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Abstract

Radiation can play a central role in turbulent reactive flows where heat transfer is enhanced in ap-

plications with high temperature and pressure. The Monte Carlo method is a successful technique to

solve the radiative transfer equation accurately with relative ease while retaining detailed properties.

However, its drawback is associated to a slow convergence rate. One strategy to improve the effi-

ciency of Monte Carlo method consists in replacing the pseudo-random sequences with an alternative

sampling: the low-discrepancy sequences. The introduction of such sequences in Monte Carlo leads

to Quasi-Monte Carlo methods. Their advantage lies in a higher convergence rate compared to MC

methods which have however not been assessed in 3D participating media. Additionally, in order to

get an error estimation which is necessary in practical applications, a randomization of Quasi-Monte

Carlo is needed (Randomized-QMC). Such Randomized-QMC methods have not been considered for

simulations of radiative heat transfer in participating media before. In the present study, Monte Carlo

and Randomized Quasi-Monte Carlo methods are assessed in terms of efficiency and computational

cost in radiative heat transfer simulations of three practical 3D configurations. Comparisons in terms

of local standard deviation, convergence rate, and final computational cost show that Randomized

Quasi-Monte Carlo outperforms Monte Carlo in all the investigated cases.

Keywords: Monte Carlo, Quasi-Monte Carlo, low-discrepancy sequence, radiative heat transfer,

combustion

1. Introduction

In turbulent flames, thermal radiation, turbulence and kinetics are fully coupled to each other in a

highly non-linear way and the incorporation of all these contributions in numerical simulations is there-

fore a great challenge. In combustion applications, radiation can play a significant role, since the heat

transfer from the flame to the walls is driven, apart from convection, also by radiation of burnt gases5
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inside the chamber. Therefore, coupled simulations involving combustion and radiative heat transfer

are more and more used and targeted. In order to correctly account for both convective and radiative

contributions to wall fluxes, the simultaneous solution of the radiative transfer equation (RTE) and

the governing equations for reactive flows is required. However accurate modeling of radiative heat

transfer requires instantaneous spatially detailed information about temperature, pressure and species10

concentration. On the one hand, Reynolds Average Navier-Stokes (RANS) simulations does not pro-

vide directly such information since only spatially averaged results are available, with a relatively low

computational cost. On the other hand, Direct Numerical Simulations (DNS) fully resolve the flow

field in time and space, but such an approach remains unaffordable in most applications. In between,

there are the Large Eddy Simulations (LES) that solve in time and space the energetic turbulent eddies15

while only modelling the small eddies. Coupled simulations based on LES are therefore a promising

approach to describe accurately radiative heat transfer in turbulent flows.

Several families of methods exist to solve numerically radiative transfer [1, 2] such as Discrete Ordinates

Method (DOM), the Finite Volume Method (FVM) and the spherical harmonics method. Another

kind of method, which is the one considered in this study, is Monte Carlo (MC) integration, which is20

strongly appreciated for its ability to provide accurate results that can serve as a reference to others

methods. However, its main drawback is the associated computational cost which can become pro-

hibitive.

In coupled combustion simulations, different approaches are then combined to model the reactive tur-

bulent flow and thermal radiation all together. First studies on radiation-combustion coupling were25

carried out in RANS simulations thanks to the low computational cost of such an approach. RANS

simulations have been coupled to DOM for simulations of industrial-scale furnaces in [3] with the

gray gas approximation and [4] using the Weighted Sum of Gray Gases (WSGG) model for radiative

properties of gases. Coupled simulations of turbulent flames of methane and air can be found in [5, 6],

using the WSGG approach. RANS computations are coupled to MC method in simulation of turbulent30

flames in [7] with the help of global models for participating gases. More accurate models for radiative

properties of gases are used in coupled RANS-MC simulations of turbulent flames in [8, 9, 10] where

computational domains of a few thousands cells are retained. Large-eddy simulations for turbulent

flows have been coupled to DOM method in simulation of combustion chambers in [11] using a gray gas

model and in [12, 13] using global models for gases. The effects of subgrid-scale turbulence-radiation35

interactions have recently been investigated with LES coupled to an FVM solver of thermal radiation

based on WSGG.

In some recent works, thanks to the increase in computing power and advances in numerical algo-

rithms and solver scalability, coupled LES or DNS with MC methods have been achieved to carry out

state-of-the-art simulations of radiative heat transfer. The applications have grown from the study40
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of a statistically 1D turbulent premixed flame with a grey-gas assumption [14] to the accounting of

accurate gas radiative properties in a turbulent jet flame [15], in turbulent boundary layers [16] and

a confined turbulent flame representative of an actual combustor [17]. The use of MC methods in 3D

unsteady simulations such as DNS and LES has therefore become affordable and enables high-fidelity

of the described radiative heat transfer. However, such coupled and multiphysics simulations remain45

very costly and additional efforts are necessary to make MC methods more efficient.

The purpose of this study is then to investigate improvements of MC methods while aiming at un-

steady scale-resolving simulations of turbulent combustion applications. Thanks to their statistical

estimation of the radiative power and associated error control, Monte Carlo methods provide refer-

ence results. Moreover, the accounting for spectral gas radiative properties and complex geometries50

is straightforward. The drawback of all these methods is nonetheless their slow convergence, making

them very much computationally intensive. Several improvements of physical and mathematical na-

tures have been developed in the literature. For example, embedding the reciprocity principle into

the Monte-Carlo simulation as in [18, 19, 20] reduces the conventional Monte Carlo convergence time

compared to the Forward (FM) and Backward (BM) MC in the treatment of near-isothermal sys-55

tems. From a mathematical point of view, variance reduction techniques [21, 22] such as importance

sampling have been considered in computations of radiative heat transfer [23, 24, 25, 26] to strongly

accelerate MC convergence by favouring more meaningful photon rays in the computed quantity of

interest. An additional improvement is the use of an alternative sampling mechanism for numerical

integration usually referred to as Quasi-Monte Carlo (QMC) integration [22]. This method has barely60

been studied for the numerical resolution of thermal radiation. First works on QMC [27, 28] in ra-

diative heat transfer have highlighted higher accuracy of QMC compared to MC in one-dimensional

slabs simulations as well as in a bidimensional problem with radiative heat transfer between surfaces

in semi-conductor applications. With one notable exception [29], the few earlier studies show that

this method has not been considered for practical and costly simulations, with modern standards. To65

the best of our knowledge, no applications of Quasi-Monte Carlo to 3D participating media have been

reported in the literature. Additionally, in order to get an error estimation which is, if not necessary,

appreciable, a randomization of Quasi-Monte Carlo is needed (Randomized-QMC or RQMC). Only

the recent study by Marston et al. [29] has considered such an RQMC technique in radiative heat

transfer simulation: radiative exchanges between surfaces in a transparent medium are solved with a70

Halton low-discrepancy sequence and a random shift randomization technique. A Randomized-QMC

method will also be retained here and the resulting modified statistical estimator for the computed

radiative power will be thoroughly characterized. The error estimation provided by RMQC, which

is not available with Quasi-Monte Carlo only, also allows a clear and consistent comparison with the

classical Monte Carlo method.75
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The present study focuses on the assessment of randomized Quasi-Monte Carlo methods to solve radia-

tive heat transfer in comparison with MC methods. This is done in several configurations (turbulent

channel flow, jet flame, confined premixed flame) with instantaneous 3D solution fields obtained from

DNS or LES. The considered cases are characterized by several degrees of complexity: high pressure,

presence of soot and finally participating walls. This enables to study the impact of QMC methods in80

practical 3D cases and to anticipate its benefits in coupled high-fidelity simulations based on LES or

DNS.

The principle and properties of Quasi-Monte Carlo method and its randomized variant are illustrated

in Sec. 2 on a simple numerical integration problem. Section 3 details the Monte Carlo solver in

charge of describing the radiative transfer and computing the radiative power fields with MC or QMC85

methods. The three application cases are then presented in Sec. 4. The accuracy and efficiency of the

retained randomized QMC method are finally studied in Sec. 5.

