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Physarum polycephalum (literally, multi-headed slime mould) is a multinucleated, 
unicellular organism that belongs to the protoplast mucus of amoebina. Physarum is 
increasingly popular in diverse fields including biophysics, evolutionary computation, 
bioengineering, intelligent algorithms [1-8], because of its striking high-level of 
biologically intelligent behavior which was first reported in 2010 [9]. For example, 
inoculated in a maze of corridors on the agar surface with food resources placed at the 
two terminals of the maze, Physarum polycephalum is able to automatically detect the 
shortest path along which a protoplasmic pipeline will be formed to connect the food 
at the terminals [10]. Surprisingly, this is a self-organized process without centralized 
control. 

Gao et al. [11] reviewed the latest progress of Physarum-based models and 
computations. Through a systematic review of publications in the Web of Science, 
they constructed a network of scientific citations to overview the hot research areas. 
Their major interests lie in the computational models inspired by the two fundamental 
features of Physarum’s foraging behavior, i.e., extension and retraction, which are 
applied as the morphology, taxis and positive feedback dynamics in the top-down and 
bottom-up modeling techniques. They also surveyed some real-world applications 
based on the core features of Physarum for solving difficult computational problems. 
Furthermore, they outlined recent advancements in bionic algorithms that are 
grounded in the bio-intelligence of Physarum polycephalum.  

This comprehensive review inspires a thought-provoking question: What can 
artificial intelligence (AI) learn from bionic algorithms? One of the mainstream 
directions in AI-based research and development is to guide machines to think like 
people[19, 20]. Recent decades, AI has accumulated substantial achievements in 
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supervised learning via synthesis with neuroscience, psychology and cognitive 
science [21]. However, unsupervised learning, as the main direction towards the 
“real” AI, is still a hard problem. Bionic algorithms may inspire useful tools to 
solving such problems. 

For example, social insects such as ants and bees are typical organisms with 
distributed intelligence [12]. Their population survival relies on the collective 
predation, the observation of which leads to the establishment of Ant Colony 
Algorithms (ACA) that was first proposed by Marco Dorigo [13]. For path 
optimization problems such as "finding a shortest path between two points on a 
polyhedron", the strategy of ACA is to continuously release "ants" from one of these 
two points and let them do random walks on the polyhedron. Similar to the real ants 
that excrete pheromones for triggering social response, the simulated "ants" record 
their positions to guide others in subsequent simulation iterations. In fact, the 
development of swarm-intelligence algorithms such as the ACA echoes the progress 
in modern statistical and machine learning (e.g. Markov chain Monte Carlo and 
Hamiltonian Monte Carlo [14-17]).   

Let us revisit Physarum polycephalum reviewed by Gao et al. [11]. An interesting 
case study [2] has shown the potential of such unicellular organism in designing 
planar transportation networks. For example, if food sources are placed according to 
the spatial location of multiple cities on the map of a country, Physarum can connect 
the food resources by reshaping its body as a network of growth routes, which 
resembles the real-world roads and railways networks of that country. This is because 
of the strong deformability of Physarum, i.e. the dramatic local deformation of cell 
membrane in response to the chemical source concentration gradient of food 
resources. Physarum keeps on growing along the directions at which it perceives a 
higher food chemical concentration after deforming, while its body remains the same 
or retracts along the other directions with lower perceived concentration. This 
bio-intelligent strategy is conceptually similar to many other likelihood-based 
searching algorithms.   

Although AI-based research and development have been highly successful in 
supervised learning, unsupervised learning is still running on a bumpy and winding 
road [18]. Organisms such as Physarum polycephalum and social insects have shown 
the advantages in self-organization, adaptive learning, distributed and dynamical 
optimization and control, etc. Bionic algorithms built by deciphering the mechanisms 
underlying biological intelligence will provide cues for designing unsupervised 
learning algorithms.  
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