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In this paper, we investigate the mapping properties of pseudo-differential operators with operator-valued symbols. We prove the boundedness of regular symbols on Sobolev spaces

and Besov spaces B α p,q (R d ; Lp(M)) for α ∈ R and 1 ≤ p, q ≤ ∞, as well as the boundedness of forbidden symbols on H α 2 (R d ; L 2 (M)) and B α p,q (R d ; Lp(M)) for α > 0 and 1 ≤ p, q ≤ ∞. Thanks to the smooth atomic decomposition of the operator-valued Triebel-Lizorkin spaces F α,c 1 (R d , M) obtained in our previous paper, we establish the F α,c 1 -regularity of regular symbols for every α ∈ R, and the F α,c 1 -regularity of forbidden symbols for α > 0. As applications, we obtain the same results on the usual and quantum tori.

Pseudo-differential operators were first explicitly defined by Kohn-Nirenberg [START_REF] Kohn | An algebra of pseudo-differential operators[END_REF] and Hörmander [START_REF] Hörmander | Pseudo-differential operators[END_REF] to connect singular integrals and differential operators. They can be viewed as generalizations of Fourier multipliers, i.e., those operators acting on functions of variable s ∈ R d , formally determined by

T (e 2πis•ξ ) = σ(ξ)e 2πis•ξ , ∀ ξ ∈ R d . In this sense, σ(ξ) is called the symbol of the operator T . If T is one of those more general operators, it is characterized by the symbol σ(s, ξ), which is now a function of s as well as ξ, i.e., T (e 2πis•ξ ) = σ(s, ξ)e 2πis•ξ .

Using the inverse Fourier transform, this characterization looks like (0.1) T f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ.

To emphasize the role of the symbol σ, we often write T as T σ . And we call this T σ a pseudodifferential operator.

Here are some examples of pseudo-differential operators. If σ is independent of the variable s, then we go back to the Fourier multiplier mentioned above. On the other hand, if σ is independent of the variable ξ, then by (0.1), we get T f (s) = σ(s) • f (s), the pointwise multiplication. To give an example of pseudo-differential operator whose symbol is a function of both s and ξ, we consider the partial differential operator L = |m|1≤k a m (s)D m s , where m ∈ N d 0 and |m| 1 = m 1 + • • • + m d . This time, by (0.1) again, we know that the symbol of L is

σ(s, ξ) = |m|1≤k a m (s)(2πiξ) m .
For a general symbol σ, T σ may be thought of as a limit of linear combinations of operators composed by pointwise multiplications and Fourier multipliers.

The study of pseudo-differential operators connects partial differential operators with harmonic analysis. More precisely, the regularity of the solution of a PDE corresponds to the boundedness of the related pseudo-differential operator on some function spaces. This amounts to one of the most important problems in pseudo-differential operator theory: the mapping properties of these operators on various function spaces. Given n ∈ R and 0 ≤ δ, ρ ≤ 1, denote by S n ρ,δ the Hörmander class of symbols, consisting of all infinitely differentiable functions σ :

R d × R d → C such that (0.2) |D γ s D β ξ σ(s, ξ)| ≤ C γ,β (1 + |ξ|) n+δ|γ|1-ρ|β|1
for all s, ξ ∈ R d . One may ask which kind of symbol classes give pseudo-differential operators that are bounded on L p -spaces, Sobolev, Besov, Hardy or Triebel-Lizorkin spaces. In general, it is known that pseudo-differential operators are not necessarily bounded on the classical Hardy space H 1 (R d ), or homogeneous Besov and Triebel-Lizorkin spaces. As a result, when studying the mapping properties of pseudo-differential operators, one usually focuses on inhomogeneous function spaces, such as the local Hardy spaces h p (R d ) defined by Goldberg [START_REF] Goldberg | A local version of real Hardy spaces[END_REF] which provides the inhomogeneous version of [START_REF] Fefferman | Hp spaces of several variables[END_REF], or inhomogeneous Besov and Triebel-Lizorkin spaces (see Triebel [START_REF] Triebel | Theory of function spaces[END_REF] and [START_REF] Triebel | Theory of function spaces[END_REF] for the definitions). For details on these results in the classical setting, we refer to [START_REF] Bourdaud | Une algèbre maximale d'opérateurs pseudo-différentiels de type 1,1. Séminaire sur les Équations aux Dérivées Partielles 1987-1988[END_REF][START_REF] Calderón | A class of bounded pseudo-differential operators[END_REF][START_REF] Coifman | Au delá des operateurs pseudo-différentiels[END_REF][START_REF] Runst | Pseudodifferential operators of the "exotic" class L 0 1,1 in spaces of Besov and Triebel-Lizorkin type[END_REF][START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF][START_REF] Torres | Continuity properties of pseudodifferential operators of type 1,1[END_REF][START_REF] Triebel | Theory of function spaces[END_REF].

In the noncommutative setting, this line of research started with Connes and Baaj's work [START_REF] Connes | C * -algèbres et géométrie différentielle[END_REF][START_REF] Baaj | Calcul pseudodifférentiel et produits croisés de C * -algèbres, I and II[END_REF]] on pseudo-differential calculus for C * -dynamical systems, which intended to extend the Atiyah-Singer index theorem [START_REF] Atiyah | The Index of Elliptic Operators on Compact Manifolds[END_REF] for Lie group actions on C * -algebras. At that time, due to the fact that very little had been done about the analytic aspect, the work of Connes and his collaborators did not include L p -estimates for parametrices or error terms. Recently, inspired by the development of noncommutative harmonic analysis, a lot of progress has been made on Fourier multiplier theory and Calderón-Zygmund theory on noncommutative L p spaces, thanks to the efforts of many researchers [START_REF] Cadilhac | Weak boundedness of Calderón-Zygmund operators on noncommutative L 1 -spaces[END_REF][START_REF] Chen | Harmonic analysis on quantum tori[END_REF][START_REF] González-Pérez | Smooth Fourier multipliers in group algebras via Sobolev dimension[END_REF][START_REF] Hong | Calderón-Zygmund operator associated to matrixvalued kernels[END_REF][START_REF] Junge | Noncommutative Riesz transforms -dimension free bounds and Fourier multipliers[END_REF][START_REF] Junge | Noncommutative Riesz transforms -a probabilistic approach[END_REF][START_REF] Junge | Smooth Fourier multipliers on group von Neumann algebras[END_REF][START_REF] Mei | Pseudo-localization of singular integrals and noncommutative Littlewood-Paley inequalities[END_REF][START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF][START_REF] Parcet | Pseudo-localization of singular integrals and noncommutative Calderón-Zygmund theory[END_REF][START_REF] Ricard | Lp-multipliers on quantum tori[END_REF][START_REF] Xia | Characterizations of operator-valued Hardy spaces and applications to harmonic analysis on quantum tori[END_REF][START_REF] Xiong | Function spaces on quantum tori[END_REF][START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF]. But so far, the mapping properties of pseudo-differential operators are rarely studied which seems to be a good candidate to connect the noncommutative harmonic analysis with the noncommutative differential geometry [START_REF] Connes | Noncommutative Geometry[END_REF].

As we know, pseudo-differential operators have substantial impact on linear and non-linear PDEs [START_REF] Taylor | Pseudodifferential operator[END_REF][START_REF] Taylor | Pseudodifferential operators and Nonlinear PDE[END_REF]. In the noncommutative setting, an important motivation for us to investigate the pseudodifferential operators is their potential applications on noncommutative PDEs. Studying their mapping properties on the most fundamental noncommutative manifold quantum tori is surely a good starting point for us. Our strategy is to use the transference method [START_REF] Chen | Harmonic analysis on quantum tori[END_REF][START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF] to transfer the analysis from the setting of semicommutative algebras to the case of fully noncommutative algebras, specifically, from spaces of bounded functions defined on R d or T d with values in some von Neumann algebras to quantum tori.

In this paper, we consider the boundedness of noncommutative pseudo-differential operators on operator-valued function spaces and then apply the corresponding results to quantum tori. Our definition of symbol classes is modelled on the classical definition by Hörmander; the idea is to consider those operator-valued functions σ : R d × R d → M satisfying (0.2) with operator norms in place of absolute values of the derivatives of σ. Here M is a von Neumann algebra. If f : R d → L 1 (M)+M is a good enough function, we can consider the action of a pseudo-differential operator with symbol σ on this f . Because of the noncommutativity, we have two different actions:

(0.3) T c σ f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ and T r σ f (s) = R d
f (ξ)σ(s, ξ)e 2πis•ξ dξ.

We will mainly work on the column operators T c σ and establish their mapping properties on (potential) Sobolev spaces H α p (R d ; L p (M)) and Besov spaces B α p,q (R d ; L p (M)), as well as local Hardy spaces h c p (R d , M) and inhomogeneous Triebel-Lizorkin spaces F α,c p (R d , M). The Sobolev and Besov spaces are defined in a similar way as their Banach-valued counterparts (see section 3 for concrete definitions in the operator-valued setting), while the local Hardy spaces and Triebel-Lizorkin spaces are introduced and studied in our recent papers [START_REF] Xia | Operator-valued local Hardy spaces[END_REF] and [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. Now we state the main results of this paper, and briefly describe the ingredients of the proofs. We concentrate on the pseudo-differential operators with operator-valued symbols in S n 1,δ , the class of infinitely differentiable functions σ : R d × R d → M such that

D γ s D β ξ σ(s, ξ) M ≤ C γ,β (1 + |ξ|) n+δ|γ|1-|β|1 , ∀ s, ξ ∈ R d .
The first part of the results is about the Sobolev and Besov spaces. Let σ ∈ S 0 1,δ . i) If 0 ≤ δ < 1, T c σ is bounded on the Sobolev space

H α 2 (R d ; L 2 (M)) for any α ∈ R. ii) If δ = 1, T c σ is bounded on H α 2 (R d ; L 2 (M)) for any α > 0. iii) If 0 ≤ δ < 1, T c
σ is bounded on the Besov space B α p,q (R d ; L p (M)) for any 1 ≤ p, q ≤ ∞ and α ∈ R. iv) If δ = 1, T c σ is bounded on B α p,q (R d ; L p (M)) for any 1 ≤ p, q ≤ ∞ and α > 0. The proof of the L 2 regularity in i) is similar to the corresponding classical result, relying heavily on the Cotlar-Stein Orthogonality Lemma. But if σ ∈ S 0 1,1 , we no longer have this L 2 regularity; we prove the boundedness of T c σ on the Sobolev spaces H α 2 (R d ; L 2 (M)) for α > 0 instead. To demonstrate this boundedness on Sobolev spaces, we will have to treat the kernels of the dyadic pieces of symbols, and use the relation between Sobolev and Besov spaces. The same trick will lead to the boundedness of T c σ on Besov spaces. The regularities of pseudo-differential operators on local Hardy spaces and Triebel-Lizorkin spaces are much more complicated. The main part of the proof concerns the case p = 1 for both kinds of spaces. Compared to the standard proof of the boundedness on Hardy spaces of a usual Calderón-Zygmund operator with a commutative or noncommutative convolution kernel, the present proof is much subtler and more technical. We need a careful analysis of the pseudodifferential operator acting on smooth (sub)atoms given in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. Our results are the following.

i

) If 0 ≤ δ < 1 and σ ∈ S 0 1,δ , T c σ is bounded on F α,c p (R d , M) for any 1 ≤ p ≤ ∞ and α ∈ R. ii) If σ ∈ S 0 1,1 , T c σ is bounded on F α,c 1 (R d , M) for every α > 0. For 0 ≤ δ < 1, we first prove T σ : F α,c 1 (R d , M) → F α,c 1 (R d , M) is bounded. Since the adjoint of σ ∈ S 0
1,δ still belongs to S 0 1,δ when δ < 1, we will deduce the boundedness on F α,c p (R d , M) from duality and interpolation. And for σ ∈ S n 1,δ , we can use the Bessel potential of order n to connect

T c σ with T c σ for σ ∈ S 0 1,σ , i.e. T c σ = T c σ • J n , so as to get the boundedness of T c σ from F α,c p (R d , M) to F α-n,c p (R d , M).
For the case δ = 1, in order to to get the boundedness on F α,c p (R d , M) for p > 1, we need more assumptions on the symbol.

We then apply the outcome to the usual and quantum tori, and obtain parallel results in both cases.

Our regularity results on Sobolev and Besov spaces can be viewed as a particular case of more general Banach-valued inequalities for pseudo-differential operators. Based on the work of Weis [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF], Portal and Štrkalj [START_REF] Portal | Štrkalj. Pseudodifferential operators on Bochner spaces and an application[END_REF] proved that the pseudo-differential operators with operator-valued symbols σ(s, ξ) : R d × R d → B(X) are bounded on the Bochner integrable spaces L p (R d ; X), under the essential assumptions (1) σ is R-bounded (defined in [START_REF] Weis | Operator-valued Fourier multiplier theorems and maximal Lp-regularity[END_REF]), [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF] the Banach space X is a UMD space (see [START_REF] Burkholder | A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional[END_REF]). Since the noncommutative L p spaces are UMD spaces when 1 < p < ∞, Portal and Štrkalj's results apply to L p (L ∞ (R d )⊗M) = L p (R d ; L p (M)) immediately. However, because of the R-boundedness assumption, their results do not cover the symbol classes in this paper.

The situation for Banach-valued Besov spaces is more satisfactory, where neither R-boundedness nor UMD condition are needed, see [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF] for results on Fourier multipliers. More recently, in [START_REF] Barraza-Martínez | Mapping properties for operator-valued pseudodifferential operators on toroidal Besov spaces[END_REF] the authors proved the mapping properties for operator-valued pseudo-differential operators on toroidal Besov spaces B α p,q (T d ; X) for 1 ≤ p, q ≤ ∞ and an arbitrary Banach space X, which covers the corresponding results in section 7. The regularity results on Sobolev and Besov spaces obtained in our paper should be known to experts, but have not been studied systematically in the literature. For the sake of completeness and for our use in the proofs of the regularity results on Triebel-Lizorkin spaces, we include those results, and give proper proofs of them.

Contrary to the Sobolev or Besov case, our regularity results on Triebel-Lizorkin spaces do not follow from any pseudo-differential operator theory in the Banach-valued setting. Let us illustrate this at the level of Hardy spaces. For an M-valued function f on R d , given a Littlewood-Paley decomposition (ϕ j ) j≥0 on R d , the Hardy space norm used in our paper is given by

f hp =    inf f =g+h ( j≥0 |ϕ j * g| 2 ) 1 2 p + ( j≥0 |ϕ j * h * | 2 ) 1 2 p if 1 ≤ p ≤ 2 max ( j≥0 |ϕ j * f | 2 ) 1 2 p , ( j≥0 |ϕ j * f * | 2 ) 1 2 p if 2 < p < ∞.
By the noncommutative Khintchine inequalities [START_REF] Lust-Piquard | Inégalités de Khintchine dans Cp (1 < p < ∞)[END_REF][START_REF] Lust-Piquard | Noncommutative Khintchine and Paley Inequalities[END_REF], this norm is equivalent to j≥0 r j • ϕ j * f Lp(Ω×R d ;Lp(M)) , where {r j } j≥0 is a Rademacher sequence on some probability space (Ω, P ). It seems that this later norm has not been studied so far in the literature.

Let us mention that independently and at the same time, González-Pérez, Junge and Parcet developed in [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF] the pseudo-differential theory in quantum Euclidean spaces that are the non compact analogues of quantum tori. Although the two papers overlap in some ways, they are very different in nature in regard to both arguments and results. The arguments of [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF] are based on a careful analysis of the L 2 and semigroup BMO cases (the latter is defined in [START_REF] Junge | BMO spaces associated with semigroups of operators[END_REF]), while our proof in the case p = 1 (the main case) relies entirely on the atomic decomposition of F α,c 1 (R d , M) obtained in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. Interestingly, as far as the results are concerned, our results deal with the asymmetric situation of boundedness of

T c σ (T r σ ) on column (row) Triebel-Lizorkin spaces F α,c p (R d , M) (F α,r p (R d , M)) with 1 ≤ p ≤ ∞.
However, our methods do not yield the F α,r p -regularity of T c σ nor the F α,c p -regularity of T r σ , thus in particular we are not able to get the L p -regularity of T c σ since F α p (R d , M) coincides with L p (L ∞ (R d )⊗M) when α = 0 and 1 < p < ∞. In [START_REF] González-Pérez | Singular integral in quantum Euclidean spaces[END_REF], in the quantum Euclidean setting, the authors define the class of symbols Σ 0 ρ,δ which eliminates this asymmetry, and obtain the boundedness of the corresponding pseudo-differential operators on L p -spaces with 1 < p < ∞. Coming back to the commutative case, Σ 0 ρ,δ reduces to the case of classical Hörmander symbols, while in the fully noncommutative setting, Σ 0 ρ,δ is strictly smaller than S 0 ρ,δ . Thus the L p -regularity of T c σ (or T r σ ) is still unsolved for the whole class S 0 ρ,δ . The paper is organized as follows. In section 1, we introduce some elementary notation and knowledge on noncommutative L p -spaces, and the definitions of local Hardy spaces in [START_REF] Xia | Operator-valued local Hardy spaces[END_REF] and inhomogeneous Triebel-Lizorkin spaces in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. Then we present the smooth atomic decompositions of these spaces obtained in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. In section 2, we give the concrete definitions and some easily deduced useful facts on operator-valued pseudo-differential operators. In section 3 we prove the mapping properties of pseudo-differential operators on Sobolev and Besov spaces. Section 4 is devoted to the study of the local mapping properties of pseudo-differential operators, i.e. their action on atoms. In sections 5 and 6, we prove the mapping properties of pseudo-differential operators with regular and forbidden symbols respectively. The last section presents applications to the usual and quantum tori.

