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Introduction

Ealier work

In this work, we are interested in the following complex-valued semilinear heat equation

∂ t u = ∆u + F (u), t ∈ [0, T ), u(0) = u 0 ∈ L ∞ (R n ), (1.1) 
where F (u) = u p and u(t) : R n → C, L ∞ := L ∞ (R n , C), p > 1.

Typically, when p = 2, model (1.1) becomes the following

∂ t u = ∆u + u 2 , t ∈ [0, T ), u(0) = u 0 ∈ L ∞ . (1.2)
This model is connected to the viscous Constantin-Lax-Majda equation with a viscosity term, which is a one dimensional model for the vorticity equation in fluids. For more details, the readers are addressed to the following works: Constantin, Lax, Majda [START_REF] Constantin | A simple one-dimensional model for the three-dimensional vorticity equation[END_REF], Guo, Ninomiya and Yanagida in [START_REF] Guo | Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity[END_REF], Okamoto, Sakajo and Wunsch [START_REF] Okamoto | On a generalization of the Constantin-Lax-Majda equation[END_REF], Sakajo in [START_REF] Sakajo | Blow-up solutions of the Constantin-Lax-Majda equation with a generalized viscosity term[END_REF] and [START_REF] Sakajo | On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term[END_REF], Schochet [START_REF] Schochet | Explicit solutions of the viscous model vorticity equation[END_REF]. The local Cauchy problem for model (1.1) can be solved in L ∞ (R n , C) when p is integer, thanks to a fixed-point argument. However, if p is not an integer number, then, the local Cauchy problem has not been solved yet, up to our knowledge. In my point of view, this probably comes from the discontinuity of F (u) on {u ∈ R * -} and this challenge is also one of the main difficulties of the paper. As a matter of fact, we solve the Cauchy problem in Appendix A for data u 0 ∈ L ∞ , with Re(u 0 ) ≥ λ, for some λ > 0. Accordingly, a maximal solution may be global in time or may exist only for t ∈ [0, T ), for some T > 0. In that case, we have to options:

(i) Either u(t) L ∞ (R n ) → +∞ as t → T .

(ii) Or min x∈R n Re(u(x, t)) → 0 as t → T . In this paper, we are interested in the case (i), which is referred to as finite-time blow-up in the sequel. A blowup solution u is called Type I if lim sup t→T (T -t)

1 p-1 u(., t) L ∞ < +∞.
Otherwise, the solution u is called Type II.

In addtion to that, T is called the bolwup time of u and a point a ∈ R n is called a blowup point if and only if there exists a sequence {(a j , t j )} → (a, T ) as j → +∞ such that |u 1 (a j , t j )| + |u 2 (a j , t j )| → +∞ as j → +∞.

In our work, we are interested in constructing a blowup solution of (1.1) which is Type I. Let us quickly mention some typical works for this situation (for more details, see the introduction in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF], treated the integer case).

(i) For the real case: Bricmont and Kupiainen [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] constructed a real positive solution to the following equation

∂ t u = ∆u + |u| p-1 u, p > 1, (1.3) 
which blows up in finite time T , only at the origin and they have derived the profile of the solution such that (T -t)

1 p-1 u(., t) -f 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ C 1 + | ln(T -t)| ,
where the profile f 0 is defined as follows

f 0 (x) = p -1 + (p -1) 2 |x| 2 4p -1 p-1
.

(1.4)

In addition to that, in [START_REF] Herrero | Blow-up profiles in one-dimensional, semilinear parabolic problems[END_REF], Herrero and Velázquez derived the same result with a different method. Particularly, in [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF], Merle and Zaag gave a proof which is simpler than the one in [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] and proposed the following two-step method (see also the note [START_REF] Merle | Stabilité du profil à l'explosion pour les équations du type ut = ∆u + |u| p-1 u[END_REF]):

-Reduction of the infinite dimensional problem to a finite dimensional one.

-Solution of the finite dimensional problem thanks to a topological argument based on Index theory. Moreover, they also proved the stability of the blowup profile for (1.3). In addition to that, we would like to mention that this method has been successful in various situations such as the work of Ebde and Zaag [START_REF] Ebde | Construction and stability of a blow up solution for a nonlinear heat equation with a gradient term[END_REF], Tayachi and Zaag [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF], and also the works of Ghoul, Nguyen and Zaag in [START_REF] Ghoul | Construction and stability of blowup solutions for a non-variational semilinear parabolic system[END_REF], [START_REF] Ghoul | Construction of blowup solutions for an exponential reaction-diffusion equation involving a critical power nonlinear gradient term[END_REF] (with a gradient term) and [START_REF] Ghoul | Refined regularity of the blow-up set linked to refined asymptotic behavior for the semilinear heat equation[END_REF]. We would like to mention also the work of Nguyen and Zaag in [START_REF] Nguyen | Finite degrees of freedom for the refined blow-up profile for a semilinear heat equation[END_REF], who considered the following quasi-critical double source equation

∂ t u = ∆u + |u| p-1 u + µ|u| p-1 u ln a (2 + u 2 ) ,
and also the work of Duong, Nguyen and Zaag in [START_REF] Duong | Construction of a stable blowup solution with a prescribed behavior for a non-scaling invariant semilinear heat equation[END_REF], who considered the following non scale invariant equation ∂ t u = ∆u + |u| p-1 u ln α (2 + u 2 ).

(ii) For the complex case: The blowup problem for the complex-valued parabolic equations has been studied intensively by many authors, in particular for the Complex Ginzburg Landau (CGL) equation

∂ t u = (1 + iβ)∆u + (1 + iδ)|u| p-1 u + γu.
(1.5) This is the case of an ealier work of Zaag in [START_REF] Zaag | Blow-up results for vector-valued nonlinear heat equations with no gradient structure[END_REF] for equation (1.5) when β = 0 and δ small enough. Later, Masmoudi and Zaag in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF] generalized the result of [START_REF] Zaag | Blow-up results for vector-valued nonlinear heat equations with no gradient structure[END_REF] and constructed a blowup solution for (1.5) with a super critical condition p -δ 2 -βδ -βδp > 0. Recently, Nouaili and Zaag in [START_REF] Nouaili | Construction of a blow-up solution for the complex ginzburg-landau equation in some critical case[END_REF] has constructed a blowup solution for (1.5), for a critical case where β = 0 and p = δ 2 ).

In addtiion to that, there are many works for equation (1.1) or (1.2), such as the work of Nouaili and Zaag in [START_REF] Nouaili | Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation[END_REF] for equation (1.2), who constructed a complex solution u = u 1 + iu 2 , which blows up in finite time T only at the origin. Note that the real and the imaginary parts blow up simultaneously. Note also that [START_REF] Nouaili | Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation[END_REF] leaves unanswered the question of the derivation of the profile of the imaginary part, and this is precisely our aim in this paper, not only for equation (1.2), but also for equation (1.1) with p > 1. We would like to mention also some classification results, proven by Harada in [START_REF] Harada | Blowup profile for a complex valued semilinear heat equation[END_REF], for blowup solutions of (1.2) which satisfy some reasonable assumptions. In particular, in that works, we are able to derive a sharp blowup profile for the imaginary part of the solution. Recently, the author handled in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] the case p is an aritrary integer.

Statement of the result

In [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF], we only treated the case, p ∈ N, p > 1 which the handling of the nonlinear term is much easier. In the present paper, we do better, and give a proof which holds also in the case p / ∈ N. We believe we made an important achievement, we acknowledge that we left unanswered the case where p > 1 and p / ∈ N. From the limitation of the above works, it motivates us to study model (1.1) in general even for irrational p. The following theorem is our main result: Theorem 1.1 (Existence of a blowup solution for (1.1) and a sharp discription of its profile). For each p > 1 and p 1 ∈ 0, min p-1 4 , 1 2 , there exists T 1 (p, p 1 ) > 0 such that for all T ≤ T 1 , there exist initial data u(0) = u 1 (0)+iu 2 (0), such that equation (1.1) has a unique solution u on R n ×[0, T ) satisfying the following:

i) The solution u blows up in finite time T only at the origin and Re(u) > 0 on R n × [0, T ). Moreover, it satisfies the following

(T -t) 1 p-1 u(., t) -f 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ C 1 + | ln(T -t)| , (1.6) 

and

(T -t)

1 p-1 | ln(T -t)|u 2 (., t) -g 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ C 1 + | ln(T -t)| p 1 2 , (1.7) 
where f 0 is defined in (1.4) and g 0 (x) is defined as follows

g 0 (x) = |x| 2 p -1 + (p-1) 2 4p |x| 2 p p-1
.

(1.8)

ii) There exists a complex function u * in C 2 (R n \{0}) such that u(t) → u * = u * 1 + iu * 2 as t → T, uniformly on compact sets of R n \{0}, and we have the following asymptotic expansions:

u * (x) ∼ (p -1) 2 |x| 2 8p| ln |x|| -1 p-1
, as x → 0, (1.9) Remark 1.2. We remark that the condition on the parameter p 1 < min p-1 4 , 1 2 comes from the definition of the set V A (s) (see in item (i) of Definition 3.1), Proposition 4.1 and Lemma B.3. Indeed, this condition ensures that the projections of the quadratic term B 2 (q 2 , q 2 ) on the negative and outer parts are smaller than the conditions in V A (s). Then, we can conclude (4.6) and (4.8) by using Lemma B.3 and definition of V A (s).

Remark 1.3. We can show that the constructed solution in the above Theorem satisfies the following asymptotics:

u(0, t) ∼ κ(T -t) -1 p-1 , (1.11) u 2 (0, t) ∼ - 2nκ (p -1) (T -t) -1 p-1 | ln(T -t)| 2 ,
(1.12) as t → T , (see (3.37) and (3.38)). Therefore, we deduce that u blows up at time T only at 0. Note that, the real and imaginary parts simultaneously blow up. Moreover, from item (ii) of Theorem 1.1, the blowup speed of u 2 is softer than u 1 because of the quantity 1 | ln |x|| (see (1.9) and (1.10)). Remark 1.4 (A strong singularity of the imaginary part). We observe from (1.10) and (1.12) that there is a strong sigularity at the neighborhood of a as t → T ; when x close to 0, we have u 2 (x, t) which becomes large and positive as t → T , however, we always have u 2 (0, t) → -∞ as t → T. Thus the imaginary part has no constant sign near the singularity. In particular, if t is near T , there exists b(t) > 0 in R n and b(t) → 0 as t → T such that at time t, u 2 (., t) vanishes on some surface close to the sphere of center 0 and radius b(t). Therefore, we don't have |u 2 (x, t)| → +∞ as (x, t) → (0, T ). This non constant property for the imaginary part is very surprising to us. In the frame work of semilinear heat equation, such a property can be encountered for phase invariant complex equations, such as the Complex Ginzburg-Landau (CGL) equation (see Zaag in [START_REF] Zaag | Blow-up results for vector-valued nonlinear heat equations with no gradient structure[END_REF], Masmoudi and Zaag in [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], Nouaili-Zaag [START_REF] Nouaili | Construction of a blow-up solution for the complex ginzburg-landau equation in some critical case[END_REF]). As for complex parabolic equation with no phase invariance, this is the first time such a sign change in available, up to our knowledge. We would like to mention that such a sign change near the singularity was already observed for the semilinear wave equation non characteristic blowup point (see Merle and Zaag in [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF], [START_REF] Merle | Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation[END_REF]) and Côte and Zaag in [START_REF] Côte | Construction of a multisoliton blowup solution to the semilinear wave equation in one space dimension[END_REF].

Remark 1.5. For each a ∈ R n , by using the translation u a (., t) = u(. -a, t), we can prove that u a also satisfies equation (1.1) and the solution blows up at time T only at the point a. We can derive that u a satisfies all estimates (1.6) -(1.10) by replacing x by x -a.

Remark 1.6. In Theorem (1.1), the initial data u(0) is given exactly as follows u(0) = u 1 (0) + iu 2 (0), where

u 1 (x, 0) = T -1 p-1 p -1 + (p -1) 2 |x| 2 4pT | ln T | -1 p-1 + nκ 2p| ln T | + A | ln T | 2 d 1,0 + d 1,1 • x √ T χ 0 16|x| K 0 T | ln T | χ 0 |x| √ T | ln T | + U * (x) 1 -χ 0 |x| √ T | ln T | , + 1, u 2 (x, 0) = T -1 p-1 χ 0 |x| √ T | ln T | |x| 2 T | ln T | 2 p -1 + (p -1) 2 |x| 2 4pT | ln T | -p p-1 - 2nκ (p -1)| ln T | 2 + A 2 | ln T | p1+2 d 2,0 + d 2,1 • x √ T + A 5 ln(| ln(T )|) | ln T | p1+2 1 2 x T √ T • d 2,2 • x √ T -Tr(d 2,2 ) χ 0 2x K 0 T | ln T | . with κ = (p -1) -1 p-1 , K 0 , A are positive constants fixed large enough, d 1 = (d 1,0 , d 1,1 ), d 2 = (d 2,0 , d 2,1 , d 2,2
) are parametes we fine tune in our proof, and

χ 0 ∈ C ∞ 0 [0, +∞), χ 0 L ∞ ≤ 1, suppχ 0 ⊂ [0, 2
] and χ 0 (x) = 1 for all |x| ≤ 1, and U * is given in (3.32) and related to the final profile given in item (ii) of Theorem 1.1. Note that when p ∈ N, we took in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] a simpler expression for initial data, not in involving the final profile U * , nor the (+1) term in u 1 (0). In particular, adding this (+1) term in our idea to ensure that the real part of the solution straps positive.

Remark 1.7. We see in (2.3) that the equation satisfied by of u 2 is almost 'linear' in u 2 . Hence, given an arbitrary c 0 = 0, we can change a little in our proof to construct a solution u c0 = u 1,c0 + iu 2,c0 in t ∈ [0, T ), which blows up in finite time T only at the origin such that (1.6) and (1.9) hold and the following holds

(T -t) 1 p-1 | ln(T -t)|u 2,c0 (., t) -c 0 g 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ C | ln(T -t)| p 1 2 , (1.13) 
and

u * 2 (x) ∼ 2pc 0 (p -1) 2 (p -1) 2 |x| 2 8p| ln |x|| -1 p-1 1 | ln |x|| , as x → 0, (1.14) 
Remark 1.8. As in the case p = 2 treated by Nouaili and Zaag [START_REF] Nouaili | Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation[END_REF], and we also mentioned we suspect the behavior in Theorem 1.1 to be unstable. This is due to the fact that the number of parameters in the initial data we consider below in Definition 3.4 (see also Remark 1.6 above) is higher than the dimension of the blowup parameters which is n + 1 (n for the blowup points and 1 for the blowup time).

