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Abstract

In the mechatronic devices, finite element methods (FEM) are widely used to determine the fatigue
response of solder joints subjected to thermal loading. These life cycle analyses are often deterministic.
However, experience shows that design variables present variability that affects prediction quality. This
paper describes a method for predicting the solder joints reliability in Tape based Chip Scale Packaging
(T-CSP) with consideration of uncertainties in material properties. The proposed approach, which is
based on the metamodelling techniques, combines FEM, metamodels and Monte Carlo Simulation (MCS).
Once validated, the constructed metamodel is used to perform the MCS. This probabilistic method has
sufficient efficiency and accuracy to analyze the reliability of T-CSPs.

Keywords: Chip-Scale Packages, Finite-element analysis, Kriging metamodel, Monte-Carlo Simulation,
Solder joint

1. Introduction

Using Chip Scale Packaging (CSP) technologies in electronic products is rising because of the increas-
ing demand for smaller and more portable electronic devices. Specifically, in CSP, the footprint of the
package does not exceed 120 % of the size of the silicon chip that has been inserted [36]. The main
advantage of CSPs over traditional Ball Grid Array (BGA) electronic packaging technologies is that they
save considerable space. CSP technologies can be classified into four categories: Flex or Tape where chips
are deposited on a tape or flexible material. Rigid (chips rest on a laminated or ceramic substrate), Lead
frame (chips are deposited on a frame) and Wafer Level. In this work, Tape based chip-scale package
technology (T-CSP) was studied. Under operating conditions, electronic devices are subject to wide tem-
perature variations. The thermomechanical stresses in solder joints because of the difference in material
properties, Coefficient of Thermal Expansion (CTE) mismatch between the multiple materials involved
in the construction of a typical package, may lead to damage and hence the failure of the solder joints.

Finite element methods (FEM) are used during the development phase of mechatronic products to
improve the reliability of microelectronic packaging. They can provide a detailed description of sol-
der stress/strain history and distribution under various loading conditions. Many researches about the
characterization of thermomechanical reliability have been implemented on the basis of FEM simulation
[29, 25, 31, 5, 24, 22]. In engineering applications, the analyst is interested in predicting the number of
fatigue life cycles, i.e. the number of cycles that the packaging can resist before failure [12, 13]. Con-
sequently, a combination of finite element methods with a thermal fatigue model is required. Several
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methodologies based on FEMs have been proposed to predict the solder joint life cycles. These ap-
proaches can be classified into four categories. They are based on stress or plastic deformation and creep,
or energy or damage [19]. Darveaux’s energy-based approach [5] is the most widely used one, because
of the facility of its implementation. In this approach the number of cycles to initiate a crack, and the
number of cycles for the crack to propagate across a solder joints diameter are expressed as a function
of the strain energy density accumulated per cycle during thermal cycling. The accuracy of Darveaux’s
methodology has been evaluated and validated in several electronic assembly studies. This approach has
become a technical reference for this type of complex physical analysis.

Generally, the used simulation tools, for predicting the reliability of T-CSPs, are based on deterministic
approaches, which do not take into account the variability and randomness of input parameters and
operational conditions. For example, in [36], particular attention was paid to studies of the impact of the
variation in T-CSP configurations on the reliability of solder joints, this difference in configurations is due
to both tape vendors and package assembly on the devices reliability. However, this type of study does
not take into account the natural variability of the material parameters and the manufacturing process.
Therefore, it is necessary to perform an uncertainty analysis, which estimates reliability from uncertain
inputs [17]. In this paper, the material properties are considered as random variables and their influence
on the reliability of the entire package is analyzed.

Probabilistic, non-probabilistic, and analytical methods are the three main categories of methods for
uncertainty analysis [14]. Monte Carlo simulation (MCS) method classified in the probabilistic methods
is the most used one. Typically, MCS relies on repeated random sampling of the input variables to obtain
multiple outputs results. In the MCS method, thousands even millions of deterministic simulations are
performed based on a large number of samples in order to obtain precise results.

