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Introduction

Consider a first-price sealed-bid auction with complete information between two bidders. The players are characterized by their valuation v 1 and v 2 of the item for sale, v 1 < v 2 , and they are supposed to choose bids x 1 and x 2 in [0, M ], M > 0. Assume that in case of ties, i.e. if x 1 = x 2 , then the winner is the player with the highest value. An easy computation proves that for every x ∈ [v 1 , v 2 ], the strategy profile (x, x) is a Nash equilibrium of this strategic game. Yet, for x > v 1 , these equilibria represent fragile situations, because of strategic uncertainty: if player 2 does not respect his equilibrium strategy and decreases slightly his bid, then player 1 gets the item for a price x higher than his valuation v 1 . As a matter of fact, any strategy x 1 ≤ v 1 is also a best-reply of player 1 if player 2 plays x > v 1 , but it is also immune to a small modification of player 2's strategy. Thus, if player 2 is supposed to play x > v 1 , and if he predicts that his opponent should play x 1 ≤ v 1 , then he could be tempted to lower his bid x in order to increase his payoff. Finally, playing x > v 1 for player 1 seems definitely a bad choice, even if the other player is assumed to play the same strategy. This example illustrates that Nash equilibrium concept has sometimes to be refined in order to keep some predictive power, and the same idea can be found in many other situations (e.g., Nash demand game, location game, Bertrand duopoly, etc. See Section 4). Note that the existence of a pure Nash equilibrium in the previous game can be obtained from Reny's theorem [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF], which guarantees existence for the large class of better-reply secure games. This class encompasses many discontinuous 1 economic games, in particular the first-price auction described above. Astonishingly, there is no refinement notion of pure strategy Nash equilibrium for discontinuous games which covers this example, or more generally the class of better-reply secure games. A possible reason is that most refinement notions -like perfect equilibrium of Selten [START_REF] Selten | Reexamination of the perfectness concept for equilibrium points in extensive games[END_REF] -require the existence of equilibria of some auxiliary games, where the players' strategies are perturbed by random mistakes, and payoffs are expected payoffs. If the initial game is better-reply secure, such auxiliary games are in general neither better-reply secure nor quasiconcave, thus no general existence result in pure strategies can be applied to them. 2 In this paper, we introduce a new refinement of pure strategy Nash equilibrium in discontinuous games, called prudent equilibrium. We prove its existence (Theorem 15) for the class of p-robust games, which contains most discontinuous economic games. Roughly, a game is p-robust if for every strategy profile x, no player, when anticipating the worst possible local modifications of other players' strategies, can effect a large change in his payoff by a small change in his strategy.

For example, the first-price auction above can be easily proved to be p-robust (see Example 7): at every strategy profile (x, x) with x < v 1 , if player 1 increases his strategy a little bit, player 2 can answer by the same modification, so that player 1 does not increase his payoff.

We now provide an informal definition of our main solution concept, prudent equilibrium. The main issue in the introductory example is strategic uncertainty, i.e. the uncertainty related to other players' strategies and rationality (see Brandenburger [START_REF] Brandenburger | Strategic and Structural Uncertainty in Games[END_REF]). A radical way to remove strategic uncertainty in games would be to consider extremely prudent players, who try to maximize ũi (x) = inf x-i∈X-i u i (x i , x -i ) with respect to their strategy x i , u i being the initial payoff function of player i, and X -i the strategy sets of his opponents. A less extreme answer would be to assume that given player i's belief about the potential strategy profile x -i of his opponents, he has good reasons to think that their true strategies will stay in some set Y -i (x -i ) ⊂ X -i (for example a small ball centered at x -i ). Then, a prudent player would choose his strategy x i in order to maximize ũi (x) = inf y-i∈Y-i(x-i) u i (x i , y -i ). This function can also be written as ũi (x) = inf y-i∈X-i

(u i (x i , y -i ) + δ(y -i , x -i )) where δ(x -i , y -i ) = 0 if y -i ∈ Y -i (x -i ),
+∞ otherwise. 1 A game is discontinuous if some of its payoff functions are discontinuous. 2 Carbonnel ( [START_REF] Carbonell-Nicolau | The Existence of Perfect Equilibrium in Discontinuous Games[END_REF], [START_REF] Carbonell-Nicolau | On the existence of pure-strategy perfect equilibrium in discontinuous games[END_REF]) extends the existence of perfect equilibria in mixed strategies for some particular classes of discontinuous games. He also gets some pure strategy existence results (e.g., Theorem 3 in [START_REF] Carbonell-Nicolau | On the existence of pure-strategy perfect equilibrium in discontinuous games[END_REF]), but his results require either the concavity of payoff functions with respect to each player's strategy (which implies partial continuity of the payoffs), or general conditions strengthening quasiconcavity, which could be difficult to check in practice. Above all, his results consider always strategic uncertainty in the set of mixed strategies, which makes his results very different from ours. Andersson et al. [3] have recently introduced a pure strategy refinement of Nash equilibrium which has cutting power in some discontinuous games, but whose existence is guaranteed only in continuous games.

In the infimum above, note that only the strategies y -i for which δ(y -i , x -i ) is equal to 0 are useful, and the other ones, for which δ(y -i , x -i ) is infinite, can be removed. In short, δ is a measure for player i of the unlikelihood of a potential deviation y -i from the expected strategy profile x -i .

A natural generalization leads to the definition of the following auxiliary "prudent" game

u λ i (x) = inf y-i∈X-i (u i (x i , y -i ) + c i (y -i , x -i ) λ ) (1) 
where c i : X -i × X -i → R, and λ > 0 is some normalization coefficient. The function ci(x-i,y-i) λ could be interpreted as a (free) insurance paid to player i if the other players -i play y -i instead of the expected strategy x -i , and 1/λ would parametrize the insurance level. By analogy with the previous case, the function ci(y-i,x-i) λ is also a way to parametrize strategic uncertainty: x -i ∈ X -i is the strategy expected by player i, and ci(y-i,x-i) λ ≤ ci(y -i ,x-i) λ

means that the possible deviation y -i has more payoff importance for player i than y -i has.

Interestingly, the prudent behaviour described above has a smoothing effect on the initial game: in general, the prudent payoff functions u λ i are more regular than the initial payoff functions u i . This smoothing effect implies that for every p-robust game G, and for a large class of functions c i (for example distances), there exists a Nash equilibrium of the prudent game associated to G (Theorem 14). This opens a route for refinement, and indeed, we prove that if the initial game G is better-reply secure, and if the level of insurance 1/λ tends to +∞, then any limit point of Nash equilibria of the prudent games is a Nash equilibrium of G (Theorem 15). We call such a limit point a prudent equilibrium: for example, in the first-price auction above, the only prudent equilibrium is the intuitive solution (v 1 , v 1 ) (see Proposition 29).

Our definition of a prudent game should be compared to variational preferences, introduced by Maccheroni, Marinacci and Rustichini [START_REF] Maccheroni | Ambiguity Aversion, Robustness, and the Variational Representation of Preferences[END_REF] to model uncertainty aversion in decision theory. Recall that variational preferences on the set of acts F are represented by

V (f ) = min p∈∆ ( u(f )dp + c(p)),
where u is a utility function, f ∈ F an act, ∆ the set of priors over a state space S, and c : ∆ → [0, +∞] an index of uncertainty aversion. The interpretation by Maccheroni et al. is the following. When the decision maker contemplates choosing an act f , the malevolent Nature tries to minimize its expected utility. Any prior p can be chosen, but Nature must pay a cost c(p) to do so. In their setting, this cost is also interpreted as an ambiguity index.

Our model adapts3 some of these ideas to a strategic setting. In particular, ambiguity is turned into strategic uncertainty. But a major difference is that variational preferences are valid in a probabilistic setting, although we consider only a deterministic framework. Also, the cost c i (x -i , y -i ) in our model depends on the potential strategy profile y -i of -i, which plays the role of p in variational preferences, but also on the strategy profile x -i expected by i.

Many other papers have tried to model strategic uncertainty in games. In quantal-response equilibrium models, pioneered by Kelvey and Palfrey [START_REF] Mckelvey | Quantal Response Equilibria for Normal Form Games[END_REF], strategic uncertainty is represented by a probability distribution (some noise) added to the initial payoff of each player, which defines a perturbed game.

For every mixed strategy profile σ, every player i acts optimally in the perturbed game against σ -i . This induces another probability distribution over the observed actions of the players. If this probability distribution is σ, it is, by definition, a quantal-response equilibrium. In a similar vein, Andersson et al. [3] consider that players choose pure strategies, and strategic uncertainty is now represented through probabilistic subjective beliefs about the strategies of each player's opponents. As above, this defines an equilibrium notion in some auxiliary noisy game. Remark that both approaches are related to refinement literature (see Selten [START_REF] Selten | Reexamination of the perfectness concept for equilibrium points in extensive games[END_REF] or Myerson [START_REF] Roger | Refinements of the Nash equilibrium concept[END_REF]), and as a matter of fact, when the level of noise tends to zero, they provide refinement concepts.

Non-additive models are an alternative to model strategic uncertainty. If strategic uncertainty is represented by a set of priors, then the preferences of each players can be defined through Choquet expected utility model (see Mukerji [27], Marinacci [START_REF] Marinacci | Ambiguous Games[END_REF] , Ryan [START_REF] Ryan | What do uncertainty-averse decision-makers believe ?[END_REF], or Eichberger and Kelsey [START_REF] Eichberger | Non-Additive Beliefs and Strategic Equilibria[END_REF] who also model optimism or pessimism in strategic games), or through Gilboa-Schmeidler maximin model (Klibanoff [20], Dow and Werlang [START_REF] Dow | Nash Equilibrium under Knightian Uncertainty: Breaking Down Backward Induction[END_REF], Lo [START_REF] Chung | Nash equilibrium without mutual knowledge of rationality[END_REF] or De Marco and Romaniello [START_REF] De | Games Equilibria and the Variational Representation of Preferences[END_REF]). Most of the papers above differ in their definition of the support for the beliefs. Recently, Renou and Schlag [START_REF] Renou | Minimax regret and strategic uncertainty[END_REF] have proposed a dual model based on minimax behaviour: in their approach, regret guides players in forming probabilistic assessments and, ultimately, in making choices.

The main difference between our model and these models is that beliefs about the strategies of the other players are not represented by sets of priors, but by deterministic functions. It turns out to be a very tractable approach in many cases, even when the initial game is discontinuous (see Section 4), and it has several interpretations. Last, it should be added that prudent equilibrium shares a common feature with most previous refinement notions: it does not pretend to select the reasonable outcome in all familiar games. Indeed, in general, it is always possible to find a strategic game for which a given refinement concept is ineffective. But we think that (1) our notion is complementary to the previous ones, (2) it helps to remove non intuitive solutions for many discontinuous or continuous games, as illustrated in the paper (see Section 4 for many examples, and also Section 3, which proves that dominated strategies -in some specific sense -cannot be played at a prudent equilibrium), and (3) it is not difficult to compute for many simple games. A specific feature of prudent equilibrium in pure strategies is that the strategic uncertainty is local (contrarily to trembling-hand equilibrium concept, which considers that every strategy could be played by mistake -i.e. out of equilibrium -with some probability). According to us, it could be an interesting feature, since it only requires that agents examine local mistakes. But clearly, it implies that we do not encompass previous refinement notions for every game. This is a price to pay to be able to get an existence result in pure strategies for large and simple classes of discontinuous games. Another important feature of prudent equilibrium is that it is possible (though not automatic) that the choice of the functions c i that parametrize strategic uncertainty influences the prudent equilibrium. 4 This is not surprising: indeed, c i models strategic uncertainty in a local way, and it could influence the selection of the Nash equilibrium of the initial game. In general, the choice of c i could depend on the context of the game. Anyway, we provide examples for which the prudent equilibrium does not depend on c i (see

Examples 26 or 46).

The paper is organized as follows. Section 2 introduces prudent games, prudent equilibrium, and finally p-robust games, the general class of (possibly discontinuous) games for which we can prove the existence of a prudent equilibrium. In Section 3 is stated the main existence result, and also the fact that prudent equilibrium refines Nash equilibrium in better-reply secure games. Then, the new concept of prudent-dominance is introduced, and it is proved that prudent equilibria rule out Nash equilibrium profiles such that the strategy of one player is prudent-dominated. Section 4 provides examples, Section 5 concludes the paper, and finally, some possible extensions (for example when the game possesses enough symmetry), together with some proofs, are proposed in the appendix.