Besides that, we can use the technique of Merle [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow-up points[END_REF] to construct a solution which blows up at arbitrary given points. More precisely, we have the following Corollary: Corollary 1.9 (Blowing up at k distinct points). For any given points, x 1 , ..., x k , there exists a solution of (1.1) which blows up exactly at x 1 , ..., x k . Moreover, the local behavior at each blowup point x j is also given by (1.6), (1.7), (1.9), (1.10) by replacing x by x -x j and L ∞ (R n ) by L ∞ (|x -x j | ≤ 0 ), for some 0 > 0.

The strategy of the proof

From the singularity of the nonlinear term (u p ) when p / ∈ N, we can not apply the techniques we used in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] when p ∈ N (also used in [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF], [START_REF] Nouaili | Profile for a simultaneously blowing up solution to a complex valued semilinear heat equation[END_REF], ...). We need to modify this method. We see that, although our nonlinear term in not continuous in general, it is continuous in the following half plane {u |Re(u) > 0}.

Relying on this property, our problem will be derived by using the techniques which were used in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] and the fine control of the positivity of the real part. We treat this challenge by relying on the ideas of the work of Merle and Zaag in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF] (or the work of Ghoul, Nguyen and Zaag in [START_REF] Ghoul | Construction of blowup solutions for an exponential reaction-diffusion equation involving a critical power nonlinear gradient term[END_REF] with inherited ideas from [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF]) for the construction of the initial data. We define a shrinking set S(t) (see in Definition 3.1) which allows a very fine control of the positivity of the real part. More precisely, it is procceed to control our solution on three regions P 1 (t), P 2 (t) and P 3 (t) which are given in subsection 3.2 and which we recall here:

-

P 1 (t), called the blowup region, i.e |x| ≤ K 0 (T -t)| ln(T -t)|:
We control our solution as a perturbation of the intermadiate blowup profiles (for t ∈ [0, T )) f 0 and g 0 given in (1.6) and (1.7).

-P 2 (t), called the intermediate region, i.e K0

4

(T -t)| ln(T -t)| ≤ |x| ≤ 0 : In this region, we will control our solution by control the rescaled function U of u (see more (3.20)) to approach ÛK0 (τ ) (see in (3.25)), by using a classical parabolic estimates. Roughly speaking, we control our solution as a perturbation of the final profiles for t = T given in (1.9) and (1.10).

-P 3 (t), called the regular region, i.e |x| ≥ 0 4 : In this region, we control the solution as a perturbation of initial data (t = 0). Indeed, T will be chosen small by the end of the proof.

Fixing some constants involved in the definition S(t), we can prove that our problem will be solved by the control of the solution in S(t). Moreover, we prove via a priori estimates in the different regions P 1 , P 2 , P 3 that the control is reduced to the control of a finite dimensional component of the solution. Finally, we may apply the techniques in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] to get our conclusion.

We will organize our paper as follows:

-In Section 2: We give a formal approach to explain how the profiles we have in Theorem 1.1 appear naturally. Moreover, we also approach our problem through two independant directions: Inner expansion and Outer expansion, in order to show that our profiles are reasonable.

-In Section 3: We give a formulation for our problem (see equation (3.2)) and, step by step we give the rigorous proof for Theorem 1.1, assuming some technical estimates.

-In Section 4, we prove the techical estimates assumed in Section 3.

Derivation of the profile (formal approach)

In this section, we would like to give a formal approach to our problem which explains how we derive the profiles for the solution of equation (1.1) given in Theorem (1.1), as well the asymptotics of the solution.

In particular, we would like to mention that the main difference between the case p ∈ N and p / ∈ N resides in the way we handle the nonlinear term u p . For that reason, we will give a lot of care for the estimates involving the nonlinear term, and go quickly while giving estimates related to other terms, kindly refering the reader to [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] where the case p ∈ N was treated.

Modeling the problem

In this part, we will give definitions and special symbols important for our work and explain how the functions f 0 , g 0 arise as blowup profiles for the solution of equation (1.1) as stated in (1.6) and (1.7). Our aim in this section is to give solid (though formal) hints for the existence of a solution u(t) = u 1 (t) + iu 2 (t) to equation (1.1) such that lim

t→T u(t) L ∞ (R n ) = +∞, (2.1) 
and u obeys the profiles in (1.6) and (1.7), for some T > 0. As we have pointed out in the introduction, we are interested in the case where p / ∈ N, noting that in this case, we already have a difficulty to properly define the nonlinear term u p as a continuous term. In order to overcome this difficulty, we will restrict ourselves to the case where Re(u) > 0.

(2.2)

Our main challenge in this work will be to show that (2.2) is propagated by the flow, at least for the initial data we are suggesting (see Definition 3.4 below). Therefore, under the condition (2.2), by using equation (1.1), we deduce that u 1 , u 2 solve:

∂ t u 1 = ∆u 1 + F 1 (u 1 , u 2 ), ∂ t u 2 = ∆u 2 + F 2 (u 1 , u 2 ). (2.3)
where F 1 (0, 0) = F 2 (0, 0) = 0 and for all (u 1 , u 2 ) = 0 we have

F 1 (u 1 , u 2 ) = Re [(u 1 + iu 2 ) p ] = |u| p cos [p Arg (u 1 , u 2 )] , F 2 (u 1 , u 2 ) = Im [(u 1 + iu 2 ) p ] = |u| p sin [p Arg (u 1 , u 2 )] , (2.4 
)

with |u| = (u 2 1 + u 2 2 )
1 2 and Arg(u 1 , u 2 ), u 1 > 0 is defined as follows:

Arg(u 1 , u 2 ) = arcsin u 2 u 2 1 + u 2 2 . (2.5) 
Note that, in the case where p ∈ N, we had the following simple expressions for

F 1 , F 2    F 1 (u 1 , u 2 ) = Re [(u 1 + iu 2 ) p ] = [ p 2 ] j=0 C 2j p (-1) j u p-2j 1 u 2j 2 , F 2 (u 1 , u 2 ) = Im [(u 1 + iu 2 ) p ] = [ p-1 2 ] j=0 C 2j+1 p (-1) j u p-2j-1 1 u 2j+1 2 . (2.6)
Of course, both expressions (2.4) and (2.6) coincide when p ∈ N. In fact, we will follow our strategy in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] for p ∈ N and focus mainly on how we handle the nonlinear terms, since we have a different expression when p / ∈ N. Let us introduce the similarity-variables for u = u 1 + iu 2 as follows:

w 1 (y, s) = (T -t) 1 p-1 u 1 (x, t), w 2 (y, s) = (T -t) 1 p-1 u 2 (x, t), y = x √ T -t , s = -ln(T -t). (2.7) 
By using (2.3), we obtain a system satisfied by (w 1 , w 2 ), for all y ∈ R n and s ≥ -ln T as follows:

∂ s w 1 = ∆w 1 -1 2 y • ∇w 1 -w1 p-1 + F 1 (w 1 , w 2 ), ∂ s w 2 = ∆w 2 -1 2 y • ∇w 2 -w2 p-1 + F 2 (w 1 , w 2 ).
(2.8)

Then note that studying the asymptotics of u 1 + iu 2 as t → T is equivalent to studying the asymptotics of w 1 + iw 2 in long time. We are first interested in the set of constant solutions of (2.8), denoted by

S = {(0, 0)} ∪ κ cos 2kπ p -1 , sin 2kπ p -1 where κ = (p -1) -1 p-1 , and k ∈ N .
We remark that S is infinity if p is not integer. However, from the transformation (2.7), we slightly precise our goal in (2.1) by requiring in addition that (w 1 , w 2 ) → (κ, 0) as s → +∞.

Introducing w 1 = κ + w1 , our goal because to get ( w1 , w 2 ) → (0, 0) as s → +∞.

From (2.8), we deduce that w1 , w 2 satisfy the following system

∂ s w1 = L w1 + B1 ( w1 , w 2 ), ∂ s w 2 = Lw 2 + B2 ( w1 , w 2 ).
(2.9)

where

L = ∆ - 1 2 y • ∇ + Id, (2.10) B1 ( w1 , w 2 ) = F 1 (κ + w1 , w 2 ) -κ p - p p -1 w1 , (2.11) B2 ( w1 , w 2 ) = F 2 (κ + w1 , w 2 ) - p p -1 w 2 .
(2.12)

It is important to study the linear operator L and the asymptotics of B1 , B2 as ( w1 , w 2 ) → (0, 0) which will appear as quadratic.

• The properties of L:

We observe that the operator L plays an important role in our analysis. It is easy to find an analysis space such that L is self-adjoint. Indeed, L is self-adjoint in L 2 ρ (R n ), where L 2 ρ is the weighted space associated to the weight ρ defined by

ρ(y) = e -|y| 2 4 (4π) n 2 = n j=1 ρ(y j ), with ρ(ξ) = e -|ξ| 2 4 (4π) 1 2 , (2.13) 
and the spectrum set of L

spec(L) = 1 - m 2 , m ∈ N . (2.14) 
Moreover, we can find eigenfunctions which correspond to each eigenvalue 1 -m 2 , m ∈ N: -The one space dimensional case: the eigenfunction corresponding to the eigenvalue 1 -m 2 is h m , the rescaled Hermite polynomial given as follows

h m (y) = [ m 2 ] j=0 (-1) j m!y m-2j j!(m -2j)! . (2.15)
In particular, we have the following orthogonality property:

R h i h j ρdy = i!2 i δ i,j , ∀(i, j) ∈ N 2 .
-The higher dimensional case: n ≥ 2, the eigenspace E m , corresponding to the eigenvalue 1 -m 2 is defined as follows:

E m = {h β = h β1 • • • h βn , for all β ∈ N n , |β| = m, |β| = β 1 + • • • + β n } .
(2.16)

Accordingly, we can represent an arbitrary function r ∈ L 2 ρ as follows

r = β,β∈N n r β h β (y),
where: r β is the projection of r on h β for any β ∈ R n which is defined as follows:

r β = P β (r) = rk β ρdy, ∀β ∈ N n , (2.17) 
with

k β (y) = h β h β 2 L 2 ρ .
(2.18)

• The asymptotics of B1 ( w1 , w 2 ), B2 ( w1 , w 2 ): The following asymptotics hold:

B1 ( w1 , w 2 ) = p 2κ w2 1 + O(| w1 | 3 + |w 2 | 2 ), (2.19) B2 ( w1 , w 2 ) = p κ w1 w 2 + O | w1 | 2 |w 2 | + O |w 2 | 3 , (2.20) 
as ( w1 , w 2 ) → (0, 0). Note that although we have here the expressions of the nonlinear terms F 1 , F 2 which are different from the case p ∈ N (see (2.4) and (2.6)), the expressions coincide, since we have u ∼ κ = (p-1) - 

Inner expansion

In this part, we study the asymptotics of the solution in L 2 ρ (R n ). Moreover, for simplicity we suppose that n = 1, and we recall that we aim at constructing a solution of (2.9) such that ( w1 , w 2 ) → (0, 0). Note first that the spectrum of L contains two positive eigenvalues 1, 1 2 , a neutral eigenvalue 0 and all the other ones are strictly negative. So, in the representation of the solution in L 2 ρ , it is reasonable to think that the part corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition on the solution with respect of y, it is reasonable to look for a solution w1 , w 2 of the form:

w1 = w1,0 h 0 + w1,2 h 2 , w 2 = w 2,0 h 0 + w 2,2 h 2 .
From the assumption that ( w1 , w 2 ) → (0, 0), we see that w1,0 , w1,2 , w 2,0 , w 2,2 → 0 as s → +∞. We see also that we can understand the asymptotics of the solution w1 , w 2 in L 2 ρ from the study of the asymptotics of w1,0 , w1,2 , w 2,0 , w 2,2 . We now project equations (2.9) on h 0 and h 2 . Using the asymptotics of B1 , B2 in (2. [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]) and (2.20), we get the following ODEs for w1,0 , w1,2 , w 2,0 , w 2,2 :

∂ s w1,0 = w1,0 + p 2κ w2 1,0 + 8 w2 1,2 + O(| w1,0 | 3 + | w1,2 | 3 ) + O(|w 2,0 | 2 + |w 2,2 | 2 ), (2.21) 
∂ s w1,2 = p κ w1,0 w1,2 + 4 w2 1,2 + O(| w1,0 | 3 + | w1,2 | 3 ) + O(|w 2,0 | 2 + |w 2,2 | 2 ), (2.22) 
∂ s w 2,0 = w 2,0 + p κ [ w1,0 w 2,0 + 8 w1,2 w 2,2 ] + O((| w1,0 | 2 + | w1,2 | 2 )(|w 2,0 | + |w 2,2 |)) (2.23) 
+ O(|w 2,0 | 3 + |w 2,2 | 3 ), ∂ s w 2,2 = p κ [ w1,0 w 2,2 + w1,2 w 2,0 + 8 w1,2 w 2,2 ] + O((| w1,0 | 2 + | w1,2 | 2 )(|w 2,0 | + |w 2,2 |)) (2.24) 
+ O(|w 2,0 | 3 + |w 2,2 | 3 ).
Assuming that w1,0 , w as s → +∞. Similarly as in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF], where we have p ∈ N, we obtain the following asymptotics of w1,0 , w1,2 , w 2,0 , w 2,2 :

w1,0 = O 1 s 2 , w1,2 = - κ 4ps + O ln s s 2 , w 2,0 = O 1 s 3 , w 2,2 = c 2,2 s 2 + O ln s s 3 , c 2,2 = 0,
as s → +∞ which satisfiy the assumption in (2.25) and (2.26). Then, we have

w 1 = κ - κ 4ps (y 2 -2) + O 1 s 2 , (2.27) 
w 2 = c 2,2 s 2 (y 2 -2) + O ln s s 3 , (2.28) 
in L 2 ρ (R) for some c 2,2 in R * . Note that, by using parabolic regularity, we can derive that the asymptotics (2.27), (2.28) also hold for all |y| ≤ K, where K is an arbitrary positive constant.