The complex nonlinear finite element analysis of T-CSP take more time to determine the time-
dependent solder joint fatigue response, consequently, using MCS to analysis the uncertainty in the
reliability prediction of CSP, will be computationally expensive. In order to efficiently overcame the com-
putational cost, metamodel based probabilistic method is proposed an applied to evaluate the reliability
of CSP while taking into account the variability of material parameters. The proposed method combines
metamodel[11, 7], MCS and FEM simulation. More precisely, three-dimensional finite element analysis
has been applied to determine the time-dependent solder joint fatigue response of a T-CSP under loading
conditions, then the appropriate metamodel is built based on the inputs parameters and theirs responses
from deterministic FEM simulations. Subsequently, the constructed metamodel is used to perform the
MCS.

2. Description of the studied Tape based chip scale package

The device analyzed is a 13x13mm CSP. This device is composed of 225-ball (15x15 full ball matrix),
with 0.80mm pitch and a die size which was measured at 8.24x9.12mm. The used Tape technology allows
the connection of a chip with bumps on a flexible circuit (Figures 2). This technique is used mainly in
the LCD display industry to assemble drivers or for optical applications such as stepper motor sensors.

In [35] the adopted T-CSP shown in figure 1.a was analyzed by the finite element method, the
author was study the impact of Eight differing ball via configurations on solder joint reliability, these
configurations are due to the variations in both tape vendors and package assembly. All the studied
packages consisted of a 1-metal layer tape substrate and incorporated a 0.380mm substrate solder pad
diameter with a solder ball via hole opening diameter of 0.280mm at the tape metal layer pad. The stackup
layer thickness information for the Printed Circuit Board (PCB) is provided in figure1.b. The present
study aims to analyse the first configuration [35], by considering the uncertainties resulting from material
properties and the thermal expansion mismatch of the different materials in the T-CSP configurations.
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(a) (b)

Figure 1: Package outline drawing (a) and Layer dimensions of pcb (b)
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Figure 2: Principle of Tape automated bonding

2.1. Material Properties

In the thermomechanical analysis of the studied T-CSP, several material properties were incorpo-
rated which varies from plastic and elastic, linear and non-linear, dependent or independent of material
properties on time and temperature. For solder joint materials, the development of plastic strains is
dependent on the rate of loading. Many authors have studied the response of solder joints and proposed
constitutive equations. Anand’s constitutive model [1] which incorporates viscoplasticity, is one of the
developed equations.

Anand model expresses the material viscoplastic behavior that unifies creep and plasticity. However,
Anand’s model does not take into account the rate independent plasticity phenomenon. In this way,
Darveaux [4] has modified the constants in Anand’s constitutive model to take into consideration both
time independent and time-dependent phenomena. Table 5 shows the modified Anand constants that
were activated for the solder ball material of the studied CSP.
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Component Elastic Modulus Shear Modulus CTE Poisson’s Ratio
(Material) (MPa) (MPa) (1/K) (No Units)
Ball 75842− 152T − 24.5× 10−6 0.35
(63Sn37Pb)
Chip 162716 − −5.88 × 10−6 +

6.26× 10−8T
0.28

(Silicon) −1.6 × 10−10T2 +
1.5× 10−13T3

Conductor 128932 − 13.8×10−6+9.44×
10−9T

0.34

(Copper)
PCB Core 27924− 37T(XY) 12600− 16.7T(XY) 16.0× 10−6(XY) 0.39(XZ&YZ)
(FR4) 12204− 16T(Z) 5500 −

7.3T(YZ&XZ)
84.0× 10−6(XY) 0.11(XY)

PCB Mask 4137 − 30.0× 10−6 0.40
(Dry Film)
T=Material Property Temperature in Kelvin

Table 1: Model Material Properties

T=Tape (Kapton-E)
Temp
(K)

Elastic Moduli
(MPa)

CTE
(1/K)

Poisson’s Ratio
(No Units)

233 6624
(XY) 1.20× 10−5

(Z) 3.00× 10−5

0.32
298 5520 0.34
423 1252 0.33
448 313 0.32

Table 2: Tape Material Properties

Die Attach (84-3MVB)
Temp Elastic Moduli CTE Poisson’s Ratio
(K) (MPa) (1/K) (No Units)
233 12184 4.40× 10−5 0.35

298 6769 4.50× 10−5 0.35

353 7.90× 10−5

363 8.90× 10−5

368 9.90× 10−5

373 1.33× 10−4

383 1.34× 10−4

473 207 3.00× 10−5 0.35

Table 3: Die Attach Material Properties.
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Mold Compound (EME7730)
Temp Elastic Moduli CTE Poisson’s Ratio
(K) (MPa) (1/K) (No Units)
233 28224 9.00× 10−6 0.25

298 23520 0.25

403 1.00× 10−5

418 1.70× 10−5

423 2.20× 10−5

428 2.70× 10−4

443 3.40× 10−4

473 3.50× 10−5 0.35
513 1764 0.35

Table 4: Mold Compound Material Properties.