2. Monte Carlo and Quasi-Monte Carlo integration

2.1. Definition of a simple test case and Monte Carlo integration

In a general multivariate integration problem, the goal of MC methods is to estimate:90

I =

∫
V

f(x)dx (1)

where f is a real-valued function defined over the given state-space volume V . In order to illustrate the

properties of MC and QMC methods, the following simple 2-D integral is considered in this section:

I =

∫ 2π

0

∫ π

0

F (θ, φ)
sin(θ)

2
dθ

1

2π
dφ. (2)

I is then expressed as the expectation of F (θ, φ), I = E[F ], based on the probability density functions

pθ(θ) = sin(θ)/2 on the interval [ 0 , π ] and the uniform distribution pφ(φ) = 1/(2π) on the interval

[ 0 , 2π ]. The Monte Carlo estimate for the integral is then defined as95

Q(N) =
1

N

N∑
i=1

F (xi), (3)

where xi are samples from the random vector x = (θ, φ) whose components follow the probability

density functions pθ(θ) and pφ(φ), respectively. The samples xi = (θi, φi) are determined through two

independent random numbers Rφ and Rθ uniform between 0 and 1 as

φ = 2πRφ (4)

θ = cos−1(1− 2Rθ) (5)
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The function F (θ, φ) to integrate is chosen as:

F (θ, φ) = sin2(φ/2) sin(θ) (6)

and the exact result for the integral in Eq. (2) corresponds to I = π/8. The intrinsic standard deviation

is defined as σ2
int = E

[
(F − I)2

]
. Its exact value corresponds here to σ2

int = 1
4 −

(
π
8

)2 ≈ 0.31.

The MC results for the integral defined in Eq. (2) and (6) are shown for 900 000 realizations in100

Fig. 1. The convergence Q(N) towards the expected value π/8 (red dashed line) illustrates the law

of large numbers where MC methods are rooted. Additionally, the Central Limit Theorem allows for

deriving error estimates of the computed value from the samples standard deviation σ̂ computed as

σ̂ =
1√
N − 1

[
N∑
i=1

(
(F (xi)−Q(N))2

)]1/2

. (7)

The standard deviation σ̂ is an approximate of the intrinsic standard deviation σint and the probability

density function of Q(N) tends toward a normal distribution centered in I with a standard deviation105

equal to σint/N
1/2 ≈ σ̂/N1/2. This property provides straightforwardly confidence intervals for the

estimate Q(N). These confidence intervals are also shown in Fig. 1. They are seen to decrease with

N , which allows to control the number of iterations necessary to reach a given accuracy.

Figure 1: Evolution of the MC result Q(N) as a function of the number of realizations N . Red horizontal dashed line:

the exact value of the integral. Confidence intervals at 90%, 95% and 99% are denoted by yellow, green and blue dashed

lines, respectively.

The error ε(N) = |Q(N)− I| is plotted in Fig. 2. Although the curve is polluted by noise inherent

to the statistical estimation of the result, the error is seen to decrease with N approximatively at110

5



a constant rate in this logarithmic plot. This is expected and can be consistently characterized by

considering a statistical moment of the error to get rid of statistical noise. In particular, the standard

deviation of the MC estimate σ[Q(N)] =
(
E
[
(Q(N)− I)2

])1/2
is directly related to the quadratic

mean of the error,
(
E
[
ε(N)2

])1/2
. σ[Q(N)] is computed from 100 independent Monte Carlo simula-

tions and is also shown in Fig. 2. After several dozens of realizations, the asymptotic Central Limit115

Theorem (CLT) becomes valid and σ[Q(N)] closely follows the plotted law σintN
−1/2. The statistical

error of the MC estimate Q(N) decreases then according to 1/
√
N . Therefore, in order to decrease

the error by a factor ten, the number of samples must be increased by a factor 100. This well-known

feature of slow convergence is the main drawback of MC methods.

120

100 101 102 103 104 105

N

10−7

10−5

10−3

10−1

Exact error

σ[Q(N)]

σintN
−1/2

Figure 2: Evolution of deterministic error ε(N) (blue plain line) and mean quadratic error σ[Q(N)] (black plain line) as

a function of the number of realizations N . The red dashed line is the theoretical convergence rate σintN
−1/2.

Nevertheless, the error estimate,

σ[Q(N)] ≈ σ̂Q,1(N) = σ̂N−1/2, (8)

allows for a control of the accuracy of the computed value I from the sample values, which is very

appreciable. Another methodology to estimate the error, equivalent to this first one, consists in

breaking up the samples resulting in Q(N) into M subsets. For each subset i ∈ [1,M ], a MC estimate

Qi(P ) can be computed where P = N/M is the number of samples in the subset. The MC estimations125

from the total number N of samples is simply related to the MC estimates in the subsets as

Q(N) =
1

M

M∑
i=1

Qi(P ). (9)
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The M subsamples Qi(P ) are independent estimations of the same quantity Q(P ) whose expectation

is I ≈ Q(N). The standard deviation of estimates Qi(P ) can then be estimated as

σ[Q(P )]2 ≈ 1

M − 1

M∑
i=1

[Qi(P )−Q(N)]2. (10)

The CLT theorem states that σ[Q(N)]2 ≈ 1
M σ[Q(P )]2 which finally yields an alternative estimation

of the standard deviation of the MC estimate from all samples [2, 22]:130

σ[Q(N)] ≈ σ̂Q,2(N) =

(
1

M(M − 1)

M∑
i=1

[Qi(P )−Q(N)]2

)1/2

(11)

The two estimates for the MC accuracy that are σ̂Q,1(N) and σ̂Q,2(N) are plotted in Fig. 3 as

a function of the total number of samples N . For the second estimate, σ̂Q,2(N) is evaluated from a

fixed number M = 1 000 of subsets. Results for σ̂Q,2(N) are then available for N = 1 000 (P = 1),

N = 2 000 (P = 2), ..., up to N = 1 000 000 corresponding to a number P = 1 00 of samples per subset.

For each N , the MC result Q(N) is identical. Only the error estimate of σ[Q(N)] differs. Figure 3135

shows that both formulations in Eqs. (11) or (8) are equivalent in the retained conditions (large N

and large M). As expected, both MC error estimates decrease with the square root of the number of

realizations N , following the law of large numbers. Figure 3 also shows the evolution of the exact MC

root-mean-square error (rms) σ[Q(N)], which can be here computed since the reference solution, I, is

known. However, in practical applications as the ones presented later, no analytical solution exists. As140

a consequence, the MC error cannot be computed and the best practice is to compute the estimations

of the MC error, σ̂Q,1(N) or σ̂Q,2(N), which become undistinguishable from the error rms for large N

as seen in Fig. 3. Such estimates of the accuracy are commonly considered to assess the performance

of MC methods.

2.2. Quasi-Monte Carlo methods145

The accuracy of a MC calculation is proportional to the variance σ2
int and inversely proportional

to the number of samples as N−1/2. A possibility to accelerate the Monte Carlo convergence rate as

a function of N consists in the use of alternative samplings such as low-discrepancy sequences. The

resulting quadrature method is called Quasi-Monte Carlo (QMC).

2.2.1. Low-discrepancy sequences150

This type of sequences aims at a more uniform filling of the sampled state space. This is illus-

trated in Fig. 4 where a MC sequence from a pseudo-random number generator is compared to a

low-discrepancy Sobol sequence in two dimensions. The clustering seen with classical random sam-

pling leaves regions with few samples, thus making the MC convergence slower compared to the QMC

method where points are more uniformly distributed.155
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Figure 3: Evolution of the standard deviation as a function of the total number of realizations N in a log-log scale in the

two analyzed cases : red solid line is σ̂Q,1(N) from Eq. (8) in 1 MC trial with up to 1 million realizations; yellow dashed

line is σ̂Q,2(N) from Eq. (11) with a fixed number M = 1000 of MC trials with up to P= 1000 realizations each; black

dashed line is the line of slope −1/2; blue solid line with white circles represent the standard deviation of MC estimate

σ[Q(N)].