Outer expansion

As for the inner expansion, we here assume that n = 1. We see that asymptotics (2.27) and (2.28) can not give us a shape, since they hold uniformly on compact sets (where we only see the constant solutio (κ, 0)) and not in larger sets. Fortunately, we observe from (2.27) and (2.28) that the profile may be based on the following variable:

z = y √ s . (2.29) 
This motivates us to look for solutions of the form:

w 1 (y, s) = ∞ j=0 R 1,j (z) s j , w 2 (y, s) = ∞ j=1 R 2,j (z) s j .
Note that, our purpose is to construct a solution where the real part is positive. So, it is reasonnable to assume that w 1 > 0 and R 1,0 (z) > 0 for all z ∈ R. Besides that, we also assume that R 1,j , R 2,j are smooth and have bounded derivatives. From the definitions of F 1 , F 2 , given in (2.4), we have the following

F 1   ∞ j=0 R 1,j (z) s j , ∞ j=1 R 2,j (z) s j   -R p 1,0 (z) - pR p-1 1,0 (z)R 1,1 (z) s ≤ C(z) s 2 , F 2   ∞ j=0 R 1,j (z) s j , ∞ j=1 R 2,j (z) s j   - pR p-1 1,0 (z)R 2,1 (z) s - 1 s 2 pR p-1 1,0 (z)R 2,2 + p(p -1)R p-2 1,0 (z)R 1,1 (z)R 2,1 (z) ≤ C(z) s 3 .
Thus, for each z ∈ R, by using system (2.8), taking s → +∞, we obtain the following system:

0 = - 1 2 R 1,0 (z) • z - R 1,0 (z) p -1 + R p 1,0 (z), (2.30) 0 = - 1 2 zR 1,1 (z) - R 1,1 p -1 (z) + pR p-1 1,0 (z)R 1,1 (z) + R 1,0 (z) + zR 1,0 (z) 2 , (2.31) 0 = - 1 2 R 2,1 (z) • z - R 2,1 p -1 (z) + pR p-1 1,0 (z)R 2,1 (z), (2.32) 0 = - 1 2 R 2,2 (z).z - R 2,2 (z) p -1 + pR p-1 1,0 (z)R 2,2 (z) + R 2,1 (z) + R 2,1 (z) + 1 2 R 2,1 (z) • z (2.33) + p(p -1)R p-2 1,0 (z)R 1,1 (z)R 2,1 (z 
). This system is quite similar to [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] (where p ∈ N), and we can find the fomulas of R 1,0 , R 1,1 , R 2,1 , R 2,2 as follows:

R 1,0 (z) = p -1 + b|z| 2 -1 p-1 , (2.34) R 1,1 (z) = (p -1) 2p (p -1 + bz 2 ) -p p-1 - p -1 4p z 2 ln(p -1 + bz 2 )(p -1 + bz 2 ) -p p-1 , (2.35) R 2,1 (z) = z 2 (p -1 + bz 2 ) p p-1 , (2.36) R 2,2 (z) = -2(p -1 + bz 2 ) -p p-1 + H 2,2 (z), (2.37) 
where b = (p-1) 2 4p and

H 2,2 (z) = C 2,1 (p)z 2 (p -1 + bz 2 ) -2p-1 p-1 + C 2,3 (p)z 2 ln(p -1 + bz 2 )(p -1 + bz 2 ) -p p-1 + C 2,3 (p)z 2 ln(p -1 + bz 2 )(p -1 + bz 2 ) -2p-1 p-1 .

Matching asymptotics

By comparing the inner expansion and the outer expansion, then fixing several constants, we have the following profiles for w 1 and w 2 w 1 (y, s) ∼ Φ 1 (y, s), w 2 (y, s) ∼ Φ 2 (y, s), (2.38) where

Φ 1 (y, s) = p -1 + (p -1) 2 4p |y| 2 s -1 p-1 + nκ 2ps , (2.39) Φ 2 (y, s) = |y| 2 s 2 p -1 + (p -1) 2 4p |y| 2 s -p p-1 - 2nκ (p -1)s 2 , (2.40) 
for all (y, s) ∈ R n × (0, +∞). In this setion, we will give a regious proof for the existence of a solution (w 1 , w 2 ) of equation (2.8) where (2.38) holds.

3. Existence of a blowup solution in Theorem 1.1

In Section 2, we adopted a formal approach in order to justify how the profiles f 0 , g 0 arise as blowup profiles for the solution of equation (1.1), given in Theorem 1.1. In this section, we give a rigorous proof to justify the existence of a solution approaching those profiles.

Formulation of the problem

In this subsection, we aim at giving a complete formulation of our problem in order to justify the formal approach which is given in the previous section. We introduce

w 1 = Φ 1 + q 1 , w 2 = Φ 2 + q 2 , (3.1) 
where Φ 1 , Φ 2 are defined in (2.39) and (2.40) respectively. Then, by using (2.8), we derive the following system, satisfied by (q 1 , q 2 ) :

∂ s q 1 q 2 = L + V 0 0 L + V q 1 q 2 + V 1,1 V 1,2 V 2,1 V 2,2 q 1 q 2 + B 1 (q 1 , q 2 ) B 2 (q 1 , q 2 ) + R 1 R 2 , (3.2) 
where linear operator L is defined in (2.10) and:

-The potential functions

V, V 1,1 , V 1,2 , V 2,1 , V 2,2 are defined as follows V (y, s) = p Φ p-1 1 - 1 p -1 , (3.3) 
V 1,1 (y, s) = ∂ u1 F 1 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) -pΦ p-1 1 , (3.4) V 1,2 (y, s) = ∂ u2 F 1 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) , (3.5) 
V 2,1 (y, s) = ∂ u1 F 2 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) , (3.6) 
V 2,2 (y, s) = ∂ u2 F 2 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) -pΦ p-1 1 . (3.7) 
-The quadratic terms B 1 (q 1 , q 2 ), B 2 (q 1 , q 2 ) are defined as follows:

B 1 (q 1 , q 2 ) = F 1 (Φ 1 + q 1 , Φ 2 + q 2 ) -F 1 (Φ 1 , Φ 2 ) -∂ u1 F 1 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) q 1 (3.8) -∂ u2 F 1 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) q 2 , B 2 (q 1 , q 2 ) = F 2 (Φ 1 + q 1 , Φ 2 + q 2 ) -F 2 (Φ 1 , Φ 2 ) -∂ u1 F 2 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) q 1 -∂ u2 F 2 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) q 2 . (3.9) 
-The rest terms R 1 (y, s), R 2 (y, s) are defined as follows:

R 1 (y, s) = ∆Φ 1 - 1 2 y • ∇Φ 1 - Φ 1 p -1 + F 1 (Φ 1 , Φ 2 ) -∂ s Φ 1 , (3.10) 
R 2 (y, s) = ∆Φ 2 - 1 2 y • ∇Φ 2 - Φ 2 p -1 + F 2 (Φ 1 , Φ 2 ) -∂ s Φ 2 , (3.11) 
where F 1 , F 2 are defined in (2.4). By the linearization around Φ 1 , Φ 2 , our problem is reduced to constructing a solution (q 1 , q 2 ) of system (3.2), satisfying

q 1 L ∞ (R n ) + q 2 L ∞ (R n ) → 0 as s → +∞.
Looking at system (3.2), we already know some of the main properties of the linear operator L (see page 7).

As for the potentials V j,k where j, k ∈ {1, 2}, they admit the following asymptotics:

V 1,1 (., s) L ∞ + V 2,2 (., s) L ∞ ≤ C s 2 , V 1,2 (., s) L ∞ + V 2,1 (., s) L ∞ ≤ C s , ∀s ≥ 1, (see Lemma B.2 below).
Regarding the terms B 1 , B 2 which are quadratic, we have these estimates

B 1 (q 1 , q 2 ) L ∞ ≤ CA 4 s p 2 , B 2 (q 1 , q 2 ) L ∞ ≤ CA 2 s 1+min( p-1 4 , 1 2 ) 
, if q 1 , q 2 are small in some sene (see Lemma B.3 below).

In addition to that, the rest terms R 1 , R 2 satisfy the following asymptotics

R 1 (., s) L ∞ (R n ) ≤ C s , R 2 (., s) L ∞ (R n ) ≤ C s 2 , (see Lemma B.4 below).
As a matter of fact, the dynamics of equation (3.2) will mainly depend on the main linear operator

L + V 0 0 L + V ,
and the effects of the orther terms will be less important except on the zero mode of this equation. For that reason, we need to understand the dynamics of L + V . Since the spectral properties of L were already introduced in Section 2.1, we will focus here on the effect of V . i) Effect of V inside the blowup region {|y| ≤ K 0 √ s} with K 0 > 0 : It satisfies the following estimate:

V → 0 in L 2 ρ (|y| ≤ K 0 √ s) as s → +∞,
which means that the effect of V will be negligeable with respect of the effect of L, except perhaps on the null mode of L (see item (ii) of Proposition 4.1 below).

ii) Effect of V outside the blowup region: For each > 0, there exist K > 0 and s > 0 such that sup

y √ s ≥K ,s≥s V (y, s) -- p p -1 ≤ .
Since 1 is the biggest eigenvalue of L (see (2.14)), the operator L + V behaves as one with with a fully negative spectrum outside blowup region {|y| ≥ K √ s}, which makes the control of the solution in this region easy.

Since the behavior of the potential V inside and outside the blowup region is different, we will consider the dynamics of the solution for |y| ≤ 2K 0 √ s and for |y| ≥ K 0 √ s separately for some K 0 to be fixed large. For that purpose, we introduce the following cut-off function

χ(y, s) = χ 0 |y| K 0 √ s , (3.12) 
where χ 0 is defined as a cut-off function:

χ 0 ∈ C ∞ 0 [0, +∞), χ 0 (x) = 1 for x ≤ 1, 0 for x ≥ 2, and χ 0 L ∞ ≤ 1. (3.13)
Hence, it is reasonable to consider separately the solution in the blowup region {|y| ≤ 2K 0 √ s} and in the regular region {|y| ≥ K 0 √ s}. More precisely, let us define the following notation for all functions r in L ∞ as follows r = r b + r e with r b = χr and r e = (1 -χ)r.

(3.14)

Note in particular that supp(r b ) ⊂ B(0, 2K 0 √ s) and supp(r e ) ⊂ R n \ B(0, K 0 √ s).
Besides that, we also expand r b in L 2 ρ according to the spectrum of L (see Section 2.1 above):

r b (y) = r 0 + r 1 • y + 1 2 y T • r 2 • y -Tr (r 2 ) + r -(y), (3.15) 
where r 0 is a scalar, r 1 is a vector in R n and r 2 is a n × n matrix defined by

r 0 = R n r b ρ(y)dy, r 1 = R n r b y 2 ρ(y)dy, r 2 = R n r b 1 4 y j y k - 1 2 δ j,k ρ(y)dy 1≤j,k≤n
, with Tr(r 2 ) being the trace of matrix r 2 . The reader should keep in mind that r 0 , r 1 , r 2 are only the coordinates of r b , not for r. Note that r m is the projection of r b on the eigenspace of L corresponding to the eigenvalue λ = 1 -m 2 . Accordingly, r -is the projection of r b on the negative part of the spectrum of L. As a consequence of (3.14) and (3.15), we see that every r ∈ L ∞ (R n ) can be decomposed into 5 components as follows:

r = r b + r e = r 0 + r 1 • y + 1 2 y T • r 2 • y -Tr(r 2 ) + r -+ r e . (3.16) 

The shrinking set

According to (2.7) and (3.1), our goal is to construct a solution (q 1 , q 2 ) of system (3.2) such that they satisfiy the following estimates:

q 1 (., s) L ∞ + q 2 (., s) L ∞ → 0 as s → +∞.
(3.17)

Here, we aim at constructing a shrinking set to 0. Then, the control of (q 1 , q 2 ) → 0, will be a consequence of the control of (q 1 , q 2 ) in this shrinking set. In addition to that, we have to control the solution q 1 so that

w 1 = q 1 + Φ 1 > 0, (3.18) 
(this is equivalent to have u 1 > 0) and it is one of the main difficults in our analysis. As a matter of fact, the shrinking sets which were constructed in [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF] by Merle and Zaag or even in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF], are not sharp enough to ensure (3.18). In other words, our set has to shrink to 0 as s → +∞ and ensure that the real part of the solution to (2.8) is always positive. In fact, the positivity is the first thing to be solved. For the control of the positivity of the real part, we rely on the ideas, given by Merle and Zaag in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF] for the control of the solution of the following equation:

∂ t u = ∆u -η |∇u| 2 u + |u| p-1 u, u ∈ R. (3.19)
In [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF], the authors needed a sharp control of u and |∇u| near zero, in order to bound the term |∇u| 2 u . Here, we will use their ideas in order to control u 1 near zero and ensure its positivity. As in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF], we will control the solution differently in 3 overlapping regions defined as follows:

For K 0 > 0, α 0 > 0, 0 > 0, t ∈ [0, T ), s ∈ [-ln T, +∞), s = -ln(T -t), we introduce a cover of R n as follows R n ⊂ P 1 (t) ∪ P 2 (t) ∪ P 3 (t),
where

P 1 (t) = {x| |x| ≤ K 0 (T -t)| ln(T -t)|} = {x| |y| ≤ K 0 √ s} = {x| |z| ≤ K 0 }, P 2 (t) = x| K 0 4 (T -t)| ln(T -t)| ≤ |x| ≤ 0 = x| K 0 4 √ s ≤ |y| ≤ 0 e s 2 = x| K 0 4 ≤ |z| ≤ 0 √ s e s 2 , P 3 (t) = x| |x| ≥ 0 4 = x| |y| ≥ 0 e s 2 4 = x| |z| ≥ 0 4 √ s e s 2
,

with y = x √ T -t and z = y √ s = x (T -t)| ln(T -t)| .
In the following, let us explain how we derive the positivity condition from the various estimate we impose on the solution in the 3 regions. Then a) In P 1 (t), the blowup region: In this region, we control the positivity of u 1 by controlling the positivity of w 1 (see the similarity variables given in (2.7)). More precisely, as we mentioned in Subsection 1.3, w will be controlled as a pertubation of the profiles Φ 1 , Φ 2 ((2.39) and (2.40)). By using the positivity of Φ 1 and a good estimate of the distance of w 1 to these profiles, we may deduce the positivity of w 1 , which leads to the positivity of u 1 . b) In P 2 (t), the intermediate region: In this region, we control u via a rescaled function U of u as follows:

U (x, ξ, τ ) = (T -t(x)) -1 p-1 u(x + ξ T -t(x), t(x) + τ (T -t(x))), (3.20) 
where t(x) is uniquely defined for |x| small enough by

|x| = K 0 4 (T -t(x)) |ln(T -t(x))|. (3.21) 
We also introduce

θ(x) = T -t(x). (3.22) 
We see that, on the domain (ξ, τ ) ∈ R n × -t(x) T -t(x) , 1 , U satisfies the following equation:

∂ τ U = ∆ ξ U + U p . (3.23) 
By using classical parabolic estimates on U, we can prove the following the rescaled U at time τ (x, t), has a behavior similar to ÛK0 (τ (x, t)), for all

|ξ| ≤ α 0 | ln(T -t(x)| where τ (x, t) = t -t(x) T -t(x) ,
and ÛK0 (τ ) is unique solution of the following ODE

   ∂ τ ÛK0 = Û p K0 (τ ), ÛK0 (0) = p -1 + (p-1) 2 K 2 0 64p -1 p-1 . (3.24)
In particular, we can solve (3.24) with an explicit solution:

ÛK0 (τ ) = (p -1)(1 -τ ) + (p -1) 2 K 2 0 64p -1 p-1 , ∀τ ∈ [0, 1). (3.25)
Then, by using the positivity of ÛK0 , we derive that u 1 > 0, in this region. c) In P 3 (t), the regular region: We control the solution in this region as a perturbation of the initial data, thanks to the well-posedness property of the Cauchy problem for equation (1.1), to derive that our solution is close to the initial data, (in fact, T will be taken small enough). Therefore, if the initial data is strictly larger than some constant, we will derive the positivity of u 1 .