The main solution concepts 2.1 The general framework

There are N players. 5 The pure strategy set of each player i ∈ N , denoted by X i , is a non-empty, compact subset of a metric topological vector space E i . Each player i has a bounded payoff function

u i : X = i∈N X i → R.
A strategic game G is a pair G = ((X i ) i∈N , (u i ) i∈N ). For every x ∈ X and every i ∈ N , we denote

x -i = (x j ) j =i and X -i = Π j =i X j . Throughout this paper, a game G satisfying the above assumptions is called a compact game. Additionally, G is called a quasiconcave game if for every player i, X i is convex, and if for every player i and every strategy x -i ∈ X -i , u i (x i , x -i ) is quasiconcave in x i . The game G is called continuous if for every player i, u i is continuous in x.

We shall denote by Γ = {(x, u(x)) : x ∈ X} the closure of the graph of G. Let us define the "secure payoff level" of player i when he plays d i and when the other players play x -i by u i (d i , x -i ) = lim inf x -i →x-i u i (d i , x -i ). Following Reny [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF], the game G is better-reply secure if whenever (x, v) ∈ Γ and x is not a Nash equilibrium, some player i ∈ N can secure a payoff strictly above v i , i.e. there exists

d i ∈ X i such that u i (d i , x -i ) > v i .
It is easy to check that every continuous game is better-reply secure, and we recall that every better-reply quasiconcave game admits a Nash equilibrium (Reny's theorem [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF]).

Prudent game

To every game we can associate an auxiliary "prudent" game as follows:

Definition 1. Let F i be the set of continuous 6 real-valued functions c from X -i × X -i to [0, +∞] such that c(x -i , y -i ) = 0 if and only if x -i = y -i . Let c = (c i ) i∈N ∈ Π i∈N F i . For every λ > 0, the λ-prudent game associated to G = ((X i ) i∈N , (u i ) i∈N ) is G λ = ((X i ) i∈N , (u λ i ) i∈N ),
where for each player i ∈ N ,

u λ i (x i , x -i ) = inf y-i∈X-i u i (x i , y -i ) + c i (x -i , y -i ) λ . (2) 
A λ-prudent-equilibrium (or λ-equilibrium7 ) of G is a Nash equilibrium of G λ .

The function c i is required to be continuous, which has two important consequences. First, it permits to avoid some degenerate cases, like when c i is a discrete metric (c i (x i , y i ) = 0 if and only if x i = y i and c i (x i , y i ) = 1 otherwise): indeed, for such a metric, it is easy to see that u λ i = u i for λ close enough to zero, and in this case, the set of Nash equilibria will always coincide with the set of prudent equilibria.

Second, considering continuous functions c i will play an important role in the regularizing effect of the prudent game: see Proposition 2 below.

For example, a natural choice in Definition 1 is c i (x -i , y -i ) = δ -i (x -i , y -i ) αi for some α i > 0, where δ -i denotes any product distance on X -i (each strategy space being endowed with its initial metric). This class of functions c i covers all the examples and the applications in this paper. In particular, for this class of functions c i , for every x ∈ X and every neighborhood V x-i of x -i , we have

u λ i (x i , x -i ) = inf y-i∈Vx -i u i (x i , y -i ) + ci(x-i,y-i) λ
for λ > 0 small enough,8 that is, the auxiliary payoff function u λ i (x) only depends on the properties of u i (x i , y -i ) for y -i close enough to x -i , when λ tends to zero. This explains why our main regularity assumption (p-robustness, see Section 2.4), which will ensure some regularity of the auxiliary functions u λ i , only takes care on local deviations y -i of x -i . The infimum in the definition of u λ i means that each player of G λ is prudent (or pessimistic) with respect to the rationality of opponents (note that player i may be worrying about a different modification of his strategy by player j than player k / ∈ {i, j} worries about). The function ci(x-i,y-i) λ allows to weight differently opponents' actions, and could be interpreted in several ways: as discussed in the introduction, it may be seen as a functional index related to strategic uncertainty of player i about other players' strategies. Another interpretation is that it is a (free) insurance paid to player i if the other players -i play y -i instead of the predicted strategy x -i . This "insurance" can be seen as an abstract way to model the degree of confidence 9 that player i has in his belief that opponents will respect their Nash equilibrium strategies. A last interpretation is related to ambiguity: the set of strategies of opponents can be seen as a set of deterministic priors, and ci(xi,y-i) λ is a measure of ambiguity on the other players' strategies. In particular, ci(xi,y-i) λ = 0 means a maximal ambiguity (which implies that player i will act as a maximin player), and ci(xi,y-i) λ = +∞ that there is no ambiguity at all.

In each interpretation above, the functions c i parametrize some local shape (of degree of confidence, ambiguity index, etc.), and λ > 0 parametrizes the level of the ambiguity. The case λ → 0 corresponds to perfect insurance against strategic uncertainty, or perfect confidence, or minimal ambiguity. On the opposite, when λ → +∞, players are getting closer to maximin agents, which corresponds to maximal ambiguity or minimal confidence level. 10

c i (x -i ,y -i ) λ -ε ≤ u λ i (x i , x -i ). By assumption, | u i | is bounded by some M > 0. Then choose λ > 0 small enough such that c i (x -i , y -i ) = δ -i (x -i , y -i ) α i > (2M + ε)λ when y -i / ∈ Vx -i . From -M + c i (x -i ,y -i ) λ -ε ≤ u λ i (x i , y -i ) ≤ u i (x i , x -i ) ≤ M , we get c i (x -i , y -i ) ≤ (2M + ε)λ, which implies y -i ∈ Vx -i .
9 In [START_REF] Eichberger | Non-Additive Beliefs and Strategic Equilibria[END_REF], Eichberger and Kelsey use capacities to model ambiguity and degree of confidence in a strategic game. 10 More formally, it can be proved (see [7]) under general suitable assumptions that (1) any limit of λ n -equilibria where λ n tends to +∞ is a maximin strategy profile (which means that each player i maximizes infx -i u i (x i , x -i )) (2) the limit 6

The first important properties of the prudent game G λ are summarized in the following proposition, proved in Appendix F. Proposition 2. For every quasiconcave game G:

1. G λ is quasiconcave. 2. For every x i ∈ X i , x -i → u λ i (x i , x -i ) is continuous. 3. u λ i ≤ u i ≤ u i .
Another important property of the payoff functions of the prudent game is the following Lipschitzproperty (relative to the cost function c i ), which turns out to be a characterization of such payoff functions:

Proposition 3. Assume that c i ∈ F i defines a distance on X -i , and let λ > 0. Let v i be a payoff function quasiconcave in x i . There exists a payoff function u i , quasiconcave in x i , which satisfies

v i (x i , x -i ) = inf y-i∈X-i u i (x i , y -i ) + c i (y -i , x -i ) λ (3) 
if and only if

∀(x, y -i ) ∈ X × X -i , | v i (x i , x -i ) -v i (x i , y -i ) |≤ c i (y -i , x -i ) λ . (4) 
The proof can be found in Appendix G. The Lipschitz-property of v i with respect to x -i (and relative to c i ) illustrates the regularization effect of the prudent game, which goes far beyond the simple continuity of v i with respect to x -i .

Prudent equilibrium

We now define the main solution concept of this paper:

Definition 4. A strategy profile x ∈ X is a prudent equilibrium of G for some c = (c i ) i∈N ∈ Π i∈N F i if
x is the limit of λ n -equilibria for λ n → 0. The strategy profile x is a strictly prudent equilibrium if this holds for any c ∈ F.

To prove that prudent equilibrium exists and refines Nash equilibrium in a large class of possibly discontinuous games, we will restrict ourself to the large class of p-robust games, which is defined in the next section.

P-robustness

The following definition of p-robustness plays a central role in our results: p-robust games encompasses most usual discontinuous games, and it will be proved in Section 3 that any p-robust game possesses some prudent equilibrium.

of λ n -equilibria where λ n tends to 0 is a Nash equilibrium. See also Theorem 15, i).

Definition 5. A payoff function u i is p-robust at x ∈ X if for every ε > 0 and for every neighborhood

V x-i of x -i , there exists some open neighborhood V xi of x i such that sup x i ∈Vx i inf x -i ∈Vx -i u(x i , x -i ) ≤ u i (x) + ε.
The payoff function u i is p-robust if this holds for every x ∈ X. If for every i ∈ N , u i is p-robust, then we say that G is p-robust.

Thus, u i is p-robust at x if player i, when anticipating the worst possible local modifications of other players' strategies, cannot effect a large change in his payoff by a small change in his strategy. If u i was not p-robust at x, a pessimistic player could have some incentive to slightly modify his strategy x i . In particular, games with continuous payoff functions are p-robust.

A first simple class of p-robust games are games for which the following property of graph uppersemicontinuity (graph u.s.c.) is true:11 Definition 6. The payoff function u i is graph upper semicontinuous (graph u.s.c.) at x ∈ X if there exist

V xi an open neighborhood of x i , and a continuous mapping

f -i : V xi → X -i , such that u i (x i , f -i (x i )) is u.s.c. on V xi .
Example 7. The first-price auction described in the introduction is p-robust: indeed, for every player i = 1, 2 and around any point xi , one can define P-robustness assumption is fundamentally different from better-reply security or its generalizations.

f -i (x i ) = x i . Then, u i (x i , f -i (x i )) = u i (x i , x i ) is continuous, thus u i is graph u.s.c.
As the following example shows, there is no direct relationship between better-reply security and probustness.

Example 9. Consider a two-player game with

X 1 = X 2 = [0, 1], u 1 (x 1 , x 2 ) = -(x 1 -x 2 ) 2 for every (x 1 , x 2 ) ∈ [0, 1] 2 , u 2 (0, x 2 ) = x 2 for every x 2 ∈ [0, 1] and u 2 (x 1 , x 2 ) = -x 2 for every (x 1 , x 2 ) ∈]0, 1]×[0, 1].
This game is p-robust, but it is not better-reply secure (because it is quasiconcave and does not possess any Nash equilibria). Conversely, define v 1 (0, 0) = 0, v 1 (x 1 , x 2 ) = 1 for every (x 1 , x 2 ) = (0, 0), and

v 2 (x 1 , x 2 ) = x 2 .
This game is better-reply secure, but v 1 is not p-robust at (0, 0).

In addition, the following example proves that a game G can be better-reply secure, although the associated prudent game G λ is not better-reply secure and possesses no Nash equilibrium: in particular, G has no prudent equilibrium, which proves the necessity to consider p-robust games if we want to get the existence of a prudent equilibrium.

Example 10. Consider a two-player game with

X 1 = X 2 = [0, 1], u 1 (x 1 , x 2 ) = 1 -x 1 for every (x 1 , x 2 ) ∈ ]0, 1]×[0, 1], u 1 (0, 1) = 1, u 1 (0, x 2 ) = 0 for every x 2 ∈ [0, 1[, and u 2 (x 1 , x 2 ) = x 2 for every (x 1 , x 2 ) ∈ [0, 1] 2 .
This game G is better-reply secure (and quasiconcave): we have to prove better-reply security only at profiles of payoffs (x 1 , x 2 ) which are not Nash equilibria and which are discontinuity points of u 1 (thus x 1 = 0 and x 2 < 1, because (0, 1) is a Nash equilibrium). For every limit of payoff profiles (ū 1 , ū2 ) at

(x 1 , x 2 ) (that is (ū 1 , ū2 ) = lim n→+∞ (u 1 (x n ), u 2 (x n )) for some sequence (x n ) n≥0 converging to (x 1 , x 2 )),
player 2 can secure a payoff strictly above ū2 = x 2 by playing 1, since

u 2 (x 1 , 1) = 1 > x 2 for every x 1 ∈ X 1 .
This proves better-reply security. Also, G is not p-robust at (0, x 2 ) for every x 2 < 1, since player 1 can improve his payoff u 1 (0, x 2 ) = 0 from 0 to 1 -ε by playing some ε > 0 as small as he wants, regardless

x 2 ∈ X 2 . Now, for every λ > 0, the prudent payoff u λ 2 = u 2 is unchanged, u λ 1 (x 1 , x 2 ) = 1 -x 1 for every (x 1 , x 2 ) ∈]0, 1] × [0, 1], and u λ 1 (0, x 2 ) = 0 for every x 2 ∈ [0, 1],
thus G λ has no Nash equilibrium (since player 1 has no best-response against any x 2 ∈ X 2 ), and from Reny's theorem, G λ is not better-reply secure (since it is also quasiconcave). P-robustness is also fundamentally different from Baye et al. [START_REF] Michael | Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs[END_REF]: these authors provide necessary and sufficient conditions for Nash equilibrium existence, although our assumption is disconnected from Nash equilibrium existence. Our assumption is also different 12 from weak upper semicontinuity, introduced by Carmona [START_REF] Carmona | Understanding some Recent Existence Results for Discontinuous Games[END_REF].

The following proposition, proved in Appendix E, provides an easy way to check that a game is p-robust, and generalizes the graph u.s.c. criterium above.