As the Monte Carlo method, QMC methods are a numerical method to compute high-dimensional

integrals. They rely on the Koksma-Hlawka inequality [30] which states that for any sequence {un}
and any bounded function f defined in [0, 1]d, the integration error ε is bounded as:

ε[f ] = |Q(N)− I(f)| ≤ V [f ]D∗n(u1, ...,un) (12)

where D∗n is the discrepancy of the set of points ui 1 ≤ i ≤ n and V [f ] is the variation of f in the

sense of Hardy-Krause. The discrepancy D∗n measures how much the sequence deviates from uniform160

filling. Building low-discrepancy sequences can allow then for more accurate cubature methods than

relying on random samples of independent points. In QMC methods, random sequences used in MC

are replaced by a deterministic sequence whose points are not independent anymore. The Central

Limit Theorem doest not apply then to deterministic Quasi-Monte Carlo simulations.

Details about the construction of low-discrepancy sequences are given in [22]. Several algorithms165

have been proposed for the generation of such sequences, and the Halton [31], Sobol [32] and Faure

[33] sequences are the most usually considered. Morokoff et al. [34] demonstrated that the Halton

sequence generally outperforms the others when the integral dimensionality is lower than six. For

high-dimensional integrals, Sobol sequences exhibit better convergence properties than the Faure or

Halton sequences [35]. Since the integration dimension can be very high in the radiative heat transfer170

involving diffuse wall reflexions, the Sobol sequence has been retained in this study. The implemented
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Figure 4: Comparison of the sampling of polar (θ) and azimuthal angle (φ) generated accordingly to the probability

density functions defined in Eqs. (4-5) using a a classic pseudo-random sequence (left) and a Sobol sequence (right).

construction algorithm follows the algorithm described in Ref. [36].

The concept of discrepancy only provides bounds for the integration error and is in fact of little

help in practice: D∗n and V (f) are not always known, and the upper bound actually significantly

overestimates the actual error [37, 38]. Besides, low-discrepancy sequences not being based on inde-175

pendent and identically distributed (i.i.d) points, the CLT does not apply and no general theorem

on asymptotic convergence rate properties is then available. While being far more accurate than MC

methods, relying on a finite-size sequence for QMC integration does not provide any inherent error

estimate. A practical method to obtain error estimates for QMC is based on the randomization of

the low-discrepancy sequences and the resulting methods are called Randomized Quasi-Monte Carlo180

(RQMC) [39].

2.2.2. Randomized Quasi-Monte Carlo methods

The core idea behind RQMC is to randomize the existing low-discrepancy sequences. This can

be done by building M low-discrepancy sequences of P points, where each sequence is a randomized

version of the original low-discrepancy sequence and is independent from the others. The randomization185

technique used in this study is discussed later.
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In this way, it is possible to create a random sample of M i.i.d. quasi-random estimators QQMC
i (P ) of

P points. The RQMC result is built as the average as in Eq. (9),

QRQMC(N) =
1

M

M∑
i=1

QQMC
i (P ) (13)

and its variance is estimated as in (11) as

σ
[
QRQMC(N)

]2 ≈ 1

M(M − 1)

M∑
i=1

[
QQMC
i (P )−QRQMC(N)

]2
. (14)

Contrary to MC methods where two error estimates, σ̂Q,1(N) and σ̂Q,2(N), can be used, only an190

equivalent to σ̂Q,2(N) can be built for Quasi-Monte Carlo methods.

Many techniques exist to randomize low-discrepancy sequences, and they have to respect two

conditions: the first one is that each point in the randomized point set follows a law of uniform

probability on the unity hypercube [0, 1]d for the estimator to be not biased, and the second is that

the low discrepancy of the new sequence is preserved after the randomization. The second condition195

guarantees that the fast convergence of the randomized QMC sequence is not penalized.

Shifting, Full Scrambling and Linear Scrambling are such randomization techniques. Randomiza-

tions based on a shift (the simplest one is proposed in Ref. [40]) do not sufficiently scramble the point

set and, for a certain type of functions, they risk to perform worse than MC integration [22]. This

drawback is not present in the full scrambling approach [41]. However, such a technique is expensive200

in terms of memory requirement. For this reason a technique of Linear Scrambling, and more precisely

the I-binomial scrambling [42], has been retained in this study, since it preserves the convergence

results of the Full Scrambling insuring a good compromise between memory requirement and com-

putational cost. The key principle of such scrambling techniques is the application of a permutation

to each digit issued from the decomposition of the sequence points in base b (b=2 for the considered205

Sobol sequence). The I-binomial scrambling is part of the techniques of linear scrambling, where the

permutations are constructed through linear combinations. More details on the construction algorithm

can be found in Refs. [22, 42].

2.2.3. Application of Quasi-Monte Carlo integration

The characteristics of Quasi-Monte Carlo integration are here illustrated for the computation of210

the integral in Eq. (2) before considering its application to radiative heat transfer in the next sections.

The integral in Eq. (2) is first solved with a non-randomized QMC method. In Fig. 5, the evo-

lution of Q(N) (left) and of the absolute error ε(N) = |Q(N) − I(f)| (right) is shown as a function

of the number of realizations for QMC and compared to results obtained with MC estimation. In

both plots of Fig. 5, it is pointed out that QMC converges faster than MC: in QMC calculation the215
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Figure 5: Evolution of Q(N) (top) and error ε(N) (bottom) as a function of the number of realizations in a log-log plot.

Black solid line: standard Monte Carlo (MC); blue solid line: Quasi-Monte Carlo (QMC); red dashed line: expected

value.

expected value is attained for a number of realizations smaller than the one needed by MC, and the

absolute error in QMC is smaller than MC for almost every value of N (especially for large values

of N). However, low-discrepancy sequences are not based on i.i.d. sample of points, it is then not

possible to get error estimates when applying QMC methods. In order to take advantage of both easy

error estimation as done in MC and fast convergence of QMC, Randomized QMC methods are applied220

to the solution of the integral of Eq. (2), where random samples of quasi-random estimators are created.

MC and Randomized QMC methods are now compared consistently by considering a thousand
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independent integral estimates, i.e. M = 1 000, based on MC and QMC quadrature for sequences of

size P . The average of the M samples yield the respective MC and Randomized QMC estimates based225

on a total of N = MP evaluations. In Fig. 6, the evolution of the quadrature estimate Q(N) is plotted

as a function of P for a fixed M . Similarly to standard QMC, the randomized QMC method reaches

the exact value with a smaller number of realizations than MC integration. Note that the numerical

estimates are already quite accurate for small values of P because of the retained high value of M

chosen to momentary get rid of uncertainties due to the selected value.230

Figure 6: Evolution of Q(N) as a function of the number of realizations in each trial, P , where N = MP and M = 1 000.

Black solid line: Monte Carlo (MC) results. Blue solid line: Randomized Quasi-Monte Carlo (RQMC) results. Dashed

red line: exact integration result.

In addition to fast convergence attributed to standard QMC, the randomized Quasi-Monte Carlo

method benefits from an error estimate. Contrary to classical Monte Carlo integration which provides

two error estimates through Eq. (8) or (11) , RQMC relies on Eq. (14) which is only equivalent to

Eq. (8). The error estimate σ[Q(N)] for RQMC method is compared to the corresponding Monte Carlo235

result in Fig. 7 where P is varied while M is still fixed to 1 000. As expected from theory, the MC

convergence rate (dashed yellow line) scales as N−1/2 ∝ P−1/2. For the investigated case, the upper

bound of the RQMC error (dashed red line) appears to scale as P−1. The error estimate confirms

the significantly enhanced convergence rate of the RQMC method. A standard deviation of 10−4 is

obtained for P ≈ 300 whereas it is not yet achieved with standard MC with P = 104. This estimate of240

the RQMC error allows for controlling the number of realizations needed to reach a desired accuracy.