The above strategy makes the real part of our solution becomes positive. Therefore, it remains to control the solution in order to get q 1 (., s) L ∞ + q 2 (., s) L ∞ → +∞, (see (3.1)). This part is in fact quite similar to the integer case, done in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF].

From the above arguments, we give in the following our definition of the shrinking set.

Definition 3.1 (A shrinking set to 0). For all T > 0,

K 0 > 0, α 0 > 0, 0 > 0, A > 0, δ 0 > 0, η 0 > 0, p 1 ∈ 0, min p-1 4 , 1 2 
for all t ∈ [0, T ), we define the set S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) ⊂ C([0, t], L ∞ (R n , C)) (or S(t) for short) as follows: u = u 1 + iu 2 ∈ S(t) if the following condition hold:

(i) Control in the blowup region P 1 (t): We have (q 1 , q 2 )(s) ∈ V p1,K0,A (s) where s = -ln(T -t), (q 1 , q 2 ) is defined as in (3.1) and V p1,K0,A (s) = V A (s) ∈ (L ∞ (R n )) 2 is the set of all function (q 1 , q 2 ) ∈ (L ∞ ) 2
such that the following holds:

|q 1,0 (s)| ≤ A s 2 and |q 2,0 (s)| ≤ A 2 s p1+2 , |q 1,j (s)| ≤ A s 2 and |q 2,j (s)| ≤ A 2 s p1+2 , ∀j ≤ n, |q 1,j,k (s)| ≤ A 2 ln s s 2 and |q 2,j,k (s)| ≤ A 5 ln s s p1+2 , ∀j, k ≤ n, q 1,-(y, s) 1 + |y| 3 L ∞ ≤ A s 2 and q 2,-(y, s) 1 + |y| 3 L ∞ ≤ A 2 s p 1 +5 2 , q 1,e (., s) L ∞ ≤ A 2 √ s and q 2,e (., s) L ∞ ≤ A 3 s p 1 +2 2
, where the coordinates of q 1 and q 2 are introduced in (3.16) with r = q 1 or r = q 2 .

(ii) Control in the intermediate region

P 2 (t): For all |x| ∈ K0 4 (T -t)| ln(T -t)|, 0 , τ (x, t) = t-t(x) T -t(x)
and |ξ| ≤ α 0 | ln(T -t(x))|, we have

U (x, ξ, τ (x, t)) -Û (τ (x, t)) ≤ δ 0 ,
where ÛK0 defined in (3.25). iii Control in the regular region P 3 (t):

For all |x| ≥ 0 4 , |u(x, t) -u(x, 0)| ≤ η 0 , ∀i = 0, 1.
Finally, we also define the set

S * (T, K 0 , α 0 , 0 , A, δ 0 , η 0 ) ⊂ C([0, T ), L ∞ (R n , C)) as the set of all u ∈ C([0, T ), L ∞ (R n , C)) such that u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t), ∀t ∈ [0, T ).
The following lemma, we show the estimates of the fuction being in V A (s) and this lemma is given in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]:

Lemma 3.2. For all A ≥ 1, s ≥ 1, if we have (q 1 , q 2 ) ∈ V A (s)
, then the following estimates hold:

(i) q 1 L ∞ (R n ) ≤ CA 2 √ s and q 2 L ∞ (R n ) ≤ CA 3 s p 1 +2 2 . (ii) |q 1,b (y)| ≤ CA 2 ln s s 2 (1 + |y| 3 ), |q 1,e (y)| ≤ CA 2 s 2 (1 + |y| 3 ) and |q 1 | ≤ CA 2 ln s s 2 (1 + |y| 3 ), and 
|q 2,b (y)| ≤ CA s p 1 +5 2 (1 + |y| 3 ), |q 2,e (y)| ≤ CA 3 s p 1 +5 2 (1 + |y| 3 ) and |q 2 | ≤ CA 3 s p 1 +5 2 (1 + |y| 3 ).
(iii) For all y ∈ R n we have

|q 1 | ≤ C A s 2 (1 + |y|) + A 2 ln s s 2 (1 + |y| 2 ) + A 2 s 2 (1 + |y| 3 ) , and 
|q 2 | ≤ C A 2 s p1+2 (1 + |y|) + A 5 ln s s p1+2 (1 + |y| 2 ) + A 3 s p 1 +5 2 (1 + |y| 3 ) .
where C will henceforth be an constant which depends only on K 0 .

Proof. See Lemma 3.2, given in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF].

As matter of fact, if u ∈ S A (t) then, from item (i) of Lemma 3.2, the similarity variables (2.7) and (3.1), we derive the following

(T -t) 1 p-1 u(., t) -f 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ CA 2 1 + | ln(T -t)| , (3.26) 
(T -t)

1 p-1 | ln(T -t)|u 2 (., t) -g 0 . (T -t)| ln(T -t)| L ∞ (R n ) ≤ CA 3 1 + | ln(T -t)| p 1 2 . (3.27)
We see in the definition of S(t) that there are many parameters, so the dependence of the constants on them is very important in our analysis. We would like to mention that, we use the notation C for these constants which depend at most on K 0 . Otherwise, if the constant depends on K 0 , A 1 , A 2 , ... we will write C(A 1 , A 2 , ...).

We now prove in the following lemma the positivity of Re(u) at time t if u belongs to S(t) (this is a crucial estimate in our argument):

Lemma 3.3 (The positivity of the real part of functions trapped in S(t)). For all K 0 , A ≥ 1 α 0 > 0, δ 0 < Û (0) 2 , η 0 < 1 2
, there exists 1 (K 0 ) > 0 such that for all 0 ≤ 1 there exists T 1 (A, K 0 , 0 ) such that for all T ≤ T 1 the following holds: if u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t 1 ] for some t 1 ∈ [0, T ), and Re(u(0)) ≥ 1 for all |x| ≥ 0 4 , then

Re(u)(x, t) ≥ 1 2 , ∀x ∈ R n , ∀t ∈ [0, t 1 ].
Proof. We write that u = u 1 + iu 2 , with Re(u) = u 1 . Then, we estimate u 1 on the 3 regions P 1 (t), P 2 (t) and P 3 (t). + The estimate in P 1 (t): We use the fact that (q 1 , q 2 ) ∈ V A (s) together with item (i) in Lemma 3.2, and the definition (3.1) of q 1 and the definition of Φ 1 given in (2.39), to derive the following: for all |y| ≤ K 0 √ s,

w 1 (y, s) -f 0 y √ s ≤ CA 2 √ s .
Using the definition (2.39) of Φ 1 , we write for all |y| ≤ K 0 √ s

w 1 (y, s) ≥ f 0 y √ s - CA 2 √ s ≥ p -1 + (p -1) 2 4p K 2 0 -1 p-1 - CA 2 √ s ,
By definition (2.7) of the similarity variables, we implies that: for all

|x| ≤ K 0 (T -t)| ln(T -t)|, (T -t) 1 p-1 u 1 (x, t) ≥ p -1 + (p -1) 2 4p K 2 0 -1 p-1 - CA 2 | ln(T -t)| .
Therefore,

u 1 (x, t) ≥ (T -t) -1 p-1 p -1 + (p -1) 2 4p K 2 0 -1 p-1 - CA 2 | ln(T -t)| ≥ 1 2 , provided that T ≤ T 1,1 (K 0 , A).
+ The estimate in P 2 (t): Since we have u ∈ S(t), using item (ii) in the Definition 3.1, we derive that:

for all x ∈ K0 4 (T -t)| ln(T -t)|, 0 U (x, 0, τ (x, t)) -ÛK0 (τ (x, t)) ≤ δ 0 ,
where τ (x, t) = t-t(x) T -t(x) . In particular, by using the definition of t(x) given in (3.21) and the fact that

|x| ≥ K 0 4 (T -t)| ln(T -t)|,
we have τ (x, t) ∈ [0, 1). Therefore,

U 1 (x, 0, τ (x, t)) ≥ ÛK0 (τ (x, t)) -δ 0 ≥ ÛK0 (0) -δ 0 ≥ 1 2 ÛK0 (0) = 1 2 p -1 + (p -1) 2 4p K 2 0 16 -1 p-1 , provided that δ 0 ≤ 1 2 ÛK0 (0). By definition (3.20) of U, this implies that (T -t(x)) 1 p-1 u 1 (x, t) = U 1 (x, 0, τ (x, t)) ≥ 1 2 p -1 + (p -1) 2 4p K 2 0 16 -1 p-1
.

Using the definition of t(x) in (3.21) we write

T -t(x) ∼ 8 K 2 0 |x| 2 | ln |x|| , as |x| → 0.
Therefore, there exists 1,1 (K 0 ) > 0 such that for all 0 ≤ 1,1 , and for all |x| ≤ 0 , we have

(T -t(x)) -1 p-1 1 2 p -1 + (p -1) 2 4p K 2 0 16 -1 p-1 ≥ 1 2 .
Then, we conclude that for all |x| ∈ K0 4

(T -t)| ln(T -t)|, 0 , we have u 1 (x, t) ≥ 1 2 ,
provided that T ≤ T 2,1 ( 0 ). + The estimate in P 3 (t): This is very easy to derive. Indeed, item (iii) of Definition 3.1, we have for all

|x| ≥ 0 4 u 1 (x, t) ≥ Re(u)(x, 0) -η 0 ≥ 1 - 1 2 = 1 2 ,
provided that η 0 ≤ 1 2 . This concludes the proof of Lemma 3.3.

Thanks to Lemma 3.3, we can handle the singularity of the nonlinear term u p when our solution is in S(T, A, α 0 , 0 , A, δ 0 , η 0 ). In addition to that, from item (i) of Lemma 3.3, (3.26) and (3.27) our problem is reduced to finding parameters T, K 0 , α 0 , 0 , A, δ 0 , η 0 , and constructing initial data u(0) ∈ L ∞ (R n , C) such that the solution u of equation (1.1), exists on [0, T ) and satisfies u ∈ S * (T, K 0 , α 0 , 0 , A, δ 0 , η 0 ).

(3.28)

Preparing initial data and the existence of a solution trapped in S(t)

In this subsection, we would like to define initial data u(0), which depend on some parameters to be fine-tuned in order to get a good solution. The following is our definition:

Definition 3.4 (Preparing of initial data). For each A ≥ 1, T > 0, d 1 = (d 1,0 , d 1,1 ) ∈ R 1 × R n , and d 2 = (d 2,0 , d 2,1 , d 2,1 ) ∈ R 1+n × R n(n+1) 2
, we introduce the following functions defined at s 0 = -ln T :

φ 1,K0,A,d1 (y, s 0 ) = A s 2 0 (d 1,0 + d 1,1 • y) χ 0 16|y| K 0 √ s 0 , φ 2,K0,A,d2 (y, s 0 ) = A 2 s p1+2 0 (d 2,0 + d 2,1 • y) + A 5 ln s 0 s p1+2 0 y T • d 2,2 • y -Tr (d 2,2 ) χ 0 16|y| K 0 √ s 0 .
We also define initial data u K0,A,d1,d2 (0) = u 1,K0,A,d1 (0) + iu 2,K0,A,d2 (0) for equation (1.1) as follows:

u 1,K0,A,d1 (x, 0) = T -1 p-1 φ 1,K0,A,d1 x √ T , -ln T + Φ 1 x √ T , -ln T χ 1 (x) (3.29) + U * (x)(1 -χ 1 (x)) + 1, u 2,K0,A,d2 (x, 0) = T -1 p-1 φ 2,K0,A,d2 x √ T , -ln T + Φ 2 x √ T , -ln T χ 1 (x), (3.30) 
where Φ 1 , Φ 2 are defined in (2.39), (2.40) and χ 1 (x) is defined as follows

χ 1 (x) = χ 0 |x| √ T | ln T | , (3.31) 
with χ 0 defined in (3.13), and

U * ∈ C 1 (R n \{0}, R) is defined for all x ∈ R n , x = 0 U * (x) =            (p-1) 2 |x| 2 8p| ln |x|| -1 p-1 if |x| ≤ C * , 1 1+|x| 2 if |x| ≥ 1, U * (x) > 0 for all x = 0, (3.32)
where C * is a fixed constant strictly less than 1 enough, and U * satisfies the following property: for each

0 ≤ C * 2 we have U * (x) ≤ U * ( 0 ), for all |x| ≥ 0 . (3.33) Remark 3.5.
Roughly speaking, the critical data we done here are superposition of two items:

-

T -1 p-1 {φ 1 + Φ 1 } in P 1 (0) -U * in P 2 (0).
The first form is well-known in previous construction problems. As for the second, we borrowed it from Merle and Zaag in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF]. Note that U * is the candidate for the final profile of the real part, as we can see from own main result in Theorem 1.1. More crucially, we draw your attention to the fact that in comparision with [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF], we add here +1 to the expression in (3.29), and this term will allow us to have the initial condition Re(u(0)) ≥ 1, which is essential to make the nonlinear term u p well-defined, and the Cauchy problem solvable (see Appendix A). This is an important idea of ours.

From the above definition, we show in the following lemma some rough properties of the initial data.

Lemma 3.6. For all K 0 ≥ 1, A ≥ 1, |d 1 | ∞ ≤ 2, |d 2 | ∞ ≤ 2,
and for all 0 ≤ C * 2 (where C * is introduced in (3.33)), there exists T 2 ( 0 , K 0 , A) > 0 such that for all T ≤ T 2 , if u(0) = u K0,A,d1,d2 (0) is defined as in Definition 3.4, then the following holds:

(i) The initial data belongs to L ∞ and satisfies the following

u(., 0) L ∞ (|x|≥ 0) ≤ 1 + (p -1) 2 | 0 | 2 8p| ln 0 | -1 p-1
.