Proposition 11. Consider a game G = ((X i ) i∈N , (u i ) i∈N ). Assume that for every x = (x i , x -i ) ∈ X, there exists V xi ⊂ X i
, an open neighborhood of x i , and there exists a lower hemicontinuous correspondence 13 ψ x from V xi to X -i such that x -i ∈ ψ x (x i ), and such that the restriction of u i to

Grψ x := {y = (y i , y -i ) ∈ V xi × X -i : y -i ∈ ψ x (y i )} is upper hemicontinuous at x. Then G is p-robust.
In particular, if u i is upper semicontinuous in x i , then it is p-robust. Indeed, for every x = (x i , x -i ) ∈ X, we can apply Proposition 11 at x by defining ψ x (y i ) = x -i for every y i ∈ X i .

The next example provides a general class of games which is p-robust. Bich and Laraki [8]) if for every i ∈ N ,

Example 12. A game G = ((X i ) i∈N , (u i ) i∈N ) is diagonal (see
X i = [0, 1]
, and there exists:

1. f i and g i , some upper semicontinuous mappings from

[0, 1] × [0, 1] to R 2. h i , a mapping from [0, 1] N to R 3. φ, a continuous mapping from [0, 1] N -1 to [0, 1], such that its inverse φ -1 (x i ) = {x -i ∈ X -i : x i = φ(x -i )} is a lower hemicontinuous correspondence,
such that:

u i (x i , x -i ) =      f i (x i , φ(x -i )) if φ(x -i ) > x i , g i (x i , φ(x -i )) if φ(x -i ) < x i , h i (x i , x -i ) if φ(x -i ) = x i .
12 Indeed, consider two players,

X 1 = X 2 = [0, 1], u 1 (x, y) = -(x -y) 2 , u 2 (x, y) = y if x < 1 and u 2 (1, y) = -y otherwise. It is p-robust (because each u i is u.s.c. in x i ), but is not weakly upper semicontinuous: indeed, x -i → sup x i ∈X i u i (x i , x -i )
is lower semicontinuous (weak payoff security), and if G was weakly upper semicontinuous, from Corollary 3 in [START_REF] Carmona | Understanding some Recent Existence Results for Discontinuous Games[END_REF], it would possess a Nash equilibrium. 13 Let A and B be two topological spaces. A correspondence Φ from

A to B is lower hemicontinuous if for every open subset V of B, the set {x ∈ A : Φ(x) ∩ V = ∅} is an open subset of A.
The assumption on φ is satisfied, for example, if φ(y) = {k-th highest value of {y 1 , ..., y N -1 }}, k = 1, ..., N -1. Such functions encompass many models of competition with complete information (e.g., auctions, wars of attrition, preemption games or Bertrand competitions).

If h i is upper semicontinuous for every i ∈ N , then the diagonal game G is p-robust from Proposition 11. Indeed, we have to check p-robustness at every discontinuity point x ∈ X of u i , i.e. at x = (φ(x -i ), x -i ). By assumption, ψ x (y i ) = {y -i ∈ X -i : y i = φ(y -i )} is a lower hemicontinuous correspondence, and Proposition 11 can be applied, since the restriction of u i to Grψ x coincides with h i .

Another example of interest is the following case14 : assume that N = 2, that φ is equal to identity, and that for every x ∈ [0, 1], h i (x, x) ≥ min{f i (x, x), g i (x, x)}. Under these assumptions, we get a probust game. Indeed, consider for example the case (x,

x) ∈]0, 1[×]0, 1[ and h i (x, x) ≥ f i (x, x). Defining ψ x (y i ) = (y i , 1]
, we can apply Proposition 11. The other cases are similar.

The following proposition (proved in Appendix F) explains the important role plays by p-robustness in our paper: it guarantees some minimal regularity of the prudent game.

Proposition 13. For every p-robust game G, the payoff functions u λ i of the prudent game are upper semicontinuous with respect to x.

3 Existence of prudent equilibria and refinement of Nash equilibrium in better-reply secure games Refinement theory refers to the selection of particular equilibria which are more plausible. Many refinement concepts exist in the literature: in his seminal paper, Selten [START_REF] Selten | Reexamination of the perfectness concept for equilibrium points in extensive games[END_REF] introduces trembling-hand perfect equilibrium and proves its existence in finite-strategy games. In short, his idea is to select equilibria which are immune to small mistakes of the other players, a mistake being formalized by a mixed strategy close to the initial strategy. Perfect equilibria have been refined in several directions: Myerson [START_REF] Roger | Refinements of the Nash equilibrium concept[END_REF] introduces proper equilibria, where players are more likely to make mistakes in directions that are least harmfull to them. Kohlberg and Mertens [START_REF] Kohlberg | On the Strategic Stability of Equilibria[END_REF] defines some stable equilibrium notion, which requires stronger conditions than perfect equilibrium; Simon and Stinchcombe [START_REF] Simon | Equilibrium Refinement for Infinite Normal-Form Games[END_REF] extend perfect and proper equilibria to infinite normal-form games. 15

Prudent equilibrium existence and refinement of Nash equilibrium

To the best of our knowledge, there is no general existence result of refined Nash equilibrium (1) in pure strategies (2) which allows discontinuities of the payoff functions with respect to each player's strategy (3) without using random perturbations. This section proposes such a result. Recall that Andersson et al. [3], or Carbonell-Nicolau ( [START_REF] Carbonell-Nicolau | The Existence of Perfect Equilibrium in Discontinuous Games[END_REF] and [START_REF] Carbonell-Nicolau | On the existence of pure-strategy perfect equilibrium in discontinuous games[END_REF]) introduce some refinement notions in pure strategies, but in both cases, the beliefs on other mistakes are random variables, and Andersson et al. require concavity (thus continuity, except on the boundary of strategy spaces) of the payoffs with respect to each player's strategy (see footnote 2 for more details about the assumptions of these papers).

We now state a first important result of this paper. Theorem 14. Let c = (c i ) i∈N ∈ Π i∈N F i and G be a quasiconcave and p-robust game. For every λ > 0, there exists a λ-equilibrium.

Indeed, from Proposition 2, G λ is a compact and quasiconcave game, u λ i is upper semicontinuous with respect to x and continuous with respect to x -i . Thus, for every λ > 0, G λ possesses a Nash equilibrium (see, for example, Theorem 2 in [START_REF] Dasgupta | The Existence of Equilibrium in Discontinuous Economic Games, Part I (Theory)[END_REF]).

We now state our main result (hereafter, the profile of cost functions c = (c i ) i∈N ∈ Π i∈N F i is fixed): Theorem 15. i) For every better-reply secure game, a prudent equilibrium is a Nash equilibrium.

ii) The set of prudent equilibria is closed.

iii) For every compact, quasiconcave and p-robust game, the set of prudent equilibria is nonempty.

Proof. i) Assume G is a better-reply secure game, and let (λ n ) n∈N be a sequence of non negative reals converging to 0, and (x n ) n∈N be a sequence of λ n -equilibria which converges to x. From compactness of Γ, without any loss of generality, up to a subsequence, we can assume that (x n , u(x n )) converges to some

(x, v) ∈ Γ. By definition, ∀i ∈ N, ∀d i ∈ X i , u λn i (d i , x n -i ) ≤ u λn i (x n ) ≤ u i (x n ), (5) 
the last inequality being a consequence of Proposition 2. Passing to the infimum limit as n → +∞, and using lim inf n→+∞ u λn i (d i , x n -i ) ≥ u i (d i , x -i ) (See Claim 34 in Appendix A), we get u i (d i , x -i ) ≤ u i for every i ∈ N and every d i ∈ X i . Since G is better-reply secure, this implies that x is a Nash equilibrium. To prove ii), consider a sequence of prudent equilibria (x n ) n≥0 converging to x ∈ X. By definition, for every integer n > 0, there exists λ n ∈]0, 1 n ] such that x n is a Nash equilibrium of G λn . In particular, (λ n ) n≥0 converges to zero, and x is a prudent equilibrium by definition. Last, for iii), note that by definition of prudent equilibria, for every sequence (λ n ) n∈N converging to 0, any limit point of Nash equilibria of G λ n (which exists from Theorem 14 and from compactness of G) is a prudent equilibrium.

In particular, in every better-reply secure and p-robust strategic game, prudent equilibrium concept selects some particular Nash equilibria. This selection can be affected by the choice of particular functions c i (see Example 24), or not (see Example 26). This is not surprising: indeed, c i models strategic uncertainty in a local way, and it could influence the selection of the Nash equilibrium of the initial game.

Applications are given in Section 4. For example, it is proved that in first-price sealed-bid auctions with complete information, prudent equilibrium concept selects the unique natural solution, although there is a continuum of Nash equilibria. In case of ties, if the winner is the player with the highest value (Example 28), then the game is better-reply secure and the unique prudent equilibrium is a Nash equilibrium from Theorem 15. If we now consider an equal sharing rule (Example 30), then the game is no more better-reply secure. There is no Nash equilibrium, but a family of ε-Nash equilibria, and the unique prudent equilibrium is the "natural" limit of ε-Nash equilibria when ε → 0. Thus, Theorem 15 can refine Nash or limit-Nash equilibrium. 16 16 By limit-Nash equilibrium, we mean a limit of ε-Nash equilibrium profiles when ε tends to 0.

Example 16. The following example illustrates that without additional assumptions on the set of games (like better-reply security), a prudent equilibrium may fail to be a Nash equilibrium: 17 consider a twoplayer symmetric game, where

X 1 = X 2 = [0, 1], u i (x i , x -i ) = 1 + x i if x i = x -i and u i (x i , x -i ) = 0
otherwise. For every x ∈ [0, 1], (x, x) is a (strict) Nash equilibrium, and (1, 1) is the unique Paretodominant equilibrium. Nevertheless, every pair (x 1 , x 2 ) ∈ X 1 × X 2 is a prudent equilibrium, because the auxiliary payoff functions u λ i associated to this game are equal to zero. A possibility to avoid such situations would be to "force" prudent equilibria to be Nash equilibria (in the definition), but then it would remove some interesting features of prudent equilibrium concept: indeed, in games with discontinuous payoffs, it may be the case that prudent equilibrium is relevant although Nash equilibrium is non-credible.

As an illustration, consider the two-player symmetric game where

X 1 = X 2 = [0, 1], u 1 (x 1 , 1) = -1000, u 1 (x 1 , x 2 ) = (1000 -ε)(1 -x 1 ) -2000x 1 if x 2 ∈]0, 1[, u 1 (x 1 , 0) = 1000(1 -x 1 ) + (1000 + ε)x 1 if x 1 < 1,
and finally u 1 (1, 0) = 1000, where ε > 0 is a "small" real number. The unique Nash equilibrium is (1, 1), and it is associated to the payoff profile (-1000, -1000) (a very low payoff for both players). We argue that playing x i = 1 is non-credible for both players: indeed, first, the strategy x i = 1 is (weakly) dominated by x i = 0. More precisely, u i (1, x -i ) = u i (0, x -i ) for x -i ∈ {0, 1}, and u i (0,

x -i ) = u i (1, x -i ) + 3000 -ε for every x -i / ∈ {0, 1}.
Even if we think that player i could play x i = 1 because he anticipates that his opponent will choose x -i ∈ {0, 1}, then there is another argument for playing x i = 0: if x i = 1 and x -i ∈ {0, 1}, then the payoff of player i may decrease a lot if -i perturbs slightly his strategy (perturbations which would be costless for him). Choosing x i = 0 avoids this problem. Now, it is easy to see that this game is p-robust, 18 is not better-reply secure (which explains why the first point of Theorem 15 cannot be used), and that its unique 19 prudent equilibrium is (0, 0). It provides to each player a payoff equal to 1000 (close to the maximal payoff), and this payoff does not change much under small perturbations of the other player's strategy. Last, (0, 0) is also the limit of the 1 n -Nash equilibrium profiles ( 1 n , 1 n ) (which are much more secure than the Nash equilibrium profile (1, 1)). This illustrates that prudent equilibrium concept contains interesting strategic informations that may not be provided by Nash equilibrium concept. Nevertheless, the phenomenum described above is rather unusual, since in practice many games are better reply-secure (if not continuous), and in this case, prudent equilibrium can be seen as a refinement of Nash equilibrium. 17 I thank an anonymous referee for providing this example, and for pushing me to address this issue. Note that in the refinement literature with infinite normal form games, this is usual to restrict oneself to particular classes of payoff functions. Indeed, most refinement concepts are defined as limits of sequences of Nash equilibria of perturbated games, and in infinite normal form games, there is no guarantees in general to get a Nash equilibrium at the limit. For example, Simon and Stinchcombe [START_REF] Simon | Equilibrium Refinement for Infinite Normal-Form Games[END_REF] consider continuous payoffs (see also Carbonnel [START_REF] Carbonell-Nicolau | The Existence of Perfect Equilibrium in Discontinuous Games[END_REF]). 18 The unique discontinuity point (x 1 , x 2 ) for which player 1 can improve his payoff by small perturbations of his strategy is (1, 0) (he can play 1 -η for η > 0 small enough), but this improvement is not immune to small modifications of the other player's strategy, thus p-robustness is satisfied at (1, 0) (and other strategy profiles raise no particular difficulties.) 19 Indeed, consider the auxiliary game G λ associated to G. For every x = (x i , x -i ) ∈]0, 1]×]0, 1[, x is not a prudent equilibrium (one can apply for example Theorem 20, since u i (0, x -i ) > u i (x) implies that x i is prudent-dominated by 0 at x -i ). For every η > 0, for λ > 0 small enough, we have

u λ i (x i , x -i ) = (1000 -ε)(1 -x i ) -2000x i for every x -i ∈ [0, 1 -η[, thus 
for λ > 0 small enough, 0 is the unique best-response (in G λ ) to any strategy in [0, 1 -η[. In particular, (0, 0) is a prudent equilibrium, and the last thing to check is that (1, 1) is not a prudent equilibrium. But if x n is a sequence of Nash equilibria of G λn converging to (1,1), where λn converges to 0, then u λn i (x n ) < -1000 ≤ u λn i (0, x n -i ) for n large enough, contradicting that x n i is a best-response to x n -i .