We close this introduction section by the following convention. Throughout, we will use the notation A B, which is an inequality up to a constant: A ≤ cB for some constant c > 0. The relevant constants in all such inequalities may depend on the dimension d, the test functions ϕ or Φ, or p, etc., but never on the function f in consideration. The equivalence A ≈ B will mean A B and B A simultaneously.

Preliminaries on noncommutative analysis

We begin with an introduction of notation and basic knowledge on vector-valued Fourier analysis, i.e., Fourier analysis on functions with values in a Banach spaces X. Let S(R d ; X) be the space of X-valued rapidly decreasing and infinitely differentiable functions on R d with the standard Fréchet topology. In particular, S(R d ; C) is simply denoted as S(R d ). Let S (R d ; X) be the space of continuous linear maps from S(R d ) to X; the elements of S (R d ; X) are the so-called X-valued tempered distributions. All operations on S(R d ) such as derivation, convolution and Fourier transform transfer to S (R d ; X) in the usual way. On the other hand, L p (R d ; X) naturally embeds into S (R d ; X) for 1 ≤ p ≤ ∞, where L p (R d ; X) stands for the space of strongly p-integrable functions from R d to X. By this definition, Fourier transform and Fourier multipliers on R d extend to vector-valued tempered distributions in a natural way.

We give some typical Fourier multipliers that will be frequently used in the sequel. For a real number α, the Bessel potential is the operator

J α = (1 -(2π) -2 ∆) α 2 defined on S (R d ; X),
where ∆ denotes the Laplacian on R d . If α = 1, we will abbreviate J 1 as J. We denote also 

J α (ξ) = (1 + |ξ| 2 ) α 2 on R d .
     supp ϕ ⊂ {ξ : 1 2 ≤ |ξ| ≤ 2}. ϕ > 0 on {ξ : 1 2 < |ξ| < 2}, k∈Z ϕ(2 -k ξ) = 1, ∀ ξ = 0.
Given k ∈ N, let ϕ k be the function whose Fourier transform is equal to ϕ(2 -k •) and ϕ 0 be the function whose Fourier transform is equal to 1

-k>0 ϕ(2 -k •). Then {ϕ k } k≥0 gives a Littlewood- Paley decomposition on R d such that (1.2) supp ϕ k ⊂ {ξ ∈ R d : 2 k-1 ≤ |ξ| ≤ 2 k+1 }, ∀ k ∈ N, supp ϕ 0 ⊂ {ξ ∈ R d : |ξ| ≤ 2}
and that

(1.3) ∞ k=0 ϕ k (ξ) = 1, ∀ ξ ∈ R d .
Other than the above Littlewood-Paley decomposition, we will need another kind of resolution of the unit on R d (see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Section VII.2.4]). Let X 0 be a nonnegative infinitely differentiable function on R d such that supp X 0 ⊂ 2Q 0,0 , and k∈Z d X 0 (s -k) = 1 for every s ∈ R d . Here Q 0,0 is the unit cube centered at the origin, and 2Q 0,0 is the cube with the same center, but twice the side length; see the end of this section for notation of general cubes. Set X k = X 0 (• -k). Then each X k is supported in the cube 2Q 0,k = k + 2Q 0,0 , and all X k 's form a smooth resolution of the unit:

(1.4) 1 = k∈Z d X k (s), ∀ s ∈ R d .
This smooth resolution of the unit will often be used to divide functions or distributions into small pieces, which have the same smoothness as before, but have compact supports additionally.

1.1. Noncommutative L p -spaces. Let us turn to the setting of operator-valued analysis, where the above involved Banach spaces X are required to have some operator space structure now. In this paper, all function spaces in consideration are based on the noncommutative L p -spaces associated to (M, τ ), where M is a von Neumann algebra τ is a normal semifinite faithful trace, and 1 ≤ p ≤ ∞. The norm of L p (M) will be often denoted simply by • p . But if different L p -spaces appear in a same context, we will sometimes specify the respective L p -norms in order to avoid possible ambiguity. The reader is referred to [START_REF] Pisier | Noncommutative Lp-spaces[END_REF][START_REF] Xu | Noncommutative Lp-spaces and martingale inequalities[END_REF][START_REF] Junge | Noncommutative maximal ergodic theorems[END_REF] for more information on noncommutative L p -spaces. These noncommutative L p -spaces are equipped with their natural operator space structure introduced by Pisier [START_REF] Pisier | Noncommutative vector valued Lp spaces and completely p-summing maps[END_REF][START_REF] Pisier | Introduction to operator space theory[END_REF]. The structure on L 1 (M) is defined as the one induced by the opposite of dual space (M ) op . For 1 < p < ∞, the natural operator space structure on L p (M) is given by the family of norms determined by the complex interpolation

M n (L p (M)) = M n (M), M n (L 1 (M)) 1 p
, where the norm of M n (M) ⊂ M n (B(H)) is induced by the one on M n (B(H)) ∼ = B( n 2 (H)). We will also need Hilbert space-valued noncommutative L p -spaces (see [START_REF] Junge | H ∞ -functional calculus and square functions on noncommutative Lp-spaces[END_REF] for more details). Let H be a Hilbert space and v ∈ H with v = 1. Let p v be the orthogonal projection onto the one-dimensional subspace generated by v. Define

L p (M; H r ) = (p v ⊗ 1 M )L p (B(H)⊗M) and L p (M; H c ) = L p (B(H)⊗M)(p v ⊗ 1 M ).
These are the row and column noncommutative L p -spaces, which are 1-complemented subspaces of L p (B(H)⊗M).

In most part of this paper, we are interested in operator-valued functions. The involved von Neumann algebra is the semi-commutative algebra L ∞ (R d )⊗M with tensor trace, denoted by N in the sequel. We will frequently use the following Cauchy-Schwarz type inequality, (1.5)

R d φ(s)f (s)ds 2 ≤ R d |φ(s)| 2 ds R d |f (s)| 2 ds,
where φ : R d → C and f : R d → L 1 (M) + M are functions such that all integrations of the above inequality make sense. Here for an operator x, |x| 2 denotes x * x. (1.5) is an easy consequence of the convexity of the operator-valued function: x → |x| 2 , and "≤" is understood as the partial order in the positive cone of M. We will also require the operator-valued version of the Plancherel formula.

For sufficiently nice functions f :

R d → L 1 (M) + M, for example, for f ∈ L 2 (R d ) ⊗ L 2 (M), we have (1.6) R d |f (s)| 2 ds = R d | f (ξ)| 2 dξ.
1.2. Inhomogeneous Triebel-Lizorkin spaces. We follow the presentation in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF], to give the definition of inhomogeneous Triebel-Lizorkin spaces. Let 1 ≤ p < ∞ and α ∈ R, and ϕ be the Schwartz function determined by (1.1). The column Triebel-Lizorkin space

F α,c p (R d , M) is defined by F α,c p (R d , M) = {f ∈ S (R d ; L 1 (M) + M) : f F α,c p < ∞}, where f F α,c p = ( j≥0 2 2jα |ϕ j * f | 2 ) 1 2
Lp(N ) .

The row space F α,r p (R d , M) consists of all f such that f * ∈ F α,c p (R d , M), equipped with the norm

f F α,r p = f * F α,c p . The mixture space F α p (R d , M
) is defined to be

F α p (R d , M) = F α,c p (R d , M) + F α,r p (R d , M) if 1 ≤ p ≤ 2 F α,c p (R d , M) ∩ F α,r p (R d , M) if 2 < p < ∞, equipped with f F α p =    inf f =g+h { g F α,c p + h F α,r p } if 1 ≤ p ≤ 2 max{ f F α,c p , f F α,r p } if 2 < p < ∞. If p = ∞, define F α,c ∞ (R d , M) as the space of all f ∈ S (R d ; M) such that f F α,c ∞ = ϕ 0 * f N + sup |Q|<1 1 |Q| Q j≥-log 2 (l(Q)) 2 2jα |ϕ j * f (s)| 2 ds 1 2 M < ∞,
where Q denotes any cube in R d , |Q| its volume, and l(Q) its side length. Let 1 ≤ p < ∞, α ∈ R and q be the conjugate index of p. Then the dual space of F α,c p (R d , M) coincides isomorphically with F -α,c q (R d , M). The Triebel-Lizorkin spaces form an interpolation scale with respect to the complex interpolation method [START_REF] Bergh | Interpolation Spaces: An Introduction[END_REF]: For α 0 , α 1 ∈ R and 1 < p < ∞, we have

F α0,c ∞ (R d , M), F α1,c 1 (R d , M) 1 p = F α,c p (R d , M), α = (1 - 1 p )α 0 + α 1 p .
See [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF] for the proof of this interpolation. When α = 0 and 1 ≤ p < ∞, it is proved in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF] that F 0,c p (R d , M) = h c p (R d , M) with equivalent norms, where h c p (R d , M) (see [START_REF] Xia | Operator-valued local Hardy spaces[END_REF] for the definition) are the local analogues of the operator-valued Hardy spaces defined in [START_REF] Mei | Operator-valued Hardy Spaces[END_REF]. The lifting property of Triebel-Lizorkin spaces states that, for any β ∈ R, J β is an isomorphism between F α,c p (R d , M) and F α-β,c p (R d , M). In particular, J α is an isomorphism between F α,c p (R d , M) and h c p (R d , M). In this sense, these Triebel-Lizorkin spaces can be viewed as an extension of local Hardy spaces. Moreover, when 1 < p < ∞, we have, with equivalent norms,

(1.7) L p (N ) = h p (R d , M) = F 0 p (R d , M), where N = L ∞ (R d )⊗M.
In the classical Euclidean setting, when 1 < p < ∞, the local Hardy space h p (R d ) is equivalent to the usual Hardy space H p (R d ) as well as L p (R d ), while when p = 1 one has the strict inclusions [START_REF] Goldberg | A local version of real Hardy spaces[END_REF] for more details.

H 1 (R d ) ⊂ h 1 (R d ) ⊂ L 1 (R d ); see
1.3. Atomic decompositions. We begin with the case α = 0, i.e., the atomic decomposition of local Hardy space h c 1 (R d , M). Much as in the classical case, the atomic decomposition of h c 1 (R d , M) can be deduced from the h 1 -bmo duality. The following definition of atoms is given in [START_REF] Xia | Operator-valued local Hardy spaces[END_REF].

Definition 1.1. Let Q be a cube in R d with |Q| ≤ 1. If |Q| = 1, an h c 1 -atom associated with Q is a function a ∈ L 1 (M; L c 2 (R d )) such that • supp a ⊂ Q; • τ Q |a(s)| 2 ds 1 2 ≤ |Q| -1
2 . If |Q| < 1, we assume additionally:

• Q a(s)ds = 0.

Let h c 1,at (R d , M) be the space of all f admitting a representation of the form

f = ∞ j=1 λ j a j ,
where the a j 's are h c 1 -atoms and

λ j ∈ C such that ∞ j=1 |λ j | < ∞.
The above series converges in the sense of distributions. We equip h c 1,at (R d , M) with the following norm:

f h c 1,at = inf{ ∞ j=1 |λ j | : f = ∞ j=1 λ j a j ; a j 's are h c 1 -atoms, λ j ∈ C}.
It is proved in [START_REF] Xia | Operator-valued local Hardy spaces[END_REF] that

(1.8) h c 1,at (R d , M) = h c 1 (R d , M
) with equivalent norms. It is also evident in the proof of (1.8) given in [START_REF] Xia | Operator-valued local Hardy spaces[END_REF] that, in Definition 1.1, we can replace the support Q of atoms by any bounded multiple of Q.

Before proceeding further, we point out that throughout the paper, we will use the following notations for cubes in R d : For any cube Q ⊂ R d and any positive integer λ, λQ is the cube with the same center as Q but side length scaled by a factor λ; for s ∈ R d , s + Q denotes the cube obtained by shifting Q by the vector s = (s 1 , • • • , s d ).

Let us introduce the smooth atomic decomposition of F α,c 1 (R d , M), which will be a key ingredient to obtain the boundedness of pseudo-differential operators on F α,c 1 (R d , M). This decomposition is an extension as well as an improvement of the atomic decomposition of h c 1 (R d , M) in (1.8). Compared to (1.8), the smoothness of atoms is improved and subatoms enter in the game.

For every

l = (l 1 , • • • , l d ) ∈ Z d , µ ∈ N 0 , we define Q µ,l
in R d to be the cubes centered at 2 -µ l, and with side length 2 -µ . For instance, Q 0,0 = [- 1 2 , 1 2 ) d is the unit cube centered at the origin. Let D d be the collection of all the cubes Q µ,l defined above. We write (µ, l) ≤ (µ , l ) if

µ ≥ µ and Q µ,l ⊂ 2Q µ ,l .
For a ∈ R, let a + = max{a, 0} and [a] the largest integer less than or equal to a. Denote

|γ| 1 = γ 1 + • • • + γ d and D γ = ∂ γ1 1 • • • ∂ γ d d for γ ∈ N d 0 , and s β = s β1 1 • • • s β d d for s ∈ R d , β ∈ N d 0 .
Recall that J α is the Bessel potential of order α. Definition 1.2. Let α ∈ R, and let K and L be two integers such that

K ≥ ([α] + 1) + and L ≥ max {[-α], -1}. i) A function b ∈ L 1 (M; L c 2 (R d )) is called an (α, 1)-atom if • supp b ⊂ 2Q 0,k , k ∈ Z d ; • τ ( R d |D γ b(s)| 2 ds) 1 2 ≤ 1, ∀ γ ∈ N d 0 , |γ| 1 ≤ K. ii) Let Q = Q µ,l ∈ D d . A function a ∈ L 1 (M; L c 2 (R d )) is called an (α, Q)-subatom if • supp a ⊂ 2Q; • τ ( R d |D γ a(s)| 2 ds) 1 2 ≤ |Q| α d - |γ| 1 d , ∀ γ ∈ N d 0 , |γ| 1 ≤ K; • R d s β a(s)ds = 0, ∀ β ∈ N d 0 , |β| 1 ≤ L. iii) A function g ∈ L 1 (M; L c 2 (R d )) is called an (α, Q k,m )-atom if (1.9) τ ( R d |J α g(s)| 2 ds) 1 2 ≤ |Q k,m | -1 2 and g = (µ,l)≤(k,m) d µ,l a µ,l ,
for some k ∈ N 0 and m ∈ Z d , where the a µ,l 's are (α, Q µ,l )-subatoms and the d µ,l 's are complex numbers such that (

(µ,l)≤(k,m) |d µ,l | 2 ) 1 2 ≤ |Q k,m | -1 2 .
We have obtained in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]Theorem 5.7] the following smooth atomic decomposition:

Theorem 1.3. Let α ∈ R and K, L be two integers fixed as in Definition 1.2. Then any f ∈ F α,c 1 (R d , M
) can be represented as

(1.10) f = ∞ j=1 µ j b j + λ j g j ,
where the b j 's are (α, 1)-atoms, the g j 's are (α, Q)-atoms, and µ j , λ j are complex numbers with

(1.11) ∞ j=1 (|µ j | + |λ j |) < ∞.
Moreover, the infimum of (1.11) with respect to all admissible representations yields an equivalent norm in F α,c 1 (R d , M). It is worth to point out that the above K and L can be arbitrarily large, depending on the resolution of the unit used in the proof of Theorem 1.3 given in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]. In other words, the orders of the smoothness and moment cancellation of the atoms are at our disposal, so that we can require good enough conditions on the atoms. This will be a very important technique in the proofs of our main results.

Pseudo-differential operators: definitions and basic properties

We introduce the definitions and some basic properties of pseudo-differential operators in this section. The symbols of pseudo-differential operators considered here are B(X)-valued, where X is a Banach space and B(X) denotes the space of all bounded linear operators on X. However, in the later sections, we will only consider those symbols with values in M.

The content of this section is a straightforward generalization to the vector-valued case of the classical theory of pseudo-differential operators, see for instance [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF][START_REF] Taylor | Pseudodifferential operator[END_REF][START_REF] Taylor | Pseudodifferential operators and Nonlinear PDE[END_REF][START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. Such a generalization already appears in some recent papers, see [START_REF] Portal | Štrkalj. Pseudodifferential operators on Bochner spaces and an application[END_REF][START_REF] Barraza-Martínez | Mapping properties for operator-valued pseudodifferential operators on toroidal Besov spaces[END_REF]. So we claim no originality here. Nonetheless, for the sake of completeness, we prefer to include the definitions specifically, and provide complete proofs of the basic properties that will be used in the next sections.