Parameters Value Description
A (S−1) 4106 Pre-exponential factor
Q/R (K) 9400 Q = activation energy,R = university energy
ξ (dimensionless) 1.5 Multiplier of stress
m (dimensionless) 0.303 Strain rate sensitivity of stress
ŝ (dimensionless) 73.81 Coefficient for deformation resistance saturation value
n (dimensionless) 0.07 Strain rate sensitivity of saturation value
h0 (MPa) 1378.95 Hardening constant
a (dimensionless) 1.3 Strain rate sensitivity of hardening of softening
s0 (MPa) 12.41 Initial value of deformation resistance

Table 5: Darveaux Modified Anand Constants [4]

3. Proposed reliability method based Metamodel

In the reliability assessment, uncertainty analysis is performed with probabilistic methods such as
Monte Carlo simulation. MCS consist in generating the input range from a distribution of input variables
using one of the sampling methods, then the sampling results are used to calculate the responses (outputs)
of the finite element model. However, to obtain more accurate results, MCS requires a large number of
inputs samples. In the thermomechanical simulation, the non-linear transient finite element analysis such
as reliability analysis of , encompass a complex physics, which makes the simulation computationally
expensive. Consequently, the classic MCS becomes impractical. For this reason, the metamodel based
probabilistic method is proposed to overcome the deficiency of computational cost. In this proposed
method, the thermomechanical simulation is approximated by a metamodel.

The most common way to define a metamodel is to consider it as a model of the model. Meta-
models can be found under other names such as emulator, approximator, surrogate model, simpli-
fied model or response surface. The metamodeling process consists in constructing an approxima-
tion function ŷ(x) that adequately represents the relationship between the given input data points
S =

[
x(1),x(2), . . . ,x(n)

]T
, and their corresponding output values computed using the complex model

(FE model)ys =
[
y
(
x(1)

)
, y
(
x(2)

)
, . . . , y

(
x(n)

)]T
. The set of input data points is generated by the de-

sign of experiments (DOE) strategy. The main objective is to be able to explore a complex model more
easily and to be able to evaluate and simplify it much more quickly. several metamodeling approaches
have been used in recent research, such as support vector regression, radial basis functions, polynomial
regression, and Kriging metamodel. Polynomial regression (PR), which uses a polynomial to approximate
the function, is the most easily used kind of metamodel. The quadratic response surface is the popular
form of polynomial regression model. however, using lower order polynomials, it is not easy to approxi-
mate a non-linear function globally with a high accuracy. Recently, high-order polynomials [20] such as
the Bernstein polynomials, Chebyshev polynomials[33] and Gegenbauer functions have been attempted
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to be used for metamodelling [34]. support vector machines (SVMs) and support vector regression (SVR)
are a powerful technique in machine learning. Radial basis functions (RBFs) represent metamodels as
linear combinations of a particular type of basis function [18]. Kriging metamodel can be seen as the
realisation of a gaussian process and is one of the most used and powerful metamodels. From the various
kinds of metamodel, we need to choose the appropriate one for FE model approximation. In many works,
the Kriging metamodel is proved as a powerful tool to approximate nonlinear computer code[16]. The
Kriging metamodel is chosen in the proposed probabilistic approach.

3.1. Kriging metamodel

Kriging is a geostatistical technique to interpolate deterministic noise-free data. The theory of kriging
has been formalised by the mathematician Matheron [23], Subsequently, Kriging has become a standard
method for constructing metamodels for computer experiments [27]. It is then used to predict the value
of an expensive fitness function (FE model). This method is also known as Gaussian process regression.
Let y(x) be defined as a function of x, with x ∈ Rd and y is a vector of n observed values of y(x) on
D = {x1, . . . , xn}, a design of experiment(DOE) with dimension n ∗ d. Kriging assumes that the function
y(x) is a realisation of a Gaussian process denoted by Y(x), which is given as :

Y(x) = h(x) + Z(x) (1)

where h(x) is the mean of the process, and Z(x) is a Gaussian process with zero mean and covariance
expressed by:

Cov(Z(x(i)),Z(x(j))) = σ2R(x(i), x(j)) for i, j = 1, ..,N (2)

with σ2 is the variance of Gaussian process and R(x(i), x(j)) its correlation function between any two
samples x(j) and x(j).