Once again, the estimated error is already small for a small P value because of the chosen value M .
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Figure 7: Evolution of error estimate computed from standard deviation formula in Eqs. (11) and (14) for MC and

RQMC, respectively. Results are reported as a function of the number of realizations in each trial, P , for a fixed number

M = 1 000 of integration trials. Black solid line: Monte Carlo results. Blue solid line: Randomized Quasi-Monte Carlo

results. Red dashed line: upper bound RQMC convergence rate. Magenta dashed line: convergence rate of RQMC for

P = {22, 23, ... , 213}.

Looking at the lower plot of Fig. 7, it is possible to observe the presence of several sub-peaks in

σ
[
QRQMC(N)

]
(blue solide line). These peaks correspond to those realizations where P = {22, 23, ... , 213}

and are characterized by a higher accuracy. This is a property of the Sobol sequence which performs245

better for powers of two. Thus, one can define two laws for the convergence rate that bound the

error estimate: an upper bound which was already introduced and a lower bound that correspond to

the point P = 2i. Both are drawn in Fig. 7. For the studied example, the highest convergence rate

obtained for powers of 2 scales as P−1.27. For Quasi-Monte Carlo simulations with a fixed number of

realizations, it is then optimal to choose it as a power of 2.250

The dependency of RQMC results on the number M of random QMC estimate is now considered

with a fixed size of the sequences set to P = 1 000. Figure 8 presents the error estimate σ[Q(N)] as a

function of the number of trials, M , for both MC and RQMC. As expected from the CLT which states

that σ[Q(N)]2 ≈ σ[Q(P )]2/M , both MC and RQMC errors scale as M−1/2. The shift between both255

curves is due to the higher accuracy of RQMC compared to MC for a given sequence size P .

The computational cost of each method depends on the total number of realizations N , i.e. the

product of both M and P . Previous results have shown that MC and RQMC convergence rates scale
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Figure 8: Evolution of error estimate as a function of the number of trials, M for Monte Carlo (black) and Randomized

Quasi-Monte Carlo (blue). Each trial contains P = 1000 points.

as M−1/2P−β where β = 1
2 in the MC method, while it is appreciably larger in RQMC and unknown260

a priori for a given case. In standard MC simulation, the convergence rate depends then eventually

as N−1/2 and is not sensitive to the M -P distribution. The number of MC trials M used to compute

the error estimate must nonetheless be large enough for Eq. (11) to be reliable. A minimum value of

M often admitted in the literature is 10 [22]. In RQMC, the trade-off between M and P for a given

N is not at all trivial. Error estimates as a function of the total number of samples N are shown265

in Fig. 9 for both MC and RQMC computations with different M -P repartitions. On the one hand,

all MC results are similar and tend to the same asymptotic convergence rate as previously explained.

On the other hand, it can be clearly seen that each M -P combination yields a different convergence

rate for RQMC. For a same computational cost (identical N), the combination with small values of M

achieves significant higher accuracy. This is due to the M−1/2P−β convergence law with β > 1/2: it270

is more interesting to increase the size of the low-discrepancy sequence, P , for a same N in order to

benefit from the QMC enhancement. The choice of M is then critical in RQMC method.

However, M cannot be too small, otherwise the error estimate in Eq. (14) can not be trusted. A

compromise must then be found. A sensitivity analysis has been performed to study the evolution of275

σ[Q(P )] as a function of the trials number M , keeping fixed the number of realizations to P = 10 000

per trial. The results for the retained example are presented in Fig. 10. As the number of trials

M increases, the standard deviation σ[Q(P )] converges towards a value around 4 × 10−5. A good

compromise to keep M sufficiently small and σ[Q(P )] close to each converged value is found for a
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MC

Figure 9: Evolution of error estimate as a function of the total number of realizations, N = MP , for several combinations

of M and P identified by colors. Dashed lines: MC results pointed out by black arrow. Solid lines: RQMC results.

number of trials equal to 20, which is around classical values also retained in standard MC as reported280

previously. This value of M is retained for the numerical setup of the following simulations.

Figure 10: Evolution of σ[Q(P )] =

[
1

M−1

∑M
i=1

(
QQMC

i (P )−QRQMC(N)
)2]1/2

as a function of the number of trials

M and for P = 10 000.

15



3. Monte Carlo numerical solver of radiative heat transfer

The in-house code Rainier [26, 16, 17, 43] is described in the present section. It solves the radiative

transfer equation (RTE) with a Monte Carlo approach while relying on standard Monte Carlo or

Randomized Quasi-Monte Carlo integration. Details of the solver, its adaptation to QMC integration285

and the retained description of radiative properties are given in the following.

3.1. Ray tracing in the Monte Carlo solver and adaptation to QMC

In the Rainier solver, the local radiative power is computed at each vertex of the computational

domain (those where the solution is desired). Then, the departing position of a photon bundle is fixed

and it is not determined by a random variable. Thus, a ray tracing starting at a given point is initially290

characterized by a direction determined the unit vector denoted as ∆, or equivalently by two angles

θ and φ, and a frequency ν generated according to a given probability density function depending on

the resolution method.

A ray is tracked along its optical path with possible absorption by the participating medium or

walls, wall reflexions and exiting of the computational domain. To keep the simulation affordable, the295

ray tracing is interrupted when the equivalent transmission from the departing point is below a pre-

defined threshold τmin. In other words, a ray is stopped when its remaining energy has been lowered

by a factor corresponding to (1− τmin). Here, τmin is set equal to 0.01 in all the investigated cases.

During its optical path, a ray hitting a wall may be reflected. For black walls or specular reflexion, no

additional random number than the previous three for frequency and departing direction is necessary.300

The corresponding three-dimensional space is then sampled with either a pseudo-random generator

(the one used in the present work is L’Ecuyer’s Multiple Recursive Generator MRG32k3a [44]) or

a three-dimensional Sobol sequence for QMC integration. However, cases with diffuse reflexions as

later considered in confined configurations require a specific attention. In standard MC, the reflected

direction then needs to be randomly generated and the integration dimension d of the problem increases305

as d = 3 + 2r where r is the number of reflections performed. The number of reflexions that one

ray can undergo is then unknown, making d undetermined as well. While this is transparent for

standard MC where the pseudo-random generator provided i.i.d samples, this is critical for QMC

integration that requires to a priori know the dimension of the integration problem to build the low-

discrepancy sequence. In the present integration of such sequences, the maximum number of reflexions310

rmax is determined from the worst case scenario and is used to build a d-dimensional sequence with

d = 3 + 2rmax.

The worst case is considered as a transparent medium with wall diffuse reflectivities equal to 1−εmin,

where εmin is the the lowest wall emissivity considered in the problem setup. After r reflexions, the
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energy of the ray is scaled down by the factor (1− εmin)r. Given the criterion τmin introduced earlier315

to stop the ray, the maximum number of reflexions follows

(1− εmin)rmax < τmin (15)

Thus,

rmax >
ln(τmin)

ln(1− εmin)
(16)

and the dimension d becomes:

d = 3 +
2 ln(τmin)

ln(1− εmin)
. (17)

The formula obviously falls apart for purely reflective surfaces (εmin = 0), which is unrealistic in

practical applications of radiative heat transfer.320

Finally, the number of rays issued from a given point of interest is controlled by the prescribed

accuracy. The standard Monte Carlo accuracy is estimated by assembling rays in several batches

(M = 20) and using the estimate in Eq. (11) for the quantity of interest (radiative power of flux). This

makes the implementation of the Randomized-Quasi Monte Carlo error estimate given by Eq. (14)

straightforward. For both methods, the control is carried out on the relative and the absolute value of325

the standard deviation of the results estimate. Hence, the relative standard deviation of the radiative

power is defined as the ratio of the local standard deviation to the local radiative power. However,

this relative standard deviation is not appropriate in regions with negligible radiative contribution.

A second control is then considered on the absolute value of the standard deviation which is checked

to be lower than a prescribed maximum, typically set equal to a given percentage of the maximum330

radiative power. When error control is enabled, the prescribed tolerances for the absolute and relative

standard deviation allow for a local adaptation of the number of rays et each point.