Prudent equilibrium and dominance

The previous section explains how prudent equilibrium can refine Nash equilibrium concept, for games with continuous or discontinuous payoffs. A natural question that follows is: are the strategies played at every prudent equilibrium "undominated", in some natural sense ?

The question is important: in mixed extensions of finite games, a usual refinement of Nash equilibrium concept is perfect equilibrium, and it is well known that it puts no mass on weakly dominated strategies.

Thus, one of the main distinctive features of perfect equilibrium compared with Nash equilibrium is to rule out weakly dominated strategies. In this section, we raise a similar issue for prudent equilibrium. 20 For general normal form games with continuous payoffs defined on convex strategy spaces, it is known that, in general, this is not possible to refine Nash equilibrium notion to rule out weakly dominated strategies. It can be illustrated by the following example (see Example 2.1. in Simon and Stinchcombe [START_REF] Simon | Equilibrium Refinement for Infinite Normal-Form Games[END_REF]):

Example 17. There are two players i = 1, 2, X 1 = X 2 = [0, 1 2 ], and the payoffs are defined by

u i (x i , x -i ) = x i if x i ≤ x-i 2 , x-i(1-xi) 2-x-i otherwise.
The unique Nash equilibrium of this continuous and quasiconcave game is (0, 0), hence any refinement of Nash equilibrium concept should give the same strategy profile. Yet, the strategy 0 is weakly dominated by any strategy x i > 0 for each player i = 1, 2.

In order to overcome this problem, Simon and Stinchcombe [START_REF] Simon | Equilibrium Refinement for Infinite Normal-Form Games[END_REF] have proved that in normal form games with continuous payoffs, one can refine Nash equilibrium existence to rule out strategies which are not limits of undominated strategies (such a property is called "limit admissibility property" in the literature). For games with discontinuous payoffs, the situation is more complicated, and the limit admissibility property itself can fail (see Carbonnel [START_REF] Carbonell-Nicolau | The Existence of Perfect Equilibrium in Discontinuous Games[END_REF]). In this section, we try to understand which kind of Nash equilibria could be ruled out when considering prudent equilibrium concept. Taking into account the above Example, we have to consider a domination concept different from weak domination. When the payoffs are regular enough (in a local sense), we will see that prudent equilibrium rules out some "dominated" strategies, where the domination concept, called prudent-dominance, is related to strategic uncertainty.

Throughout this section, the strategy spaces X i are assumed to be subsets of finite dimensional vector spaces, and . denotes the Euclidean norm. We specify the functions c i in the definition of prudent equilibrium, taking quadratic functions:

c i (x -i , y -i ) = x-i-y-i 2 2
(the normalization factor 1 2 being practical to simplify computations). 21 First, in the following proposition, we provide a condition that guarantees that Nash equilibria are prudent equilibria:

20 I thank the editor and two referees for asking me to develop this important issue. 21 Let us recall that our cost function c i has an interpretation in the framework of variational preferences model of Maccheroni, Marinacci and Rustichini [START_REF] Maccheroni | Ambiguity Aversion, Robustness, and the Variational Representation of Preferences[END_REF] (see the introduction). In this framework, it makes sense to take a convex function c i . Proposition 18. Let x ∈ X be a Nash equilibrium of G = ((X i ) i∈N , (u i ) i∈N ). Assume that for every player i: (1) u i (x i , .) is continuous on some neighborhood of x -i , (2) for every

d i = x i , u i (d i , x -i ) ≤ u i (x i , x -i ) for every x -i close enough to x -i . Then x = (x i , x -i ) is a prudent equilibrium.
The condition in this proposition says that even if player i anticipates a slight modification of the other players strategies, he has no strict incentive to modify his Nash equilibrium strategy x i for another strategy d i . This reinforces Nash equilibrium condition.

Proof of Proposition 18. We simply prove that x is a 2 n -equilibrium for every n large enough. By definition, u

2 n i (x i , x -i ) = inf y-i∈X-i u i (x i , y -i ) + n x -i -y -i 2 .
Since u i is bounded and u i (x i , .) is continuous on some neighborhood of x -i , for every n large enough, there exists y n -i ∈ X -i such that u

2 n i (x i , x -i ) = u i (x i , y n -i ) + n y n -i -x -i 2
, and (y n -i ) n≥0 has to converge to x -i when n tends to +∞. For every

d i ∈ X i different from x i , u 2 n i (x i , x -i ) = u i (x i , y n -i ) + n y n -i -x -i 2 ≥ u i (d i , y n -i ) + n y n -i -x -i 2 ≥ u 2 n i (d i , x -i ), which ends the proof.
The implication in Proposition 18 is not an equivalence. Actually, there exists some two-player continuous game which possesses some Nash and prudent equilibrium x, although there exists a deviation d i of some player i with

u i (d i , x -i ) > u i (x i , x -i ) (6) 
for every x -i = x -i on some neighborhood of x -i (see the example in Appendix I). Thus, if we interpret Condition (6) above as some local domination of x i by d i , then prudent equilibrium concept does not allow to rule out strategies that are dominated in this sense. The following Definition 19 and Theorem 20 prove this is possible if we reinforce slightly Condition (6):

Definition 19. Let x ∈ X and d i ∈ X i . Assume u i is C 1 on a neighborhood of (d i , x -i ) and x. Strategy x i is prudent-dominated by d i given x -i ∈ X -i if u i (d i , x -i ) > u i (x), or if u i (d i , x -i ) = u i (x) and: (i) For every x -i = x -i in some neighborhood of x -i , ∂ui ∂x-i (d i , x -i ) -∂ui ∂x-i (x), x -i -x -i > 0; (ii) There exists ε > 0 such that x -i -ε ∂ui ∂x-i (x i , x -i ) and x -i -ε ∂ui ∂x-i (d i , x -i ) are interior to X -i . Condition (i) is clearly a reinforcement of Inequation (6) above: it says that when u i (d i , x -i ) = u i (x), the first order development of u i (d i , x -i )-u i (x i , x -i ) around x -i is locally strictly positive. In particular, this implies, when u i (d i , x -i ) = u i (x i , x -i ), that x -i is a boundary point of X -i ,

and Condition (ii)

implies in that case that ∂ui ∂x-i (x i , x -i ) = 0 and ∂ui ∂x-i (d i , x -i ) = 0. In Condition (ii), -∂ui(xi,x-i) ∂x-i gives the local direction in which u i (x i , x -i ) decreases the most when x -i is moved, i.e. the direction for which strategic uncertainty has the largest negative impact on player i's payoff. Thus, this condition says that these directions (given strategies x i or d i of player i) should point inward X -i , i.e. strategic uncertainty has potentially a negative impact on player i's payoffs.

A nice feature of prudent equilibrium is that it permits to remove strategies that are prudentdominated, as stated in the following theorem (see the proof in the appendix). In this theorem, as in Definition 19, we let x ∈ X and d i ∈ X i and assume u i is C 1 on a neighborhood of (d i , x -i ) and of x:

Theorem 20. If x = (x i , x -i ) is a prudent Nash equilibrium, then x i is not prudent-dominated by d i at x -i ∈ X -i .
In the definition of prudent-dominance, if we remove the local C 1 assumption or if we replace (i) by Condition (6) above, then Theorem 20 fails in general: consider the example in Appendix I. Theorem 20 also fails if we only remove Condition (ii): see Example 22 below.

As an illustration, for two-player games with X 1 = X 2 = [0, 1], we can explicit more the conditions of prudent-dominance:

Local criterium for prudent-dominance: consider (d i , x i ) ∈ [0, 1] 2 and x -i in the boundary of

X -i , with u i (d i , x i ) = u i (x), and assume: (a) If x -i = 0, ∂ui ∂x-i (x) < ∂ui x-i (d i , x -i ) < 0, (b) if x -i = 1, ∂ui ∂x-i (x) > ∂u1 ∂x-i (d i , x -i ) > 0.
Then x i is prudent-dominated by d i at x -i . In particular, x cannot be a prudent Nash equilibrium from Theorem 20.

To prove this criterium, we only have to prove that the assumptions of Definition 19 are satisfied, but Conditions (i) and (ii) are straightforward consequences of (a) and (b) above (considering the two cases

x -i = 0 and x -i = 1). The pictures below illustrate this criterium: ) or u i (x i , .)

x -i ∈ [0, 1] u i (d i , x -i ) u i (x i , x -i ) d d Local comparison of u i (d i , .
) and u i (x i , .)

around x -i = 0 when x i is prudent-dominated by d i at x -i . ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ u i (d i , .) or u i (x i , .) x -i ∈ [0, 1] u i (d i , x -i ) u i (x i , x -i ) d d Local comparison of u i (d i , .
) and u i (x i , .)

around x -i = 1 when x i is prudent-dominated by d i at x -i .
In each of the figures above, assuming that x i is prudent-dominated by d i at x -i , and u i (x) = u i (d i , x -i ), we represent the local behavior of u i (d i , .) and of u i (x i , .) around x -i = 0 or around x -i = 1, through some first-order local approximation of these functions. In particular, the graph of u i (d i , .) is above the graph of u i (x i , .) only on some neighborhood of x -i , that is there can exists

x -i ∈]0, 1[ such that u i (x i , x -i ) > u i (d i , x -i ).
In this case, the strategy d i does not dominates weakly the strategy x i (in the standard sense), although x i is prudent-dominated by d i at x -i . This illustrates that strategic uncertainty due to some possible local variation of x -i has strictly negative externalities for player i (since given x -i = 0 or x -i = 1, u i (x i , .) has a local strict maximum at x -i ). Consequently, d i prudent-dominates x i means that these strictly negative externalities are locally worse for player i if he chooses x i than if he chooses d i .

Example 21. Consider the following two-player game with

X 1 = X 2 = [0, 1], u 1 (x 1 , x 2 ) = -x 2 1 .(1 -x 2 ) if x 2 < 1 4 , -x 2 1 .(1 -x 2 ) -1 2
otherwise, and

u 2 (x 1 , x 2 ) = -x 2 2 .(1 -x 1 )
It is a p-robust game, since x 1 → u 1 (x 1 , x 2 ) is continuous, and u 2 is continuous. Easily, it can be proved to be better-reply secure. 22 In particular, from Theorem 15, prudent equilibria are Nash equilibria. There are two Nash equilibria (0, 0) and (1, 1). But player 1's strategy 1 is prudent-dominated by strategy 1 2 (in fact by any strategy in ]0, 1[) given strategy 1 of player 2. Indeed, we can apply the criterium above with x = (1, 1) and

d 1 = 1 2 (u i being C 1 in a neighborhood of (1, 1) and (d 1 , 1)), since ∂u1 ∂x2 (1, 1) = 1 > ∂u1 ∂x2 ( 1 2 , 1) = 1 4 > 0.
Note that this example can be easily adapted to provide a multidimensional illustration of Theorem 20 : consider now two players, with

X 1 = X 2 = [0, 1] 2 , u 1 (x 1 , y 1 , x 2 , y 2 ) = -((1 -x 1 ) 2 + (1 -y 1 ) 2 )(x 2 + y 2 ) and u 2 (x 1 , y 1 , x 2 , y 2 ) = -(x 2 -x 1 ) 2 -(y 2 -y 1 ) 2 .
There are two Nash equilibria ((0, 0), (0, 0)) and ((1, 1), (1,1)). This game is continuous, thus it is probust, and Theorem 15 guarantees that there exists a prudent equilibrium, which is a Nash equilibrium.

