surface of the source ( ra  ). Figures4(a), 4(b) and 4(c) show that the temperature residues     * * * * * * an num T r ,0,t T r ,0,t    for the three studied cases are very small.
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 34 Fig. 3: Comparison of numerical and analytical results (solid line: numerically, dashed lines: analytically)

  the same case of heat flux distribution, the transfer function   12 H r ,r , t is explicit and does not require the knowledge of the flux imposed by the heat source.

It is shown that for the same case of heat flux distribution, we can connect the surface temperatures at two different radii by an explicit analytical tranfer function which does not require the knowledge of the flux imposed by the heat source.