Let n ∈ R and 0 ≤ δ, ρ ≤ 1. Then S n ρ,δ denotes the collection of all infinitely differentiable functions σ defined on R d × R d and with values in B(X), such that for each pair of multi-indices of nonnegative integers γ, β, the inequality

D γ s D β ξ σ(s, ξ) B(X) ≤ C γ,β (1 + |ξ|) n+δ|γ|1-ρ|β|1 holds for some constant C γ,β depending on γ, β and σ. Here again γ = (γ 1 , • • • , γ d ) ∈ N d 0 , |γ| 1 = γ 1 + • • • + γ d and D γ s = ∂ γ 1 ∂s γ 1 1 • • • ∂ γ d ∂s γ d d . Definition 2.1. Let σ ∈ S n ρ,δ . For function f ∈ S(R d ; X), the pseudo-differential operator T σ is a mapping f → T σ f given by (2.1) T σ f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ.
We call σ the symbol of

T σ . Proposition 2.2. Let 0 ≤ δ, ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , T σ is continuous on S(R d ; X).
Proof. By integration by parts, for any s ∈ R d and γ ∈ N d 0 , we have

(2πis) γ T σ f X = (2πis) γ R d σ(s, ξ) f (ξ)e 2πis•ξ dξ X = R d σ(s, ξ) f (ξ)D γ ξ (e 2πis•ξ )dξ X = R d D γ ξ [σ(s, ξ) f (ξ)]e 2πis•ξ dξ X < ∞.
Thus, T σ f is rapidly decreasing. A similar argument works for the partial derivatives of T σ f , then we easily check that T σ f maps S(R d ; X) continuously to itself.

Another way to write (2.1) is as a double integral:

(2.2)

T σ f (s) = R d R d σ(s, ξ)f (t)e 2πi(s-t)•ξ dtdξ.
However, the above ξ-integral does not necessarily converge absolutely, even for f ∈ S(R d ; X). To overcome this difficulty, we will approximate σ by symbols with compact support. To this end, let us fix a compactly supported infinitely differentiable function η defined on

R d × R d such that η = 1 near the origin. Set (2.3) σ j (s, ξ) = σ(s, ξ)η(2 -j s, 2 -j ξ), j ∈ N.
Note that σ j converges pointwise to σ and σ j ∈ S n ρ,δ uniformly in j. Thus, for any f ∈ S(R d ; X), T σj f converges to T σ f in S(R d ; X) as j → ∞. Since the σ j 's have compact supports, formula (2.2) works for T σj f (s). Then we can define the integral (2.2) as follows:

(2.4)

T σ f (s) = lim j→∞ R d R d σ j (s, ξ)f (t)e 2πi(s-t)•ξ dtdξ. Proposition 2.3. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , the adjoint of T σ is continuous on S(R d ; X * ).
Proof. For any f ∈ S(R d ; X) and g ∈ S(R d ; X * ), by the duality relation

T σ f, g = f, (T σ ) * g , we check that (2.5) (T σ ) * g(s) = lim j→∞ R d R d σ * j (t, ξ)g(t)e 2πi(s-t)•ξ dtdξ.
By integration by parts, it is clear that (T σ ) * is continuous on S(R d ; X * ).

Since S (R d ; X * * ) = (S(R d ; X * )) * (see [START_REF] Trèves | Topological vector spaces, distributions and kernels[END_REF]Section 51] for more details on this duality), in the usual way, we extend T σ to an operator on S (R d ; X * * ).

Definition 2.4. Let f ∈ S (R d ; X * * ). We define T σ f by T σ f, g = f, (T σ ) * g , ∀ g ∈ S(R d ; X * ).
By Proposition 2.3, (T σ ) * g ∈ S(R d ; X * ) whenever g ∈ S(R d ; X * ). So the bracket on the right hand side of the above definition is well defined. Therefore, T σ f is well defined, and takes value in S (R d ; X * * ) as well.

Proposition 2.5. Let 0 ≤ δ < 1, 0 ≤ ρ ≤ 1 and n ∈ R. For any σ ∈ S n ρ,δ , T σ is continuous on S (R d ; X * * ).
Proof. For any f ∈ S (R d ; X * * ), we take a sequence (f j ) such that f j → f in S (R d ; X * * ). Then we have

T σ f j , g = f j , (T σ ) * g -→ f, (T σ ) * g = T σ f, g ∀ g ∈ S(R d ; X * ). Thus, T σ f j converges to T σ f in S (R d ; X * * ). So T σ is continuous on S (R d ; X * * ).
The pseudo-differential operator defined above has a parallel description in terms of a distribution kernel:

T σ f (s) = R d K(s, s -t)f (t)dt,
where K is the inverse Fourier transform of σ with respect to the variable ξ, i.e.

(2.6)

K(s, t) = R d σ(s, ξ)e 2πit•ξ dξ.
In the sequel, we will focus on the symbols in the class S n 1,δ with 0 ≤ δ ≤ 1 and n ∈ R. Similarly to the classical case (see [START_REF] Coifman | Au delá des operateurs pseudo-différentiels[END_REF], [START_REF] Hörmander | Pseudo-differential operators and hypoelliptic equations. Singular integrals[END_REF], [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] and [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF]), we prove that for any operator-valued symbol σ ∈ S n 1,δ , the corresponding kernel K satisfies the following estimates:

Lemma 2.6. Let σ ∈ S n 1,δ and 0 ≤ δ ≤ 1. Then the kernel K(s, t) in (2.6) satisfies (2.7) D γ s D β t K(s, t) B(X) ≤ C γ,β |t| -|γ|1-|β|1-d-n , ∀ t ∈ R d \ {0}, (2.8) D γ s D β t K(s, t) B(X) ≤ C γ,β,N |t| -N , ∀ N > 0 if |t| > 1.
Proof. This lemma can be deduced easily from the corresponding scalar-valued results, which can be found in many classical works on pseudo-differential operators, for instance, [START_REF] Torres | Continuity properties of pseudodifferential operators of type 1,1[END_REF]Lemma 5.1.6]. Given x ∈ X and x * ∈ X * with norms equal to one, it is clear that x * , σ(s, t)x is a scalar-valued symbol in S n 1,δ , with distribution kernel x * , K(s, t)x . Thus, we have

x * , D γ s D β t K(s, t)x = D γ s D β t [ x * , K(s, t)x ] ≤ C γ,β |t| -|γ|1-|β|1-d-n , ∀ t ∈ R d \ {0} and x * , D γ s D β t K(s, t)x = D γ s D β t [ x * , K(s, t)x ] ≤ C γ,β,N |t| -N , ∀ N > 0 if |t| > 1.
Then, taking the supremum over x and x * in the above two inequalities, we get the desired assertion.

In the classical case, the proof of the above lemma makes use of the decomposition of the symbol σ into dyadic pieces. Let ( ϕ k ) k≥0 be the resolution of the unit satisfying (1.3). Set (2.9)

σ k (s, ξ) = σ(s, ξ) ϕ k (ξ), ∀ (s, ξ) ∈ R d × R d .
By a similar argument as in the above proof, we also have the following estimates of the corresponding kernels of these pieces σ k 's.

Lemma 2.7. Let σ ∈ S n 1,δ and σ k be as in (2.9) and +n) , ∀ M ∈ N 0 . Now we study the composition of pseudo-differential operators. The following proposition gives a rule of the composition of two pseudo-differential operators. Different from the proof of Lemma 2.6, we can not reduce that of the following proposition to the scalar-valued case. So we need to perform an argument which is similar to the classical case. We refer the reader to [45, Theorem 2.5.1] or [46, p. 237], where the case δ = 0 is dealt with in the classical setting. However, for the case 0 < δ < 1, the remainder of the Taylor expansion of σ 1 is much harder to handle, which requires a subtler expansion of σ 1 .

K k (s, t) := R d σ k (s, ξ)e 2πit•ξ dξ. Then D γ s D β t K k (s, t) B(X) |t| -2M 2 k(|β|1+|γ|1+d-2M
Proposition 2.8. Let 0 ≤ δ < 1 and σ 1 , σ 2 be two symbols in S n1

1,δ and S n2 1,δ respectively. There exists a symbol σ 3 in S n1+n2 1,δ such that

T σ3 = T σ1 T σ2 . Moreover, (2.10) σ 3 - |γ|1<N0 (2πi) -|γ|1 γ! D γ ξ σ 1 D γ s σ 2 ∈ S n1+n2-(1-δ)N0 1,δ , ∀ N 0 ≥ 0.
Proof. Firstly, we assume that σ 1 and σ 2 have compact supports, so we can use (2.2) as an alternate definition of T σ1 and T σ2 . In this way, T σ1 T σ2 can be written as follows:

T σ1 (T σ2 f )(s) = R d R d σ 3 (s, ξ)f (r)e 2πi(s-r)•ξ drdξ,
where

σ 3 (s, ξ) = R d R d σ 1 (s, η)σ 2 (t, ξ)e 2πi(s-t)•(η-ξ) dtdη = R d σ 1 (s, ξ + η) σ 2 (η, ξ)e -2πis•η dη (2.11)
with σ 2 the Fourier transform of σ 2 with respect to the first variable. We expand σ 1 (s, ξ + η) by the Taylor formula:

σ 1 (s, ξ + η) = |γ|1<N0 1 γ! D γ ξ σ 1 (s, ξ)η γ + N0≤|γ|1<N 1 γ! D γ ξ σ 1 (s, ξ)η γ + R N (s, ξ, η),
with the remainder

R N (s, ξ, η) = |γ|1=N 1 γ! 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ dθ.
Now we replace σ 1 (s, ξ + η) in (2.11) by the above Taylor polynomial and remainder. Notice that

1 γ! R d D γ ξ σ 1 (s, ξ)η γ σ 2 (η, ξ)e -2πis•η dη = (2πi) -|γ|1 γ! D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ).
Thus,

σ 3 (s, ξ) = |γ|1<N0 + N0≤|γ|1<N (2πi) -|γ|1 γ! D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) + R d R N (s, ξ, η) σ 2 (η, ξ)e -2πis•η dη.
(2.12)

For every γ, the term

D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) is a symbol in S n1+n2-(1-δ)|γ|1 1,δ
. Indeed, it is clear that

D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) B(X) (1 + |ξ|) n1-|γ|1 (1 + |ξ|) n2+δ|γ|1 = (1 + |ξ|) n1+n2-(1-δ)|γ|1 .
Moreover, for any

β 1 , β 2 ∈ N d 0 , we have D β1 s σ 1 ∈ S n1+δ|β1|1 1,δ , D β2 s σ 2 ∈ S n2+δ|β1|1 1,δ and D β1 ξ σ 1 ∈ S n1-|β2|1 1,δ , D β2 ξ σ 2 ∈ S n2-|β2|1 1,δ
. Thus, we get

D β s [D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ)] B(X) β1+β2=β D β1 s D γ ξ σ 1 (s, ξ)D β2 s D γ s σ 2 (s, ξ) B(X) (1 + |ξ|) n1+n2-(1-δ)|γ|1+δ|β|1 , and 
D β ξ [D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ)] B(X) β1+β2=β D γ+β1 ξ σ 1 (s, ξ)D γ s D β2 ξ σ 2 (s, ξ) B(X) (1 + |ξ|) n1+n2-(1-δ)|γ|1-|β|1 .
By the above estimates, we see that when

N 0 ≤ |γ| 1 < N , D γ ξ σ 1 (s, ξ)D γ s σ 2 (s, ξ) ∈ S n1+n2-(1-δ)N0 1,δ
. Now we have to treat the last term in (2.12). For the remainder R N (s, ξ, η), we easily check that for any |γ| 1 = N and 0 ≤ θ ≤ 1, (2.13)

D γ ξ σ 1 (s, ξ + θη) B(X) ≤ C N (1 + |ξ|) n1-N , if |ξ| ≥ 2|η|, and (2.14) D γ ξ σ 1 (s, ξ + θη) B(X) ≤ C N , ∀ η, ξ ∈ R d .
For σ 2 , by integration by parts, we see that for any β ∈ N d 0 such that |β| 1 = N , we have

(-2πiη) β σ 2 (η, ξ) = R d (-2πiη) β e -2πit•η σ 2 (t, ξ)dt = R d D β t (e -2πit•η )σ 2 (t, ξ)dt = (-1) β R d e -2πit•η D β t σ 2 (t, ξ)dt.
Denote the compact t-support of σ 2 (t, ξ) by Ω. Then the above calculation immediately implies that

(2.15) σ 2 (η, ξ) B(X) |Ω|(1 + |η|) -N (1 + |ξ|) n2+δ N .
We keep the constant |Ω| in this inequality for the moment, and will see in the next step that our final result does not depend on the volume of this support. Take N large enough so that

N > max d 1 -δ , (1 -δ)N 0 δ -δ , d -n 1 + (1 -δ)N 0 1 -2δ ,
and take N = δ N with 0 ≤ δ < δ < 1. Continuing the estimate of the last term in (2.12), inequalities (2.13) and (2.15) give

|η|≤ |ξ| 2 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ σ 2 (η, ξ)e -2πis•η dθdη B(X) R d |η| N (1 + |η|) -N dη • (1 + |ξ|) n1+n2-N +δ N ≤ R d (1 + |η|) ( δ-1) N dη • (1 + |ξ|) n1+n2+(δ-δ) N (1 + |ξ|) n1+n2+(δ-δ) N . Moreover, since N ≥ (1-δ)N0 δ-δ
, we have

(1 + |ξ|) n1+n2+(δ-δ) N ≤ (1 + |ξ|) n1+n2-(1-δ)N0 .
According to (2.14) and (2.15), we get

|η|> |ξ| 2 1 0 D γ ξ σ 1 (s, ξ + θη)(1 -θ) N η γ σ 2 (η, ξ)e -2πis•η dθdη B(X) |η|> |ξ| 2 |η| N (1 + |η|) -N dη • (1 + |ξ|) n2+δ N (1 + |ξ|) n2+N +d-(1-δ) N ≤ (1 + |ξ|) n1+n2-(1-δ)N0 . Therefore, R N (s, ξ, η) ∈ S n1+n2-(1-δ)N0 1,δ
. Combining the estimates above, we see that, if we set

R N0 (s, ξ, η) = N0≤|γ|1<N 1 γ! D γ ξ σ 1 (s, ξ)η γ + R N (s, ξ, η), then R N0 (s, ξ, η) ∈ S n1+n2-(1-δ)N0 1,δ
. This proves the assertion (2.10) when σ 2 has compact support with respect to the first variable.

Noticing that the above proof depends on the constant |Ω| in (2.15), we now make use of the resolution of the unit in (1.4) to deal with general symbol σ 2 with arbitrary s-support. For each

k ∈ Z d , denote σ 2,k (s, ξ) = X k (s)σ 2 (s, ξ) and σ 3,k (s, ξ) = R d R d σ 1 (s, η)σ 2,k (t, ξ)e 2πi(s-t)•(η-ξ) dtdη .
It has already been established that (2.16)

σ 3,k - |γ|1<N0 (2πi) -|γ|1 γ! D γ ξ σ 1 D γ s σ 2,k ∈ S n1+n2-(1-δ)N0 1,δ , ∀ N 0 > 0, k ∈ Z d , with relevant constants uniform in k. Observe that if two symbols b 1 , b 2 in some S n 1,δ have disjoint s-supports, with D γ s D β ξ b i (s, ξ) B(X) ≤ C i,γ,β (1 + |ξ|) n+δ|γ|1-|β|1 , i = 1, 2, then b 1 + b 2 ∈ S n 1,δ with D γ s D β ξ b 1 (s, ξ) + b 2 (s, ξ) B(X) ≤ max{C 1,γ,β , C 2,γ,β }(1 + |ξ|) n+δ|γ|1-|β|1
. For our use, we construct a partition of Z d with subsets U 1 , U 2 , • • • , U 2 d such that for any k 1 , k 2 in each U j , the supports supp X k1 and supp X k2 are disjoint. More precisely, let π: Z -→ Z/2Z be the canonical projection sending even integer to 0 and odd integer to 1. Let π d : Z d -→ (Z/2Z) d be the d-fold product of π. Then (U j ) j∈(Z/2Z) d = (π d ) -1 (j) j∈(Z/2Z) d gives the desired partition of Z d . Summing over (2.16) in each U j , we get a symbol still in

S n1+n2-(1-δ)N0 1,δ , that is, k∈Uj σ 3,k - k∈Uj |γ|1<N0 (2πi) -|γ|1 γ! D γ ξ σ 1 D γ s σ 2,k ∈ S n1+n2-(1-δ)N0 1,δ
.

Taking the finite sum over {U j } 1≤j≤2 d , we get the asymptotic formula (2.10) in this case.