The choice of the correlation function is an important element of kriging. Many covariance functions
are proposed in the literature [26], such as matter, Gaussian, exponential or spherical correlation func-
tions. The Gaussian correlation function is the most commonly used; this last allows control of both the
range of influence and the smoothness of the approximation model:

R(x(i), x(j)) = exp

[
d∑

k=1

−θk
∣∣∣x(i)

k − x
(j)
k

∣∣∣2] (3)

where d is the dimension of design space, θk(k = 1, 2, ...,d) are unknown parameters of the correlation
function, x

(i)
k and x

(j)
k respectively are the kth component of the sampling point xi and xj.

for any new point x, The mean and variance of prediction [27] can be respectively calculated by:

ŷ(x) = hT(x)β + rT(x)R−1(y −Hβ) (4)

s2(x) = σ2

[
rT(x)Rr(x) +

1− IT(x)R−1r(x)

1− IT(x)R−1I

]
(5)

where ŷ(x) and s2(x) are respectively the estimated mean value and variance of ŷ(x), hT = [hi], i = 1, . . . , k
a set of basis functions (e.g. polynomial functions), β = (β1, ..., βk) the associated regression coefficients,
R is the correlation matrix of D, and H the matrix corresponding to the values of hT(D), and r(x) =
[R(x, x1), . . . ,R(x, xk)]T is the vector of correlation functions between the untried point x and the k
samples x(1), ..., x(k).

The unknown model parameters can be determined using likelihood estimates (MLEs) method [30]
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3.2. Proposed metamodel based probabilistic method

The proposed method aims to combine the metamodeling techniques with Monte Carlo simulation to
perform uncertainty analysis with high efficiency. The proposed method use the design of experiment to
generate the sampling inputs, and the deterministic finite element analysis is executed for each of sampling
inputs, then the metamodel is used to represent the relationship between the sampling input and the
calculated outputs. Finally, the MCS is realized based on the construct metamodel. The procedure of
the proposed method can be summarized in four steps:

1. Generate the sampling inputs based on the one of design of experiment method ;
2. Obtain the response values through FEM simulation by using the sampled inputs ;
3. Chose, Construct ans validate the metamodel ;
4. Use the construct metamodel to perform Monte Carlo simulation.

For the implementation of the metamodel based probabilistic method, the interconnection between R
programing [32] and ANSYS [2] is performed in order to combine the MCS, metamodel and finite element
analysis. Figure 3 shows the flowchart of the method implementation.

Sampling

Ansys input 

file

Finite element 

Simulation in Ansys

Monte Carlo 

Simulation

Design of 

Experiments

Uncertain 

Parameters

Metamodeling

Construction & validation

R Script

Simulation 

Results

Probabilistic 

Reliability Response 

Metamodel

Figure 3: Flow chart of the proposed reliability method.

4. Deterministic FEM simulation of T-CSP

4.1. Solder Balls finite element model

The main objective of the deterministic study is to predict solder joint reliability of T-CSP using finite
element simulation methods. For the purpose of avoiding tedious computation due to the complexity of
physics which includes this kind of non-linear finite element analysis, only the diagonal slice of the
studied package was developed [35]. The use of the diagonal slice, shown by the bold print dashed line
in figure 1, ensures the simulation of the worst-case situation in which the solder ball is located at the
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furthest distance from the center neutral point of the package. The figure 4 shows the perspective view
of the meshed 3D diagonal slice model developed by ANSYS Finite Element Analysis software [2]. The
structured (mapped) finite element mesh is adopted. The configuration detail is provided in table 6.

As shown in Figure 1.a, the studied slice model contains a full set of solder joints and all major
components, crossing the entire thickness of the package assembly. For the boundary constraints, the
plane of the slice model is neither a true symmetry plane nor a free surface i.e. the surface of the slice plane
must remain planar and free to move in the y direction. For this reason, coupling the y-displacements of
the nodes on the slice plane was chosen. Figure 4 shows the boundary constraint applied to the numerical
model. For the present analysis, the width of the slice model was set at one-half the solder ball pitch and
the length PCB (x-dimension) was set at 1.5 that of the modeled package slice x-dimension. The ball
pitch of the diagonal slice model is the hypotenuse (1.1314mm) of the true ball pitch (0.80mm).