3.2. Emission-based Reciprocity Method

Two backward Monte Carlo methods are implemented in the solver: the Emission Based Reciprocity

method (ERM) [20] and the Optimized-ERM (OERM) [26]. The main interest in such methods is the335

possibility to dynamically and independently control the local convergence of the computed radiative

fields. Photon bundles are traced from volume or surface points of the computational domain where

the radiative power or wall flux is predicted. The independent treatment of points of interest allows

for a high degree of scalability. A scalability test has been performed on a cluster equipped with Intel

E5-2690 processors on a configuration characterized by a computational domain of 8 millions cells.340

The number of cpu cores is varied from 120 up to 1920. Results, displayed in Fig. 11, show that a

very good scalability is obtained. Besides, ERM and OERM are reciprocal MC methods that exactly

enforce the Reciprocity Principle [45], that is only statistically fulfilled by other Monte Carlo methods.
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Figure 11: Scalability of the Rainier solver with number of cores. Red circles correspond to the performed tests, dashed

line corresponds to the ideal performance.

In a reciprocal formulation the radiative power per unit volume of the node i of the discretization345

domain is calculated as the sum of the exchanged powers P exchij between the node i and all the other

cells j crossed or encountered by the optical paths generated by i.

Pi =

N∑
j=1

P exchij (18)

where N is the number of volume cells and faces in which the domain is discretized.

P exchij is the difference between the radiative power emitted by j, transmitted by the medium and

absorbed by i, and the radiative power emitted by i, transmitted by the medium and absorbed by j:350

P exchij =

∫ ∞
0

κν(Ti)[I
0
ν (Tj)− I0

ν (Ti)]

∫
4π

AijνdΩidν (19)

where κν is the spectral absorption coefficient, I0
ν the equilibrium spectral intensity, Ωi is the solid

angle issued from i, ν the photon frequency and Aijν accounts for all the paths between emission from

i and absorption in j after transmission and possible walls reflections along the paths. Its expression

is detailed in [20].

Introducing the volumetric power P ei (Ti):355

P ei (Ti) = 4π

∫ ∞
0

κν(Ti)I
0
ν (Ti)dν (20)

Equation (19) can be written as:

P exchij = P ei (Ti)

∫ ∞
0

[
I0
ν (Tj)

I0
ν (Ti)

− 1

] ∫
4π

Aijνfi(∆, ν)dΩidν (21)
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where fi(∆, ν) is the joint PDF with ∆ the direction.

fi(∆, ν) can be separated in two independent parts:

fi(∆, ν)dΩidν = f∆i
(∆)dΩifνi(ν)dν (22)

with:

f∆i
(∆) =

1

4π
; fνi(ν) =

κν(Ti)I
0
ν (Ti)∫∞

0
κν(Ti)I0

ν (Ti)
(23)

fνi(ν) is the frequency distribution function and it is equal to the emission distribution function at the

temperature Ti of the emitting node. Then, in the ERM formalism, the frequency νn associated with

a realization n is obtained by a uniform random number Rn between 0 and 1, and νn is determined

from the equation:

Rn =

∫ νn

0

fνi(ν)dν =

∫ νn
0
κν(Ti)I

0
ν (Ti)dν∫∞

0
κν(Ti)I0

ν (Ti)dν
(24)

In the OERM method, the frequency distribution function fνi is based on the emission distribution

at the maximum temperature encountered in the system, Tmax; as a consequence, νn in the OERM360

formalism is determined from:

Rn =

∫ νn
0

κν(Tmax)I0
ν (Tmax)dν∫∞

0
κν(Tmax)I0

ν (Tmax)dν
(25)

The direction ∆ is determined in spherical coordinates by the polar angle θ and the azimuthal angle

φ, which are determined according to Eqs. (4-5). Statistical estimation of the radiative power Pi at

the node i, indicated as P̂i, can be obtained by summing all the contributions of the Ni optical shots

traced from i. And its final expression, as it is computed in the presented simulations, is:365

P̂i =
P ei
Ni

Ni∑
n=1

Mn∑
m=1

[
I0
νn(Tm)

I0
νn(Ti)

− 1

]
τνnαn,m,νn (26)

where m = 1 is the cell i, while m = Mn represents the last cell crossed by the nth optical path

originating from i. Then, αn,m,νn is the spectral absorptivity of the nth optical path in the mth cell

crossing, while τνn is the spectral transmissivity from i to the cell m accounting for eventual wall

reflections.

From the Eq. (26) it is possible to see that the radiative power exchanged between two cells at identical370

temperatures is rigorously null, leading to more accurate results compared to conventional formalisms.

3.3. Gas radiative properties

Concerning the gas radiative properties, a good compromise between accuracy and computational

cost is found with a narrow-band approach: the correlated− k or ck model by [46] based on updated

19



parameters due to [47], which have been obtained for the range of temperature and pressure of interest,375

by using the CDSD-4000 database for the absorption spectra of CO2 [48] and HITEMP 2010 for the

ones of H2O [49]. The whole considered spectrum ranges from 150 to 9200 cm−1. 44 spectral bands

are considered for H2O, whose width varies from 50 to 400 cm−1. CO2 spectrum overlaps the H2O

one and CO2 absorbs in only 17 of the 44 bands. This leads to a total of 1022 quadrature points: 72

quadrature points for each of the 17 bands where both species absorb plus 7 quadrature points for the380

remaining 27 bands where only H2O participates.

3.4. Validation of the RQMC implementation

In order to validate the RQMC implemented in the solver Rainier, a 1D slab geometry, for which

a semi-analytical solution of the radiative transfer equation can be obtained from exponential integral

functions [2], is retained and two test cases are performed. The radiative power per unit volume385

is computed within a slab normal to X and bounded by two gray and opaque infinite planes. The

slab thickness is L = 0.1 m and the walls are characterized by a diffuse emissivity of 0.6 and a wall

temperature Tw = 500K. In the first test, denoted as Case a, a gray gas (constant κν) with an optical

thickness equal to 1 is considered. The second test, called Case b, represents more realistic conditions:

a medium with an homogeneous composition (CO2 and H2O molar fractions are, respectively, 0.116390

and 0.155) is considered. Spectral radiative properties of the gaseous mixture are taken into account

through the aforementioned c-k model. For both investigated cases, the gas is at atmospheric pressure

and has a parabolic temperature profile T (X) = aX2 + b, where X is the normal to the walls, b is the

maximum temperature, equal to 2500 K, and a = Tw−b
(L/2)2 .

For each investigated case, MC and RQMC simulations are performed by imposing convergence criteria,395

which allows to control the accuracy of the solution and have comparable profiles between MC and

RQMC fields.. Profiles of radiative power across the normal to the slab, X are presented in Fig. 12,

for Case a and in Fig. 13 for Case b. Black solid lines represent the semi-analytical reference solution

in both cases. Figures 12 and 13 show that, for both investigated cases, the MC and RQMC results

overlap on the reference profile. This validates the implementation of RQMC in the Rainier solver. In400

the next section, more practical configurations are retained for the thorough comparison of MC and

RQMC methods.

4. Investigated configurations

Three 3D configurations are investigated: a canonical flow configuration (turbulent channel flow

at high pressure) and two combustion applications (a turbulent sooting jet flame and a combustion405

chamber featuring a premixed swirled flame). These three cases are characterized by different degrees

of complexity and enable to study the impact of the radiative heat transfer in different practical
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Figure 12: Profile of radiative power in Case a across the slab coordinate X computed by MC (blue) and RQMC (red),

compared to the reference solution (black solid line).

Figure 13: Profile of radiative power in Case b across the slab coordinate X computed by MC (blue) and RQMC (red),

compared to the reference solution (black solid line).

situations: at high pressure, in reacting flows, in presence of soot or walls. This allows for comparing

MC and RQMC methods behavior in several contexts. Besides, all temperature and composition fields

are extracted from direct numerical simulations and large-eddy simulations. The numerical methods410

are then assessed in configurations relevant to coupled high-fidelity simulations.
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4.1. Case 1: Turbulent channel flow

The first investigated application is a turbulent channel flow (case C3R1 from [16]) whose dimen-

sions are: Lx×Ly×Lz = 0.62 m×0.2 m×0.3 m. The channel is filled by an homogeneous gas mixture

of CO2−H2O−N2 with a corresponding molar fraction of 0.116−0.155−0.729. Its pressure is 40 bars415

and two iso-thermal walls (at 2050 K on the top and 950 K on the bottom) with a total hemispherical

emissivity of 0.8 confine the flow. Its structured computational grid is made by 4.2 millions nodes.