But here, player 1's strategy (x 1 , y 1 ) = (0, 0) is prudent-dominated by strategy d 1 = (1, 0) (for example) given strategy (x 2 , y 2 ) = (0, 0) of player 2. Indeed, simply apply the definition of prudent-dominance: for Condition (i), remark that for every (x 2 , y 2 ) = (0, 0) on some neighborhood of (0, 0),

∂u1 ∂(x2,y2) (1, 0, 0, 0) - ∂u1 ∂(x2,y2) (0, 0, 0, 0), (x 2 , y 2 ) = (1, 1), (x 2 , y 2 ) > 0. For Condition (ii), (0, 0)-ε ∂u1 ∂(x2,y2) (0, 0, 0, 0) = (2ε, 2ε) and (0, 0) -ε ∂u1 ∂(x2,y2) (1, 0, 0, 0) = (ε, ε) are interior to X 2 = [0, 1] × [0, 1]
for ε > 0 small enough. Thus, from Theorem 20, (1, 1, 1, 1) is the unique prudent equilibrium.

To finish, let us say a word about mixed strategies and prudent-dominance. As discussed above, when the payoffs are not affine, the standard weak domination concept has to be changed if one hopes to rule out Nash equilibrium profiles for which one strategy of the profile is dominated. In particular, there is no hope that prudent equilibrium generalizes or even coincides with perfect equilibrium for mixed extensions of finite games. Actually, as discussed above, Prudent equilibrium allows to get rid of Nash equilibria for which local strategic uncertainty can entail a too important loss. When dealing with mixed strategies, this local point of view becomes global (since the local behavior of an affine function gives all the information about this function), but anyway prudent equilibria does not allow to take into account positive effects in the strategic uncertainty (roughly, prudent players only examine the bad effects of strategic uncertainty). The following two-player and two-strategy normal form game illustrates this:

Example 22. A B a (1,0) (2,1)
b (1,0) (1,0) 22 The cases to be examined are only discontinuity points of u 1 , that is profiles that can be written x = (x 1 , 1 4 ), associated to some limit of payoff profiles (u 1 , u 2 ) = lim n→+∞ (u 1 (x n ), u 2 (x n )) for some sequence (x n ) n≥0 converging to x. Then, either x 1 < 1, and then d 2 = 0 secures a payoff stricly above u 2 for player 2, meaning u 2 (x 1 , 0) = 0 > u 2 +ε = -1 16 (1-x 1 )+ε for every x 1 in some neighborhood of x 1 and for ε > 0 small enough, or x 1 = 1, and then d 1 = 0 secures a payoff stricly above u 1 for player 1, since u 1 (0, x 2 ) ≥ - 1 2 > u 1 + ε (this last quantity being less or equal to -3 4 + ε) for every x 2 in some neighborhood of x 2 = 1 4 and for ε > 0 small enough.

The profile (b, A) is a prudent Nash equilibrium, since u λ 1 (σ 1 , A) = u 1 (σ 1 , A) = 1 and u λ 2 (b, σ 2 ) = u 2 (b, σ 2 ) = 0 for every mixed strategies σ 1 and σ 2 . Yet, A is weakly dominated by B, and (a, B) is the unique perfect equilibrium. Actually, A is not prudent-dominated by B because there is no "negative" strategic uncertainty here: i.e., given strategy b of player 1, player 2 could have a profit due to strategic uncertainty, if he plays B rather than A. As seen before, prudent game captures strategic uncertainty with negative effects. In particular, this illustrates that Theorem 20 fails if we remove Condition (ii) in Definition 19.

Examples 4.1 A index of local comparison of prudence

In some examples below, the prudent Nash equilibrium will be interpreted in terms of comparison of prudence between players. For two-player games G, we introduce the following index which compares locally the prudent behaviour of the two players. Let

x 1 ∈ X 1 and let C = {(x , f (x )) ∈ V x1 × X 2 } be a
local curve parametrized by a continuous mapping f : V x1 → X 2 on some neighborhood V x1 of x 1 . This curve connects the strategies of the two players. In applications, f is chosen to ensure that C contains the set of Nash equilibria of G (if possible), and the index below is used to refine Nash equilibria (see Example 24, for which f (x 1 ) = 1 -x 1 , or Example 28, for which f (x 1 ) = x 1 ). Definition 23. The relative prudence of player 1 with respect to player 2 at x 1 along C, when it exists, is defined by

p C 1|2 (x 1 ) = lim (x ,x )→(x1,x1) c 2 (x , x ) c 1 (f (x ), f (x ))
.

If this limit is equal to 0, we say that Player 2 is infinitely more prudent than player 1 at x 1 along C.

The index p C 1|2 (x 1 ) locally measures how much player 2 takes into account possible modifications of player 1 strategy in a neighborhood of x 1 , compared with player 1, who himself takes into account possible modifications of player 2's strategy in a neighborhood of f (x 1 ). The possible modifications of both players' strategies are constrainted by C.

Nash demand game

Example 24. Some amount of money can be split between two players. Each one chooses the share he demands. Then, each player receives his demand if the demand can be satisfied, and 0 otherwise. If the total amount of money is normalized at 1, the payoff of player i is

u i (x i , x -i ) = x i if x i + x -i ≤ 1, 0 otherwise
This game is compact, quasiconcave and better-reply secure. The set of Nash equilibria is If the relative prudence p C 1|2 (x) of player 1 with respect to player 2 at every x ∈ [0, 1] along C is constant, equal to µ ∈ [0, +∞], then the unique prudent equilibrium which is Pareto optimal is ( 1 1+µ , µ 1+µ ). It can be seen that (1, 1) is also a prudent equilibrium (see the proof of the above proposition), which is not suprising: our strategic uncertainty modeling is local. Around the strategy profile (1, 1), any local deviation does not change the payoffs of the game. This illustrates that our concept may refine partially Nash equilibria (here, we pass from a continuum of Nash equilibria to only two). 23 Other requirements (like Pareto optimality) can be added to select better solutions. The same remark applies, in general, for standard refinement notions.

{(1, 1)} ∪ {(x, 1 -x) : x ∈ [0, 1]}.

A Location game

Example 26. Two sellers i = 1, 2 sell the same good at the same price. Each seller i has to find a location along some street x i ∈ [0, 1]. Consumers are uniformly distributed on [0, 1], and each consumer chooses the closest seller. In case of ties (x i = x -i ), it is assumed that the two sellers merge. In this case, the payoff of each player is assumed to increase of c ∈]0, 1 2 [ (economies of scale, fixed cost elimination, etc.). The payoff of seller i is

u i (x i , x -i ) =      xi+x-i 2 if x i < x -i , 1 2 + c if x i = x -i , 1 -xi+x-i 2 if x i > x -i . Proposition 27. The set of Nash equilibria is {(x, x) : x ∈ [ 1 2 -c, 1 2 + c]}, and ( 1 2 , 1 
2 ) is the unique symmetric prudent equilibrium.

See the proof in the appendix.

First-price sealed-bid auctions

Example 28. (First-price auction with maximum value sharing rule)

Two bidders i = 1, 2 submit simultaneous sealed bids x i ∈ [0, M ] to the seller, M > 0. The highest bidder wins the object and pays the value of her bid. The true values of the bidders are v 1 < v 2 < M .

The strategy spaces are X 1 = X 2 = [0, M ], and the payoff of player i is defined by

u i (x i , x -i ) = v i -x i if x i > x -i , 0 if x i < x -i .
Assume that in case of ties (x i = x -i ), the winner is the bidder with the highest valuation, i.e. player

2. Let C = {(x, x) : x ∈ [0, 1]}. Proposition 29. 1) The set of Nash equilibria is {(x, x) : x ∈ [v 1 , v 2 ]}.
2) Assume that c 1 and c 2 are distances on [0, M ] and that for every strategy profile (x, x) with x ∈]v 1 , v 2 ], player 1 is infinitely more prudent than player 2 at x ∈ X along C. Then (v 1 , v 1 ) is the only prudent Nash equilibrium.

First, this game is compact, quasi-concave and better-reply secure. Second, clearly, the set of Nash equilibria is equal to {(x 1 , x 1 ) :

x 1 ∈ [v 1 , v 2 ]}.
Third, this game belongs to the class of diagonal games (see Example 12), thus it is p-robust. Thus, there exists a prudent Nash equilibrium (from Theorem 15).

At any Nash equilibrium (x, x), for x > v 1 , strategic uncertainty matters a lot for player 1, because if player 2 decreases slightly its strategy, which could be expected, then player 1's payoff decreases suddenly of x -v 1 > 0. Thus, player 2 could anticipate that player 1 will decrease its strategy, which is harmless for player 2. Thus, strategic uncertainty should have no importance at x for him, compared with player 1. This explains why the assumption that player 1 is infinitely more prudent than player 2 at x > v 1

along C is reasonable.

If one assumes simply that relative prudence of player 1 with respect to player 2 is p ∈ [0, +∞], then the set of prudent equilibria is included in

{(x, x) : x ∈ [v 1 , pv1 1+p + v2 1+p ]}.
In particular, if player 1 is not prudent at all (p = 0), then this coincides with the set of Nash equilibria. (See the detailed proof of Proposition 29 in Appendix L). 24 Example 30. (First-price auction with equal sharing rule)

Consider the game defined in Example 28, but now assume equal sharing rule, that is

u i (x i , x -i ) = vi-xi 2 if x i = x -i .
There is no Nash equilibrium, because at (x, x), one player should deviate. But the game is still p-robust and quasiconcave, thus possesses a prudent equilibrium. Moreover, there is a continuum of limit equilibria: for every x ∈ [v 1 , v 2 ], (x, x) is a limit equilibrium, meaning that it is the limit of the 1 n -Nash equilibrium profiles (x, x + 1 n ). Following the proof of Proposition 29, we get the following refinement result: Proposition 31. 1) The set of limit-Nash equilibria is {(x, x) : x ∈ [v 1 , v 2 ]}. 2) Assume that c 1 and c 2 are distances on [0, M ]. Assume that for every strategy profile (x, x) with x ∈]v 1 , v 2 ], player 1 is infinitely more prudent than player 2 at x ∈ X along C. Then (v 1 , v 1 ) is the only prudent limit-Nash equilibrium.

Link with the notion of strategic uncertainty of Andersson et al.

Andersson et al. [3] were the first to propose a notion of robustness to strategic uncertainty. They consider a family F of strictly positive probability density functions φ ij (on X j ) for each pair of distinct players i = j. For every t > 0, they define a t-equilibrium as a Nash equilibrium of the game whose payoff of player i at x ∈ X is u i (x i , (x j + tε ij ) j =i ), where ε ij ∼ φ ij are statistically independent random variables. Then, robust and strictly robust equilibria are defined, as in Definition 4, by considering limits of t-equilibria when t tends to zero. Existence of robust equilibria is proved under (1) continuity of the payoffs (2) concavity of each u i with respect to x i . Moreover, Andersson et al. [3] proves that robust equilibrium refines Nash equilibrium when the game is continuous.

The two examples below show that prudent equilibrium concept does not coincide with Andersson et al. robust equilibrium concept. 24 This result in not astonishing: indeed, prudent equilibrium is an asymptotic notion: if p < +∞, it implies there is some x ∈]v 1 , v 2 [ such that (x, x) is a prudent equilibrium: recall this means that (x, x) is the limit of Nash equilibria (x λn 1 , x λn 2 ) of the strategic game G λn when λn tends to zero. If x λn 1 < x λn 2 (which has to be true, see Appendix L) and if the difference x λn 1 -x λn 2 is large enough, then player 1 gets 0 when the profile (x λn 1 , x λn 2 ) is played, and the "risk" that player 2 deviates sufficiently for some strategy x 2 < x λn 1 could be thought to be small by Player 1, considering his level of prudence. This is no more the case if p = +∞.

Example 32. In this example, we provide a differentiable game where Andersson et al. robustness concept refines prudent equilibrium. Consider a two-player game with X 1 = X 2 = [0, 1],

u 1 (x 1 , x 2 ) = x 1 .(2x 2 -1) if 1 2 ≤ x 2 ≤ 1, 0 otherwise and u 2 (x 1 , x 2 ) = -(x 1 -x 2 ) 2
This game is p-robust (because each u i is u.s.c. in x i ). It is also compact and quasiconcave. The strategy profile (0, 0) is not robust to uncertainty. Indeed, for every strictly positive probability density function φ 12 (on X 2 ), ε 12 ∼ φ 12 being a random variable, and every (x tn 1 , x tn 2 ) converging to (0, 0) where t n converges to 0, we have u 1 (x tn 1 , x tn 2 + t n ε 12 ) < u 1 (1, x tn 2 + t n ε 12 ), thus (x tn 1 , x tn 2 ) cannot be an equilibrium of the perturbed game (in the sense of Andersson et al.). Clearly, only (1, 1) is robust to uncertainty. Yet (0, 0) is a prudent equilibrium: indeed, u λ (0, 0) = 0 ≥ u λ (x 1 , 0) = 0 for every x 1 ∈ [0, 1] and for λ > 0 small enough.