Mold Cap Die Die Attach Metal Layer Adhesive
Layer

Tape Sub-
strate

Via Type

0.7mm
EME7730

0.3048mm
Silicon

0.0445mm
84-3MVB

0.025mm
Copper

N/A 0.050mm
Kapton-E

Generic
Etched

Via Plug Via Hole Top
Dia.

Via Hole
Bottom Dia.

Substrate
Joint Dia.

PCB Joint
Dia

Solder Ball
Stdoff. Ht.

Solder Ball
Ctr. Dia.

N/A 0.2800mm 0.4206mm 0.2800mm 0.2800mm 0.2860mm 0.4640mm

Table 6: Tape Based Chip-Scale Package configuration Details [36].

𝑈𝑥 = 0 on all −X
Slice plane surface

𝑈𝑧 = 0 on one node only

𝑈𝑌 coupled on all −Y

𝑈𝑋 coupled on test PCB 

+X vertical surface

𝑈𝑧 = 0 on one node only

Figure 4: Boundary constraints applied to a typical slice model.

Figure 5: Modeled ball for Chip-Scale package.
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4.2. Fatigue Life Prediction Model

Solder balls fatigue life prediction requires combining finite-element simulations with a thermal fatigue
methodology. The fatigue methodology is generally obtained by using experimental data and accelerated
testing. This methodology is used to determine the number of cycles that a CSP can resist before failure.
among the proposed methods, Darveaux [4] was able to establish two equations along with four crack
growth correlation constants (K1 through K4), where the finite element simulation results can be used to
calculate the crack propagation rate per thermal cycle as well as the number of cycles to crack initiation.

For the methodology application, the singularity issues due to size of the finite element mesh affects
the simulation results. However, the analyst must take care to the sensitivity of the finite element
simulation. At first, the element thickness at the interface between the balls solder and copper pad
must be well controlled. Second, this controlled element thickness technic must be used to determine
the element volumetric averaging of the stabilized change in plastic work by which the simulation will be
performed. In this respect, Darveaux [4] provided equation constants for varying element thicknesses in
the interface. For the present study, the element thickness used was 0.0254 mm (1mil), which is the same
value utilized by Zahn [36] in his configurations studies. This thickness is chosen for the first two layers
of solder ball material elements at the both interface of solder ball (see figure 5). In the finite element
model, Darveaux’s methodology requires also that the tape and solder ball material elements not be
joined. It is the result of non-adhesion between solder ball and tape materials. Consequently, Darveaux
recommends a 0.0127mm (0.5mil) gap between the solder ball and tape material in the finite element
model (figure 5). Table 7 present the K1 through K4 crack growth correlation constants for a 0.0254mm
(1mil) solder joint element thickness. The equations below (6) and (7) allows to calculate respectively
the crack propagation rate per thermal cycle ”da/dN” and thermal cycles to crack initiation ”No”.

N0 = K1(∆Wave)
K2 (6)

da

dN
= K3(∆Wave)

K4 (7)

where "∆Wave" is the element volumetric average of the stabilised change in plastic work within the
controlled eutectic solder element thickness. The characteristic solder joint fatigue life "α" (number of
cycles to 63.2% population failure) is expressed as the sum of N0 and the number of cycles for crack
propagation across the entire solder joint diameter "a" as shown in equation 8.

α = N0 +
a

da/dN
(8)

Constant Value
K1 22400cycles/psi

K2 -1.52
K3 5.86× 10−7in/cycle/psi

K4 0.98

Table 7: Darveaux K1 through K4 Crack Growth Correlation Constants [4].

4.3. Numerical results and discussion

The ANSYS finite element software led by Anand’s viscoplastic constitutive law is used for modeling
the slice model of T-CSP displayed in figure 4, the boundary conditions have applied, and the finite
element analysis was performed in order to predict the reliability performance of the configuration for
T-CSP. The finite element simulation provide the viscoplastic strain energy at printed circuit board
solder joints and the package substrate. This viscoplastic strain energy is used to calculate solder balls
characteristic life through Darveaux’s crack growth rate model.
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Once the modeling and the Ansys solution setup was completed, Accelerated thermal cycling (see
figure 6), recommended by JEDEC standards [28], are applied as a thermal load in finite element analysis.
The temperature profile varies between −40°C and 125°C. Figure 6 shows the thermal cycle loading where
the high temperature of the thermal cycle is set as the ANSYS zero strain reference temperature [36].
Two thermal cycles are applied as a loading conditions in the finite element analysis.