(ii) The real part of the initial data, Re(u(0)) is positive. In particular,

Re(u(x, 0)) ≥ 1, ∀x ∈ R n .
Proof. (i) It is obvious to see that the initial data belongs to L ∞ with the assumptions in this Lemma. It remains to prove the estimate in item (i). We now take 0 ≤ C * 2 , and we use definition of χ 1 in (3.31) to deduce that supp(χ

1 ) ⊂ {|x| ≤ 2 √ T | ln T |}. Moreover, we have √ T | ln T | → 0 as T → 0.
Then, we have

√ T | ln T | ≤ 0 4 , provided that T ≤ T 2,1 ( 0 ). Hence, supp(χ 1 ) ⊂ {|x| ≤ 0 2 },
Hence, it follows the defintion of u(0) that: for all |x| ≥ 0 , we have u(x, 0) = U * (x) + 1, Using (3.33), our result follows. (ii) We see in the definition of u(0) that we have supp(φ 1,K0,A,d1 ) ⊂ {|y| ≤ K0 8 √ s 0 } and we have the following

|φ 1,K0,A,d1 x √ T , -ln T | L ∞ ≤ CA | ln T | 3 2 
.

In addition to that, in the region {|x| ≤ K0
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T | ln T |}, the function Φ 1

x √ T , -ln T is bounded from below by a positive constant which depends only on K 0 . Therefore, there exists T 2,2 (A, K 0 ) > 0 such that for all

T ≤ T 2,2 for all |x| ≤ K0 8 T | ln T | we have φ 1,K0,A,d1 x √ T , -ln T + Φ 1 x √ T , -ln T > 0.
Therefore: for all |x| ≤ K0 This concludes the proof of Lemma 3.6.

Following the above lemma, we will prove that there exists a domain D K0,A,s0 , with s 0 = -ln T such that for all (d 1 , d 2 ) ∈ D K0,A,s0 , the initial u K0,A,d1,d2 (0) is trapped in S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , 0) = S(0).

In particular, we show that the initial data strictly satisfies almost the conditions of S(0) except a few of the conditions in item (i) of Definition 3.1. More precisely, these conditions concern the following modes (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s 0 ).

The following is our lemma: Lemma 3.7 (Control of initial data). There exists K 3 ≥ 1 such that for all each K 0 ≥ K 3 , A ≥ 1 and δ 1 > 0, there exists α 3 (K 0 , δ 1 ) such that for all α 0 ≤ α 3 , there exists 3 (K 0 , α 0 , δ 1 ) > 0 such that for all 0 ≤ 3 , η 0 > 0, there exists T 3 (K 0 , α 0 , 1 , A, δ 1 , η 1 ) > 0 such that for all T ≤ T 3 and s 0 = -ln T , there exists

D K0,A,s0 ⊂ [-2, 2] 1+n × [-2, 2] 1+n × [-2, 2] n(n+1) 2
such that the following holds: if u(0) = u K0,A0,d1,d2 (0) (see Definition 3.4), then (I) For all (d 1 , d 2 ) ∈ D K0,A,s0 , we have u(0) ∈ S(T, K 0 , α 0 , 0 , A, δ 1 , η 0 , 0). In particular, we have: (i) Estimates in P 1 (0): We have (q 1 , q 2 )(s 0 ) ∈ V A (s 0 ) where (q 1 , q 2 )(s 0 ) are defined in (2.7) and (3.1), satisfy the following estimates:

|q 1,j,k (s 0 )| ≤ A 2 ln s 0 2s 2 0 , ∀1 ≤ j, k ≤ n q 1,-(., s 0 ) 1 + |y| 3 L ∞ ≤ A 2s 2 0 and q 2,-(., s 0 ) 1 + |y| 3 L ∞ ≤ A 2 2s p 1 +5 2 0 , q 1,e (., s 0 ) L ∞ ≤ A 2 2 √ s 0 and q 2,e (., s 0 ) L ∞ ≤ A 3 2s p 1 +2 2 0 . (ii) Estimates in P 2 (0): For all |x| ∈ K0 4 T | ln T |, 0 , τ 0 (x) = -t(x) θ(x) with θ(x) = T -t(x) and |ξ| ≤ α 0 | ln(T -t(x))|, we have |U (x, ξ, τ 0 (x)) -ÛK0 (τ 0 (x))| ≤ δ 1 ,
where U (x, ξ, τ ) is defined in (3.20) and ÛK0 (τ ) is defined in (3.25).

(II) There exists a maping Ψ 1 such that

Ψ 1 : R 1+n × R 1+n × R n(n+1) 2 → R 1+n × R 1+n × R n(n+1) 2 
(d 1 , d 2 ) → (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s 0 ) is linear, one to one from D K0,A,s0 to VA (s 0 ), where

VA (s) = - A s 2 , A s 2 1+n × - A 2 s p1+2 , A 2 s p1+2 1+n × - A 5 ln s s p1+2 , A 5 ln s s p1+2 n(n+1) 2 
.

(3.34)

Moreover, Ψ 1 (∂D K0,A,s0 ) ⊂ ∂ VA (s 0 ),
and deg Ψ 1 | D K 0 ,A,s 0 = 0. (3.35)
Proof. If we forget about the terms involving U * and the +1 term in our definition (3.29) -(3.30) of initial data, then we are exactly in the framework of the case p integer treated in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] (see Lemma 3.4 in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]). Therefore, when p is not integer, we only need to understand the effect of U * and the +1 term in order to complete the proof. The argument is only technical. For that reason, we leave it to Appendix C. Now, we give a key-proposition for our argument. More precisely, in the following proposition, we prove the existence of a solution of equation (3.2) trapped in the shrinking set: Proposition 3.8 (Existence of a solution trapped in S * (T, K 0 , α 0 , 0 , A, δ 0 , η 0 )). We can chose the parameters T, K 0 , α 0 , 0 , A, δ 0 , η 0 such that there exist (d 1 , d 2 ) such that the solution u of equation (1.1) with initial data given in Definition 3.4, exists on [0, T ) and satisfies u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 ).

Proof. The proof of this Proposition is given 2 steps:

• The first step: We reduce our problem to a finite dimensional one. In other words, we aim at proving that the control of u(t) in the shrinking set S(t) reduces to the control of the components (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s) in VA (s), defined in (3.34). • The second step: We get the conclusion of Proposition 3.8 by using a topological argument in finite dimension.

-Step 1: Reduction to a finite dimensional problem: Using a priori estimates, our problem will be reduced to the control of a finite number of components. Proposition 3.9 (Reduction to a finite dimensional problem). There exist parameters K 0 , α 0 , 0 , A, δ 0 , η 0 and T > 0 such that the following holds:

(a) Assume that initial data u(0) = u K0,A,d1,d2 (0) is given in Definition 3.4 with

(d 1 , d 2 ) ∈ D K0,A,s0 (b 
) Assume furthemore that the solution u of equation (1.1) satisfies: u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t * ], for some t * ∈ [0, T ) and u ∈ ∂S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t * ).

Then, we have:

(i) (Reduction to finite dimensions): It holds that (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s * ) ∈ ∂ VA (s * ), where (q 1 , q 2 )(s) are defined in (2.7) and (3.1), VA (s) is defined as in (3.34), and s * = -ln(T -t * ).

(ii) (Transverse outgoing crossing): There exists ν 0 > 0 such that ∀ν ∈ (0, ν 0 ), (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s * + ν) / ∈ VA (s * + ν), (3.36) which implies that there exists ν 1 > 0 such that u exists on [0, t * + ν 1 ) and for all ν ∈ (0, ν 1 )

u(t * + ν) / ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t * + ν).
The proof of this Lemma uses techniques given in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF] which were developed from [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] and [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF] in the real case. However, it is true that our shrinking set involves more conditions than the shrinking set used in [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF], [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF], [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]. In fact, the additional conditions are useful to ensure that our solution always stays positive. In particular, the set V A (s) plays an important role. Indeed, as for the integer case in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF], only the nonnegative modes (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s * ) may touch the boundary of VA (s * ) and leave in short time later. However, the control of the sulution with the positive real part is also our highlight and of course it is the main difficulty in our work. This proposition makes the heart of the paper and needs many steps to be proved. For that reason, we dedicate a whole section to its proof (Section 4 below). Let us admit it here, and get to the conclusion of Proposition 3.8 in the second step.

-Step 2: Conclusion of Proposition 3.8 by a topological argument. In this step, we give the proof of Proposition 3.8 assuming that Proposition 3.9 holds. In fact, we aim at proving the existence of a parameter (d 1 , d 2 ) ∈ D K0,A,s0 such that the solution u of equation (1.1) with initial data u K0,A,d1,d2 (0) (given in Definition 3.4), exists on [0, T ) and satisfies u ∈ S * (T, K 0 , α 0 , 0 , A, δ 0 , η 0 ), where the parameters will be suitably chosen. Our argument is analogous to the argument of Merle and Zaag in [START_REF] Merle | Stability of the blow-up profile for equations of the type ut = ∆u + |u| p-1 u[END_REF]. For that reason, we only give a brief proof. Let us fix T, K 0 , δ 0 , α 0 , 0 , A, α 0 , η 0 such that Lemma 3.7, Proposition 3.9 and Lemma 3.3 hold. Then, for all (d 1 , d 2 ) ∈ D K0,A,s0 and from Lemma 3.7 we have the initial data u K0,A,d1,d2 (0) ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , 0). Thanks to Lemmas 3.3 and 3.7, for each (d 1 , d 2 ) ∈ D K0,A,s0 we can define t * (d 1 , d 2 ) ∈ [0, T ) as the maximum time such that the solution u d1,d2 of equation (1.1), with initial data u K0,A,d1,d2 (0) trapped in S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t * (d 1 , d 2 )). We have the two following cases: + Case 1: If there exists (d 1 , d 2 ) such that t * (d 1 , d 2 ) = T then our problem is solved + Case 2: For all (d 1 , d 2 ) ∈ D K0,A,s0 , we have

t * (d 1 , d 2 ) < T.
By contradiction, we can prove that the second case can not occur. Indded, if it is true, by using the continuity of the solution u in time and the definition of t * = t * (d 1 , d 2 ), we can deduce that u ∈ ∂S(t * ). Using item (i) of Proposition 3.9, we derive (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s * ) ∈ ∂ VA (s * ), where s * = -ln(T -t * ). Then, the following mapping Γ is well-defined:

Γ : D K0,A,s0 → ∂ [-1, 1] 1+n × [-1, 1] 1+n × [-1, 1] n(n+1) 2 (d 1 , d 1 ) → s 2 * A (q 1,0 , (q 1,j ) j≤n )(s * ), s p1+2 * A 2 (q 2,0 , (q 2,j ) j≤n )(s * ), s p1+2 * A 5 ln s * (q 2,j,k ) j,k≤n (s * ) .
Moreover, it satisfies the two following properties:

(i) Γ is continuous from D K0,A,s0 to ∂ [-1, 1] 1+n × [-1, 1] 1+n × [-1, 1] n(n+1) 2 
. This is a consequence of item (ii) in Proposition (3.9). (ii) The degree of the restriction Γ | ∂D A,s 0 is non zero. Indeed, again by item (ii) in Proposition 3.9, we have s * (d 1 , d 2 ) = s 0 , in this case. Applying (3.35), we get the conclusion. In fact, such a mapping Γ can not exist by Index theorem and this is a contradiction. Thus, Proposition 3.8 follows, assuming that Proposition 3.9 holds (see Section 4 for the proof of latter).

The proof of Theorem 1.1

In this section, we aim at giving the proof of Theorem 1.1 by using Proposition 3.8.

The proof of Theorem 1.1: Except for the treatment of the nonlinear term, this part is quite similar to what we did in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] when p is integer. Nevertheless, for the reader's convenience, we give the proof here, insisting on the way we handle the nonlinear term. + The proof of item (i) of Theorem 1.1: Using Proposition 3.8, there exist (d 1 , d 2 ) such that the solution u of equation (1.1) with initial data u K0,A,d1,d2 (0) (given in Definition 3.4), exists on [0, T ) and satisfies: u ∈ S * (T, K 0 , α 0 , 0 , A, δ 0 , η 0 ). Thanks to item (i) in Definition 3.1, item (i) of Lemma 3.2, and definition (2.7) and definition (3.1) of (w 1 , w 2 ) and (q 1 , q 2 ) we conclude (1.6) and (1.7). In addition to that we have Re(u) > 0. Moreover, we use again the definition of V A (s) to conclude the following asymptotics:

u(0, t) ∼ κ(T -t) -1 p-1 , (3.37) 
u 2 (0, t) ∼ - 2nκ (p -1) (T -t) -1 p-1 | ln(T -t)| 2 , (3.38) 
as t → T , which means that u blows up at time T and the origin is a blowup point. Moreover, the real and imaginary parts simultaneously blow up . It remains to prove that for all x = 0, x is not a blowup point of u. The following Lemma allows us to conclude.

Lemma 3.10 (No blow-up under some threshold; Giga and Kohn [START_REF] Giga | Nondegeneracy of blowup for semilinear heat equations[END_REF]). For all C 0 > 0, 0 ≤ T 1 < T and σ > 0 small enough, there exists 0 (C 0 , T, σ) > 0 such that if u(ξ, τ ) satisfies the following estimates for all

|ξ| ≤ σ, τ ∈ [T 1 , T ): |∂ τ u -∆u| ≤ C 0 |u| p , and |u(ξ, τ )| ≤ 0 (1 -τ ) -1 p-1 .
Then, u does not blow up at ξ = 0, τ = T .

Proof. See Theorem 2.1 in Giga and Kohn [START_REF] Giga | Nondegeneracy of blowup for semilinear heat equations[END_REF]. Although the proof of [START_REF] Giga | Nondegeneracy of blowup for semilinear heat equations[END_REF] was given in the real case, it extends naturally to the complex valued case.

We next use Lemma 3.10 to conclude that u does not blow up at x 0 = 0. Since from (1.7), we have

(T -t) -1 p-1 u 2 (., t) L ∞ ≤ C | ln(T -t)| ,
if x 0 = 0 we use (1.6) to deduce the following:

sup |x-x0|≤ |x 0 | 2 (T -t) 1 p-1 |u(x, t)| ≤ f 0 |x0| 2 (T -t)| ln(T -t)| + C | ln(T -t)| → 0, as t → T. (3.39) 
Applying Lemma 3.10 to u(x -x 0 , t), with some σ small enough such that σ ≤ |x0| 2 , and T 1 close enough to T, we see that u(x -x 0 , t) does not blow up at time T and x = 0. Hence, x 0 is not a blow-up point of u. This concludes the proof of item (i) in Theorem 1.1.