Finally, let us get rid of the additional assumption that σ 1 and σ 2 have compact supports. We define σ j 3 as follows:

T σ j 3 = T σ j 1 T σ j 2 .
where

σ j 1 (s, ξ) = σ 1 (s, ξ)η(2 -j s, 2 -j ξ) and σ j 2 (s, ξ) = σ 2 (s, ξ)η(2 -j s, 2 -j ξ) with η given in (2.
3). Notice that the σ j 1 's and the σ j 2 's are in the class S n1 1,δ and S n2 1,δ respectively with symbolic constants uniform in j. Therefore, the above arguments ensure that σ j 3 belongs to S n1+n2

1,δ and satisfies (2.10) uniformly in j. Passing to the limit, we get that σ 3 ∈ S n1+n2 1,δ and satisfies (2.10). Furthermore, by (2.4), we get

T σ3 = T σ1 T σ2 .
The proof is complete.

By a similar argument as the above proof, we also get the asymptotic formula for the adjoint of a pseudo-differential operator with symbol in the class S n 1,δ when 0 ≤ δ < 1. Proposition 2.9. Let 0 ≤ δ < 1, n ∈ R and σ be a symbol in S n 1,δ . There exists a symbol σ ∈ S n

1,δ such that T σ = (T σ ) * . Moreover, σ - |γ|1<N0 (2πi) -|γ|1 γ! D γ ξ D γ s σ * ∈ S n-(1-δ)N0 1,δ , ∀ N 0 ≥ 0.
Proof. By (2.5), we get the formal expression of σ that

σ(s, ξ) = R d R d σ * (t, η)e 2πi(s-t)•(η-ξ) dtdη = R d σ * (η, ξ + η)e 2πis•η dη,
where σ * is the Fourier transform of σ * with respect to the first variable. By the same argument used in the proof of the previous proposition, we may focus on the symbol with compact t-support.

Taking the Taylor expression of σ * (η, ξ + η), we get

σ * (η, ξ + η) = |γ|1<N0 1 γ! D γ ξ σ * (η, ξ)η γ + N0≤|γ|1<N 1 γ! D γ ξ σ * (η, ξ)η γ + R N (ξ, η).
As before, we can show that

1 γ! R d D γ ξ σ * (η, ξ)η γ e 2πis•η dη = (2πi) -|γ|1 γ! D γ ξ D γ s σ * (s, ξ) ∈ S n-(1-δ)|γ|1 1,δ
.

On the other hand, we can also show that

R d R N (ξ, η)e 2πis•η dη B(X) (1 + |ξ|) n-(1-δ)N0
by splitting the integral over η into two parts. Moreover, repeating the above procedure to its derivatives, we have

R d R N (ξ, η)e 2πis•η dη ∈ S n-(1-δ)N0 1,δ
. Thus, the proposition is proved.

Remark 2.10. The above two propositions show that the symbol class S 0 1,δ is closed under the product and adjoint of pseudo-differential operators. This is one of the reasons why we call symbols in S 0 1,δ with 0 ≤ δ < 1 regular symbols; respectively, we call symbols in S 0 1,1 forbidden symbols. In the next section, we will see the different behaviours of regular and forbidden symbols on L 2 spaces, that also distinguish these two kinds of symbols.

Mapping properties on Sobolev and Besov spaces

In the sequel, we will mainly consider pseudo-differential operators whose symbols take values in some von Neumann algebra M. If we take X = L 1 (M) + M, then M admits an isometric embedding into B(X) by left multiplication. In this way, these M-valued symbols can be seen as a special case of the B(X)-valued symbols defined in the previous section. On the other hand, if we embed M into B(X) by right multiplication, we get another kind of M-valued symbol actions. Accordingly, we define

T c σ f (s) = R d σ(s, ξ) f (ξ)e 2πis•ξ dξ and T r σ f (s) = R d f (ξ)σ(s, ξ)e 2πis•ξ dξ.
All the conclusions proved in the previous section still hold for both T c σ and T r σ in parallel. In the following sections, we mainly focus on the operators T c σ . This section is devoted to the study of the continuity of operator-valued pseudo-differential operators on Sobolev and Besov spaces. Let us now give some background on these function spaces.

For α ∈ R, 1 ≤ p ≤ ∞ and a Banach space X, the potential Sobolev space

H α p (R d ; X) is the space of all distributions in S (R d ; X) which have finite Sobolev norm f H α p = J α f Lp(R d ;X)
. It is well known that the potential Sobolev spaces are closely related to Besov spaces. We still use the resolution of the unit (ϕ k ) k≥0 introduced in (1.3) to define Besov spaces. Given α ∈ R d and 1 ≤ p, q ≤ ∞, the Besov space B α p,q (R d ; X) is defined to be the subspace of S (R d ; X) consisting of all f such that

f B α p,q = k≥0 2 qkα ϕ k * f q Lp(R d ;X) 1 q < ∞.
The above vector-valued Besov spaces B α p,q (R d ; X) have been studied by many authors, see for instance [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF].

Instead of the Banach-valued spaces defined above, we prefer to study the operator-valued spaces H α p (R d ; L p (M)) and B α p,q (R d ; L p (M)). Obviously, the main difference is that the Banach space X varies for different p. The following inclusions are easy to check for every 1 ≤ p ≤ ∞,

B α p,1 (R d ; L p (M)) ⊂ H α p (R d ; L p (M)) ⊂ B α p,∞ (R d ; L p (M)). Besov spaces are stable under real interpolation. More precisely, if α 0 , α 1 ∈ R, α 0 = α 1 and 0 < θ < 1, then (3.1) B α0 p,q0 (R d ; L p (M)), B α1 p,q1 (R d ; L p (M)) θ,q = B α p,q (R d ; L p (M)), for α = (1 -θ)α 0 + θα 1 , p, q, q 0 , q 1 ∈ [1, ∞].
This result is a particular case of Amann's Banachvalued counterpart in [START_REF] Amann | Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications[END_REF] with X = L p (M), which can be deduced from [6, Theorem 5.6.1] by considering the pairing between α0 q0 (L p (R d ; X)) and α1 q1 (L p (R d ; X)). 3.1. Mapping properties on L 2 -Sobolev spaces. We start by presenting an L 2 -theorem. It is a noncommutative analogue of the corresponding classical theorem, which can be found in many works, for instance, [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF][START_REF] Taylor | Pseudodifferential operator[END_REF][START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. We will work on the exotic class S 0 δ,δ with 0 ≤ δ < 1, since we have the inclusion S 0 1,δ ⊂ S 0 δ,δ . Our argument adapts [46, Proposition VII.2.4, Theorem VII.2.5] to the operator-valued case. The Cotlar-Stein Almost Orthogonality Lemma [START_REF] Cotlar | A combinatorial inequality and its applications to L 2 -spaces[END_REF][START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] plays a crucial role in our proof. Namely, given a family of operators (T j ) j ⊂ B(H) with H a Hilbert space, and a positive sequence c(j) j such that j c(j) = C < ∞, if the T j 's satisfy:

T * k T j B(H) ≤ |c(k -j)| 2 and T k T * j B(H) ≤ |c(k -j)| 2 , then we have j T j B(H) ≤ C.
Lemma 3.1. Assume σ ∈ S 0 0,0 . Then T c σ is bounded on L 2 (N ). Proof. By the Plancherel formula, it is enough to prove the L 2 (N )-boundedness of the following operator:

S c σ (f )(s) = R d σ(s, ξ)f (ξ)e 2πis•ξ dξ.
Let us make use of the resolution of the unit (X k ) k∈Z d introduced in (1.4) to decompose S c σ into almost orthogonal pieces. Denote k = (k, k ) ∈ Z d × Z d , and set

σ k (s, ξ) = X k (s)σ(s, ξ)X k (ξ),
Then, the series k∈Z d ×Z d S c σ k converges in the strong operator topology and

S c σ = k∈Z d ×Z d S c σ k .
We claim that (S c σ k ) k satisfies the almost-orthogonality estimates, i.e., for any N ∈ N,

(S c σ k ) * S c σj B(L2(N )) ≤ C N (1 + |k -j|) -2N , and S c σ k (S c σj ) * B(L2(N )) ≤ C N (1 + |k -j|) -2N
, where the constant C N is independent of k = (k, k ) and j = (j, j ). Armed with this claim, we can then apply the Cotlar-Stein Almost Orthogonality Lemma stated previously to the operators (S c σ k ) k with c(j) = (1 + |j|) -N , N > 2d. Then, we will have

S c σ B(L2(N )) = k∈Z d ×Z d S c σ k B(L2(N )) ≤ C.
Now we prove the claim. Note that for any f ∈ L 2 (N ),

(S c σ k ) * S c σj (f )(ξ) = R d σ k,j (ξ, η)f (η)dη, where (3.2) σ k,j (ξ, η) = R d σ * k (s, ξ)σ j (s, η)e 2πis•(η-ξ) ds.
By the definition of σ k , we see that if k -j / ∈ 2Q 0,0 (recalling that Q 0,0 is the unit cube centered at the origin), σ k and σ j have disjoint s-support, so

σ * k σ j = 0. When k -j ∈ 2Q 0,0 , using the identity (1 -∆ s ) N e 2πis•(η-ξ) = (1 + 4π 2 |η -ξ| 2 ) N e 2πis•(η-ξ) ,
we integrate (3.2) by parts, which gives

σ k,j (ξ, η) M ≤ C N X k (ξ)X j (η)(1 + |ξ -η|) -2N . Whence, (3.3) max R d σ k,j (ξ, η) M dξ, R d σ k,j (ξ, η) M dη ≤ C N (1 + |k -j|) -2N .
For any f ∈ L 2 (N ), there exists g ∈ L 2 (N ) with norm one such that

(S c σ k ) * S c σj f L2(N ) = τ R d R d σ k,j (ξ, η)f (η) dη g * (ξ) dξ .
Applying the Hölder inequality and (3.3), we get τ

R d R d σ k,j (ξ, η)f (η) dη g * (ξ) dξ ≤ τ R d R d σ k,j (ξ, η) M |f (η)| 2 dηdξ 1 2 τ R d R d σ k,j (ξ, η) M |g(ξ)| 2 dξdη 1 2 ≤ C N (1 + |k -j|) -2N f L2(N ) . Thus, (S c σ k ) * S c σj B(L2(N )) ≤ C N (1 + |k -j|) -2N
. On the other hand, a similar argument also shows that

S c σ k (S c σj ) * B(L2(N )) ≤ C N (1 + |k -j|) -2N
, which proves the claim.

A weak form of Cotlar-Stein's almost orthogonality lemma also plays a crucial role. As before, we suppose that j c(j) = C < ∞. This time we assume that the T j 's satisfy:

(3.4) sup j T j B(H) ≤ C
and the following conditions hold for j = k:

(3.5) T j T * k B(H) = 0 and T * j T k B(H) ≤ c(j)c(k). Then we have j T j B(H) ≤ √ 2C. Proposition 3.2. Let σ ∈ S 0 δ,δ with 0 ≤ δ < 1. Then T c σ is bounded on L 2 (N ). Proof.
To prove this lemma, we apply Cotlar's lemma as stated above. Let ( ϕ j ) j≥0 be the resolution of the unit defined in (1.3). We can decompose T c σ as follows:

T c σ = ∞ j=0 T c σj = j even T c σj + j odd T c σj ,
where σ j (s, ξ) = ϕ j (ξ)σ(s, ξ). Note that the symbols in either odd or even summand have disjoint ξ-supports. We will only treat the odd part, since the other part can be dealt with in a similar way. It is clear that

T c σj (T c σ k ) * = 0 if j = k, since T c σj (T c σ k ) * = T c σ M ϕj M ϕ k (T c σ )
* and ϕ j , ϕ k have disjoint supports. Now let us estimate the second inequality in (3.5), i.e. the norm of (T c σ k ) * T c σj . Since

(T c σ k ) * (f )(s) = R d R d σ * k (t, ξ)f (t)e 2πiξ•(s-t) dtdξ, and 
T c σj (f )(t) = R d R d σ j (t, η)f (r)e 2πiη•(t-r) drdη.
Then we have

(T c σ k ) * T c σj (f )(s) = R d K(s, r)f (r)dr, with K(s, r) = R d R d R d σ * k (t, ξ)σ j (t, η)e 2πi[η•(t-r)+ξ•(s-t)] dtdηdξ.
Writing

e 2πi(η-ξ)•t = (1 -∆ t ) N (1 + 4π 2 |ξ -η| 2 ) N e 2πi(η-ξ)•t , e 2πi(t-r)•η = (1 -∆ η ) N (1 + 4π 2 |t -r| 2 ) N e 2πi(t-r)•η
, and

e 2πi(s-t)•ξ = (1 -∆ ξ ) N (1 + 4π 2 |s -t| 2 ) N e 2πi(s-t)•ξ ,
we use the integration by parts with respect to the variables t, ξ and η. By standard calculation (see [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF]Theorem 2,p. 286] for more details), we get

K(s, r) M 4 max(k,j)((δ-1)N +d) Q(s -t)Q(t -r)dt, where Q(t) = (1 + |t|) -2N , if k = j. Denote K 0 (s, r) = Q(s -t)Q(t -r)dt, then (3.6) R d K 0 (s, r)ds = R d K 0 (s, r)dr = R d (1 + |t|) -2N dt 2 < ∞.
For any f ∈ L 2 (N ), there exists g ∈ L 2 (N ) with norm one such that

(T c σ k ) * T c σj f L2(N ) = τ R d R d K(s, r)f (r)g(s)drds .
Applying the Hölder inequality and (3.6), we get τ

R d R d K(s, r)f (r)g(s)drds ≤ τ R d R d K(s, r) M |f (r)| 2 dsdr 1 2 τ R d R d K(s, r) M |g(s)| 2 dsdr 1 2 4 max(k,j)((δ-1)N +d) f L2(N ) , which implies that (T c σ k ) * T c σj B(L2(N )) c(j)c(k), j = k,
with c(j) = 2 j((δ-1)N +d) . If we take N > d 1-δ , the sequence c(j) j is summable. In order to apply Cotlar-Stein's lemma, it remains to show that T c σj 's satisfy (3.4). To this end, we do some technical modifications. Set

σ j = σ j (2 -jδ •, 2 jδ •).
We can easily check that the σ j 's belong to S 0 0,0 , uniformly in j. Then, by Lemma 3.1, the T c σj 's are bounded on L 2 (N ) uniformly in j. If Λ j denotes the dilation operator given by Λ j (f ) = f (2 jδ •), then, we can easily verify that

T c σj = Λ j T c σj Λ -1 j . Thus, T c σj B(L2(N )) ≤ T c σj B(L2(N )) < ∞.
Therefore, (T c σj ) j≥0 satisfy the assumptions of Cotlar's lemma. So we get

T c σ B(L2(N )) = ∞ j=0 T c σj B(L2(N )) < ∞. Thus, T c σ is bounded on L 2 (N ).
By Proposition 2.8 and the fact that S 0 1,δ ⊂ S 0 δ,δ for 0 ≤ δ < 1, we have

Corollary 3.3. Let σ ∈ S 0 1,δ with 0 ≤ δ < 1. Then T c σ is bounded on H α 2 (R d ; L 2 (M)) for any α ∈ R.
Proof. If α = 0, by Proposition 3.2 and the inclusion S 0 1,δ ⊂ S 0 δ,δ , we see the boundedness of T c σ on L 2 (R d ; L 2 (M)). For general α = 0, we use the lifting property of H α 2 (R d ; L 2 (M)), which follows easily from the definition. By Proposition 2.8,

T c σ α = J α T c σ J -α is still a pseudo-differential operator with symbol σ α in S 0 1,δ . Then for any f ∈ H α 2 (R d ; L 2 (M)), T c σ f H α 2 = J -α T c σ α J α f H α 2 = T c σ α J α f 2 J α f 2 = f H α 2 . Therefore, T c σ is bounded on ∈ H α 2 (R d ; L 2 (M)).
It is well known [START_REF] Stein | Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals[END_REF] that there exist symbols in S 0 1,1 such that the associated pseudo-differential operators are not bounded on L 2 (R d ). Alternatively, the regularity of operators with forbidden symbols on Sobolev spaces H α p (R d ), Besov spaces B α p,q (R d ) and Triebel-Lizorkin spaces F α p,q (R d ) with α > 0 has been widely investigated, see [START_REF] Meyer | Régularité des solutions des équations aux dérivées partielles non linéaires[END_REF][START_REF] Meyer | Remarques sur un théorème de J.-M. Bony[END_REF][START_REF] Bourdaud | Une algèbre maximale d'opérateurs pseudo-différentiels de type 1,1. Séminaire sur les Équations aux Dérivées Partielles 1987-1988[END_REF][START_REF] Runst | Pseudodifferential operators of the "exotic" class L 0 1,1 in spaces of Besov and Triebel-Lizorkin type[END_REF][START_REF] Torres | Continuity properties of pseudodifferential operators of type 1,1[END_REF].