Table 8 presents the detailed simulation results of the studied T-CSP configuration. The table shows
the position of the failed solder joint in the diagonal section of the submodel (from the centre, including
the central solder joint), the variation in viscoplastic deformation energy density when applying the two
thermal cycles (i.e. Delta Plastic Work/Cycle), the crack initiation and propagation cycles calculated by
equations (6) and (7), and the characteristic life of the solder joint (equation (8)). The results show that
the solder joint on the Ball/Substrate Solder Joint broke first with a typical fatigue life of 317 cycles, and
that of the solder joints on the PCB is 813 cycles. The failure Ball/Substrate Solder Joint occurred at
the Solder Joint number 7, while the failure of the solder joints on the PCB occurred at the solder joints
number 8 located at the end of the CSP sub-model (see figure 7).

Low ramp

High ramp High ramp

Low dwell

High dwellReference Temperature

One cycle

Temperature
(°C)

Time
(min)

125

25

-40

0

High dwell

30 min

30 min

15 °C/min

15 °C/min

Low dwell

Figure 6: Thermal cycle loading.
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Figure 7: Plastic strain distribution in the solder joints at last loading thermal cycle.

Data Description Results
Ball/Substrate Solder Joint Ball/Test Board Solder Joint

Failure Joint (From Center) 7 8
Delta Plastic Work/Cycle (MPa) 0.4987 0.2034
Delta Plastic Work/Cycle (psi) 72.33 29.51
Crack Initiation (cycles) 33 131
Crack Growth Rate (mm/cycle) 0.9883× 10−03 0.4104× 10−03

Solder Joint Diameter (mm) 0.2800 0.2800
Crack Propagation (cycles) 283 682
Characteristic Life (cycles) 317 813

Model Size Info.
Total Model Nodes 7035
Total Model Elements 317

Table 8: Simulation Results of Chip-Scale Package.

5. Reliability analysis of chip scale packaging

In the T-CSP, the variation of tape vendors and package assembly has an interesting impact on solder
joint reliability [36]. However, material parameters composing each configuration show variations due to
their uncertain nature [21]. The originality of this paper is to take the material parameters as uncertain
variables. These variables are assumed to be subject to the normal probability law. Table 1 shows the
random variables of material properties considered in the present study.
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Description Valeur
Moyenne

Coefficient de
variation Distribution

Solder ball Elastic Modulus Table 1.2 0.02 Normal
Solder ball CTE Table 1.2 0.02 Normal
Solder ball Poisson’s Ratio Table 1.2 0.02 Normal
PCB Core (FR4) Elastic Modulus Table 1.2 0.02 Normal
PCB Core (FR4) CTE Table 1.2 0.02 Normal
PCB Core (FR4) Poisson’s Ratio Table 1.2 0.02 Normal
PCB Mask Elastic Modulus Table 1.2 0.02 Normal
PCB Mask CTE Table 1.2 0.02 Normal
PCB Mask Poisson’s Ratio Table 1.2 0.02 Normal
Tape (Kapton-E) Elastic Modulus Table 1.3 0.02 Normal
Tape (Kapton-E) CTE Table 1.3 0.02 Normal
Tape (Kapton-E) Poisson’s Ratio Table 1.3 0.02 Normal
Conductor (Copper) Elastic Modulus Table 1.3 0.02 Normal
Conductor (Copper) CTE Table 1.3 0.02 Normal
Conductor (Copper) Poisson’s Ratio Table 1.3 0.02 Normal

Table 9: The probability parameters of the random variables.

5.1. Design of experiments and Metamodels construction

To construct a metamodel, we need a matrix X which constitutes the design of experiment (DOE)
and the corresponding output vector Y. The latter will be computed by passing X through the finite
element model. Therefore, it is necessary that the n observations are well distributed over the set of
explanatory variables to construct a good metamodel. The purpose of the DOE is to maximize the
amount of information obtained from a limited database [10]. In the literature, several methods of DOE
are proposed, such as space-flling DOE methods including pseudo-random sampling, orthogonal array
sampling, Latin hypercube sampling and quasi-random low-discrepancy sequences [6].