+ The proof of item (ii) of Theorem 1.1: Here, we use the argument of Merle in [START_REF] Merle | Solution of a nonlinear heat equation with arbitrarily given blow-up points[END_REF] to deduce the existence of u * = u * 1 + iu * 2 such that u(t) → u * as t → T uniformly on compact sets of R n \{0}. In addition to that, we use the techniques in Zaag [START_REF] Zaag | A Liouville theorem and blowup behavior for a vector-valued nonlinear heat equation with no gradient structure[END_REF], Masmoudi and Zaag [START_REF] Masmoudi | Blow-up profile for the complex Ginzburg-Landau equation[END_REF], Tayachi and Zaag [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF] for the proofs of (1.9) and (1.10). Indeed, for all x 0 ∈ R n , x 0 = 0, we deduce from (1.6), (1.7) that not only (3.39) holds but also the following is satisfied:

sup |x-x0|≤ |x 0 | 2 (T -t) 1 p-1 | ln(T -t)||u 2 (x, t)| ≤ 9|x 0 | 2 4(T -t)| ln(T -t)| f p 0 |x0| 2 (T -t)| ln(T -t)| (3.40) + C | ln(T -t)| p 1 2
→ 0, as t → T.

We now consider x 0 such that |x 0 | is small enough, and K to be fixed later. We define t 0 (x 0 ) by

|x 0 | = K (T -t 0 (x 0 ))| ln(T -t 0 (x 0 ))|. (3.41)
Note that t 0 (x 0 ) is unique when |x 0 | is small enough and t 0 (x 0 ) → T as x 0 → 0. We introduce the rescaled functions U (x 0 , ξ, τ ) and V 2 (x 0 , ξ, τ ) as follows:

U (x 0 , ξ, τ ) = (T -t 0 (x 0 )) 1 p-1 u(x, t). (3.42) and V 2 (x 0 , ξ, τ ) = | ln(T -t 0 (x 0 ))|U 2 (x 0 , ξ, τ ), (3.43) 
where U 2 (x 0 , ξ, τ ) is defined by

U (x 0 , ξ, τ ) = U 1 (x 0 , ξ, τ ) + iU 2 (x 0 , ξ, τ ),
and

(x, t) = x 0 + ξ T -t 0 (x 0 ), t 0 (x 0 ) + τ (T -t 0 (x 0 )) , and (ξ, τ ) ∈ R n × - t 0 (x 0 ) T -t 0 (x 0 ) , 1 . (3.44)
We can see that with these notations, we derive from item (i) in Theorem 1.1 the following estimates for initial data at τ = 0 of U and V 2 sup

|ξ|≤| ln(T -t0(x0))| 1 4 |U (x 0 , ξ, 0) -f 0 (K 0 )| ≤ C 1 + (| ln(T -t 0 (x 0 ))| 1 4 ) → 0 as x 0 → 0, (3.45) sup |ξ|≤| ln(T -t0(x0))| 1 4 |V 2 (x 0 , ξ, 0) -g 0 (K 0 )| ≤ C 1 + (| ln(T -t 0 (x 0 ))| γ1 ) → 0 as x 0 → 0. (3.46) 
where f 0 (x), g 0 (x) are defined as in (1.4) and (1.8) respectively, and γ 1 = min 1 4 , p1 2 . Moreover, using equations (2.3), we derive the following equations for U, V 2 : for all ξ ∈ R n , τ ∈ [0, 1) sup

∂ τ U = ∆ ξ U + U p , (3.47) 
∂ τ V 2 = ∆ ξ V 2 + |ln(T -t 0 (x 0 ))| F 2 (U 1 , U 2 ), ( 3 
|ξ|≤ 1 2 | ln(T -t0(x0))| 1 4 ,τ ∈[0,1) |V 2 (x 0 , ξ, τ )| ≤ C| ln(T -t 0 (x 0 ))|. (3.51) We first introduce ψ a cut-off function ψ ∈ C ∞ 0 (R n ), 0 ≤ ψ ≤ 1, supp(ψ) ⊂ B(0, 1), ψ = 1 on B(0, 1 2 ). Introducing ψ 1 (ξ) = ψ 2ξ | ln(T -t 0 (x 0 ))| 1 4 and V 2,1 (x 0 , ξ, τ ) = ψ 1 (ξ)V 2 (x 0 , ξ, τ ). (3.52)
Then, we deduce from (3.48) an equation satisfied by V 2,1

∂ τ V 2,1 = ∆ ξ V 2,1 -2 div(V 2 ∇ψ 1 ) + V 2 ∆ψ 1 + | ln(T -t 0 (x 0 ))|ψ 1 F 2 (U 1 , U 2 ). (3.53)
Hence, we can write V 2,1 with a integral equation as follows

V 2,1 (τ ) = e ∆τ (V 2,1 (0)) + τ 0 e (τ -τ )∆ (-2 div (V 2 ∇ψ 1 ) + V 2 ∆ψ 1 + | ln(T -t 0 (x 0 ))|ψ 1 F 2 (U 1 , U 2 ))(τ )) dτ .
(3.54)

Besides that, using (3.49) and (3.51) and the fact that

|∇ψ 1 | ≤ C | ln(T -t 0 (x 0 ))| 1 4 , |∆ψ 1 | ≤ C | ln(T -t 0 (x 0 ))| 1 2
, we deduce that

τ 0 e (τ -τ )∆ (-2 div (V 2 ∇ψ 1 )) dτ ≤ C τ 0 V 2 ∇ψ 1 L ∞ (τ ) √ τ -τ dτ ≤ C| ln(T -t 0 (x 0 ))| 3 4 , τ 0 e (τ -τ )∆ (V 2 (τ )∆ψ 1 ) dτ ≤ C τ 0 V 2 ∆ψ 1 ∞ (τ )dτ ≤ C| ln(T -t 0 (x 0 ))| 1 2 , τ 0 e (τ -τ )∆ (ψ 1 | ln(T -t 0 (x 0 ))|F 2 (U 1 , U 2 )(τ )) dτ ≤ C τ 0 | ln(T -t 0 (x 0 ))|ψ 1 F 2 (U 1 , U 2 ) L ∞ (τ )dτ .
Since the last term in (3.54) involves the nonlinear term F 2 (U 1 , U 2 ), we need to handle it differently from the case where p is integer: using the definition (2.4) of F 2 , and (3.49) and the fact that U 1 is positive, we write from for all |ξ| ≤ 1 2 | ln(T -t 0 (x 0 ))| 1 4 , τ ∈ [0, 1) we have

|ψ 1 ln(T -t 0 (x 0 ))F 2 (U 1 , U 2 )(τ )| ≤ C U 2 1 + U 2 2 p-1 2 |ψ 1 ln(T -t 0 (x 0 ))U 2 (τ )| ≤ C V 2,1 (τ ) L ∞ .
Hence, from (3.54) and the above estimates, we derive

V 2,1 (τ ) L ∞ ≤ C| ln(T -t 0 (x 0 ))| 3 4 + C τ 0 V 2,1 (τ ) L ∞ dτ .
Thanks to Gronwall Lemma, we deduce that

V 2,1 (τ ) L ∞ ≤ C| ln(T -t 0 (x 0 ))| 3 4 , ∀τ ∈ [0, 1), which yields sup |ξ|≤ 1 4 | ln(T -t0(x0))| 1 4 ,τ ∈[0,1) |V 2 (x 0 , ξ, τ )| ≤ C| ln(T -t 0 (x 0 ))| 3 4 . (3.55) 
We apply iteratively for

V 2,2 (x 0 , ξ, τ ) = ψ 2 (ξ)V 2 (x 0 , ξ, τ ) where ψ 2 (ξ) = 4ξ | ln(T -t 0 (x 0 ))| 1 4
.

Similarly, we deduce that sup

|ξ|≤ 1 8 | ln(T -t0(x0))| 1 4 ,τ ∈[0,1) |V 2 (x 0 , ξ, τ )| ≤ C| ln(T -t 0 (x 0 ))| 1 2 .
We apply this process a finite number of steps to obtain (3.50). We now come back to our problem, and aim at proving that:

sup |ξ|≤ 1 16 | ln(T -t0(x0))| 1 4 ,τ ∈[0,1) U (x 0 , ξ, τ ) -ÛK0 (τ ) ≤ C 1 + | ln(T -t 0 (x 0 ))| γ2 , (3.56) sup |ξ|≤ 1 32 | ln(T -t0(x0))| 1 4 ,τ ∈[0,1) V 2 (x 0 , ξ, τ ) -V2,K0 (τ ) ≤ C 1 + | ln(T -t 0 (x 0 ))| γ3 , (3.57) 
where γ 2 , γ 3 are positive small enough and ( ÛK0 , V2,K0 )(τ ) is the solution of the following system:

∂ τ ÛK0 = Û p K0 , (3.58) 
∂ τ V2,K0 = p Û p-1 K0 V2,K0 . (3.59)
with initial data at τ = 0

ÛK0 (0) = f 0 (K 0 ), V2,K0 (0) = g 0 (K 0 ).
given by

ÛK0 (τ ) = (p -1)(1 -τ ) + (p -1) 2 K 2 0 4p -1 p-1 , (3.60) V2,K0 (τ ) = K 2 0 (p -1)(1 -τ ) + (p -1) 2 K 2 0 4p -p p-1 . (3.61)
for all τ ∈ [0, 1). The proof of is cited to Section 5 of Tayachi and Zaag [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF] and, here we will use (3.56) to prove (3.57). For the reader's convenience, we give it here. Let us consider In addition to that, from (3.48) we write an equation on V 2 as follows:

V 2 = V 2 -V2,K0 (τ ). ( 3 
∂ τ V 2 = ∆V 2 + p Û p-1 K0 V 2 + p(U p-1 1 -Û p-1 K0 )V 2 + G 2 (x 0 , ξ, τ ), (3.64) 
where

G 2 (x 0 , ξ, τ ) = | ln(T -t 0 (x 0 ))| F 2 (U 1 , U 2 ) -pU p-1 1 U 2 .
As for the last term in (3.64), we need here to carefully handle this expression, sine it involves a nonlinear term, which needs a treatment different from the case where p is integer. From the definition (2.4) of F 2 , we have

F 2 (U 1 , U 2 ) -pU p-1 1 U 2 ≤ pU 2 (U 2 1 + U 2 2 ) p-1 2 -U p-1 1 + (U 2 1 + U 2 2 ) p 2 sin p arcsin U 2 U 2 1 + U 2 2 - pU 2 U 2 1 + U 2 2 .
And we deduce from (3.50) and (3.56) with 0 > 0 small enough that

F 2 (U 1 , U 2 ) -pU p-1 1 U 2 ≤ C|U 2 | 3 ,
Plugging the above estimate and using (3.43) and (3.50), we have the following sup

|ξ|≤ 1 16 | ln(T -t0)| 1 4 ,τ ∈[0,1) |G 2 (x 0 , ξ, τ )| ≤ C | ln(T -t 0 (x 0 ))| 2 .
(3.65)

Introducing V2 = ψ * (ξ)V 2 ,
where

ψ * = ψ 16ξ | ln(T -t 0 (x 0 ))| 1 4
, and ψ is the cut-off function which has been introduced above. We also note that ∇ψ * , ∆ψ * satisfy the following estimates

∇ ξ ψ * L ∞ ≤ C | ln(T -t 0 (x 0 ))| 1 4 and ∆ ξ ψ * L ∞ ≤ C | ln(T -t 0 (x 0 ))| 1 2
.

(3.66)

In particular, V2 satisfies

∂ τ V2 = ∆ V2 + p Û p-1 K0 (τ ) V2 -2 div (V 2 ∇ψ * ) + V 2 ∆ψ * + p(U p-1 1 -Û p-1 K0 )ψ * V 2 + ψ * G 2 , (3.67) 
By Duhamel principal, we derive the following integral equation

V2 (τ ) = e τ ∆ ( V2 (τ ))+ τ 0 e (τ -τ )∆ p Û p-1 K0 V2 -2 div (V 2 ∇ψ * ) + V 2 ∆ψ * + p(U p-1 1 -Û p-1 K0 )ψ * V 2 + ψ * G 2 (τ )dτ . (3.68)
Besides that, we use (3.56), (3.60), (3.63), (3.66), (3.65) to derive the following estimates: for all τ ∈ [0, 1)

| ÛK0 (τ )| ≤ C, V 2 ∇ψ * L ∞ (τ ) ≤ C | ln(T -t 0 (x 0 ))| 1 4 , V 2 ∆ψ * L ∞ (τ ) ≤ C | ln(T -t 0 (x 0 ))| 1 2 , U p-1 1 -Û p-1 K0 ψ * L ∞ (τ ) ≤ C | ln(T -t 0 (x 0 ))| γ2 , G 2 ψ * L ∞ ≤ C | ln(T -t 0 (x 0 ))| 2 .
where γ 2 given in (3.56). Hence, we derive from the above estimates that: for all 0 ≤ τ < τ < 1

|e (τ -τ )∆ p Û p-1 K0 V2 (τ )| ≤ C V2 (τ ) , |e (τ -τ )∆ (div(V 2 ∇ψ * ))| ≤ C 1 √ τ -τ 1 | ln(T -t 0 (x 0 ))| 1 4
,

|e (τ -τ )∆ (V 2 ∆ψ * )| ≤ C | ln(T -t 0 (x 0 ))| 1 2 , |e (τ -τ )∆ (p(U p-1 1 -Û p-1 K0 )ψ * V 2 )(τ )| ≤ C | ln(T -t 0 (x 0 ))| γ2 , |e (τ -τ )∆ (ψ * G 2 )(τ )| ≤ C | ln(T -t 0 (x 0 ))| .
Plugging into (3.68), we obtain

V2 (τ ) L ∞ ≤ C | ln(T -t 0 (x 0 ))| γ3 + C τ 0 V2 (τ ) L ∞ dτ ,
where γ 3 = min( 1 4 , γ 2 ). Then, thanks to Gronwall inequality, we get

V2 L ∞ ≤ C | ln(T -t 0 (x 0 ))| γ3 .
Hence, (3.57) follows . Finally, we easily find the asymptotics of u * and u * 2 as follows, thanks to the definition of U and V 2 and to estimates (3.56) and (3.57):

u * (x 0 ) = lim t→T u(x 0 , t) = (T -t 0 (x 0 )) -1 p-1 lim τ →1 U (x 0 , 0, τ ) ∼ (T -t 0 (x 0 )) -1 p-1 (p -1) 2 4p K 2 0 -1 p-1 , (3.69) 
and

u * 2 (0) = lim t→T u 2 (x 0 , t) = (T -t 0 (x 0 )) -1 p-1 | ln(T -t 0 (x 0 ))| lim τ →1 V 2 (x 0 , 0, τ ) ∼ (T -t 0 (x 0 )) -1 p-1 | ln(T -t 0 (x 0 ))| (p -1) 2 4p -p p-1 (K 2 0 ) -1 p-1 .
(3.70) Using the relation (3.41), we find that This concludes the proof of Theorem 1.1 assuming that Proposition 3.9 holds. Naturally, we need to prove this propostion on order to finish the argument. This will be done in the next section.