In Fig. 14, snapshots of 3D direct numerical simulations taken from [16] are shown: on the top the

instantaneous temperature field and on the bottom the radiative power field are given. At the given

high pressure, the optical thickness of the medium is large. The effect of a large optical thickness can420

be seen in the very thin layer close to the wall: the bottom one is dominated by the absorption, while

the one close to the hot wall is dominated by emission. Consequently there is a negligible radiative

interaction between the two walls, and the whole domain is characterized by absorbing (yellow pockets)

and emitting (blue pockets) regions. The emitted thermal radiation is absorbed in the vicinity of the

emitting point.425

A

B

C

Figure 14: Instantaneous fields of temperature (top) and radiative power (bottom) on a longitudinal section of the

channel. Points A, B and C, whose results are analyzed in Sec. 5, are indicated by black circles on the top figure.

4.2. Case 2: Non-confined sooting jet flame

The second configuration is the turbulent jet diffusion flame experimentally studied at Sandia [50].

It is fed with pure ethylene at 300 K and is stabilized with the help of pilot flames fed by ethylene and
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air. Unlike the previous configuration, the participating medium is heterogeneous and contains soot

particles. The presence of soot particles make the radiation heat transfer very important.430

In Fig. 15, soot volume fraction and temperature fields extracted from 3D Large Eddy Simulations

of [51] are shown along with the computed instantaneous radiative power field (left). Soot particles

are present in richer regions of the flame and maximum instantaneous soot volume fraction is nearly

10 ppm. Radiative power issued from soot particles is located also in richer regions dominated by

emission. Similarly, the radiative power is also negative in hot near stoichiometry burnt gases. On the435

other hand, lean regions where temperature is lower than 1000 K are dominated by the absorption

from CO2 and H2O.

When soot radiation is included in the calculation, their absorption spectra need to be taken into

account; then 93 spectral bands are introduced between 150 and 29 000 cm−1, of which 44 overlap

with the gas bands. The soot absorption coefficient is modeled through the Rayleigh’s theory [2]:440

κsootν = C0fvν with C0 = 36πnk
(n2−k2+2)2+4n2k2 where n and k are the real and imaginary part of the

complex index of refraction of soot particles, taken as equal to m = n − ik = 1.57 − 0.56i [52], ν is

the wavenumber (m−1) and fv is the soot volume fraction. Scattering by the soot particles is here

neglected.

Figure 15: Instantaneous fields of radiative power (left), soot volume fraction (center) and temperature (right) on a

longitudinal section of the jet flame. Color scales are linear for radiative power and temperature and logarithmic for

soot volume fraction. Points D and E, whose results are analyzed in Sec. 5, are indicated by black circles on the right

figure.

4.3. Case 3: Combustion chamber445

The third investigated application is a laboratory scale combustor (30 cm long with a square

section of 81 cm2) studied experimentally [53, 54] and numerically [55, 17]. The chamber is operated
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at atmospheric pressure and a turbulent premixed flame of CH4, H2 and Air is stabilized. The flame is

characterized by a thermal power of 4 kW and is confined by cold quartz windows. Such configuration

is typical of industrial furnaces. Figure 16 shows the temperature field extracted from Large Eddy450

Simulations [56] on a longitudinal section of the chamber along with the presently computed radiative

power field. The 3D computational grid is made of 1.26 millions points.

As in the previous configuration, heterogeneities of temperature and of participating species are

present. The complexities seen in the previous cases (heterogeneities and participating walls) are

simultaneously taken into account in this configuration and they represent typical situations encoun-455

tered in a real enclosed application. The temperature field (Fig. 16 top) shows that burnt gases issued

from the flame are hotter than the ones close to the walls. Because of the presence of recirculation

zones between the flame and the walls, hot gases are recirculated toward the chamber bottom while

they are cooled down by wall convective heat transfer. The radiative power field indicates that cold

gases close to the walls are dominated by absorption (red regions/positive radiative power), while the460

higher temperature regions mostly emit radiation (negative values of radiative power). In the present

radiative heat transfer computations, the walls are considered as opaque with a total hemispherical

emissivity of 0.75.

F

G H

Figure 16: Instantaneous fields of temperature (top) and radiative power (bottom) on a longitudinal section of the

burner. Points F , G and H, whose results are analyzed in Sec. 5, are indicated by black circles on the top figure.

4.4. Numerical set-up for MC and QMC simulations

For each application, radiative heat transfer simulations are performed using both MC and RQMC465

methods. For each method two different tests are carried out. The first test, Test 1, consists in

24



Test 1 Test 2

Case Number of Rays Rel. Std Abs. Std

1 5 000 1% 3% of PRmax

2 5 000 1% 1% of PRmax

3 5 000 3% 3% of PRmax

Table 1: Numerical set-up of the tests with a fixed number of realizations, Test 1, and at controlled convergence, Test

2, for the three applications.

imposing an identical number of rays at all the computed points, while no convergence criterion is

imposed. Such an analysis allows to evaluate the level of convergence, i.e. the standard deviation

achieved at every node of the computational domain where the solution is desired. On the contrary, in

the second test, Test 2, two convergence criteria are imposed: relative and absolute standard deviation.470

In this case, the number of rays is not set a-priori but it spatially varies over the computational domain.

Table 1 summarizes the setup used for the tests performed on each application.

For all the computations, inlet and outlet are considered as non-reflecting (ε = 1) with a far-field

temperature of 300 K (except for Case 1, where periodic conditions are considered). The retained

method is the ERM method [20] in its MC and RQMC version.475

5. Results: three practical applications

For each configuration, results of radiative heat transfer simulations are shown. Tests with a fixed

number of rays, also referred as realizations, are first carried out before considering tests with controlled

convergence.

5.1. Tests with a fixed number of realizations480

MC and RQMC methods are compared in simulations where the number of realizations is imposed

(Test 1 in Tab. 1) in order to compare the local convergence attained in all the points of the computa-

tional grid. The accuracy of the computations is quantified as the standard deviation of the estimated

radiative power following Eqs. 11 and 14. In Fig. 17, the absolute standard deviation scaled by the

the maximum radiative power in the domain is shown for Case 1 for MC (top) and RQMC simulations485

(bottom). With the same number of realizations, the RQMC computation allows for converging all the

points of the computational domain with a significantly smaller absolute standard deviation compared

to the classical MC approach. For both methods, the resulting standard deviation field is not uniform.

In particular, the standard deviation is larger close to the cold wall. This behavior is expected with the

ERM approach whose drawback is a poorer convergence in cold regions with significant absorption.490
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The same observation can be done for Cases 2 and 3 shown in Figs. 18 and Fig. 19 in terms of the

local relative standard deviation, i.e the ratio between the standard deviation and the local value of

the radiative power. It can be seen that RQMC simulations (on the bottom) are more accurate than

MC ones (on the top) since, with RQMC, most of the points of the domain achieve a relative standard

deviation lower than the one obtained when MC is used.495

Figure 17: Field of absolute standard deviation scaled by the the maximum radiative power in the domain. The

computation is carrie out following Test 1 with MC (top) and RQMC (bottom) in the channel flow configuration (Case

1).

Additional tests are performed in order to check the convergence rate of MC and RQMC simulations

as a function of the number of realizations N for the three investigated cases (M is still fixed to 20).

For each configuration, the relative standard deviation is measured in several characteristic points of

the domain, highlighted in Figs. 14, 15 and 16 and identified by letters. In Case 1, three points, A,500

B and C, are retained: they are located in proximity of the hot wall, at the half-height and close to

the cold wall of the channel, respectively. In Case 2, two points, D and E, are chosen to represent,

respectively, a hot and rich mixture characterized by a high soot concentration and downstream burnt

gases at lower temperature where no soot is present. In Case 3, the probes, F , G and H, are located in

the flame region, in the cold outer recirculation zone (ORZ) close to the chamber bottom and further505

downstream in the ORZ at an intermediate temperature, respectively.