Example 33. We provide an example of better-reply secure game where the unique Nash equilibrium is a prudent equilibrium, though there is a continuum of Nash equilibria robust to uncertainty in the sense of Andersson et al. [3]. Consider the two-player game with X i = [0, 1] for i = 1, 2 and

u 1 (x 1 , x 2 ) = 0 if x 2 = 1 2 and x 1 = 1 2 , 1 otherwise, and u 2 (x 1 , x 2 ) = 0 if x 2 = 1 2 , 1 otherwise.
The unique Nash equilibrium is ( 12 , 1 2 ). This game is p-robust (because each u i is u.s.c. in x i ). It is better-reply secure: indeed, for every strategy profiles (x 1 , 1

2 ) with x 1 = 1 2 , limit points of strategy profiles at (x 1 , 1 2 ) point can be (1, 0) or (0, 1). In the first case, player 2 can secure strictly more than 0 by playing 1 2 , in the second case, player 1 can secure strictly more than 0 by playing 1 2 . From Theorem 15, there exists a prudent equilibrium, and it has to be the (unique) Nash equilibrium ( 12 , 1 2 ). Yet, for every strictly positive probability density function φ 12 (on X 2 ), ε 12 ∼ φ 12 a random variable, and t > 0, we have u 1 (x 1 , x 2 + tε 12 ) = 1 for every x 1 and x 2 in [0, 1]. Similarly, the modified payoff function of player 2, when strategic uncertainty is modeled through some random variable with strictly positive probability density, is 0 if x 2 = 1 2 and 1 otherwise. Thus, every strategy profile (x 1 , 1 2 ), x 1 ∈ [0, 1], is robust to uncertainty in the sense of Andersson et al. (even if x is not a Nash equilibrium).

Conclusion

In this paper, we have defined Prudent equilibrium, a new refinement notion taking into account local strategic uncertainty in normal for games. The set of prudent equilibria was proved to be nonempty and closed, under very general assumptions, encompassing most economic models with discontinuous payoffs. Some natural domination concept was defined (prudent-dominance), and it was proved that prudent-dominated strategies are not played at a prudent equilibrium. Roughly, a strategy x i is prudentdominated by y i if for both strategies, (local) strategic uncertainty has potential negative effects on the payoff of player i, and the negative effects associated to x i are stronger than for those associated to

y i .
In the research agenda, some natural questions arise: first, our model is cardinal. 25 For example, if the payoff functions u i (x i , x -i ) are replaced by v i (x i , x -i ) = u i (x i , x -i )+h(x -i ), then Nash equilibria are unchanged, but the set of prudent equilibria could be modified. 26 An interesting and difficult question would be to understand in which sense our concept could be ordinal. 27 A second important question is to relate more precisely our concept and the concept of anderson et al. [3], robustness to strategic uncertainty. In our case, strategic uncertainty is solved using some maxmin criterium, although anderson et al. solve it by assuming that each player maximizes some expected payoff with respect to some random strategic uncertainty. The two techniques are very different, and it is an open problem to find simple conditions on the game for which there exists some strategy profile satisfying the two kind of robustness to strategic uncertainty. and passing to the infimum limit as n → +∞, then taking ε → 0, we get the first point.

For the second point of the claim, use the first point proved above with a constant sequence x n -i = x-i, and Point 3 in Proposition 2.

For the last point of the claim, first note that the inequality u λ i (xi, x-i) ≥ infy -i ∈X -i {u i (xi, y-i)

+ c i (x -i ,y -i ) λ
} is obvious. To prove the converse inequality, let ε > 0 and ȳ-i ∈ X-i such that infy -i ∈X -i {u i (xi, y-i)

+ c i (x -i ,y -i ) λ } ≥ u i (xi, ȳ-i) + c i (x -i ,ȳ -i ) λ
-ε. By definition of u i and from the continuity of ci, there exists a sequence y n -i ∈ X-i, converging to ȳ-i, such that u i (xi, ȳ-i) +

c i (x -i ,ȳ -i ) λ -ε ≥ ui(xi, y n -i ) + c i (x -i ,y n -i ) λ
-2ε for n large enough. Passing to the infimum with respect to the second variable in the right-hand side, we finally get

infy -i ∈X -i {u i (xi, y-i) + c i (x -i ,y -i ) λ } ≥ u λ i (xi, x-i) -2ε
, which ends the proof of the claim.

Appendix B Symmetric games

The results of the previous sections can be improved upon when the game possesses enough symmetry. Following

Reny [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF], a game G is symmetric28 if:

(1) For every players (i, j) ∈ N × N , Xi = Xj. We denote X = X1 = ... = XN .

(2) For every (x, y) ∈ X × X, u1(x, y, ..., y) = u2(y, x, y, ..., y) = ... = uN (y, ..., y, x). We denote v(x, y) = u1(x, y, ..., y) = ... = uN (y, ..., y, x).

Thus, a symmetric game can be summarized by G = (X, v).

A symmetric game G = (X, v) is strongly diagonally quasiconcave (Reny [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF]) if X is convex, and if v(x, y) is quasiconcave in x. The game G is diagonally better-reply secure if and only if for every (x * , v * ) which belongs to {(x, v(x, x)) : x ∈ X}, where (x * , ..., x * ) is not a Nash equilibrium, then there exists d ∈ X and ε > 0 such that v(d, x ) > v * + ε for every x ∈ X in some neighborhood of x * .

Finally, recall that a Nash equilibrium (x * 1 , ..., x * N ) is symmetric if x * 1 = ... = x * N .

Theorem 35. (Reny [START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF])

Every symmetric, compact, diagonally quasiconcave and diagonally better-reply secure game possesses a symmetric pure Nash equilibrium.

We now adapt Definition 5 and Definition 1 to symmetric games:

Definition 36. The symmetric game G = (X, v) is symmetrically p-robust if for every x ∈ X, for every ε > 0 and for every neighborhood Wx of x in X, there exists some open neighborhood Vx ⊂ X of x such that

sup x ∈Vx inf x ∈Wx v(x , x ) ≤ v(x, x) + ε.
Remark 37. Adapting Example 11, it can be easily proved that every symmetric game G = (X, v) is symmetrically p-robust if at every x ∈ X, there exists a lower hemicontinuous correspondence ψ x from Vx, some open neighborhood of x into X, such that x ∈ ψ x (x) and such that v is upper semicontinuous on {(y, y ) ∈ Vx × X :

y ∈ ψ x (y)}.
Definition 38. Let F be the set of continuous real-valued functions c from X×X to [0, +∞], such that c(x, x ) = 0 if and only if x = x . Let c ∈ F. For every λ > 0, the symmetric λ-prudent game associated to the symmetric game G = (X, v) is the symmetric game G λ sym = (X, v λ ), where

v λ (x, x ) = inf x ∈X v(x, x ) + c(x , x ) λ (7) 
A symmetric λ-equilibrium of G is a symmetric Nash equilibrium of G λ . A strategy profile x ∈ X is a symmetric prudent equilibrium of G if there exists c ∈ F such that x is the limit of symmetric λ n -equilibria for λ n → 0. The strategy profile x is a symmetric strictly prudent equilibrium if this holds for any c ∈ F.

Remark 39. There are two modifications with respect to the definitions of the previous sections. First, the perturbations of the other players' strategies are assumed to be symmetric. This is the price to pay to get a symmetric prudent game, and this implies that the symmetric prudent game G λ sym is, in general, different from the prudent game G λ (except in two-player games). Second, the sequence of λ n -equilibria considered in Definition 38 has to be symmetric, which is a strenghtening of Definition 4. In particular, in two-player symmetric games, symmetric prudent equilibrium refines prudent equilibrium.

The proof of the following theorem is similar to those of Theorem 14.

Theorem 40. Let c ∈ F and G be a compact, symmetric, diagonally quasiconcave and symmetrically p-robust game.

(1) For every λ > 0, there exists a symmetric λ-equilibrium.

(2) There exists a symmetric prudent equilibrium, and for every diagonally better-reply secure game, this is a Nash equilibrium.

Applications can be found in Section 4 (see Example 26 and Example 45). some strategy d ∈ Xi such that u * i < u i (d, x * -i ). Since by definition u i is l.s.c. with respect to x-i, there exists an open neighborhood V (x * ,u * ) (d) of (x * , u * ) in Γ nequ such that for every (x, u) ∈

V (x * ,u * ) (d), ui < u i (d, x-i).
Since Γ is a compact subset of a metric space, it is separable. Thus Γ nequ , as a subset of a separable metric space, is separable. Thus, it is a Lindelöf space 29 , i.e. every open cover of Γ nequ has a countable subcover.

Consequently, there exists a countable cover O of Γ nequ by some open neighborhoods V x * (j),u * (j) (d(j)), where (x * (j), u * (j)) ∈ Γ nequ , d(j) ∈ ∪ N i=1 Xi and j ∈ IN. Now, define X i = {d(j), j ∈ IN} ∩ Xi if it is nonempty, and X i be any singleton in Xi otherwise. By construction, it satisfies the conclusion of Lemma 42.

To prove Proposition 41, consider an increasing sequence of finite subsets X k = N i=1 X k i of X such that ∪ k X k = X (X being defined in Lemma 42) and take a sequence (x k ) k∈N of Nash equilibria of the games (coX k , ũk i )i∈N . By compactness of X, without any loss of generality, we can suppose that x k converges to x * ∈ X. By definition of ũk i and from Point 3. in Proposition 2, we have

ũk i (x k i , x k -i ) = sup{min{u λ k i (y 1 i , x k -i ), ..., u λ k i (y n i , x k -i )}} ≤ sup{min{ui(y 1 i , x k -i ), ..., ui(y n i , x k -i )}},
the supremum being taken over all n ∈ N and all families {y 1 i , ..., y n i } of X k i such that x k i ∈co{y 1 i , ..., y n i }. From quasiconcavity of ui with respect to xi, we finally get ũk

i (x k i , x k -i ) ≤ ui(x k i , x k -i ). In addition, the definition of ũk i gives u λ k i (di, x k -i ) ≤ ũk i (di, x k -i ) for every di ∈ X k i (since we can take, in the supremum defining ũk i (di, x k -i ), n = 1 and y 1 i = di). Now, fix di ∈ X i . For k > 0 large enough, di ∈ X k
i , and by definition of x k we get

u λ k i (di, x k -i ) ≤ ũk i (di, x k -i ) ≤ ũk i (x k ) ≤ ui(x k ).
Passing to the limit as k → +∞, and from Point 1. in Claim 34, we get ∀di ∈ X i , u i (di, x * -i ) ≤ u * i where (x * , u * ) ∈ Γ. This proves that x * is a Nash equilibrium by construction of X in Lemma 42. Now, following Reny [START_REF] Reny | Strategic Approximations of Discontinuous Games[END_REF], let us define a strategic approximation of G as "a countable subset of pure strategies with the property that limits of all equilibria of all sequences of approximating games whose finite strategy sets eventually include each member of the countable set must be equilibria of the infinite game". Thus, Proposition 41 provides a pure-strategy strategic approximation of any quasiconcave and better-reply secure game, and this strategic approximation scheme is based on prudent games.

A difficulty is to get sufficient conditions for p-robustness in mixed strategies. In general, p-robustness of G does not imply p-robustness of its mixed extension: consider the two player game defined by X1 = X2 = [0, 1], u2 = 0, u1(x1, x2) = 0 if x1 = x2 and u1(x1, x2) = 1 otherwise. This game is p-robust (because it is a diagonal game: see Example 12), but its mixed extension is not: indeed, consider (σ1, σ2) = (0, 0). If player 1 plays uniformly on a small neighborhood of 0, he obtains a payoff of 1, whatever the strategy of player 2.

Thus, for every ε > 0 small enough, for every neighborhood Vσ 2 of σ2, and for every neighborhood Vσ 1 of σ1,

sup σ 1 ∈Vσ 1 inf σ 2 ∈Vσ 2 u1(σ 1 , σ 2 ) = 1 > u1(σ1, σ2) + ε = ε, which contradicts p-robustness of G .
Since the main objective of this paper is to study games in pure strategies, we do not push further the case of mixed strategies. At worst, Corollary 43 can be applied to continuous games or finite games.

Appendix E Proof of Proposition 11

Let G satisfies the assumption of Proposition 11. First, we prove the following claim:

Claim 44. For every open neighborhood Vx -i of x-i ∈ X-i, inf x -i ∈Vx -i ui(xi, x -i ) is upper semicontinuous with respect to xi.
Proof. Let a ∈ R, Vx -i be an open neighborhood of x-i ∈ X-i, and (x n i ) n∈N be a sequence of strategies converging to xi ∈ X, and such that for every integer n, inf

x -i ∈Vx -i ui(x n i , x -i ) ≥ a.
By assumption, there exists Vx i ⊂ Xi, an open neighborhood of xi, and there exists a lower hemicontinuous correspondence ψ x from Vx i to X-i such that x-i ∈ ψ x (xi), and such that the restriction of ui to Grψ x is upper semicontinuous at x.