The following proposition states the regularity of pseudo-differential operators with forbidden symbols on H α 2 (R d ; L 2 (M)), which will be useful when studying that on Triebel-Lizorkin spaces. Proposition 3.4. Let σ ∈ S 0 1,1 . Then T c σ is bounded on H α 2 (R d ; L 2 (M)) for any α > 0. Proof. Let (ϕ j ) j≥0 be the resolution of the unit satisfying (1.3). It is straightforward to show that H α 2 (R d ; L 2 (M)) admits an equivalent norm:

(3.7) f H α 2 (R d ;L2(M)) ≈ j≥0 2 2jα ϕ j * f 2 L2(N ) 1 2 = f B α 2,2 (R d ;L2(M)) .
Thus, it suffices to consider the boundedness of T c σ on B α 2,2 (R d ; L 2 (M)). Let σ k with k ∈ N 0 be the dyadic decomposition of σ given in (2.9). By the support assumptions of ϕ and ϕ 0 , we have 

T c σ k (f ) = T c σ k (f k ), where f k = (ϕ k-1 + ϕ k + ϕ k+1 ) * f for k ≥ 1, and f 0 = (ϕ 0 + ϕ 1 ) * f . Applying Lemma 2.7 to K k with M = 0, we get |s-t|≤2 -k D γ s K k (s, s -t) M dt |s-t|≤2 -k 2 k(|γ|1+d) dt ≈ 2 k|γ|1 . If d + 1 is even, applying Lemma 2.7 again to K k with 2M = d + 1, we get |s-t|>2 -k D γ s K k (s, s -t) M dt |s-t|>2 -k 2 k(|γ|1-1) |s -t| -d-1 dt ≈ 2 k|γ|1 ; if d + 2 is even, letting 2M = d + 2 in
R d D γ s K k (s, s -t) M dt 2 k|γ|1 .
Since the estimate of D γ s K k (s, s -t) M is symmetric in s and t, the same proof also shows that (3.9)

R d D γ s K k (s, s -t) M ds 2 k|γ|1 .
For any f ∈ H α 2 (R d ; L 2 (M)) and k ∈ N 0 , there exists g k ∈ L 2 (N ) with norm one such that

D γ s T c σ k (f ) L2(N ) = τ R d D γ s T c σ k (f )(s)g * k (s)ds . By the Hölder inequality, D γ s T c σ k (f ) 2 L2(N ) = τ R d D γ s T c σ k (f )(s)g * k (s)ds 2 = τ R d R d D γ s K k (s, s -t)f k (t) dt g * k (s) ds 2 = τ R d R d D γ s K k (s, s -t) -1 2 M D γ s K k (s, s -t)f k (t) D γ s K k (s, s -t) 1 2 M g * k (s) dt ds 2 ≤ τ R d R d D γ s K k (s, s -t) M |g k (s)| 2 dt ds • τ R d R d D γ s K k (s, s -t) M |f k (t)| 2 ds dt.
Then (3.8) and (3.9) ensure that

(3.10) D γ s T c σ k (f ) 2 L2(N ) 2 2k|γ|1 • f k 2 L2(N )
. Taking γ = 0, the above calculation implies that

(3.11) T c σ (f ) L2(N ) ≤ k≥0 T c σ k (f ) L2(N ) k≥0 f k L2(N ) f B 0 2,1 , which implies the boundedness of T c σ from B 0 2,1 (R d ; L 2 (M)) to L 2 (N ).
On the other hand, if we take

a 0 = ϕ 0 , a j (ξ) = (1 -ϕ 0 (ξ)) ξ j |ξ| 2 ,
then we get

1 = a 0 (ξ) + d j=1 a j (ξ)ξ j , ∀ ξ ∈ R d .
This identity implies

1 = (a 0 (ξ) + d j=1 a j (ξ)ξ j ) l = |γ|1≤l σ γ (ξ)ξ γ , ∀ l ∈ N 0 , ∀ ξ ∈ R d ,
where the σ γ (ξ)'s are symbols in

S -|γ|1 1,0 ⊂ S -|γ|1
1,1 . The above identity allows us to decompose the term ϕ j * T c σ k (f ) in the following way:

(3.12)

ϕ j * T c σ k (f ) = |γ|1≤l T c σγ (ϕ j * D γ s T c σ k (f )) = |γ|1≤l T c σ j γ (D γ s T c σ k (f )),
where σ j γ = σ γ ϕ j . Note that the symbol σ j γ ∈ S -|γ|1 1,0 for any j, and if |γ| 1 < l, σ j γ = 0 if and only if j = 0 and j = 1. If j ≤ k + 1, by the Plancherel formula and (3.10), we have

2 jα ϕ j * T c σ k (f ) L2(N ) 2 jα T c σ k (f ) L2(N ) 2 jα f k L2(N ) 2 kα f k L2(N ) . If j ≥ k + 2,
adapting the proof of (3.10) with σ j γ in place of σ k , we deduce that

(3.13) T c σ j γ (D γ s T c σ k (f )) L2(N ) ≤ C γ 2 -j|γ|1 D γ s T c σ k (f ) L2(N ) .
For any |γ| 1 < l, by the previous observation, σ j γ = 0. Therefore, estimates (3.10), (3.12) and (3.13) implies that

ϕ j * T c σ k (f ) L2(N ) = |γ|1=l T c σ j γ (D γ s T c σ k (f )) L2(N ) |γ|1=l 2 -jl D γ s T c σ k (f ) L2(N ) |γ|1=l 2 (k-j)l f k L2(N ) .
Thus, if we take l to be the smallest integer larger than α, we have

2 jα ϕ j * T c σ k (f ) L2(N ) 2 (j-k)(α-l) 2 kα f k L2(N ) ≤ 2 kα f k L2(N ) .
Combining the above estimate for j ≥ k + 2 and that for j ≤ k + 1, we get sup j∈N0

2 jα ϕ j * T c σ k (f ) L2(N ) 2 kα f k L2(N ) , whence, T c σ k (f ) B α 2,∞ 2 kα f k L2(N ) .
Then by the triangle inequality, we have

(3.14) T c σ (f ) B α 2,∞ ≤ k≥0 T c σ k (f ) B α 2,∞ k≥0 
2 kα f k L2(N ) f B α 2,1 , which shows that T c σ is bounded from B α 2,1 (R d ; L 2 (M)) to B α 2,∞ (R d ; L 2 (M)
). Applying (3.11), (3.14) and the real interpolation (3.1) with p = 2, q = 2 and α 0 = 0, α 1 = α, we obtain the following boundedness:

T c σ (f ) B β 2,2 f B β 2,2
, ∀ β > 0.

Finally, (3.7) together with the above inequality yields the desired assertion.

3.2.

Mapping properties on Besov spaces. Using a similar argument as in the proof of Proposition 3.4, we are able to obtain the regularity of pseudo-differential operators on general operatorvalued Besov spaces B α p,q (R d ; L p (M)) with 1 ≤ p, q ≤ ∞. Let us record it specifically below.

Theorem 3.5. Let 1 ≤ p, q ≤ ∞. i) If σ ∈ S 0 1,δ for some 0 ≤ δ ≤ 1, then T c σ is bounded from B 0 p,1 (R d ; L p (M)) to L p (N )
, and bounded on B α p,q (R d ; L p (M)) for any α > 0. ii) If σ ∈ S 0 1,δ with 0 ≤ δ < 1, then T c σ is bounded on B α p,q (R d ; L p (M)) for any α ∈ R. iii) The above assertions hold for T r σ as well.

Proof. Firstly we note that the argument in (3.10) still works for all 1 ≤ p ≤ ∞: For any f ∈ H α p (R d ; L p (M)) and k ∈ N 0 , there exists a norm one element g k ∈ L q (N ) with

1 p + 1 q = 1 such that D γ s T c σ k (f ) Lp(N ) = τ R d D γ s T c σ k (f )(s)g * k (s)ds . Applying (3.8
) and (3.9) again, we have

D γ s T c σ k (f ) Lp(N ) = τ R d R d D γ s K k (s, s -t)f k (t) dt g * k (s) ds = τ R d R d D γ s K k (s, s -t) -p+1 p M D γ s K k (s, s -t)f k (t) D γ s K k (s, s -t) p-1 p M g * k (s) dt ds ≤ τ R d R d D γ s K k (s, s -t) M |f k (t)| p dt ds 1 p • τ R d R d D γ s K k (s, s -t) M |g k (s)| q dt ds 1 q 2 k|γ|1 • f k Lp(N ) .
Then we get the boundedness of T c σ from B 0 p,1 (R d ; L p (M)) to L p (N ) as in (3.11). Furthermore, we can deduce the L p -version of (3.14), i.e. the boundedness from B α p,1 to B α p,∞ for α > 0. Thus, for α > 0, the boundedness of T c σ on B α p,q (R d ; L p (M)) is ensured by interpolation (3.1). The conclusion i) is therefore proved. If δ < 1, by Proposition 2.8 and the lifting property of Besov spaces (see [1, Theorem 6.1]), i) yields ii) for general α ∈ R. Finally, the assertion for T r σ can be proved using the same method; we omit the details.

The action of pseudo-differential operators on (sub)atoms

In order to study the boundedness of pseudo-differential operators on the Triebel-Lizorkin spaces, we will use the atomic decomposition stated in Theorem 1.3. In other words, we will focus on the images of the atoms under the action of pseudo-differential operators instead of those of general functions in the Triebel-Lizorkin spaces. Our idea initially comes from Triebel's book [START_REF] Triebel | Theory of function spaces[END_REF]Theorem 6.3.2], where the atomic decomposition is a key tool to treat the operators with symbols of forbidden type. However, due to the noncommutativity, the (sub)atoms we have obtained in our previous paper [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF] (mentioned in Theorem 1.3) are L 2 -atoms which do not have the pointwise estimates as the ones in [START_REF] Triebel | Theory of function spaces[END_REF]. Thus, it turns out that we need much subtler estimates regarding the images of these (sub)atoms in order to realise the required boundedness.

The first lemma in this section concerns the image of an (α, Q µ,l )-subatom under the action of pseudo-differential operators.

Lemma 4.1. Let α ∈ R, σ ∈ S 0
1,δ and T c σ be the corresponding pseudo-differential operator. In addition, we assume that K > d 2 . Then for any (α, Q µ,l )-subatom a µ,l , we have

(4.1) τ R d (1 + 2 µ |s -2 -µ l|) d+M |D γ T c σ a µ,l (s)| 2 ds 1 2 |Q µ,l | α d - |γ| 1 d , |γ| 1 < K - d 2 ,
where M ∈ R such that M < 2L + 2 and the relevant constant depends on M , K, L, γ and d.

Proof. We split the integral on the left hand side of (4.1) into 4Q µ,l and (4Q µ,l ) c . To estimate the term with 4Q µ,l , we begin with a technical modification of a µ,l . For every a µ,l , we define

a = |Q µ,l | -α d + 1 2 a µ,l (2 -µ (• + l)).
It is easy to see that a is an (α, Q 0,0 )-subatom. By translation, we may assume that l = 0. Then by the Cauchy-Schwarz inequality (1.5), for any s ∈ R d , we have

|T c σ a µ,l (s)| 2 = 2 -2µd |Q µ,l | 2( α d -1 2 ) R d σ(s, ξ) a(2 -µ ξ)e 2πis•ξ dξ 2 = |Q µ,l | 2( α d -1 2 ) R d σ(s, 2 µ ξ) a(ξ)e 2πis•2 µ ξ dξ 2 ≤ |Q µ,l | 2( α d -1 2 ) R d σ(s, 2 µ ξ) 2 M (1 + |ξ| 2 ) -K dξ R d (1 + |ξ| 2 ) K σ(s, 2 µ ξ) -2 M a * (ξ)|σ(s, 2 µ ξ)| 2 a(ξ)dξ.
Using the standard operator-valued inequality

(4.2) x * y * yx ≤ y 2 x * x,
we deduce from the Plancherel formula (1.6) that

|T c σ a µ,l (s)| 2 |Q µ,l | 2( α d -1 2 ) R d (1 + |ξ| 2 ) -K dξ • R d (1 + |ξ| 2 ) K | a(ξ)| 2 dξ |Q µ,l | 2( α d -1 2 ) R d |J K a(t)| 2 dt,
where J K is the Bessel potential of order K. Combining the second assumption on a µ,l in Definition 1.2 and the above estimate, we obtain

τ 4Q µ,l |T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 τ 4Q µ,l |T c σ a µ,l (s)| 2 ds 1 2 |Q µ,l | α d τ ( R d |J K a(t)| 2 dt) 1 2 |Q µ,l | α d |γ|1≤K τ R d |D γ a(t)| 2 dt 1 2 |Q µ,l | α d .
If s ∈ (4Q µ,l ) c , since a µ,l has the moment cancellations of order less than or equal to L, we can subtract a Taylor polynomial of degree L from the kernel associated to T c σ ,

|T c σ a µ,l (s)| 2 = R d K(s, s -t)a µ,l (t)dt 2 = R d [K(s, s -t) -K(s, s)]a µ,l (t)dt 2 = R d [ |β|1=L+1 L + 1 β! t β 1 0 (1 -θ) L D β K(s, s -θt)dθ]a µ,l (t)dt 2 .
Applying the Cauchy-Schwarz inequality (1.5) and then the inequalities (2.7) and (4.2), we get

|T c σ a µ,l (s)| 2 |β|1=L+1 2Q µ,l 1 0 (1 -θ) L D β K(s, s -θt)dθ 2 M |t| 2L+2 dt • R d 1 0 (1 -θ) L D β K(s, s -θt)dθ -2 M 1 0 (1 -θ) L D β K(s, s -θt)dθ a µ,l (t) 2 dt ≤ |β|1=L+1 2Q µ,l sup 0≤θ≤1 D β K(s, s -θt) 2 M |t| 2L+2 dt • R d |a µ,l (t)| 2 dt |s| -2d-2L-2 2Q µ,l |t| 2L+2 dt • R d |a µ,l (t)| 2 dt 2 -µ(2L+2+d) |s| -2d-2L-2 R d |a µ,l (t)| 2 dt. (4.3)
This estimate implies

τ (4Q µ,l ) c |T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 2 -µ(L+1-M 2 ) (4Q µ,l ) c |s| -d-2L-2+M ds 1 2 • τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1-M 2 ) 2 µ(L+1-M 2 ) |Q µ,l | α d = |Q µ,l | α d .
If we take M = -d in the above inequality, we have

T c σ a µ,l ∈ L 1 M; L c 2 (R d )
. By approximation, we can assume that σ(s, ξ) has compact ξ-support, so that 

T c σ a µ,l (s) = R d σ(s, ξ) a µ,l (ξ)e
|D γ T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 |Q µ,l | α d 2 µ|γ|1 τ ( R d |J K a(t)| 2 dt) 1 2 R d (1 + |ξ|) 2|γ|1-2K dξ |Q µ,l | α d - |γ| 1 d |γ|1≤K τ R d |D γ a(t)| 2 dt 1 2 |Q µ,l | α d - |γ| 1 d . (4.4)
By a similar argument to that of (4.3), we have, for any γ ∈ N d 0 and s ∈ (4Q µ,l ) c , (4.5)

|D γ T c σ a µ,l (s)| 2 2 -µ(2L+2+d) |s| -2d-2L-2-2|γ|1 R d |a µ,l (t)| 2 dt.
Therefore, we deduce that

τ (4Q µ,l ) c |D γ T c σ a µ,l (s)| 2 (1 + 2 µ |s|) d+M ds 1 2 2 -µ(L+1-M 2 ) (4Q µ,l ) c |s| -d-2L-2+M -2|γ|1 ds 1 2 • τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1-M 2 ) 2 µ(L+1-M 2 +|γ|1) |Q µ,l | α d = |Q µ,l | α d - |γ| 1 d .
Combining the estimates above, we get (4.1).

On the other hand, we also have the following lemma concerning the image of (α, 1)-atoms under the action of pseudo-differential operators.

Lemma 4.2. Let α ∈ R, σ ∈ S 0 1,δ . Let K > d 2
and b be an (α, 1)-atom based on the cube Q 0,m . Then for any M ∈ R, we have

(4.6) τ R d (1 + |s -m|) d+M |D γ T c σ b(s)| 2 ds 1 2 1, |γ| 1 < K - d 2 ,
where the relevant constant depends on M , K, γ and d.

Proof. The proof of this lemma is similar to that of the previous one. The only difference is that for an (α, 1)-atom, we do not necessarily have the moment cancellation; thus, we have to use the extra decay of the kernel proved in Lemma 2.6 for |t| > 1.

If s ∈ 4Q 0,m , we follow the estimate for subatoms in the previous lemma. Applying the size estimate of b, we get

τ 4Q0,m (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2 τ ( R d |J K b(t)| 2 dt) 1 2 1.
If s ∈ (4Q 0,m ) c and t ∈ 2Q 0,m , we have |s -t| ≥ 1. Then (2.8) gives

|T c σ b(s)| 2 = R d K(s, s -t)b(t)dt 2 ≤ 2Q0,m K(s, s -t) 2 M dt 2Q0,m |b(t)| 2 dt |s -m| -2N 2Q0,m |b(t)| 2 dt,
where the positive integer N can be arbitrarily large. Thus

τ (4Q0,m) c (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2 (4Q0,m) c |s -m| d+M -2N ds 1 2 τ 2Q0,m |b(t)| 2 dt 1 2 1.
Then, the estimates obtained above imply that

τ R d (1 + |s -m|) d+M |T c σ b(s)| 2 ds 1 2
1.