Figures 20, 21 and 22 display the relative standard deviation obtained by MC (circles) and RQMC

(diamonds) for each studied points in the different configurations. The convergence rates of MC (grey
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Figure 18: Field of relative standard deviation achieved in Test 1 with MC (top) and RQMC (bottom) in a sooted jet

flame application (Case 2).

Figure 19: Field of relative standard deviation achieved in Test 1 with MC (top) and RQMC (bottom) in a combustion

chamber (Case 3).
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dashed lines) and RQMC (gray dotted line) are also highlighted on the figures. In the case of RQMC

computations where no theoretical results provide the asymptotic convergence rate, the corresponding510

lines illustrate the convergence rate of the method by considering a slope computed by a linear fitting

of the RQMC standard deviation on the different probes.
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Figure 20: Relative standard deviation as a function of the number of realizations N for three characteristic points of

the channel flow configuration (Case 1): A (red), B (black) and C (blue). Circles: MC simulations. Diamonds: RQMC

simulations. Grey lines: convergence rate of MC (dashed line) and RQMC (dotted line) results.
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Figure 21: Relative standard deviation as a function of the number of realizations N for two characteristic points of the

sooting jet flame (Case 2): D (red) and E(black). Circles: MC simulations. Diamonds: RQMC simulations. Grey lines:

convergence rate of MC (dashed line) and RQMC (dotted line) results.

Figure 20 shows that the MC standard deviation (circles) is larger than the RQMC one (diamonds)

for the high and low temperature probes (A and C) for every number of rays N considered. Instead,
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Figure 22: Relative standard deviation as a function of the number of realizations N for three characteristic points of

the considered combustion chamber (Case 3): F (red), G (blue) and H (black). Circles: MC simulations. Diamonds:

RQMC simulations. Grey lines: convergence rate of MC (dashed line) and RQMC (dotted line) results.

for the probe B at intermediate temperature, the MC standard deviation is lower than the RQMC one515

for N= 1000 before becoming larger for N > 103. Looking at the gray lines in Fig. 20 given for large

values of N , RQMC simulations indeed always achieve faster convergence rates eventually than MC

ones for each investigated point. In the three dotted lines representative of RQMC convergence rates

which scale as N b, the exponent b in fact varies according to the considered physical position inside

the domain. The best fitted value for b is equal to −0.856 for the Point A, −1.017 for B and −0.902520

for C. For the three considered points, the magnitude of the exponent b of RQMC convergence law is

higher than 1/2, corresponding to the classical MC convergence.

The relative standard deviation achieved by MC and RQMC in the sooting jet flame, Case 2, as a

function of the number of realizations N is displayed in Fig. 21. For both considered points, D and E,

the RQMC standard deviation stays lower than MC one for every value of N . The exponent b of the525

RQMC convergence law is equal to −0.748 for Point D where, in addition to the gaseous contribution,

soot radiation is significant, and b = −0.804 for the point E where soot particles are absent. Once

again, the RQMC simulations converge faster than their corresponding MC computations. In Figs. 20

and 21, all MC simulations consistently reach an asymptotic convergence law proportional to N−1/2.

The proportionality factor is however different and all MC results appear as translated from each530

other in the logarithmic plots. As indicated by Eq. 8, this is the result of different intrinsic standard

deviation (estimated as σ̂) at the considered points. σ̂ depends on the specific radiative exchanges

for the given location and on the Monte-Carlo algorithm solving for radiative heat transfer. The

ERM methods is used here, which is known to converge more poorly in colder regions as confirmed

in Figs. 20 and 21. The figures reveal that, while RQMC simulations are more accurate than MC535
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ones and present slightly different slopes, the RQMC convergence laws also exhibit translation shifts

between the different points. Although the observed distance between RQMC results is different from

the one seen with MC results, the same ranking of accuracy between the different probes is kept for

both approaches. The RQMC results are then sensitive to the intrinsic standard deviation of the

integral to compute.540

Figure 22 shows the standard deviation achieved in MC and RQMC simulations of the combustion

chamber (Case 3), for the three considered points, F , G and H. Concerning the cold region of burnt

gases represented by probe G, the RQMC standard deviation is higher than MC one for N < 103,

showing again that RQMC does not always guarantee more accurate results with a reduced number of

evaluations. Nonetheless, for higher values of N , the asymptotic stronger convergence law of RQMC at545

point G eventually yields the best results. For points F and H at high and intermediate temperature

respectively, the RQMC method behaves better than MC for every N . The dotted lines, obtained by

fitting the points from N = 104 to N = 106, show that RQMC convergence rate scales as N−0.725

for Point F , as N−0.632 for G and as N−0.813 for H. Also in this configuration, the magnitude of the

RQMC exponent b remains higher than b = 1/2 for MC methods for the three investigated regions of550

the combustion chamber.

5.2. Controlled convergence tests

In Figs. 20, 21 and 22, the smallest RQMC standard deviation is obtained in points characterized

by the highest temperature, A, D and F . Instead, the largest standard deviation is found in the

Point B at intermediate temperature for Case 1 and in the colder regions of the domain, Points E555

and G, for Cases 2 and 3. Considering a uniform number of rays for each point is then not ideal

as some locations can be regarded as too accurate while the standard deviation at others points can

remain unsatisfactory and suffer from the retained number of realizations N . In practice, a variable

field N(x, y, z) is preferred to spatially control the accuracy of the result and yield a more efficient

computation of the radiative fields on the whole domain for a given computational cost. MC and560

RQMC results are then compared in such a situation described by Test 2 in Tab. 1.

Figure 23 shows the field of the number of rays that are tracked independently at each point

to perform controlled-convergence simulation using a MC (top) or RQMC (bottom) method for the

channel flow application (Case 1). In MC simulations (on the top), it is possible to notice the presence

of a region characterized by a large number of realizations that corresponds to the colder region of565

the channel. This is consistent with the previous observation in Fig. 20: convergence is more difficult

to achieve in the lower part of the channel compared to the hotter parts of the configuration. As

expected from the enhanced convergence rate of the RQMC method, simulations performed with

RQMC (bottom) needs fewer rays compared to MC in order to achieve the fixed accuracy criteria.
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Figure 23: Field of the required number of rays in controlled-convergence Test 2 with MC (top) and RQMC (bottom)

for the channel flow configuration (Case 1).

This is seen in all regions including where the convergence is harder at the bottom of the channel.570

The reduced number of tracked rays leads to a lower computational time for the simulation, which is

determined in the next section.

The same test is performed for Case 2 where, unlike Case 1, the composition is heterogeneous and the

effect of the soot particles on the radiative heat transfer is considered. MC and RQMC methods are

compared in Fig. 24. In both cases, regions needing more realizations are the ones characterized by575

the presence of cooler pockets of burnt gases without soot. It clearly emerges that RQMC outperforms

MC also in the second investigated configuration.

Case 3 represents a confined laboratory scale burner and accounts for heterogeneities of species and

temperature fields but also for the presence of participating walls. Fig. 25 compares MC and RQMC

methods: regions where a large number of rays is needed in order to achieve the convergence are the580

ones characterized by a strong gradient of temperature in the region between the burnt gases generated

by the flame (dominated by emission) and these gases later trapped in the cold outer recirculation

zone (dominated by absorption). The difficulty is associated to the small magnitude of the radiative

power surrounded by positive and negative regions, making the fulfillment of the criterion on relative

standard deviation hard. Nonetheless, the number of realizations is drastically reduced with RQMC585

in all regions.

5.3. CPU Efficiency of Monte Carlo and Randomized quasi-Monte Carlo methods

A more complete comparison can be done by evaluating the efficiency of both MC and RQMC

methods. The MC efficiency is evaluated as a function of variance and computational time [22]. In

31



Figure 24: Field of the required number of rays in controlled-convergence Test 2 with MC (top) and RQMC (bottom)

in a sooted jet flame application (Case 2).