From lower hemicontinuity of ψ x , considering a subsequence of (x n i ) n∈N if necessary, there exists a sequence x n -i converging to x-i such that x n -i ∈ ψ x (x n i ) (see Aliprentis [1], Theorem 17.19). For n large enough, x n -i ∈ Vx -i , thus ui(x n i , x n -i ) ≥ a. Since x n ∈Grψ x , and since the restriction of ui to Grψ x is upper semicontinuous at x, passing to the limit, we get ui(xi, x-i) ≥ a. Passing to the infimum with respect to x-i ∈ Vx -i , we get inf

x -i ∈Vx -i ui(xi, x -i ) ≥ a,
which ends the proof of the claim. Now, to prove that G is p-robust, consider ε > 0 and let Vx -i be an open neighborhood of x-i. From the claim above, there exists Vx i such that for every

x i ∈ Vx i , inf x -i ∈Vx -i ui(x i , x -i ) ≤ inf x -i ∈Vx -i ui(xi, x -i ) + ε ≤ ui(x) + ε,
which proves p-robustness.

Appendix F Proof of Proposition 2 and Proposition 13

Proof of Proposition 2. For (1), remark that u λ i (xi, x-i) is the infimum of a family of functions which are quasiconcave in xi, thus it is quasiconcave in xi.

For (2), first note that u λ i (xi, x-i) is the infimum of a family of functions which are continuous in x-i. Thus it is upper semicontinuous in x-i. To prove it is lower semicontinuous in x-i, consider a sequence (x n -i ) n∈N converging to some x-i, and such that u λ i (xi, x n -i ) ≤ α for some real α and for every integer n ≥ 0. By definition, inf y -i ∈X -i {ui(xi, y-i) + ci(y-i, x n -i ) λ } ≤ α for every integer n. Given ε > 0, this implies that there is a sequence y n -i ∈ X-i such that ui(xi, y n -i ) + ci(y n -i , x n -i ) λ ≤ α + ε.

Since ci is continuous on the compact set X-i × X-i, it is uniformly continuous, thus ui(xi, y n -i ) + ci(y n -i , x-i) λ ≤ α + 2ε

for n large enough. Passing to the infimum with respect to the second variable y n -i , we get u λ i (xi, x-i) ≤ α + 2ε. Since this is true for every ε > 0, this finally proves (2). For (3), take x ∈ X, and consider a sequence (x n -i ) n∈N converging to x-i such that u i (x) = limn→+∞ ui(xi, x n -i ). By definition

u λ i (xi, x-i) = inf y -i ∈X -i {ui(xi, y-i) + ci(y-i, x-i) λ } ≤ ui(xi, x n -i ) + ci(x n -i , x-i) λ .
Passing to the limit, we get u λ i (xi, x-i) ≤ u i (xi, x-i).

Proof of Proposition 13. Assume that G is p-robust, and prove that u λ i is u.s.c. with respect to x. Take a ∈ R and consider a sequence (x n ) n∈N of strategy profiles converging to x ∈ X, and such that u λ i (x n ) ≥ a for every integer n. We have to prove that u λ i (x) ≥ a. By definition of (x n ) n∈N , for every integer n ∈ N, we get inf y -i ∈X -i ui(x n i , y-i) + ci(y-i, x n -i ) λ ≥ a.

Let ε > 0 and y-i ∈ X-i. By p-robustness, for every integer k ∈ N, choosing Vy -i = B(y-i, 1 k ), there is some open neighborhood V k x i of xi such that: for every x i ∈ V k x i , there exists y k -i ∈ B(y-i, 1 k ) such that u(x i , y k -i ) ≤ ui(xi, y-i) + ε

In particular, for every k, there is n k large enough such that for every n ≥ n k , there is y n -i ∈ B(y-i, Passing to the infimum with respect to y-i in the right-hand side, then to the infimum with respect to y n -i in the left-hand side, we get, for n large enough:

a ≤ u λ i (x n ) ≤ u λ i (x) + 2ε.
∇x -i ui(di, x-i) -∇x -i ui(x), x n -i -x-i > 0 (for n large enough), from Condition (ii) in prudent-dominance definition (and from ui C 1 around x and around (di, x-i)), which ends the proof of the claim. Now, we will prove that β n > 0 for n large enough: dividing β n by λ n > 0, we get a term that converges (when n tends to +∞) to

- 1 2 ( ∂ui(di, x-i) ∂x-i 2 - ∂ui(xi, x-i) ∂x-i 2 )
and we will simply prove that this term is strictly positive, which will end the proof. To prove that, simply consider x -i = 1 2 (x-i -ε ∂u i ∂x -i (xi, x-i)) + 1 2 (x-i -ε ∂u i ∂x -i (di, x-i)) ∈ intX-i for ε > 0 small enough (from Condition (ii) in prudent-dominance definition and from the convexity of the interior of X-i). In particular x -i is different from x-i (which is a boundary point of X-i). Injecting x -i in Condition (i) of prudent-dominance definition, we get ∂u i ∂x -i (di, x-i) + ∂u i ∂x -i (x), ∂u i ∂x -i (di, x-i) -∂u i ∂x -i (x) < 0, which ends the proof. To summarize, we have proved that for n large enough, u λ n i (di, x n -i ) -u λ n i (x n i , x n -i ) > 0 which contradicts that x n is a λ n -equilibrium.

From these assumptions, without any loss of generality, we can restrict the strategies to X = [pN , p max ], since it is neither optimal for player i to play outside X. Call G the game thus defined.

In the following proposition, we assume that c is a distance on [0, +∞[. (2) (p, ..., p) is the unique symmetric prudent equilibrium of G.

Remark that this game is symmetrically p-robust, symmetric, compact, diagonally quasiconcave and diagonally better-reply secure. Note that [3] gets a similar result in a different framework.

Proof.

(1) can be found in Dastidar [START_REF] Dastidar | On the Existence of Pure Strategy Bertrand Equilibrium[END_REF].

( (3) We want to prove that for every c ∈ F, if (p, ...p) is a symmetric prudent equilibrium, then p = p. Assume first that p > p. By definition, there exists a sequence of positive reals (λn) n∈N converging to 0, and a sequence of symmetric equilibria (p λn , ..., p λn ) of G λn sym , which converges to (p, ..., p). Thus ∀d ∈ X, v λn (d, p λn ) ≤ v λn (p λn , p λn ) [START_REF] Eichberger | Non-Additive Beliefs and Strategic Equilibria[END_REF] Recall that by definition, v λn (p λn , p λn ) = inf p ∈X v(p λn , p ) + c(p , p λn ) λn .

For every p < p λn , v(p λn , p ) = 0. Thus, taking p → (p λn ) -, we get, from the continuity of c and from equation 18:

∀d ∈ X, v λn (d, p λn ) ≤ v λn (p λn , p λn ) ≤ 0.

Now, we claim that there exists n large enough and ε > 0 such that p λn -ε > p, and such that for every p ≤ p λn -ε, we have c(p λn ,p ) λn > v λn (p λn -ε, p λn )+1. This is possible because otherwise, up to a subsequence, we would be able to build a sequence p n ≤ p λn -ε such that 

Example 8 .

 8 Following the same argument, we can prove that every two-player discontinuous game is p-robust if the payoff functions are continuous outside the diagonal and u.s.c. on the diagonal. Most familiar discontinuous economic games are p-robust: first-price auctions, secondprice auctions, Bertrand's price competition, Cournot's model of oligopoly, Hotelling's model of spatial competition, timing game, etc. All theses games are contained into the class into Diagonal games which are p-robust (see Example 12 below).

  i (d i , .

Proposition 25 .

 25 This is a p-robust game (because it is a diagonal game: see Example 12), thus it possesses a prudent Nash equilibrium. Define C = {(x , 1-x )) ∈ [0, 1]×[0, 1]}. The following proposition is proved in the appendix: Assume c 1 and c 2 are distances on [0, 1].

Proposition 46. ( 1 )

 1 The set of Nash equilibria of the game G above is {(p, ..., p) : p ∈ [pN , pN ]}.

  ) if p1 = p2, v1(p1) if p1 < p2,0 otherwise and X = [pN , p max ]. By definition, the game G = (X, v) is symmetric (see Section Appendix B), since πi(pi, p2, ..., p2) = v(pi, p2) for every (pi, p2) ∈ X 2 . The game G is symmetrically p-robust: indeed, we only have to check p-robustness at (p, p), and we can define the continuous mapping ψ p (p ) = p for every p ∈ [0, 1], and use the fact that the restriction of v to {(p , p ) : p ∈ [0, 1]} is continuous. Then, see Remark 37. In addition, the game is strongly diagonally quasiconcave when the strategies are restricted to [pN , p max ], by Assumption 6 in the model. To prove that G is diagonally better-reply secure, let (p * , v * ) in {(p, v(p, p)) : p ∈ X}, where (p * , ..., p * ) is not a Nash equilibrium (thus p * > pN ). Since vN is continuous, v * = vN (p * ). But then, any p * -ε secures strictly a payoff above v * for ε > 0 small enough, because from Assumption 5 in the model and continuity of v1, v(p * -ε, p * ) = v1(p * -ε) > vN (p * ) = v * for ε > 0 small enough, and from the continuity of v1, this inequality is robust to a small modification of the other players' strategies. Now, applying Theorem 40, for every c ∈ F, there exists a symmetric prudent equilibrium (p, ...p), which is also a symmetric Nash equilibrium (which implies p ∈ [pN , pN ]).

  From continuity of ci, for k large enough and n ≥ n k , we get

										1 k ) such
	that								
				ui(x n i , y n -i ) ≤ ui(xi, y-i) + ε		
	Thus								
	ui(x n i , y n -i ) +	ci(y n -i , x n -i ) λ	≤ ui(xi, y-i) +	ci(y-i, x-i) λ	+ (	ci(y n -i , x n -i ) λ	-	ci(y-i, x-i) λ	) + ε,
		ui(x n i , y n -i ) +	ci(y n -i , x n -i ) λ	≤ ui(xi, y-i) +	ci(y-i, x-i) λ	+ 2ε

De Marco and Romaniello[START_REF] De | Games Equilibria and the Variational Representation of Preferences[END_REF] adapts Maccheroni, Marinacci and Rustichini[START_REF] Maccheroni | Ambiguity Aversion, Robustness, and the Variational Representation of Preferences[END_REF] to a Bayesian strategic setting. Battigalli et al.[START_REF] Battigalli | Selfconfirming equilibrium and model uncertainty[END_REF] also introduce ambiguity into some strategic framework, and last, Strauber[START_REF] Stauber | Knightian games and robustness to ambiguity[END_REF] introduces a notion of robustness to ambiguous beliefs for Bayesian Nash equilibria. But these papers and their scope are not connected with ours (they consider a Bayesian approach, repeated games for the second one, and cannot be applied to pure-strategy Nash existence results in discontinuous games).

This phenomenum also occurs in Anderson et al.[3], where Nash equilibria which are robust to strategic uncertainty can depend on the random variables which model strategic uncertainty.

According to the context, N will denote the set of players or its cardinal.

The set [0, +∞] is endowed with the topology induced by the usual topology of the extended real line [-∞, +∞].

The notion of λ-equilibrium is actually parametrized by λ and c, but in many applications, we will be interested by comparative static effects of λ for a fixed c.

Indeed, take ε > 0 and choose y -i ∈ X -i such that u i (x i , y -i ) +

This definition is similar to graph-continuity assumption of Dasgupta and Maskin[START_REF] Dasgupta | The Existence of Equilibrium in Discontinuous Economic Games, Part I (Theory)[END_REF], except that i and -i are reversed in their definition, and upper semicontinuity is replace by continuity.

It can be applied, for example, to non-zero-sum, noisy games of timing (see Example 3.1. in[START_REF] Reny | On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games[END_REF]).

All these refinement concepts use perturbations (or "mistakes") of the equilibrium strategies. Other refinement concepts consider perturbations in the payoffs of the game (essential-equilibria[START_REF] Wu | Essential equilibrium points of n-person non-cooperative games[END_REF] or regular-equilibria[START_REF] Harsanyi | A General Theory of Equilibrium Selection in Games[END_REF]). This is not connected with our paper.