Similarly, we treat

D γ T c σ b(s) as τ R d (1 + |s -m|) d+M |D γ T c σ b(s)| 2 ds 1 2 1, |γ| 1 < K - d 2 .
Therefore, (4.6) is proved.

The following lemma shows that, if the symbol σ satisfies some support condition, we can even estimate the F α,c

1 -norm of the image of (α, Q µ,l )-subatoms under T c σ . Recall that for any cube

Q ⊂ R d and any s ∈ R d , s + Q denotes the cube {t ∈ R d : t -s ∈ Q}. Lemma 4.3. Let σ ∈ S 0 1,δ and α ∈ R. Assume K ∈ N such that K > max{ d 2 , α + d + 1}.
If the s-support of σ is in (2 -µ l + 4Q 0,0 ) c , then for any (α, Q µ,l )-subatom a µ,l , we have

T c σ a µ,l F α,c 1 2 -µ( d 2 +ι
) , where ι is a positive real number.

Proof. Without loss of generality, we still assume l = 0. We need to use the characterization of F α,c 1 -norm by the following convolution kernels. Let κ be a radial, real and infinitely differentiable function on R d supported in Q 0,0 , and assume that κ(0) > 0. We take Φ

= | • | N κ with N ∈ N 0 such that α + d 2 < N < K -d 2 ,
and another test function Φ 0 ∈ S with supp Φ 0 ⊂ Q 0,0 . Let Φ ε be the inverse Fourier transform of Φ(εξ). To simplify the notation, we denote T c σ a µ,l by η µ,l . Then Theorem 4.2 in [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF] yields

η µ,l F α,c 1 ≈ Φ 0 * η µ,l 1 + 1 0 ε -2α |Φ ε * η µ,l | 2 dε ε 1 2 1 .
We notice that

R d Φ ε (t)t γ dt = 0 for any |γ| 1 ≤ N -1, it follows that Φ ε * η µ,l (s) = R d Φ ε (t)[η µ,l (s -t) -η µ,l (s)]dt = R d Φ ε (t) |γ|1=N N γ! (-t) γ 1 0 (1 -θ) N -1 D γ η µ,l (s -θt)dθ dt. (4.7)
Applying the Cauchy-Schwarz inequality, we have

R d Φ ε (t) |γ|1=N N γ! (-t) γ 1 0 (1 -θ) N -1 D γ η µ,l (s -θt)dθ dt 2 |γ|1=N R d 1 0 (1 -θ) 2(N -1) |D γ η µ,l (s -θt)| 2 dθ(1 + |t|) -d-1 dt • R d |Φ ε (t)| 2 |t| 2N (1 + |t|) d+1 dt. (4.8)
By (4.5), if s -θt ∈ (4Q 0,0 ) c , we have

|D γ η µ,l (s -θt)| 2 2 -µ(2L+2+d) |s -θt| -2d-2L-2-2|γ|1 R d |a µ,l (r)| 2 dr.
Therefore, using the Cauchy-Schwarz inequality again, we have

1 0 ε -2α |Φ ε * η µ,l | 2 dε ε 1 2 1 2 -µ(L+1+ d 2 ) 1 0 ε 2N -d-2α dε ε 1 2 (2Q0,0) c |s | -d-L-N -1 ds R d (1 + |t|) -d-1 dt • R d |Φ(t )| 2 |t | 2N (1 + |t |) d+1 dt • τ R d |a µ,l (r)| 2 dr 1 2 2 -µ(L+1+ d 2 ) τ R d |a µ,l (t)| 2 dt 1 2 2 -µ(L+1+ d 2 +α) . (4.9) 
It remains to estimate the L 1 -norm of Φ 0 * η µ,l , where Φ 0 does not have moment cancellation. Since supp η µ,l ⊂ (4Q 0,0 ) c and by the support assumption of Φ 0 , we have supp Φ 0 * η µ,l ⊂ {s ∈ R d : |s| ≥ 1 2 }. By Lemma 4.1 and the fact that |Φ 0 (s)| (1 + |s|) -d-R for any R ∈ N, we have

|Φ 0 * η µ,l (s)| 2 = R d Φ 0 (s -t)η µ,l (t)dt 2 ≤ |t|≥max{ |s| 2 ,1} Φ 0 (s -t)η µ,l (t)dt 2 + 1≤|t|< |s| 2 Φ 0 (s -t)η µ,l (t)dt 2 ≤ |t|≥max{ |s| 2 ,1} (1 + 2 µ |t|) -2d-2R |Φ 0 (s -t)| 2 dt • R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt + 1≤|t|< |s| 2 (1 + 2 µ |t|) -2d-2R |Φ 0 (s -t)| 2 dt • R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt R d |Φ 0 (t)| 2 dt (1 + 2 µ |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt + |t|≥1 (1 + 2 µ |t|) -2d-2R dt (1 + |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt (1 + 2 µ |s|) -2d-2R + 2 -2µ(d+R) (1 + |s|) -2d-2R R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt.
Then we use (4.1) to get, for any R ∈ N,

Φ 0 * η µ,l 1 
|s|≥ 1 2 (1 + 2 µ |s|) -d-R ds + 2 -µ(d+R) |s|≥ 1 2 (1 + |s|) -d-R ds • τ ( R d (1 + 2 µ |t|) 2d+2R |η µ,l (t)| 2 dt) 1 2 2 -µ(d+R+α) .
Combining the estimates above, we see that, there exists ι > 0 such that

T c σ a µ,l F α,c 1 = η µ,l F α,c 1 2 -µ( d 2 +ι) ,
which completes the proof.

Since every (α, Q k,m )-atom is a linear combination of subatoms, the above lemma helps us to estimate the image of (α, Q k,m )-atoms under T c σ .

Corollary 4.4. Let σ ∈ S 0 1,δ and α ∈ R. Assume K ∈ N such that K > max{ d 2 , α + d + 1}. If the s-support of σ is in (2 -k m + 6Q 0,0 ) c , then for any (α, Q k,m )-atom g,we have T c σ g F α,c 1 1. 
Proof. Every (α, Q k,m )-atom g admits the form

g = (µ,l)≤(k,m) d µ,l a µ,l with (µ,l)≤(k,m) |d µ,l | 2 ≤ |Q k,m | -1 = 2 kd .
By the support assumption of σ, σ(s, ξ) = 0 if s ∈ 2 -µ l + 4Q 0,0 ⊂ 2 -k m + 6Q 0,0 . Then, we can apply the previous lemma to every a µ,l with (µ, l) ≤ (k, m). The result is

T c σ a µ,l F α,c 1 2 -µ( d 2 +ι)
with ι > 0.

Applying the Cauchy-Schwarz inequality, we get

T c σ g F α,c 1 ≤ (µ,l)≤(k,m) |d µ,l | • T c σ a µ,l F α,c 1 ≤ (µ,l)≤(k,m) |d µ,l | • 2 -µ( d 2 +ι) ( (µ,l)≤(k,m) |d µ,l | 2 ) 1 2 ( (µ,l)≤(k,m) 2 -µ(d+2ι) ) 1 2 ≤ ( (µ,l)≤(k,m) |d µ,l | 2 ) 1 2 ( µ≥k |2Q k,m | |Q µ,l | • 2 -µ(d+2ι) ) 1 2 |Q k,m | -1 2 • 2 -kd 2 = 1. (4.10)
Thus, the assertion is proved.

Likewise, we can estimate the image of (α, 1)-atoms under the pseudo-differential operator

T c σ . Lemma 4.5. Let σ ∈ S 0 1,δ and α ∈ R. Assume K ∈ N such that K > max{ d 2 , α + d + 1}. If the s-support of σ is in (k + 4Q 0,0 ) c for some k ∈ Z d , then for any (α, 1)-atom b such that supp b ⊂ 2Q 0,k , we have T c σ b F α,c 1 1. 
Proof. The proof of this lemma is very similar to that of Lemma 4.3; it suffices to apply (the proof of) Lemma 4.2 instead of Lemma 4.1.

Corollary 4.6. Let σ ∈ S 0 1,δ and α ∈ R. Given K ∈ N such that K > max{ d 2 , α + d + 1}, then for any (α, 1)-atom b, we have

T c σ b F α,c 1 1. 
Proof. Let (X j ) j∈Z d be the smooth resolution of the unit in (1.4). We decompose T c σ b as

T c σ b = j∈Z d X j T c σ b = j∈Z d T c σj b,
where all σ j = X j (s)σ(s, ξ) belong to S 0 1,δ uniformly in j. Suppose that b is supported in 2Q 0,k with k ∈ Z d . We split the above summation into two parts:

(4.11) T c σ b = j∈Z d j∈k+6Q0,0 X j T c σ b + j∈Z d j / ∈k+6Q0,0 X j T c σ b.
Applying Lemma 4.2 with M = -d to the symbol X j (s)σ(s, ξ), we get, for any j ∈ Z d ,

τ j+2Q0,0 |D γ (X j T c σ b(s))| 2 ds 1 2 1, ∀ |γ| 1 ≤ [α] + 1.
Thus, X j T c σ b is a bounded multiple of an (α, 1)-atom. So the first term on the right hand side of (4.11) is a finite sum of (α, 1)-atoms, and thus has bounded F α,c 1 -norm. Now we deal with the second term. Note that the s-support of the symbol j / ∈k+6Q0,0 X j (s)σ(s, ξ) is in (k + 4Q 0,0 ) c . Then, it suffices to apply Lemma 4.5 to this symbol, so that

j∈Z d j / ∈k+6Q0,0 X j T c σ b F α,c 1 1. 
The proof is complete.

Regular symbols on Triebel-Lizorkin spaces

In this section, we study the continuity of the pseudo-differential operators with regular symbols in S 0 1,δ (0 ≤ δ < 1) on Triebel-Lizorkin spaces. We use the atomic decompositions introduced in section 1 and the local mapping properties of pseudo-differential operators in section 4 to deduce the F α,c p -boundedness. Different from the pseudo-differential operators with the forbidden symbols in S 0 1,1 , which will be treated in the next section, our proof stays at the level of atoms; in other words, we do not need the subtler decomposition that every (α, Q)-atom can be written as a linear combination of subatoms.

Theorem 5.1. Let 0 ≤ δ < 1, σ ∈ S 0 1,δ and α ∈ R. Then T c σ is bounded on F α,c p (R d , M) for any 1 ≤ p ≤ ∞.
In order to fully understand the image of an (α, Q)-atom under the action of a pseudo-differential operator, we need to study its

L 1 (M; L c 2 (R d ))-boundedness, which relies on the L 2 -boundedness of T c σ given in Corollary 3.3. Lemma 5.2. Let σ ∈ S 0 1,δ with 0 ≤ δ < 1. Then T c σ is bounded on L 1 M; L c 2 (R d ) .
Proof. Since 0 ≤ δ < 1, Proposition 2.9 tells us that the adjoint (T c σ ) * of T c σ is still in the class S 0 1,δ . Thus, by anti-linear duality (see [START_REF] Junge | H ∞ -functional calculus and square functions on noncommutative Lp-spaces[END_REF]), it is enough to prove the boundedness of (

T c σ ) * on L ∞ M; L c 2 (R d ) . Indeed, there exists u ∈ L 2 (M) with norm one such that R d |(T c σ ) * (f )(s)| 2 ds 1 2 M = R d |(T c σ ) * (f )(s)| 2 u, u L2(M) ds 1 2 = R d (T c σ ) * (f u)(s) 2 L2(M) ds 1 2 . 
Then, applying Corollary 3.3 to (T c σ ) * , we get

R d (T c σ ) * (f u)(s) 2 L2(M) ds 1 2 R d f (s)u 2 L2(M) ds 1 2 ≤ R d |f (s)| 2 ds 1 2

M

.

Thus, we conclude the boundedness of T c σ on L 1 (M; L c 2 (R d )). Now we are ready to prove the main theorem in this section.

Proof of Theorem 5.1. Step 1. We begin with the special case p = 1 and α = 0. Since

F 0,c 1 (R d , M) = h c 1 (R d , M
) with equivalent norms, the assertion is equivalent to saying that when σ ∈ S 0 1,δ with 0 ≤ δ < 1, T c σ is bounded on h c 1 (R d , M). By the atomic decomposition stated in Theorem 1.3, it suffices to prove that, for any atom b based on a cube with side length 1 and any atom g based on a cube with side length less than 1, we have

T c σ b h c 1 1 and T c σ g h c 1 1. Corollary 4.6 tells us that T c σ b h c 1 
1. Thus, it remains to consider the atom g based on cube Q with |Q| < 1. Without loss of generality, we may assume that Q is centered at the origin. Let (X j ) j∈Z d be the resolution of the unit defined in (1.4) and

X Q j = X j (l(Q) -1 •) for j ∈ Z d . Then, we have supp X Q j ⊂ l(Q)j + 2Q. Now, set h 1 = j∈6Q0,0 X Q j and h 2 = j / ∈6Q0,0 X Q j . By the support assumption of X Q j , it is obvious that supp h 1 ⊂ 8Q, supp h 2 ⊂ (4Q) c . Moreover, h 1 (s) + h 2 (s) = 1 , ∀ s ∈ R d .
Now we decompose σ into two parts:

σ(s, ξ) = h 1 (s)σ(s, ξ) + h 2 (s)σ(s, ξ) def = σ 1 (s, ξ) + σ 2 (s, ξ).
Note that σ 1 and σ 2 are still in the class S 0 1,δ and

T c σ g = T c σ 1 g + T c σ 2 g.
Firstly, we deal with the symbol σ 1 which has compact s-support. We consider the adjoint operator (T c σ ) * of T c σ . Since δ < 1, by Proposition 2.9, there exists σ ∈ S 0 1,δ such that

(T c σ ) * = T c σ .
If we take ζ j (s) = X Q j (s) σ(s, 0) * for j ∈ 6Q 0,0 , then ζ j is an M-valued infinitely differentiable function with all derivatives belonging to L ∞ (N ). Denote by m c ζj the pointwise multiplication g → ζ j g. Then, we have supp m c ζj g ⊂ l(Q)j + 2Q. and

(5.1) τ R d |m c ζj g(s)| 2 ds 1 2 |Q| -1 2 .
This indicates that, except for the vanishing mean property, each m c ζj g coincides with a bounded multiple of an h c 1 -atom defined in Definition 1.1. Now let us set

σ 1 j (s, ξ) = X Q j (s)σ(s, ξ) for j ∈ 6Q 0,0 and set T c j = T c σ 1 j -m c ζj . It is clear that supp T c j g ⊂ l(Q)j + 2Q. Since (m c ζj ) * = m c ζj * and (T c σ 1 j ) * x = σ 1 j (s, 0)x = ζ j * x for every x ∈ M, we have τ l(Q)j+2Q T c j g(s)ds • x = T c j g, x = g, (T c j ) * x = g, (T c σ 1 j -m c ζj ) * x = 0.
Hence, T c j g has vanishing mean. Moreover, applying Lemma 5.2 and (5.1), we get

τ l(Q)j+2Q |T c j g(s)| 2 ds 1 2 ≤ τ l(Q)j+2Q |T c σ 1 j g(s)| 2 ds 1 2 + τ l(Q)j+2Q |m c ζj g(s)| 2 ds 1 2 τ 2Q |g(s)| 2 ds 1 2 + |Q| -1 2 |Q| -1 2 .
Combining the above estimates, we see that T c j maps h c 1 -atoms to h c 1 -atoms. Thus, T c j is bounded on h c 1 (R d , M), and so are T c σ 1 j and T c σ 1 .

Step 2. Now let us consider T c σ 2 . By Theorem 1.3, we may assume that g has moment cancellations up to order L > d 2 -1. Note that supp T c σ 2 g ⊂ (4Q) c . And if s ∈ (4Q) c , following the argument in (4.3) with g in place of a µ,l , we get

|T c σ 2 g(s)| 2 l(Q) 2L+2+d |s| -2d-2L-2 2Q |g(t)| 2 dt.
Then for M < 2L + 2,

τ (4Q) c |T c σ 2 g(s)| 2 (1 + l(Q) -1 |s|) d+M ds 1 2 l(Q) L+1-M 2 (4Q) c |s| -d-2L-2+M ds 1 2 • τ ( 2Q |g(t)| 2 dt) 1 2 l(Q) L+1-M 2 l(Q) -L-1+ M 2 |Q| -1 2 = |Q| -1 2 .
(5.2)

Moreover, we claim that T c σ 2 g can be decomposed as follows:

T c σ 2 g = m∈Z d ν m H m ,
where m |ν m | 1 and the H m 's are h c 1 -atoms. Then, by (1.8), we will get T c σ 2 g h c 

ν -1 m (1 + l(Q) -1 |m|) -d+M 2 τ (4Q) c |T c σ 2 g(s)| 2 (1 + l(Q) -1 |s|) d+M ds 1 2
1.