T -t 0 (x 0 ) ∼ |x 0 | 2 2K 2 0 | ln |x 0 ||

The proof of Proposition 3.9

This section is devoted to the proof of Proposition 3.9, which is considered as central in our analysis. We would like to proceed into two parts: + In the first part, we derive a priori estimates on u in every component P j (t) where j = 1, 2 or 3.

+ In the second part, we use the priori estimates to derive new bounds which improve all the bounds in Definition 3.1, except for the non-negative modes (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n ). This means that the problem is reduced to the control of these components, which is the conclusion of item (i) of Proposition 3.9. As for item (ii) of Proposition 3.9 is just a direct consequence of the dynamics of these modes.

4.1.

A priori estimates in P 1 (t), P 2 (t) and P 3 (t)

In this section, we aim at giving a priori estimates to the solution u(t) on P 1 (t), P 2 (t) and P 3 (t) which are important to get the conclusion of Proposition 3.9:

+ A priori estimates in P 1 (t): Here we give in the following proposition some estimates relevant to the region P 1 (t) : Proposition 4.1. For all A, K 0 ≥ 1 and 0 > 0, α 0 > 0, δ 0 > 0, η 0 > 0, there exists T 4 (K 0 , A, 0 ) such that for all T ≤ T 4 , if u is a solution of equation (1.1) on [0, t 1 ] for some t 1 ∈ [0, T ) and u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t 1 ], then, the following holds: for all s 0 ≤ τ ≤ s ≤ s 1 with s 1 = ln(T -t 1 ), we have:

(i) (ODE satisfied by the positive modes) For all j ∈ {1, n} we have q 1,0 (s) -q 1,0 (s) + q 1,j (s) -

1 2 q 1,j (s) ≤ C s 2 , ∀j ≤ n. (4.1)
q 2,0 (s) -q 2,0 (s) + q 2,j (s) -

1 2 q 2,j (s) ≤ C s p1+2 , ∀j ≤ n. (4.2) (ii) (ODE satisfied by the null modes) For all j, k ≤ n q 1,j,k (s) + 2 s q 1,j,k (s) ≤ CA s 3 , (4.3) 
q 2,j,k (s) + 2 s q 2,j,k (s) ≤ CA 2 ln s s p1+3 . (4.4) (iii) (Control of the negative part)

q 1,-(., s) 1 + |y| 3 L ∞ ≤ Ce -s-τ 2 q 1,-(., τ ) 1 + |y| 3 L ∞ + C e -(s-τ ) 2 s 3 2 q 1,e (., τ ) L ∞ + C(1 + s -τ ) s 2 , (4.5) q 2,-(., s) 1 + |y| 3 L ∞ ≤ Ce -s-τ 2 q 2,-(., τ ) 1 + |y| 3 L ∞ + C e -(s-τ ) 2 s 3 2 q 2,e (., τ ) L ∞ + C(1 + s -τ ) s p 1 +5 2 . (4.6) (v) (Control of the outer part) q 1,e (., s) L ∞ ≤ Ce -(s-τ ) p q 1,e (., τ ) L ∞ + Ce s-τ s 3 2 q 1,-(., τ ) 1 + |y| 3 L ∞ + C(1 + s -τ )e s-τ √ s , (4.7 
)

q 2,e (., s) L ∞ ≤ Ce -(s-τ ) p q 2,e (., τ ) L ∞ + Ce s-τ s 3 2 q 2,-(., τ ) 1 + |y| 3 L ∞ + C(1 + s -τ )e s-τ s p 1 +2 2 . (4.8)
Proof. By using the fact that u(t) ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t 1 ] , we derive by the definition that (q 1 , q 2 )(s) ∈ V A (s) for all s ∈ [s 0 , s 1 ] and (q 1 , q 2 )(s) satisfies equation (3.2). In addition to that, we deduce also the fact that q 1 (s) + Φ 1 (s) ≥ e -s p-1 2 for all s ∈ [s 0 , s 1 ] (see Lemma 3.3). Although the potential terms V j,k , the quadratic terms B 1 , B 2 and the rest terms R 1 , R 2 (see equation (3.2)) are different from the case where p is integer, they behavior as in that case (see Lemmas B.2, B.3, B.4 below). Hence, the result is derived from the projection of equation (3.2) and the dynamics of the operator L + V . For that reason, we kindly refer the the reader to the proof of Lemma 4.2 given in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF] for the case where p is integer. + A priori estimates in P 2 (t): In this step, we aim at proving the following lemma which gives a priori estimates on u in P 2 (t). The following is our main result: Lemma 4.2. For all K 0 ≥ 1, δ 1 ≤ 1, ξ 0 ≥ 1, Λ 5 > 0, λ 5 > 0, the following holds: If U (ξ, τ ) a solution of equation (3.47), for all ξ and τ ∈ [τ 1 , τ 2 ] with 0 ≤ τ 1 ≤ τ 2 ≤ 1, such that for all τ ∈ [τ 1 , τ 2 ] and for all ξ ∈ [-2ξ 0 , 2ξ 0 ], we have |U (ξ, τ )| ≤ Λ 5 and Re (U (ξ, τ )) ≥ λ 5 and U (ξ, τ 1 ) -ÛK0 (τ 1 ) ≤ δ 1 , (4.9)

then, there exists = (K 0 , Λ 5 , λ 5 , δ 1 , ξ 0 ) such that for all ξ ∈ [-ξ 0 , ξ 0 ] and for all τ ∈ [τ 1 , τ 2 ] we have

U (ξ, τ ) -Û (τ ) ≤ ,
where ÛK0 (τ ) is given (3.25). in particular, (K 0 , Λ 5 , λ 5 , δ 1 , ξ 0 ) → 0 as (δ 1 , ξ 0 ) → (0, +∞).

Proof. We introduce ψ as a cut-off function in C ∞ 0 (R) which satisfies the following:

ψ(x) = 0 if |x| ≥ 2, |ψ(x)| ≤ 1 for all x and ψ(x) = 1 for all |x| ≤ 1,
and we also define ψ 1 as follows

ψ 1 (ξ) = ψ |ξ| ξ 0 .
Then, we have ψ 1 ∈ C ∞ 0 (R n ), and supp(ψ 1 ) ⊂ {|ξ| such that |ξ| ≤ 2ξ 0 } and ψ 1 (ξ) = 1 for all |ξ| ≤ ξ 0 . In addtition to that, we let

V 1 (ξ, τ ) = ψ 1 (ξ) U (ξ, τ ) -ÛK0 (τ ) , ∀τ ∈ [τ 1 , τ 2 ], ξ ∈ R n .
Thanks to equation (3.47), we derive that V 1 satisfies the following equation:

∂ τ V 1 = ∆ ξ V 1 -2 div (U ∇ψ 1 ) + U ∆ψ 1 + ψ 1 (ξ) U p -Û p . (4.10) 
Therefore, we can write V 1 (ξ, τ ) under the following intergral equation

V 1 (τ ) = e (τ -τ1)∆ (V 1 (τ 1 )) + τ τ1 e (τ -τ )∆ -2 div (U ∇ψ 1 ) + U ∆ψ 1 + ψ 1 U p -Û p (τ )dτ . (4.11) 
In addition to that, we have the following fact from (4.9) (in particular the estimate Re(U (ξ, τ )) ≥ λ 5 in (4.9) is crucial for the 4 th term in (4.11)

): for all τ ∈ [τ 1 , τ 2 ] V 1 (τ 1 ) L ∞ ≤ δ 1 , U ∇ψ 1 L ∞ (τ ) ≤ C(Λ 5 ) ξ 0 , U ∆ψ 1 L ∞ (τ ) ≤ C(Λ 5 ) ξ 2 0 , ψ 1 (U p -Û p ) L ∞ (τ ) ≤ C(K 0 , Λ 5 , λ 5 ) V 1 L ∞ (τ ), which yields when τ 1 ≤ τ < τ ≤ τ 2 , e (τ -τ1)∆ (V 1 (τ 1 )) ≤ δ 1 , e (τ -τ )∆ (div (U ∇ψ 1 )(τ )) L ∞ ≤ C(Λ 5 ) ξ 0 1 √ τ -τ , e (τ -τ )∆ (U ∆ψ 1 (τ )) L ∞ ≤ C(Λ 5 ) ξ 2 0 , e (τ -τ )∆ (ψ 1 (U p -Û p )(τ )) L ∞ ≤ C(K 0 , Λ 5 , λ 5 ) V 1 L ∞ (τ ).
Plugging into (4.11), we have for all

τ ∈ [τ 1 , τ 2 ] V 1 (τ ) L ∞ ≤ C(K 0 , Λ 5 , λ 5 ) δ 1 + 1 ξ 0 + C(K 0 , Λ 5 , λ 5 ) τ τ1 V 1 (τ ) L ∞ dτ .
Thanks to Gronwall lemma, we obtain the following

V 1 (τ ) L ∞ ≤ C(K 0 , Λ 5 , λ 5 ) δ 1 + 1 ξ 0 , ∀τ ∈ [τ 1 , τ 2 ]. Since V 1 (τ ) = U (τ ) -Û (τ )
for all ξ ∈ [-ξ 0 , ξ 0 ] and for all τ ∈ [τ 1 , τ 2 ], this concludes our lemma.

+ A proiori estimates in P 3 (t): We aim at proving the following lemma which gives a priori estimates on u in P 3 (t).

Lemma 4.3 (A priori estimates in

P 3 (t)). For all K 0 ≥ 1, A ≥ 1, η > 0, 0 > 0, σ ≥ 1 and |d 1 | ∞ , |d 2 | ∞ ≤ 2,
there exists T 6 (K 0 , A, 0 , η, σ) > 0, such that for all T ≤ T 6 the following holds: if u is a solution of equation (1.1) for all t ∈ [0, t * ] for some t * ∈ [0, T ) with the initial data u(0) = u K0,A,d1,d2 (0) (see Definition 3.4) and

|u(x, t)| ≤ σ, ∀|x| ∈ 0 8
, +∞ , t ∈ [0, t * ], (4.12)

then, |u(x, t) -u(x, 0)| ≤ η, ∀|x| ≥ 0 4 , t ∈ [0, t * ].
Proof. We introduce ψ, a cut-off function in C ∞ (R) defined as follows

ψ(r) = 0 if |r| ≤ 1 2
, ψ(r) = 1 for all |r| ≥ 1 and |ψ(r)| ≤ 1 for all r, and we also introduce

ψ 0 ∈ C ∞ (R n ) as follows ψ 0 (x) = ψ 4|x| 0 .
Then, ψ 0 ∈ C ∞ (R n ), and ψ 0 (x) = 1 for all |x| ≥ 0 4 and ψ 0 = 0 for all |x| ≤ 0 8 . We define as well v = ψ 0 u.

Thanks to equation (1.1), we derive an equation satisfied by

v ∂ t v = ∆v -2 div(u∇ψ 0 ) + u∆ψ 0 + ψ 0 u p = ∆v -2div (u∇ψ 0 ) + G(u), (4.13) 
where G(u) = u∆ψ 0 + ψ 0 u p . Using (4.12), we get

G(t, u(t)) L ∞ (R n ) ≤ C(σ, 0 ), ∀t ∈ [0, t * ]
. By Duhamel formula, we derive v(t) = e t∆ (v(0)) + t 0 e (t-s)∆ (G(s, u(s)))ds, (4.14) which yields

v(t) -v(0) = e t∆ (v(0)) -v(0) + t 0 e (t-s)∆ (G(s, u(s)))ds.
Thus,

v(t) -v(0) L ∞ (R n ) ≤ e t∆ (v(0)) -v(0) L ∞ + t 0 e (t-s)∆ (G(s, u(s)))ds L ∞ .
In addition to that, if T ≤ T 6,1 ( 0 ), we have χ 1 (x) = 0, for all |x| ≥ 0 8 , where χ 1 defined in (3.33) is involved in Definition 3.1 of initial data u(0). As a matter of fact, from the definition of u(0), we deduce from this fact that

v(0) = ψ 0 (U * + 1) . Since ∆v(0) ∈ L ∞ (R n ), it follows that e t∆ (v(0)) -v(0) L ∞ (R n ) → 0 as t → 0.
Besides that, we have also

t 0 e (t-s)∆ (G(s, u(s)))ds L ∞ (R n ) → 0 as t → 0.
Therefore, for all t ∈ [t 0 , t * ] we have v(t) -v(0) L ∞ (R n ) ≤ η, provided that T ≤ T 6,2 (K 0 , A, 0 , η, σ). This concludes our lemma.

Finally, we need the following Lemma to get the conclusion of our proof: Lemma 4.4. There exists K 7 ≥ 1 such that for all K 0 ≥ K 7 , A ≥ 1, and δ 1 > 0, there exists α 7 (K 0 , A, δ 1 ) > 0 such that for all α 0 ≤ α 7 , there exists 7 (K 0 , α 0 , A, δ 1 ) > 0 such that for all 0 ≤ 7 there exist δ 7 (δ 1 ) > 0, T 7 (K 0 , 0 , A, δ 1 ) > 0, η 7 (K 0 , 0 , A) > 0 such that for all δ 0 ≤ δ 7 , η 0 ≤ η 7 and for all T ≤ T 7 if u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) for all t ∈ [0, t * ], for some t * ∈ [0, T ), then the following holds: 

whenever |x| ∈ K 0 4 (T -t * )| ln(T -t * )|, 0 (i) For all |ξ| ≤ 2α 0 | ln(T -t(x))| and for all τ ∈ max 0, -t(x) T -t(x) , t * -t(x) T -t(x) , if U (x,
τ 0 (x) = max 0, -t(x) T -t(x) , (4.15) 
then, we have

|U (x, ξ, τ 0 ) -ÛK0 (τ 0 )| ≤ δ 1 .
Proof. The idea of the proof relies on the argument in Lemma 2.6, given in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF]. where τ (x, t) = t-t(x) T -t(x) and C * 7 , C * * 7 > 0. Let us introduce a parameter δ > 0 to be fixed later in our proof, small enough (note that δ has nothing to do with the parameters δ 0 , δ 1 in the statement of our lemma). We observe that if we have α 0 ≤ α 1,7 (K 0 , δ) for some α 1,7 > 0 and small enough, then for all

+
|ξ| ≤ 2α 0 | ln(T -t(x))|, we have (1 -δ)|x| ≤ |x + ξ T -t(x)| ≤ (1 + δ)|x|. (4.18)
We also recall the definition of rescaled function U (x, ξ, τ (x, t)) as follows

U (x, ξ, τ ) = (T -t(x)) 1 p-1 u(x + ξ T -t(x), t(x) + τ (T -t(x)))
.