Latin hypercube sampling (LHS) is one of the most widely used methods in DOE [3]. Particularly,
an example of a square grid containing possible sampling points is a Latin square if there is only one
sample in each row and column. The LHS method is a generalisation of this concept for an arbitrary n
dimension.

In practice, to create an LHS sampling of a function of k variables, the range of each variable is
divided into n equally probable intervals, then the n sampling points are drawn so that a Latin hypercube
is created.

During the exploration stage, it is important to ensure that the created experimental design adequately
covers the experimental domain in order to get the most information from the domain using a limited
number of points. Therefore, practitioners use certain criteria to study the distance between points to
assess the extent to which the distribution is close to a uniform distribution. Among the criteria that
can be used to characterize the distribution of points in the experimental domain, two categories can be
identified, criteria that are calculated using the distance between pairs of points and discrepancy measures
that aim to quantify how the distribution of points differs from a perfectly uniform distribution. mindist
is a distance measurement that returns the minimum distance between two points of the experimental
design. A small mindist value means that there is a pair of points that are close, while a large value
means that the points are well distributed in the experimental domain. The maximization of mindist
is called the maximin criterion [8]. This criterion is commonly used to optimize the design of Latin
hypercubes to ensure better filling properties of the space. In this work, the maximinLHS [8] function
is chosen as the method of DOE.

In the created DOE, the number of samples must be correctly defined. Indeed, to determine the
correct number of samples, many kriging metamodels are constructed based on different numbers of
samples (from 60 to 180) and each metamodel constructed is validated by cross-validation and metamodel
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testing methods.

5.2. Metamodels validation

Before the operation stage, the constructed metamodel needs to be validated. The type of constructed
metamodel, its quality, and the quantity of data are tree issues that affect the accuracy of metamodel.
There are several methods to assess the accuracy of the built metamodel, which known as metamodel
validation. The most used methods for assessing metamodel accuracy and comparing it with others, are
model testing and Cross Validation (CV).

5.2.1. Metamodel testing

To evaluate the performance of metamodel, the simple way is to examine its residual errors[11]. Model
testing methods is applied at a set of observations that are not used in the metamodel construction, it
aims to measure the difference between the observed values y and the values predicted by the built
metamodel ŷ. The residual error is smaller, the smaller the fitting error is. The root mean squared error
(RMSE), which is a global error measure, is the most popular method:

RMSE =

√√√√1

n

n∑
i=1

(
y(i) − y(i)

)2 (9)

Moreover, the coefficient of determination R2 is another commonly used error method; it provides a
measure of how well observed outcomes are replicated by the model. Otherwise, lets y(i), the experimental
response, ŷ(i) the predicted response and ȳ represent the mean of the response. The coefficient R2 is
expressed as:

R2 = 1−

n∑
i=1

(
y(i) − ŷ(i)

)2
n∑

i=1

(
y(i) − ȳ(i)

)2 =

n∑
i=1

(
ŷ(i) − ȳ(i)

)2
n∑

i=1

(
y(i) − ȳ(i)

)2 (10)

Where 0 ≤ R2 ≤ 1. The built metamodel is more accurate when R2 is closer to 1.

5.2.2. Cross-validation

Cross-validation (CV) is a method to evaluate the quality of a metamodel and/or to compare it with
others. The concept is to use the same sample for the construction and validation of the metamodel.
Cross-validation consists in randomly dividing the set of samples generated by the DOE into equal subsets,
to exclude one of these subsets each iteration and construct the metamodel based on the remaining subsets.
The resulting errors of each iteration between the constructed metamodel, and the excluded sub-set are
computed and summed [9]. This sum is defined as the cross-validation error, called p-fold error, for the
metamodel. The "leave-k-out" approach is a cross-validation variant in which all possible subsets of size
k are discarded, and the metamodel is constructed on the basis of the remaining set, and in each case the
error is evaluated at the discarded subsets. Particularly, in the case where k = 1, the cross-validation is
called "Leave-one-out" [15], and the cross-validation prediction of the root mean squared error (RMSE)
error and the maximum absolute error (MAECV) are separately defined by:

RMSECV =

√√√√1

n

n∑
i=1

(
y(i) − y

(i)
−i

)2
(11)

MAECV =
1

n

n∑
i=1

∣∣∣y(i) − y
(i)
−i

∣∣∣ (12)
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Where y(i) is the exact response of the FE model at x(i) and y
(i)
−i is the prediction at x(i) of the

constructed metamodel based on all the points of the sample except
(
x(i), y(i)

)
.