And the normalizing constants ν m satisfy

m |ν m | = |Q| -1 2 m (1 + l(Q) -1 |m|) -d+M 2 ≤ |Q| -1 2 R d (1 + l(Q) -1 |s|) -d+M 2 ds 1.
Combining the estimates of T c σ1 g and T c σ2 g, we conclude that T c σ g h c 1

1. Thus, T c σ is bounded on h c 1 (R d , M).

Step 3. For the case where p = 1 and α = 0, we use the lifting property of Triebel-Lizorkin spaces (see [START_REF] Xia | Operator-valued inhomogeneous Triebel-Lizorkin spaces[END_REF]Proposition 3.4]. By the property of the composition of pseudo-differential operators stated in Proposition 2.8, we see that

T c σ α = J α T c σ J -α is still a pseudo-differential operator with symbol σ α in S 0 1,δ . Then for any f ∈ F α,c 1 (R d , M), we have T c σ f F α,c 1 = J -α T c σ α J α f F α,c 1 ≈ T c σ α J α f h c 1 J α f h c 1 ≈ f F α,c 1 . Hence, T c σ is bounded on F α,c 1 (R d , M).
Step 4. Finally, we deal with the case 1 < p ≤ ∞. By the previous steps, (T c σ

) * = T c σ is bounded on F -α,c 1 (R d , M) with α ∈ R, then it is clear that T c σ is bounded on F α,c ∞ (R d , M). Given 1 < p < ∞ and α ∈ R, by interpolation F α,c ∞ (R d , M), F α,c 1 (R d , M) 1 p = F α,c p (R d , M),
we get the boundedness of T c σ on F α,c p (R d , M). Remark 5.3. A special case of Theorem 5.1 is that if the symbol is scalar-valued, then

R d σ(s, ξ) f (ξ)e 2πis•ξ dξ = R d f (ξ)σ(s, ξ)e 2πis•ξ dξ.
In this case, T c σ is also bounded on h r p (R d , M) for any 1 ≤ p ≤ ∞. By (1.7), we deduce that T c σ is bounded on L p (N ).

Corollary 5.4. Let n, α ∈ R, 0 ≤ δ < 1 and σ ∈ S n 1,δ . Then T c σ is bounded from F α,c p (R d , M) to F α-n,c p (R d , M) for any 1 ≤ p ≤ ∞.
Proof. Recall that the Bessel potential of order n maps F α,c p isomorphically onto

F α-n,c p . If σ ∈ S n
1,δ , by Proposition 2.8, we see that σ(s, ξ)(1 + |ξ| 2 ) -n 2 ∈ S 0 1,δ , and its corresponding pseudo-differential operator is T c σ J -n . Since T c σ = T c σ J -n J n , the assertion follows obviously from Theorem 5.1.

Forbidden symbols on Triebel-Lizorkin spaces

The purpose of this section is to extend the boundedness results obtained in the previous one to the pseudo-differential operators with forbidden symbols, i.e. the symbols in the class S n 1,1 . There are two main differences between these operators and those with symbols in S n 1,δ with 0 ≤ δ < 1. The first one is that when σ ∈ S 0 1,1 , T c σ is not necessarily bounded on L 2 (N ). The second one is that S 0 1,1 is not closed under product or adjoint. Fortunately, if the function spaces have a positive degree of smoothness, the operators with symbols in S 0 1,1 will be bounded on them. Since for σ ∈ S 0 1,1 , T c σ is not necessarily bounded on L 2 (N ), we cannot expect its boundedness on L 1 M; L c 2 (R d ) . However, by Proposition 3.4, we are able to prove its boundedness on

L 1 M; H α 2 (R d ) c when α > 0. Note that the classical Sobolev space H α 2 (R d
) is a Hilbert space with the inner product f, g = R d J α f (s)J α g(s)ds. By the definition of Hilbert-valued L p -spaces, we see that

f ∈ L 1 M; H α 2 (R d ) c if and only if J α f ∈ L 1 M; L c 2 (R d ) . Lemma 6.1. Let σ ∈ S 0 1,1 . Then T c σ is bounded on L 1 M; H α 2 (R d ) c
for any α > 0. Proof. Following the argument for Lemma 5.2 by replacing (T c σ ) * with J α T c σ , we see that

T c σ is bounded on L ∞ M; H α 2 (R d ) c . Let f ∈ L 1 M; H α 2 (R d ) c . Then f admits the decomposition f = gh, where h L1(M) = f L1 M;H α 2 (R d ) c and g L∞ M;H α 2 (R d ) c = 1. Indeed, if A = ( R d |J α f (s)| 2 ds) 1 2
is invertible, we could take g = f A -1 , h = A; otherwise we can approximate A by invertable elements in L 1 (M), which does not disturb the argument below. From this decomposition, we establish the

L 1 M; H α 2 (R d ) c -norm of T c σ (f ) as follows: T c σ (f ) L1 M;H α 2 (R d ) c = T c σ (g)h L1 M;H α 2 (R d ) c ≤ T c σ (g) L∞ M;H α 2 (R d ) c h L1(M) g L∞ M;H α 2 (R d ) c h L1(M) = f L1 M;H α 2 (R d ) c , which implies that T c σ is bounded on L 1 M; H α 2 (R d ) c .
Similar to [START_REF] Triebel | Theory of function spaces[END_REF]Theorem 6.3.2], the main theorem in this section also relies on the atomic decomposition. However, the techniques we use are quite different from that of [START_REF] Triebel | Theory of function spaces[END_REF]. Apart from the difficulties mentioned in the beginning of section 4, the symbol considered here has the global mapping property, which is more general than the case in [START_REF] Triebel | Theory of function spaces[END_REF], i.e. we do not need the assumption that the symbol σ is compactly supported with respect to the second variable. Theorem 6.2. Let σ ∈ S 0 1,1 and α > 0. Then T c σ is bounded on F α,c 1 (R d , M).

Proof. Let f ∈ F α,c 1 (R d , M). We fix K, L to be two integers such that K > α + d and L > d. By the atomic decomposition in Theorem 1.3, f can be written as

f = ∞ j=1 (µ j b j + λ j g j ),
where the b j 's are (α, 1)-atoms and the g j 's are (α, Q)-atoms, µ j and λ j are complex numbers such that

∞ j=1 (|µ j | + |λ j |) ≈ f F α,c 1 .
In order to prove the assertion, by the above atomic decomposition, it suffices to prove that

T c σ b F α,c 1 
1 and T c σ g F α,c 1 1, 
for any (α, 1)-atom b and (α, Q)-atom g. We have shown in Corollary 4.6 that (6.1)

T c σ b F α,c 1 1. 
Thus it remains to consider T c σ g. This is the main part of the proof which will be divided into several steps for clarity.

Step 1. By translation, we may assume that the supporting cube Q of the atom g is centered at the origin. We begin with a split of the symbol σ: Let h 1 , h 2 be two nonnegative infinitely differentiable functions on R d such that supp h 1 ⊂ (Q) c , supp h 2 ⊂ 2Q and

1 = h 1 (ξ) + h 2 (ξ), ∀ ξ ∈ R d . For any (s, ξ) ∈ R d × R d , we write σ(s, ξ) = h 1 (ξ)σ(s, ξ) + h 2 (ξ)σ(s, ξ) def = σ 1 (s, ξ) + σ 2 (s, ξ).
It is clear that σ 1 and σ 2 are still two symbols in S 0 1,1 , and (6.2)

T c σ g F α,c 1 ≤ T c σ1 g F α,c 1 + T c σ2 g F α,c 1 .
First, we consider the case where the cube Q is of side length one, i.e. Q = Q 0,0 , and deal with the term T c σ1 g F α,c 1 in the above split. Let (X j ) j∈Z d be the resolution of the unit defined in (1.4) and X j = X j (2•) for j ∈ Z d . We write

T c σ1 g = j∈8Q0,0 j∈Z d T c σ j 1 g + j / ∈8Q0,0 j∈Z d T c σ j 1 g def = G 1 + H 1 , (6.3) 
where σ j 1 (s, ξ) = σ 1 (s, ξ) X j (s). We claim that for every j ∈ Z d , T c σ j 1 g is the bounded multiple of an (α, Q 0, j 2 )-atom (with the convention Q 0, j 2 = j 2 + Q 0,0 ). No loss of generality, we prove the claim just for j = 0. Applying Lemma 6.1 to the symbol σ 0 1 , we get

τ R d |J α T c σ 0 1 g(s)| 2 ds 1 2 τ R d |J α g(s)| 2 ds 1 2 |Q 0,0 | -1 2 .
Thus, in order to prove the claim, it remains to show that T c σ 0 1 g can be written as the linear combination of subatoms and the coefficients satisfy a certain condition. By Definition 1.2, g admits the following representation:

(6.4) g = (µ,l)≤(0,0) d µ,l a µ,l ,
where the a µ,l 's are (α, Q µ,l )-subatoms and the coefficients d µ,l 's are complex numbers satisfying (µ,l)≤(0,0) |d µ,l | 2 ≤ 1. Then we have

T c σ 0 1 g = (µ,l)≤(0,0) d µ,l T c σ 0 1 a µ,l .
Given µ ∈ N 0 , let (X µ,m ) m∈Z d be a sequence of infinitely differentiable functions on R d such that

(6.5) 1 = m∈Z d X µ,m (s), ∀ s ∈ R d ,
and each X µ,0 is nonnegative, supported in 2Q µ,0 and X µ,m (s) = X µ,0 (s -2 -µ m). It is the 2 -µdilation of the resolution of the unit in (1.4). We decompose T c σ 0 1 g in the following way:

(6.6) T c σ 0 1 g = ∞ µ=0 m X µ,m l d µ,l T c σ 0 1 a µ,l .
Observe that the only m's that contribute to the above sum m are those m ∈ Z d such that 2Q µ,m ∩ Q 0,0 = ∅, so Q µ,m ⊂ 2Q 0,0 . Thus, we obtain the decomposition (6.7)

T c σ 0 1 g = (µ,m)≤(0,0) D µ,m G µ,m , where 
D µ,m = l |d µ,l | 2 (1 + |m -l|) -(d+1) 1 2 , G µ,m = 1 D µ,m X µ,m l d µ,l T c σ 0 1 a µ,l .
It is evident that

(µ,m)≤(0,0) |D µ,m | 2 1 2 (µ,l)≤(0,0) |d µ,l | 2 1 2 ≤ 1.
Now we show that the G µ,m 's are bounded multiple of (α, Q µ,m )-subatoms. Firstly, we have supp G µ,m ⊂ supp X µ,m ⊂ 2Q µ,m . Secondly, by the Cauchy-Schwarz inequality,

τ 2Qµ,m | l d µ,l T c σ 0 1 a µ,l (s)| 2 ds 1 2 l |d µ,l | 2 (1 + |m -l|) -(d+1) 1 2 • l (1 + |m -l|) 1-M 2 τ 2Qµ,m (1 + 2 µ (s -2 -µ l)) d+M |T c σ 0 1 a µ,l (s)| 2 ds 1 2 . (6.8) If we take M = 2L + 1, since L > d, we have 1-M 2 < -d. Applying Lemma 4.1, we get τ ( R d |G µ,m (s)| 2 ds) 1 2 l (1 + |m -l|) 1-M 2 |Q µ,l | α d |Q µ,m | α d .
Similarly, the derivative estimates in Lemma 4.1 ensure that

τ ( |D γ G µ,m (s)| 2 ds) 1 2 |Q µ,m | α d - |γ| 1 d , ∀ |γ| 1 ≤ [α] + 1.
Since α > 0, no moment cancellation for subatoms is required. Thus, we have proved that the G µ,m 's are bounded multiple of (α, Q µ,m )-subatoms, then the claim is proved. Therefore, G 1 in (6.3) is the finite sum of (α, Q 0,j )-atoms, which yields

G 1 F α,c 1 
1 by Theorem 1.3. The term H 1 in (6.3) is much easier to handle. Observe that H 1 corresponds to the symbol σ(s, ξ) j / ∈8Q0,0 X j (s), whose s-support is in (6Q 0,0 ) c . Thus, we apply Corollary 4.4 directly to get that

H 1 F α,c 1 1. 
Step 2. Let us consider now the case where the supporting cube Q of g has side length less than one. As above, we may still assume that Q is centered at the origin. Let g be an (α, Q k,0 )-atom with k ∈ N. Then g is given by g

= (µ,l)≤(k,0) d µ,l a µ,l with (µ,l) |d µ,l | 2 ≤ |Q k,0 | -1 = 2 kd .
We normalize g as

h = 2 k(α-d) g(2 -k •) = (µ,l)≤(k,0) 2 -kd 2 d µ,l 2 k(α-d 2 ) a µ,l (2 -k •) = (µ,l)≤(k,0) d µ,l a µ,l , where a µ,l = 2 k(α-d 2 ) a µ,l (2 -k •) and d µ,l = 2 -kd 2 d µ,l . Then it is easy to see that each a µ,l is an (α, Q µ-k,l )-subatom and thus h is an (α, Q 0,0 )-atom. Define σ 1,k (s, ξ) = σ 1 (2 -k s, 2 k ξ), then we have T c σ1 g(s) = R d σ 1 (s, ξ) g(ξ)e 2πis•ξ dξ = 2 -kα R d σ 1 (s, ξ) h(2 -k ξ)e 2πis•ξ dξ = 2 k(d-α) R d σ 1,k (2 k s, ξ) h(ξ)e 2πi 2 k s•ξ dξ = 2 k(d-α) T c σ 1,k h(2 k s).
(6.9)

Since the ξ-support of σ 1 is away from the origin, we have

D γ s D β ξ σ 1,k (s, ξ) M ≤ C γ,β |ξ| |γ|1-|β|1 ≈ C γ,β (1 + |ξ|) |γ|1-|β|1 , ∀ k ∈ N. Thus, σ 1,k is still a symbol in the class S 0 1,1 .
Then, applying the result for (α, Q 0,0 )-atoms obtained in Step 1 to the symbol σ 1,k , we get

T c σ 1,k h F α,c 1 
1. In order to return back to the F α,c 1 -norm of T c σ1 g, by (6.9), we need a dilation argument. Since α > 0, we can invoke the characterization of F α,c 1 -norm in [56, Corollary 3.10]:

f F α,c 1 ≈ f 1 + ( ∞ 0 ε -2α |ϕ ε * f | 2 dε ε ) 1 2 1 ,
where

ϕ ε = F -1 (ϕ(ε•)). For λ > 0, we have f (λ•) 1 = λ -d f 1 , and 
( ∞ 0 ε -2α |ϕ ε * f (λ•)| 2 dε ε ) 1 2 1 = λ α-d ( ∞ 0 ε -2α |ϕ ε * f | 2 dε ε ) 1 2 1 since (ϕ ε * f (λ•))(s) = ϕ λε * f (λs). Taking λ = 2 k , we deduce T c σ1 g F α,c 1 ≈ T c σ1 g 1 + ( ∞ 0 ε -2α |ϕ ε * T c σ1 g| 2 dε ε ) 1 2 1 = 2 k(d-α) T c σ 1,k h(2 k •) 1 + ( ∞ 0 ε -2α |ϕ ε * T c σ 1,k h(2 k •)| 2 dε ε ) 1 2 1 = 2 k(d-α) 2 -kd T c σ 1,k h 1 + 2 k(α-d) ( ∞ 0 ε -2α |ϕ ε * T c σ 1,k h| 2 dε ε ) 1 2 1 T c σ 1,k h F α,c 1 .
This ensures

T c σ1 g F α,c 1 T c σ 1,k h F α,c 1 1. 
Step 3. It remains to deal with the term with symbol σ 2 in (6.2). Note that σ 2 = h 2 (ξ)σ(s, ξ) with σ ∈ S 0 1,1 and supp h 2 ∈ 2Q. Then for δ < 1, say δ = 9 10 , we have σ 2 ∈ S 0 1,δ . Indeed, by definition, we have, for every s ∈ R,

D γ s D β ξ σ 2 (s, ξ) M β1+β2=β D γ s D β1 ξ σ(s, ξ) • D β2 h 2 (ξ) M ≤ β1+β2=β C γ,β1 (1 + |ξ|) |γ|1-|β1|1 • |D β2 h 2 (ξ)|.
But since h 2 is an infinitely differentiable function with support 2Q, it is clear that for ξ ∈ 2Q,

(1 + |ξ|) |γ|1-|β1|1 ≤ C γ (1 + |ξ|) 9 10 |γ|1-|β1|1 , and |D β2 h 2 (ξ)| ≤ C β2 (1 + |ξ|) -|β2|1 .
Putting these two inequalities into the estimate of D γ s D β ξ σ 2 (s, ξ) M , we obtain

D γ s D β ξ σ 2 (s, ξ) M ≤ C γ,β (1 + |ξ|) 9 10 |γ|1-|β|1 , which yields σ 2 ∈ S 0 1, 9 10 
. Therefore, it follows from Theorem 5.1 that

T c σ2 g F α,c 1 g F α,c 1 for g ∈ F α,c 1 (R d , M).
Combining this with the estimates in the first two steps, we complete the proof of the theorem.

If σ ∈ S 0 1,1 , it is not true in general that (T c σ ) * corresponds to a symbol in the class S 0 1,1 . However, if we assume additionally this last condition, duality and interpolation will give the following boundedness of T c σ :

Theorem 6.3. Let 1 < p < ∞ and σ ∈ S 0 1,1 , α ∈ R. If (T c σ ) * admits a symbol in the class S 0 1,1 , then T c σ is bounded on F α,c p (R d , M).
A similar argument as in the proof of Corollary 5.4 gives the following results concerning the symbols in S n 1,1 with n ∈ R.