Nash (see[START_REF] Nash | The Bargaining Problem[END_REF] or[START_REF] Binmore | Nash Bargaining Theory I, II[END_REF]) was the first to propose to solve the undeterminacy in this game as follows: he introduces some uncertainty about the agents' payoffs, which conveys the idea that the agents do not actually know where the Pareto frontier is exactly. Assuming the agents maximize expected payoffs (with respect to this uncertainty), this leads to a smooth game which has a unique Nash equilibrium, and which converges to the Nash solution when the uncertainty goes to zero.

Indeed, if a > 0 and b ∈ R, then a simple computation prove that the λ-prudent payoff associated to au i + b is equal to u λ i + b, where u λ i is the λ -prudent payoff associated to u i , with λ = aλ. Thus the set of prudent equilibria is unchanged under positive affine transformations of the payoff functions.

To our knowledge, there does not exist reasonable ordinality resut for refinements notions in normal form games with continuous strategy spaces and for pure strategies (even for continuous payoffs). As an illustration of the difficulty, see[START_REF] Mertens | Ordinality in non cooperative games[END_REF], which treats the simplest case of mixed strategies for finite games. Even in this simple framework, the author can only derive a "highly abstract" ordinality concept, and which is difficult to use in practice.

This means to be able to find meaningful classes of transformations of the payoff functions, which would keep the set of prudent equilibria unchanged.

Reny uses the terminology of "quasi-symmetric" game.

Appendix A Basic properties of the prudent game

The following claim gives properties of the prudent game that will be usefull hereafter.

Claim 34. Let G = ((Xi)i∈N , (ui)i∈N ) be a game, and G λ = ((Xi)i∈N , (u λ i )i∈N ) be the λ-prudent game associated to G.

If x n

-i → x-i and λn → 0 then for every xi ∈ Xi, lim infn→+∞ u λn i (xi, x n -i ) ≥ u i (xi, x-i).

2. For every x ∈ X, u λn i (xi, x-i) tends to u i (xi, x-i) when λn tends to 0. 3. u λ i (xi, x-i) = infy -i ∈X -i {u i (xi, y-i)

For the first point of the claim, let x n -i → x-i and consider a sequence (λn) n∈N converging to 0. By definition,

Let ε > 0. By definition of infimum, there is a sequence y n -i ∈ X-i such that

Since the sequence u λn i (xi, x n -i ) is bounded by the maximum of ui, this implies that the sequence

is bounded, thus y n -i converges to x-i (because λn converges to 0). Moreover, since ci ≥ 0, we get

Appendix C Beyond p-robust games: strategic approximation.

The idea of the previous sections can be extended to any quasiconcave game G as follows. For every finite subsets X f = i∈N X f i of X and every sequence (λ k ) k∈N of positive reals converging to zero, we can quasiconcavify the prudent game G λ k on X f as follows: for every player i ∈ N and every integer k ≥ 0, define ũk

over all n ∈ N and all families {y 1 i , ..., y n i } of X f i such that xi ∈co{y 1 i , ..., y n i }. Since X f is finite and u λ k i is continuous with respect to the second argument, it is easy to see that ũk i is upper semicontinuous with respect to x and continuous with respect to x-i. Thus, for every integer k ≥ 0, there exists a Nash equilibrium x k of the game Gk = (co(X f ), ũk i )i∈N (see, for example, Theorem 2 in [START_REF] Dasgupta | The Existence of Equilibrium in Discontinuous Economic Games, Part I (Theory)[END_REF]). The proof of the following proposition can be found in Appendix Appendix C.

Proposition 41. Let G be a quasiconcave and better-reply secure game. There exists a sequence of finite approximations X k ⊂ X such that any limit point of Nash equilibria of (coX k , ũk i )i∈N is a Nash equilibrium of G.

Proof of Proposition 41. We first prove the following lemma: Lemma 42. If G is quasiconcave and better-reply secure, then there exists a countable set N i=1 X i ⊂ X such that for every (x * , u * ) ∈ Γ, if x * is not a Nash equilibrium of G, then there exists i ∈ N and di ∈ X i such that

Proof of Lemma 42. Let Γ equ = {(x * , u * ) ∈ Γ, x * is a Nash equilibrium} and Γ nequ = {(x * , u * ) ∈ Γ, x * is not a Nash equilibrium} = c Γequ. For every (x * , u * ) ∈ Γ nequ , from better-reply security, there exists some player i and

Appendix D Games in mixed strategies

Denote by Mi = ∆(Xi) the set of Borel probability measures on Xi, usually called the set of mixed strategies of player i. Recall it is a compact, Hausdorff and metrizable set under the weak* topology. To every game G = ((Xi)i∈N , (ui)i∈N ), we associate its mixed strategy extension G = ((Mi)i∈N , (ũi)i∈N ), where ũi is the multilinear extension of ui to M . Most of the techniques introduced in the previous sections can be applied to G . In particular:

Corollary 43. Let G be a compact game. Then its mixed extension G possesses a prudent equilibrium if G is p-robust. In particular, for every finite game G, its mixed-extension admits a prudent equilibrium. 29 Let X be a separable metric space (which means that there exists C, a countable and dense subset of X). Then X is a Lindelöf space, i.e. every open cover of X has a countable subcover.

Appendix G Proof of Proposition 3

First, assume that vi satisfies Equation 3. For every (x, y-i, z-i) ∈ X × X-i × X-i, from Equation 3, and since ci is a distance, we get

Passing to the infimum with respect to z-i in Equation 8, we get

thus vi satisfies Equation 4.

For the converse implication, we now assume that vi satisfies Equation 4, and we will prove that Equation 3is true with ui = vi. By definition, we have

since we can take y-i = x-i in the infimum and since c(x-i, x-i) = 0. For the converse inequality, remark that from Equation 4, we have

for every y-i ∈ X-i, and passing to the infimum with respect to y-i we finally get

Appendix H Proof of Theorem 20

Let us do a contradiction proof. We assume that x is a prudent Nash equilibrium of G and that there exists i ∈ N such that xi is prudent-dominated by some di ∈ Xi at x-i, which implies in particular ui(di, x-i) = ui(xi, x-i)

. By definition of a prudent equilibrium,

x is the limit of a sequence (x n ) n≥0 of λ n -equilibrium, for λ n → 0. We will prove that xi prudent-dominated by

> ui(x n ) for n large enough and for every y-i outside some given compact neighborhood of x-i), i.e. it is reached at some y n -i , and (y n -i ) n≥0 has to converge to x-i, because (λ n ) n≥0 converges to 0 and ui is bounded. The first order necessary condition associated to the minimization problem above gives

Recall that N y n -i (X-i) denotes the normal cone of X-i at y n -i , which satisfies, by definition, d, h ≤ 0 for every d ∈ N y n -i (X-i) and every h ∈ T y n -i (X-i), where

From Condition (ii) of prudent-dominance definition, the vector -

has an open graph: see Proposition 4 in [4]). Moreover,

which is a convex cone (because X-i is convex), and finally (again from T y n -i (X-i) convex cone):

that is, from the two equations ( 9) and ( 10) above,

Consequently, the first order necessary condition can be written

From the definition of y n -i and Equation ( 12), we get

Now, we write a a first order development of ui(x n i , y n -i ) around x n :

From Equation 12, and since

is bounded, we derive

We can do the same computation at (di, x n -i ) (since Condition (ii) in p-dominance definition is true at x or at (di, x-i)): thus, we get that there exists a sequence (z n -i ) n≥0 of X-i which converges to x-i, such that

Substracting the two equations ( 15) and ( 16) above, we obtain that u

) plus a term which is equal to

Claim. For n large enough,

To prove this Claim, first remark that for every integer n such that

x Nash equilibrium. Now, up to a subsequence, we can assume x n -i = x-i for every n. From mean value theorem, we get ui(di,

x n -i -x-i for some sequences ψ n and θ n in [0, 1]. Above, we have already proved ui(di, x-i) -ui(

Appendix I A counterexample

There are two players i = 1, 2, the strategy spaces are X1 = X2 = [0, 1], and the payoff of player 1 is defined by (1,1), this proves that (1, 1) is a prudent-equilibrium.

Yet, if we define d1 = 0, then we have u1(d1, x 2 ) > u1(1, x 2 ) for every x 2 = 1 in some neighborhood of 1 (so that Condition (6) in Section 3.2 is satisfied). In addition, we have u1(d1, 1) = u1(1, 1) = 0 and ( ∂u 1 ∂x 2 (0, 1) -∂u 1 ∂x 2 (1, 1))(x 2 -1) = -1 2 (x 2 -1) > 0 for every x 2 = 1 in a neighborhood (in [0, 1]) of 1, that is Condition (i) in the definition of prudent-dominance is satisfied. Condition (ii) is also satisfied, but u1 is not C 1 in a neighborhood of (0, 1) and of (1, 1), and we can see that in that case, Theorem 20 can be false.

Appendix J Proof of Proposition 25

By definition, for every x-i < 1 and every xi < 1 -x-i,

Indeed, the infimum above can reached at y-i = x-i or for y-i → (1 -xi) + . Moreover, for every other strategy profiles,

) is a sequence of Nash equilibria of G λn which converges to (x1, x2) when λn tends to zero, then either (x λn 1 , x λn 2 ) = (1, 1) for infinitely many n > 0, and at the limit, this provides the prudent equilibrium (1, 1) which is not Pareto optimal. Otherwise, up to a subsequence, we can assume that x λn 1 +x λn 2 < 1, otherwise one player does not play a best-response in G λn . Moreover, since the initial game is better-reply secure, (x1, x2) should be a Nash equilibrium, i.e. x1 = 1 -x2. In addition, we have λn.x λn i = ci(1 -x λn i , x λn -i ) for i = 1, 2 (thus x λn i > 0): indeed, otherwise, u λn i (x) would be either equal to xi or to

for every x on some neighborhood of x λn , thus player i would be able to improve its payoff in G λn by increasing or decreasing slightly his strategy. This implies

). In short, the less uncertain player obtains the bigger share. 30 Appendix K Proof of Proposition 27

First, this game is compact, symmetric, diagonally quasiconcave and diagonally better-reply secure, second, its

It is a symmetrically p-robust game: indeed, for every (x, x) ∈ [0, 1] × [0, 1], we can define the continuous mapping ψ x (x ) = x , and then, recalling that ui is continuous on Grψ x , we can use Remark 37. Thus, it possesses a symmetric prudent Nash equilibrium. Let us prove that the only prudent Nash equilibrium is ( 12 , 1 2 ). Let (x, x) be a symmetric prudent Nash equilibrium, and assume, for example, x > 1 2 . By definition, (x, x) is the limit of symmetric λn-equilibria (x λn , x λn ), where λn converges to zero. Define v(x, y) = u1(x, y) = u2(y, x), and v λ as in Definition 38. Remark that v λn (x λn , x λn ) ≤ 1 -x λn (since the other player can decrease slightly its location). Moreover, for every ε > 0 small enough, v λn (x λn -ε, x λn ) converges to v(x -ε, x) = x + ε 2 , which is strictly larger than 1 -x λn for n large enough. This contradicts that (x λn , x λn ) is a λn-equilibria. The proof is similar when x < 1 2 .

Appendix L Proof of Proposition 29

We want to prove that (v1, v1) is the unique prudent equilibrium. Assume by contradiction that there is a sequence of λn-equilibria x λn = (x λn 1 , x λn 2 ) which converges to (x, x) when λn → 0 + , where x ∈]v1, v2] (recall that here, a prudent equilibrium is a Nash equilibrium, because the game is p-robust). If x λn 1 ≥ x λn 2 for infinitely many n > 0, then, up to a subsequence, we can assume x λn 1 ≥ x λn 2 for every n > 0. Then u 1 (x λn ) = v1 -x λn 1 < 0 for n large enough (indeed, one can slightly decrease x λn 2 ). Thus from Point 3. in Proposition 2, u λn 1 (x λn ) ≤ v1 -x λn 1 < 0

for n large enough. But, by definition, x λn is a Nash of G λn , thus for n large enough, we get 0 = u λn 1 (0, x λn 2 ) ≤ u λn 1 (x λn ) < 0, a contradiction. Now, we can assume that x λn 1 < x λn 2 for n large enough. By definition,

or equivalently .

By assumption, pn converges to p = ∞.

Recalling that x λn 1 is a best reply to x λn 2 for player 1, we get for every ε > 0,

the first inequality being a consequence of x λn being a Nash of G λn , and the second inequality being a consequence of the definition of u λn 1 . Passing to the limit when ε tends to zero, we get

2 ) λn ≥ x λn 2 -v1 for every n. Thus,

2 -v1). Passing at the limit, we get v2 -x ≥ p(x -v1), that is

In particular, since p = +∞, we get only one prudent equilibrium (v1, v1). If we simply assume p ∈ [0, +∞],

we get that the set of prudent equilibria is included in {

Appendix M Bertrand duopoly with symmetric costs

In this section, we apply our main concept to refine Nash equilibria in a standard Bertrand duopoly model.