5.2.3. Validation results

The results of metamodels validation are plotted in Figure 8. It can be seen that the initial sample
size could be set as 180 since the Kriging metamodel performance would not significantly improve when
the sample size is larger than 160. The metamodel validation for a Kriging metamodels built based on
180 samples are RMSECV = 3.3, MAECV = 2.42 and R2 = 0.9 for Ball/Substrate Solder Joint, and
RMSECV = 1.79, MAECV = 1.30 and R2 = 0.89 for Ball/Test Board Solder Joint. This also indicates
that the built metamodel according to 180 samples is sufficiently accurate.

5.3. Monte Carlo Simulation based Metamodel

The last step of the probabilistic method, after metamodel construction and validation, is the Monte
Carlo simulation (MCS). The MCS application consists of generating a sampling of random variables
with the R software and computing the response with the built kriging metamodel.

The MCS results for the Ball/Substrate Solder Joint and the Ball/PCB Solder Joint are shown in
Figures 9 and 10 respectively. The results are composed of four graphs of the adjustment quality provided
by the functions denscomp, qqcomp, cdfcomp and ppcomp of the "fitdistrplus" package of the R :

• a density plot representing the density function of the fitted distribution along with the histogram
of the empirical distribution,

• a CDF plot of both the empirical distribution and the fitted distribution,

• a Q-Q plot representing the empirical quantiles (y-axis) against the theoretical quantiles (x-axis)

• a P-P plot representing the empirical distribution function evaluated at each data point (y-axis)
against the fitted distribution function (x-axis).

The results show that MCS based on the kriging metamodel is more practical and efficient than a
conventional MCS simulation method based on the finite element model. The computation time required
for a deterministic simulation with the T-CSP finite element model is about 4 minutes (240s). To perform
an MCS with 106 samples from the finite element model, the calculation time is about 4×106 minutes. If
the MCS is based on the kriging metamodel, the computation time is significantly reduced, which makes
the probabilistic method affordable.

14



0.6

0.7

0.8

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 R
2  B

al
l/S

ub
st

ra
te

 S
ol

de
r 

Jo
in

t

0.6

0.7

0.8

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 R
2  B

al
l/T

es
t B

oa
rd

 S
ol

de
r 

Jo
in

t

3.5

4.0

4.5

5.0

5.5

6.0

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 M
S

E
C

V
 B

al
l/S

ub
st

ra
te

 S
ol

de
r 

Jo
in

t

2.0

2.5

3.0

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 M
S

E
C

V
 B

al
l/T

es
t B

oa
rd

 S
ol

de
r 

Jo
in

t

2.5

3.0

3.5

4.0

4.5

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 M
A

E
C

V
 B

al
l/S

ub
st

ra
te

 S
ol

de
r 

Jo
in

t

1.5

2.0

60 80 100 120 140 160 180
Number of samples for Training the Metamodel

 M
A

E
C

V
 B

al
l/T

es
t B

oa
rd

 S
ol

de
r 

Jo
in

t

Figure 8: Kriging metamodels validation for reliability prediction of T-CSP.
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Figure 9: Four Goodness-of-fit plots for various distributions fitted to continuous data (Weibull, gamma and lognormal
distributions) in Ball/Test Board Solder Joint
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Figure 10: Four Goodness-of-fit plots for various distributions fitted to continuous data (Weibull, gamma and lognormal
distributions) in Ball/Substrate Solder Joint

17



6. Conclusion

This paper focused on the application of metamodel based probabilistic method in the reliability
assessment of T-CSP. The finite element analysis is performed to predict the reliability performance of
CSP through accelerated temperature cycling solder joint characteristic fatigue life. Darveaux’s crack
growth rate model was applied to calculate solder joint characteristic life using simulated viscoplastic
strain energy density results at the package substrate and printed circuit board solder joints. To avoid
tedious calculation, kriging metamodel is used carefully to approximate the relationship between the
response and input variables. Then, metamodel based probabilistic method, which combine the MCS
and the constructed metamodel, was presented and applied to take into account the uncertainties in the
reliability analysis of T-CSP.
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