Figure 25: Field of the required number of rays in controlled-convergence Test 2 with MC (top) and RQMC (bottom)

for a combustion chamber (Case 3).

the present analysis, the local efficiency ηi is computed from the variance associated to the point i,590

σ2
i [Q(N)] computed from Eqs. (11) for MC and (14) for RQMC, and the local computational time,

TCPUi . This last term is computed as the number of intersections that a ray traced from point i
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experiences along its optical path, nbint,i, multiplied by the cost of one intersection, TCPU/nbint,tot:

ηi =
1

σ2
i [Q(N)] TCPUi

(27)

In Fig. 26, the ratio of the local efficiencies of RQMC and MC algorithms is shown on longitudinal planes

of the three retained applications. For each configuration, almost the whole domain is characterized595

by an efficiency ratio larger than unity, meaning that the RQMC methods improve the computational

efficiency by a factor that spatially varies in the domain and that may get values higher than 3.

In Case 1 (top), characterized by high pressure and homogeneous mixture, it can be observed that

Figure 26: 2D map of the ratio between the efficiency of RQMC and the efficiency of MC methods for a channel flow

application (top), a jet flame (middle) and a confined combustion chamber (bottom).

the improvement is significant close to the cold wall of the channel, where the convergence is harder

to achieve, and on the region at intermediate temperature in the middle of the channel. In Cases 2600

and 3, the improvement is obtained almost everywhere in the computational domain.

It is straightforward to deduce that, for a fixed variance, the larger the efficiency is, the smaller the

computational time will be. The computational time needed to perform each simulation in Test 2 is

given in Tab. 2. In all the simulated cases, the use of RQMC allows to accelerate the computational

time compared to MC simulations. The computation is sped up by a factor 2.3 for the channel flow605
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Case # mesh nodes MC RQMC

1 4 172 800 1 090 s 467 s

2 964 163 653 s 363 s

3 1 241 299 3 080 s 1 238 s

Table 2: Wall clock time in seconds needed for MC (3rd column) and RQMC (4th column) simulations (Test 2) for the

retained configurations using 168 cores. The number of mesh nodes in each case is indicated in the second column

application, 1.8 for the turbulent sooting jet flame and 2.5 for the combustion chamber. Finally, let

us note that the obtained speed-up factor associated to convergence laws approximatively scaling as

P−1 is similar to the results from [29] involving surface radiative transfer.

5.4. RQMC combined with importance sampling

Previous results have shown that classical MC results can converge faster at different points de-610

pending on the corresponding intrinsic variance. Several strategies for variance reduction, such as

importance sampling, are common to accelerate the convergence of Monte Carlo simulations. The

RQMC results being sensitive to variance effects, it can also benefit from the same strategies derived

for MC computations. In fact, the pseudo-random number generator or retained low-discrepancy se-

quence are set independently of any variance reduction technique. Quasi-Monte Carlo cubature and615

variance reduction can then be combined to achieve an even more efficient computation. This is here

illustrated with the OERM method [26] which is an importance sampling technique to improve the

poor convergence of ERM in cold regions dominated by absorption.

The OERM method, shortly described in Sec. 3.2, consists in sampling the frequency according to the

emission at the highest temperature of the computational domain. Both ERM and OERM are com-620

bined to MC and RQMC formalisms and the four corresponding combinations, MC-ERM, MC-OERM,

RQMC-ERM and RQMC-OERM, are compared in the 1D test case studied in Sec. 3.4, called Case b.

The improvement of the convergence in cold regions is outlined by comparing the methods at a point

close to the wall at the temperature T = 550 K. Figure 27 displays the relative standard deviation

as a function of the number of realizations achieved by MC (circles) and RQMC (diamonds) when625

combined to ERM (blue) and OERM (red). Grey dashed lines highlight the convergence rate of MC:

it can be seen that when MC is combined to OERM the line of slope −1/2 is shifted down because of

the lower standard deviation obtained with OERM. Grey and black dotted lines instead represent the

convergence rate of RQMC when combined with ERM and OERM, respectively. It is worth noticing

the improvement accomplished by RQMC and OERM: the combination of RQMC and importance630

sampling technique shifts down the relative standard deviation obtained from RQMC-ERM, as also

seen in MC results (dashed grey line), leading to the lowest standard deviation achievable among the
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four investigated combinations. The convergence rate of RQMC can then be indeed further accelerated

when RQMC is combined to the OERM method.

Figure 27: Relative standard deviation as a function of the number of realizations N for a cold point close to the

wall in the slab configuration achieved in MC (circles) and RQMC (diamonds) combined with ERM (blue) and OERM

(red). Grey dashed line: convergence rate of MC. Grey dotted line: convergence rate of RQMC-ERM. Black dotted line:

convergence rate of RQMC-OERM.

6. Conclusion635

Nowadays, coupled simulations involving combustion and radiative heat transfer are more and more

used and targeted. Thanks to the increase in computing power and advances in numerical algorithms

and solver scalability, the use of accurate Monte Carlo methods in 3D unsteady simulations, such as

Direct Numerical Simulations and Large Eddy Simulations, has become affordable. However, such

coupled and multi-physics simulations remain very costly, and additional efforts are necessary to make640

MC methods more efficient. In this study, a technique to improve MC methods is investigated: Quasi-

Monte Carlo method, where pseudo-random sequences of MC are replaced by quasi-random sequences

also known as low-discrepancy sequences. Sobol sequences are retained in this study. Their advantage

lies in a higher convergence rate compared to MC methods, on the other hand their deterministic

feature does not make possible to get an error estimation. Thus, a randomization of QMC (RQMC)645

is needed and among the existing randomization techniques, the one retained in this study is the

I-binomial scrambling. The features of MC and RQMC methods are first shown on a 2-dimensional

integration problem, highlighting the higher convergence rate of RQMC when compared to MC. The

implementation of the RQMC method is then combined to the ERM formalism in the radiative heat

transfer solver. After being validated on 1D test cases, it is applied successively to several applications650
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of radiative heat transfer problems. Three configurations are retained, very different from each others:

an academic test case of a channel flow at 40 bar, a non-confined turbulent sooting jet flame and

a semi-industrial combustion chamber operating at atmospheric pressure. Simulations results show

a significant improvement of RQMC compared to MC method in terms of computational efficiency,

eventually leading to a reduction of the computational time of a radiative heat transfer simulation655

of all the investigated cases by a factor that varies from 1.8 to 2.5, depending on the configuration.

Convergence enhancement is due the stronger decay of the standard deviation with the number of real-

izations which overcomes the classical MC convergence law. Finally, RQMC is combined to a technique

of importance sampling: it is shown that the efficiency of RQMC method can be further improved

when it is combined with a variance reduction technique, such as the OERM method considered here660

for illustration.
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Plan État-Région.

References

[1] S. Chandrasekhar, Radiative transfer, Courier Corporation, 2013.

[2] M. F. Modest, Radiative heat transfer, Academic press, 2013.

[3] B. Adams, P. Smith, Modeling effects of soot and turbulence-radiation coupling on radiative675

transfer in turbulent gaseous combustion, Combustion Science and technology 109 (1-6) (1995)

121–140.

[4] A. Habibi, B. Merci, G. J. Heynderickx, Impact of radiation models in cfd simulations of steam

cracking furnaces, Computers & chemical engineering 31 (11) (2007) 1389–1406.

36



[5] P. Coelho, O. Teerling, D. Roekaerts, Spectral radiative effects and turbulence/radiation inter-680

action in a non-luminous turbulent jet diffusion flame, Combustion and Flame 133 (1-2) (2003)

75–91.

[6] F. R. Centeno, C. V. da Silva, F. H. França, The influence of gas radiation on the thermal

behavior of a 2d axisymmetric turbulent non-premixed methane–air flame, Energy conversion

and management 79 (2014) 405–414.685

[7] A. Y. Snegirev, Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion

flames, Combustion and Flame 136 (1-2) (2004) 51–71.
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