Corollary 6.4. Let n ∈ R, σ ∈ S n 1,1 and α > 0. If α > n, then T c σ is bounded from F α,c 1 (R d , M) to F α-n,c 1 (R d , M).
Corollary 6.5. Let n, α and σ be the same as above, and

1 < p < ∞. If (T c σ ) * admits a symbol in the class S n 1,1 , then T c σ is bounded from F α,c p (R d , M) to F α-n,c p (R d , M).
where φ 0 (ξ) = 1 -j≥0 ϕ(2 -j ξ). Since φ 0 is supported in {ξ : |ξ| ≤ 1} and φ 0 (ξ) = 1 if |ξ| ≤ 1 2 , it then follows that φ 0 * f pe p = f (0) p .

Hence, combining the estimates above, we have

(7.2) f F α,c p (T d ,M) ≈ f pe F α,c p (I d ,M) .
Thus F α,c p (T d , M) embeds into F α,c p (R d , M) isomorphically. The equivalence (7.2) allows us to reduce the treatment of T d to that of R d ; and by periodicity, all the functions considered now are restricted on I d . We are not going to state the properties of F α,c p (T d , M) specifically, and refer the reader to [59, Section 4.5] for similar results on quantum torus.

We also briefly introduce operator-valued Sobolev and Besov spaces on T d . Let 1 ≤ p, q < ∞ and α ∈ R d . The potential Sobolev space H α p (T d ; L p (M)) is defined as

H α p (T d ; L p (M)) = {f ∈ S (T d ; L 1 (M) + M) : f H α p := J α f p < ∞}, where J α denotes the α-order Bessel potential on T d . The Besov space B α p,q (T d ; L p (M)) is defined as B α p,q (T d ; L p (M)) = {f ∈ S (T d ; L 1 (M) + M) : f B α p,q < ∞}, where f B α p,q = f (0) Lp(M) + j≥0 2 qjα ϕ j * f q p 1 q .
For a fixed 1 ≤ p ≤ ∞, these spaces are the Banach-valued Sobolev and Besov spaces studied in [START_REF] Arendt | Operator-valued Fourier multipliers on periodic Besov spaces and applications[END_REF], the Banach space being L p (M). In analogy to (7.2), we have

(7.3) f H α p (T d ;Lp(M)) ≈ f pe H α p (I d ;Lp(M))
and (7.4) f B α p,q (T d ;Lp(M)) ≈ f pe B α p,q (I d ;Lp(M)) .

Let us turn to the study of toroidal symbols. In the discrete case, the derivatives degenerate into discrete difference operators. Let σ : Z d → M. For 1 ≤ j ≤ d, let e j be the j-th canonical basis of R d . We define the forward and backward partial difference operators ∆ mj and ∆ mj : When studying the toroidal pseudo-differential operators T c σ on T d , especially its action on operator-valued Triebel-Lizorkin spaces on T d , a very useful tool is to extend the toroidal symbol to a symbol defined on T d × R d , which reduces the torus case to the Euclidean one. This allows us to apply the results in the last sections. The extension of scalar-valued toroidal symbol has been well studied in [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. With some minor modifications, the arguments used in [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF] can be adjusted to our operator-valued setting.

∆ mj σ(m) := σ(m + e j ) -σ(m), ∆ mj σ(m) := σ(m) -σ(m -e j ),

and for any

β ∈ N d 0 , ∆ β m := ∆ β1 m1 • • • ∆ β d m d , ∆ β m := ∆ β1 m1 • • • ∆ β d m d .
The following lemma is taken from [START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF]. Denote by δ 0 (ξ) the Kronecker delta function at 0, i.e., δ 0 (0) = 1 and δ 0 (ξ) = 0 if ξ = 0. (1 + |ξ|) n-ρ|β|1+δ|γ|1 , whence, σ ∈ S n ρ,δ (T d × R d ).

Theorem 7.6. Let σ ∈ S 0 1,δ (T d × Z d ). i) If 0 ≤ δ < 1 and α ∈ R, then T c σ is bounded on H α 2 (T d ; L 2 (M)), and bounded on B α p,q (T d ; L p (M)) for 1 ≤ p, q ≤ ∞. ii) If δ = 1 and α > 0, then T c σ is bounded on H α 2 (T d ; L 2 (M)), and bounded on B α p,q (T d ; L p (M)) for 1 ≤ p, q ≤ ∞. p (T d , M) for any 1 < p < ∞. Proof. The proof of this theorem is similar to that of the last one. This time we appeal to Theorems 5.1, 6.2 and 6.3 and the equivalence (7.2). 7.2. Applications to quantum tori. We now apply the above results to the quantum case. To this end, we briefly recall the relevant definitions, and refer the reader to [START_REF] Chen | Harmonic analysis on quantum tori[END_REF] and [START_REF] Xiong | Besov and Triebel-Lizorkin spaces on quantum tori[END_REF] The involution algebra P θ of all such polynomials is dense in A θ . For any polynomial x as above, we define τ (x) = α 0 .

Then τ extends to a faithful tracial state τ on A θ . Let T d θ be the w * -closure of A θ in the GNS representation of τ . This is our d-dimensional quantum torus. The state τ extends to a normal faithful tracial state on T d θ that will be denoted again by τ . Note that if θ = 0, then T d θ = L ∞ (T d ) and τ coincides with the integral on T d against normalized Haar measure dz.

Any x ∈ L 1 (T d θ ) admits a formal Fourier series:

x ∼ m∈Z d

x(m)U m with x(m) = τ ((U m ) * x).

In [START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF], a transference method has been introduced to overcome the full noncommutativity of quantum tori and to use methods of operator-valued harmonic analysis. Let N θ = L ∞ (T d )⊗T d θ , equipped with the tensor trace ν = dz⊗τ . For each z ∈ T d , define π z to be the isomorphism of T d θ determined by (7.5)

π z (U m ) = z m U m = z m1 1 • • • z m d d U m1 1 • • • U m d d .
This isomorphism preserves the trace τ . Thus for every 1 ≤ p < ∞, π z (x) p = x p , ∀ x ∈ L p (T d θ ). The main points of the transference method are contained in the following lemma from [START_REF] Chen | Harmonic analysis on quantum tori[END_REF]. p,q (T d θ ) = x ∈ S (T d θ ) : x B α p,q < ∞ , where p .

The row space F α,r p (T d θ ) and mixture space F α p (T d θ ), and the case p = ∞ are defined similar to those on the usual d-torus.

The transference method in Lemma 7.8 allows us to connect the spaces defined above with their operator-valued counterparts. The result is In this setting, it is evident that T c σ and T r σ degenerate into the same Fourier multiplier on T d θ , simply denoted by T σ . The following result is a Mikhlin-type Fourier multiplier theorem on T d θ .

Corollary 7.14. Let σ ∈ S 0 1 (Z d ) and α ∈ R. Then T σ is bounded on F α,c p (T d θ ), F α,r p (T d θ ) and F α p (T d θ ) for every 1 ≤ p ≤ ∞.
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  It is the symbol of the Fourier multiplier J α . Recall also the symbols of Littlewood-Paley decomposition on R d , which are used to define Besov and Triebel-Lizorkin spaces. Fix a Schwartz function ϕ on R d satisfying: (1.1)

1 1 .

 1 Now let us prove the claim. SinceL > d 2 -1, we can choose M such that M > d and M < 2L + 2. Take ν m = |Q| -1 2 (1 + l(Q) -1 |m|) -d+M 2 and H m = ν -1 m X m T c σ 2 g, where (X m ) m∈Z d denotes again the smooth resolution of the unit (1.4), i.e. 1 = m∈Z d X m (s), ∀ s ∈ R d . Applying (5.2), we have τ 2Q0,m |H m (s)| 2 ds 1 2
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 72 Let 0 ≤ δ, ρ ≤ 1 and γ, β ∈ N d 0 . Then the toroidal symbol class S n ρ,δ (T d × Z d ) consists of those M-valued functions σ(s, m) which are smooth in s for all m ∈ Z d , and satisfyD γ s ∆ β m σ(s, m) M ≤ C γ,β,m (1 + |m|) n-ρ|β|1+δ|γ|1 for all γ, β ∈ N d 0 . Definition 7.3. Let σ ∈ S n ρ,δ (T d × Z d ).For any f ∈ S (T d ; L 1 (M)), we define the corresponding toroidal pseudo-differential operator as follows:T c σ f (s) =m∈Z d σ(s, m) f (m)e 2πis•m .
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 7475 For each β ∈ N d 0 , there exists a function φ β ∈ S(R d ) and a function ζ ∈ S(R d ) such thatk∈Z d ζ(s + k) ≡ 1, ζ | Z d (ξ) = δ 0 (ξ) and D β ξ ( ζ)(ξ) = ∆ β ξ φ β (ξ), for any ξ ∈ R d .Now let us give the operator-valued analogue of Theorem 4.5.3 in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF].Let 0 ≤ ρ, δ ≤ 1 and n ∈ R. A symbol σ ∈ S n ρ,δ (T d × Z d ) is a toroidal symbol if and only if there exists an Euclidean symbol σ ∈ S n ρ,δ (T d × R d ) such that σ = σ | T d ×Z d . Proof. We first prove the "if" part. Let σ ∈ S n ρ,δ (T d × R d ). If |β| 1 = 1,then by the mean value theorem for vector-valued functions, we have∆ β m D γ s σ(s, m) M ≤ sup 0≤θ≤1 ∂ β ξ D γ s σ(s, m + θβ) M .For a general multi-index β ∈ N d 0 , we use induction. Writing β = β + δ j and using the induction hypothesis, we get∆ β m D γ s σ(s, m) M = ∆ δj m (∆ β m D γ s σ(s, m)) ≤ sup 0≤θ≤1 ∂ j (∆ β m D γ s σ(s, m + θδ j )) M = sup 0≤θ≤1 ∆ β m (∂ j D γ s σ(s, m + θδ j )) M ≤ sup 0≤θ ≤1 D β ξ ∂ j D γ s σ(s, m + θ β) M = sup 0≤θ ≤1 D β ξ D γ s σ(s, m + θ β) M .Thus we deduce that∆ β m D γ s σ(s, m) M ≤ sup 0≤θ ≤1 D β ξ D γ s σ(s, m + θ β) M ≤ C α,β,m (1 + |m|) n-ρ|β|1+δ|γ|1 .Now let us show the "only if" part. In the proof of Theorem 4.5.3 in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF], the desired Euclidean symbol is constructed with the help of the functions in Lemma 7.4. We can transfer directly the arguments in[START_REF] Ruzhansky | Pseudo-differential operators and symmetries. Background analysis and advanced topics[END_REF] to our setting. But we still include a proof for completeness. Let ζ ∈ S(R d ) be as in Lemma 7.4. Define a function σ :T d × R d → M by σ(s, ξ) = m∈Z d ζ(ξ -m)σ(s, m).Thus, σ = σ | T d ×Z d . Moreover, using summation by parts, we haveD γ s D β ξ σ(s, ξ) M = m∈Z d D β ξ ζ(ξ -m)D β s σ(s, m) M = m∈Z d ∆ β ξ φ β (ξ -m)D γ s σ(s, m) M = (-1) |β|1m∈Z d φ β (ξ -m)∆ β m D γ s σ(s, m) M m∈Z d |φ β (ξ -m)|(1 + |m|) n-ρ|β|1+δ|β|1 m∈Z d |φ β (ξ -m)|(1 + |ξ -m|) n-ρ|β|1+δ|γ|1 (1 + |ξ|) n-ρ|β|1+δ|γ|1

Proof.

  By Lemma 7.5, there exists σ in S n ρ,δ (Td ×R d ) such that σ = σ | T d ×Z d . Let f ∈ S (T d , L 1 (M)).By the identification T d ≈ I d , for any z ∈ T d , there exists s ∈ I d such thatT c σ f (z) = m∈Z d σ(s, m) f (m)e 2πis•m = R d σ(s, ξ) f pe (ξ)e 2πis•ξ dξ = T c σ f pe (s).Now we apply Corollary 3.3, Proposition 3.4 and Theorem 3.5 to the symbol σ and f pe . Then by (7.3) and (7.4), we get the desired conclusions.Theorem 7.7. Let σ ∈ S 0 1,δ (T d × Z d ) and α ∈ R. i) If 0 ≤ δ < 1, then T c σ is bounded on F α,c p (T d , M) for every 1 ≤ p ≤ ∞. ii) If δ = 1 and α > 0, then T c σ is bounded on F α,c 1 (T d , M). iii) If δ = 1and (T cσ ) * admits a symbol in the class S 0 1,1 (T d × Z d ), then T c σ is bounded on F α,c

  for more details. Let d ≥ 2 and θ = (θ kj ) be a real skew symmetric d × d-matrix. The associated ddimensional noncommutative torus A θ is the universal C * -algebra generated by d unitary operators U 1 , . . . , U d satisfying the following commutation relationU k U j = e 2πiθ kj U j U k , j, k = 1, . . . , d.We will use standard notation from multiple Fourier series.Let U = (U 1 , • • • , U d ). For m = (m 1 , • • • , m d ) ∈ Z d , define U m = U m1 1 • • • U m d d . A polynomial in U is a finite sum x = m∈Z d α m U m with α m ∈ C.

2 qkα ϕ k * x q p 1 q.2

 1 x B α p,q = | x(0)| q + k≥0The column Triebel-Lizorkin spaces F α,c p (T d θ ) are defined byF α,c p (T d θ ) = {x ∈ S (T d θ ) : x F α,c p 2jα | ϕ j * x| 2 ) 1 2

Proof.Finally

  Recall that π z denotes the isomorphism of T d θ determined by(7.5). We claim that, givenm ∈ Z d , the function z → π z (σ(m)) from T d to T d θ satisfies (7.6) D γ z ∆ β m π z (σ(m)) ≤ C γ,β (1 + |m|) n+δ|γ|1-ρ|β|1. Since π z commutes with the derivations on T d θ , we haveD γ ∆ β π z σ(m) = π z (D γ ∆ β σ(m)). Therefore, D γ ∆ β π z σ(m) = π z (D γ ∆ β σ(m)) ≤ D γ ∆ β σ(m) ≤ C γ,β (1 + |m|) n+δ|γ|1-ρ|β|1 . Denote σ(z, m) = π z (σ(m)) for (z, m) ∈ T d × Z dand consider the pseudo-differential operator T c σ . Combining (7.6) and Theorem 7.7, we obtain the boundedness of T c σ on F α,c p (T d , T d θ ). Moreover, for any polynomial x on T d θ and f (z) = π z (x), we haveT c σ f (z) = m∈Z d σ(z, m) f (m)z m = m∈Z d π z (σ(m)) x(m)U m z m = m∈Z d π z (σ(m) x(m)U m ) = π z (T c σ (x)). The assertions on Sobolev and Besov spaces are proved similarly. Finally, let 0 ≤ ρ ≤ 1, n ∈ R and γ ∈ N d 0 . Define S n ρ (Z d ) as the scalar-valued toroidal symbol class, consisting of those functions σ : Z d → C which satisfy |∆ γ m σ(m)| ≤ C γ (1 + |m|) n-ρ|γ|1 , ∀ m ∈ Z d and ∀ γ ∈ N d 0 .

  2πis•ξ dξ is uniformly convergent. Moreover, one can differentiate the integrand and always obtain uniformly convergent integrals. Then, for any |γ| 1 < K -d 2 , we have
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Applications

The main target of this section is to apply the results obtained previously to pseudo-differential operators over quantum tori. Our strategy is to transfer this problem by the transference method introduced in [START_REF] Neuwirth | Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group[END_REF] to the operator-valued pseudo-differential operators on the usual torus T d . Let us begin with the latter case by a periodization argument. We identify T d with the unit cube

Under this identification, multiplication in T d corresponds to the usual coordinatewise addition modulo 1 in Recall that ϕ is a Schwartz function satisfying (1.1). Then for every m

This tells us that in the torus case {ϕ(2 -j •)} j≥0 gives a resolvent of the unit. According to this, we make a slight change of the notation that we used before:

Let ϕ j = F -1 (ϕ (j) ) for any j ≥ 0. Now we periodize ϕ j as

Then, we can easily see that ϕ j admits the following Fourier series:

Thus, for any f ∈ S (T d ; L 1 (M) + M), whenever it exists,

The following definition was given in [59, Section 4.5].

Lp(N ) .

The row and mixture spaces F α,r p (T d , M) and F α p (T d , M), and the corresponding spaces for p = ∞ are defined similarly to the Euclidean case.

By the discussion before (7.1), if we identify a function f on T d as a 1-periodic function f pe on R d , then the convolution ϕ j * f on T d coincides with the convolution ϕ j * f pe on R d . More precisely:

By the almost orthogonality of the Littlewood-Paley decomposition given in (1.3), we get the following easy equivalent norm of F α,c p (I d , M): p ,