Introducing X = x + ξ T -t(x), we write U (x, ξ, τ (x, t)) = (T -t(x)) 1 p-1 u(X, t).
We here consider 3 cases: + Case 1: We consider the case where

|X| ≤ K 0 4 (T -t)| ln(T -t)|.
Using the fact that u ∈ S(t), in particular item (i) of Definition 3.1, we see that Lemma 3.2 and (3.26) hold, hence

(T -t) 1 p-1 u(X, t) -f 0 X (T -t)| ln(T -t)| ≤ CA 3 1 + | ln(T -t)| . G. K. DUONG
Then, we derive the following

|U (x, ξ, τ (x, t))| ≤ T -t T -t(x) -1 p-1 f 0 (0) + CA 3 1 + | ln(T -t)| = T -t T -t(x) -1 p-1 κ + CA 3 1 + | ln(T -t)| , (4.19) 
Re(U (x, ξ, τ

(x, t))) ≥ T -t T -t(x) -1 p-1 f 0 (0) - CA 3 1 + | ln(T -t)| = T -t T -t(x) -1 p-1 κ - CA 3 1 + | ln(T -t)| . (4.20) 
Besides that, we deduce the following from (4.18) and the fact that

|X| ≤ K0 4 (T -t)| ln(T -t)| : |x| ≤ K 0 4(1 -δ) (T -t)| ln(T -t)|.
In addition to that, we have that the function T -t(x) is an increasing function if |x| small enough. Therefore,

T -t(x) ≤ T -t K 0 4(1 -δ) (T -t)| ln(T -t)| . (4.21) 
As a matter of fact, we have the following asymptotics of function θ

(x) = T -t(x), ln θ(x) ∼ 2 ln |x| and θ(x) ∼ 8 K 2 0 |x| 2 | ln |x|| as |x| → 0. (4.22) Plugging (4.22) in (4.21) 
, we obtain the following

T -t(x) ≤ T -t K 0 4(1 -δ) (T -t)| ln(T -t)| ∼ 8K 2 0 (T -t)| ln(T -t)| K 2 0 16(1 -δ) 2 1 2 | ln(T -t)| = (T -t) (1 -δ) 2 .
In particular, from t ∈ [max(0, t(x)), t * ], we have the following

T -t(x) ≥ T -t.
Plugging into (4. [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]) and (4.20), we obtain

|U (x, ξ, τ )| ≤ C * 1,7 (p, δ), and 
Re(U (x, ξ, τ (x, t))) ≥ C * * 1,7 (p, δ), provided that δ is small enough, K 0 ≥ K 1,7 (δ) which is large enough and T ≤ T 1,7 (K 0 , A). Note that C * 1,7 (p, δ) and C * * 7 (p, δ) depend on δ and p, in particular, C * 1,7 (δ, p) is bounded when δ → 0. + The second case: We consider the case where

|X| ∈ K 0 4 (T -t)| ln(T -t)|, 0 .
By using the definition of U (x, ξ, τ (x, t)), we deduce that

U (x, ξ, τ (x, t)) = T -t(x) T -t(X) 1 p-1 U (X, 0, τ (X, t)).
However, using the fact that u ∈ S(t), in particular item (ii) of Definition 3.1, we have

|U (X, 0, τ (X, t))| ≤ δ 0 + Û (1).
In addition to that, we use (4.18), the definition of t(x) and the fact that

|X| ≥ K0 4 (T -t)| ln(T -t)| to derive the following 1 ≤ T -t(x) T -t(X) ≤ 2,
provided that δ small enough. Therefore, we have

|U (x, ξ, τ (x, t))| ≤ 2 1 p-1 δ 0 + ÛK0 (1) ≤ 1 2 ,
and

Re(U (x, ξ, τ (x, t))) ≥ ÛK0 (0) -δ 0 ≥ 1 2 ÛK0 (0),
provided that δ 0 ≤ 1 2 ÛK0 (0) and K 0 ≥ K 2,7 . + The third case: We consider the case where |X| ≥ 0 . Using the fact that u ∈ S(t), in particular item (iii) of Definition 3.1, we have

|U (x, ξ, τ (x, t))| = (T -t(x)) 1 p-1 |u(X, t)| ≤ (T -t(x)) 1 p-1 (|u(X, 0)| + η 0 ), Re (U (x, ξ, τ (x, t))) = (T -t(x)) 1 p-1 Re(u(X, t)) ≥ (T -t(x)) 1 p-1 (Re(u(X, 0)) -η 0 ) .
Using the definition (3.29), we have for all |X| ≥ 0 u(X, 0) = U * (X) + 1, provided that T ≤ T 2,7 ( 0 ). In addition to that, we have the following fact

T -t(x) ∼ 16|x| 2 K 2 0 | ln |x|| , u(X, 0) ∼ U * (X) = (p -1) 2 |x| 2 8p| ln |x|| -1 p-1
, as (X, x) → (0, 0), and in particular, from (4.18), we have

(1 -δ)|x| ≤ |X| ≤ (1 + δ)|x|.
Therefore, we have

|U (x, ξ, τ (x, t))| ≤ C * 2,7 (δ) 
, Re(U (x, ξ, τ (x, t))) ≥ C * * 2,7 (K 0 , δ), provided that K 0 ≥ K 3,7 , η 0 ≤ η 1,7 (δ) and δ is small. We conclude item (i).

The proof of item (ii): We aim at proving that for all |ξ| ≤ 2α 0 | ln θ(x)| and τ 0 (x) = max 0, -t(x) θ(x) , we have

U (x, ξ, τ 0 (x)) -ÛK0 (τ 0 (x)) ≤ δ 1 . (4.23) 
Considering 2 cases for the proof of (4.23): + Case 1: We consider the case where

|x| ≤ K 0 4 T | ln T |,
then, we deduce from the defintion of t(x) given by (3.21) that t(x) ≤ 0. Thus, by definition (4.15), we have

τ 0 (x) = -t(x) θ(x) .
Therefore, (4.23) directly follows item (ii) of Lemma 3.7 with K 0 ≥ K 4,7 , α 0 ≤ α 3,7 , 0 ≤ 3,7 (see in Lemma 3.7) + Case 2: We consider the case where

|x| ≥ K 0 4 T | ln T |,
which yields t(x) ≥ 0. Thus, by definition (4.15), we have

τ 0 (x) = 0.
We let X = x + ξ θ(x). Accorrding to the definitions of U, ÛK0 which are given by (3.20) and (3.25), we write

U (x, ξ, 0) -ÛK0 (0) = θ -1 p-1 (x)u (X, t(x)) -(p -1) + (p -1) 2 4p K 2 0 16 -1 p-1 = θ -1 p-1 (x)u (X, t(x)) -(p -1) + (p -1) 2 4p |X| 2 θ(x)| ln θ(x)| -1 p-1 + (p -1) + (p -1) 2 4p |X| 2 θ(x)| ln θ(x)| -1 p-1 -(p -1) + (p -1) 2 4p K 2 0 16 -1 p-1 ≤ (I) + (II),
where θ(x) = T -t(x), and

(I) = θ -1 p-1 (x)u (X, t(x)) -(p -1) + (p -1) 2 4p |X| 2 θ(X)| ln θ(X)| -1 p-1 , (II) = (p -1) + (p -1) 2 4p |X| 2 θ(X)| ln θ(X)| -1 p-1 -(p -1) + (p -1) 2 4p K 2 0 16 -1 p-1 . Since |X| ≤ (1 + δ)|x| ≤ (1 + δ)K 0 4 (T -t(x))| ln(T -t(x))| ≤ K 0 (T -t(x))| ln(T -t(x))|,
Using item (i) of Definition 3.1, taking t = t(x), we write

(I) ≤ C(K 0 )A 2 | ln(T -t(x))| ≤ C(K 0 )A 2 | ln T | ≤ δ 1 2 ,
provided that T ≤ T 4,7 (K 0 , A, δ 1 ). Besides that, from (4.18) we have

(1 -δ) 2 K 2 0 16 ≤ |X| 2 θ(X) |ln θ(X)| ≤ (1 + δ) 2 K 2 0 16 .
This yields

(II) ≤ δ 1 2 ,
provided that δ is small enough. Then, (4.23) follows. Finally, we fix δ > 0 small enough and we conclude our lemma.

The conclusion of Proposition 3.9

It this subsection, we would like to conclude the proof of Proposition 3.9. As we mentioned earlier, in the analysis of the shrinking set S(t), the heart is the set V A (s) (see item (i) of Defintion 3.1 of S(t)). So, let us first give an important argument related the analysis of V A (s); the reduction to finite dimensions. More precisely, we prove that if the solution (q 1 , q 2 ) of equation (3.2) satisfies (q 1 , q 2 )(s) ∈ V A (s) for all s ∈ [s 0 , s * ] and (q 1 , q 2 )(s * ) ∈ ∂V A (s * ) for some s * ∈ [s 0 , +∞) with s 0 = -ln T, then, we can directly derive that (q 1,0 , (q 1,j ) j≤n , q 2,0 , (q 2,j ) j≤n , (q 2,j,k ) j,k≤n )(s * ) ∈ ∂V A (s * ), where VA (s * ) is defined in (3.34). After that, we will use the dynamic of these modes to derive that they will leave VA after that. The following is our statement Proposition 4.5 (A reduction to finite dimensional problem). There exists A 8 ≥ 1, K 8 ≥ 1 such that for all A ≥ A 8 , K 0 ≥ K 8 , there exists s 8 (A, K 0 ) ≥ 1 such that for all s 0 ≥ s 8 (A, K 0 ), we have the following properties: If the following conditions hold: a) We take the initial data (q 1 , q 2 )(s 0 ) are defined by u A,K0,d1,d2 (0) with s 0 = -ln T (see Definition 3.4, (2.7) and (3.1)) and (d 0 , d 1 ) ∈ D K0,A,s0 (see in Lemma (3.7)). b) For all s ∈ [s 0 , s 1 ], the solution (q 1 , q 2 ) of equation (3.2) satisfies: (q 1 , q 2 )(s) ∈ V A (s) and q 1 (s) + Φ 1 (s) ≥ 1 2 e -s p-1 .

Then, for all s ∈ [s 0 , s 1 ], we have

∀i, j ∈ {1, • • • , n}, |q 2,i,j (s)| ≤ A 2 ln s 2s 2 , (4.24) 
q 1,-(., s)

1 + |y| 3 L ∞ ≤ A 2s 2 , q 1,e (s) L ∞ ≤ A 2 2 √ s , (4.25) 
q 2,-(., s)

1 + |y| 3 L ∞ ≤ A 2 2s p 1 +5 2 , q 2,e (s) L ∞ ≤ A 3 2s p 1 +2 2 . ( 4.26) 
Proof. The proof is quite similar to Proposition 4.4 in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]. Indeed, the proof is a consequence of Proposition 4.1, exactly as in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]. Thus, we omit the proof and refer the reader to [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF].

Here, we give the conclusion of the proof of Proposition 3.9: Conclusion of the proof of Proposition 3.9: We first choose the parameters K 0 , A, α 0 , 0 , δ 0 , δ 1 , η 0 , η and T > 0 such that all the above Lemmas and Propositions which are necessary to the proof, are satisfied. In particular, we also note that the parameters δ 1 and η which are introduced in Lemma 3.7 and Lemma 4.3, will be small enough ( δ 1 δ 0 and η η 0 ). Finally, we fix the constant T small enough, depending on all the above parameters, then we conclude our Proposition. We now assume the solution u of equation (1.1) with initial data u K0,A,d1,d2 (0), defined in Definition 3.4, satisfies the following u ∈ S(T, K 0 , α 0 , 0 , A, δ 0 , η 0 , t) = S(t), for all t ∈ [0, t * ] for some t * ∈ [0, T ) and u ∈ ∂S(t * ). We aim at proving that (q 1 , q 2 )(s

* ) ∈ ∂V A (s * ), (4.27) 
where s * = ln(T -t * ). Indeed, by contradition, we suppose that (4.27) is not true, then, by using Definition 3.1 of S(t), we derive the following:

(I) Either, there exist x * , ξ * which satisfy

|x * | ∈ K 0 4 (T -t * )| ln(T -t * )|, 0 , |ξ * | ≤ α 0 | ln(T -t(x * ))|. and |U (x * , ξ * , τ (x * , t * )) -Û (τ (x * , τ * ))| = δ 0 . (II) Or, there exists x * such that |x * | ≥ 0 4 and |u(x * , t * ) -u(x * , 0)| = η 0 .
We would like to prove that (I) and (II) can not occur. Indeed, if the first case occurs, then, letting

τ 0 (x * ) = max -t(x * )
θ(x * ) , 0 , it follows from Lemma 4.4 that: For all |ξ| ≤ 2α 0 | ln(T -t(x * ))|, we have

U (x * , ξ, τ 0 (x * )) -Û (τ 0 (x * )) ≤ δ 1 ,
and for all τ ∈ max -

t(x * ) T -t(x * ) , t * -t ( x * ) T -t(x * )
, we have 

|U (x * , ξ, τ (x * ))| ≤ C * 7 , Re(U (x * , ξ, τ (x * ))) ≥ C * *
= α 0 | ln(T -t(x * ))|, τ 1 = τ 0 (x * ), τ 2 = t * -t(x * ) T -t(x * ) , λ 5 = C * * 7 and Λ 5 = C * 7 , to derive that: for all ξ ∈ [-ξ 0 , ξ 0 ] U (x * , ξ, τ (x * , t * )) -Û (τ (x * , t * )) ≤ C(K 0 , Λ 5 λ 5 , δ 1 , ξ 0 ),
where C(K 0 , Λ 5 , λ 5 , δ 1 , ξ 0 ) → 0 as (δ 1 , ξ 0 ) → (0, +∞). Taking (δ 1 , ξ 0 ) → (0, +∞), (note that ξ 0 → +∞ as

0 → 0), we write U (x * , ξ * , τ (x * , t * )) -Û (τ (x * , t * )) ≤ δ 0 2 ,
this is a contradiction. If (II) occurs, we have for all |x| ∈ 0 8 , +∞ |u(x, t)| ≤ C( 0 , A, δ 0 , η 0 ), ∀t ∈ [0, t * ]. Indeed, we consider the two following cases:

+ The case where |x| ≥ 0 4 , using item (iii) if the definition of S(t), we derive the following

|u(x, t)| ≤ |u(x, 0)| + η 0 ≤ C(A, η 0 ), ∀t ∈ [0, t * ].
+ The case where |x| ∈ 0 8 , 0 4 , using item (ii) in the definition of S(t), we have |u(x, t)| ≤ C(δ 0 ) (T -t(x))

-1 p-1 ≤ C( 0 , δ 0 ), ∀t ∈ [0, t * ].
Then, we apply Lemma 4.3 with η ≤ η0

2 and σ = C( 0 , A, δ 0 , η 0 ), to derive the following

|u(x * , t * ) -u(x * , 0)| ≤ η 0 2 .
Therefore, (II) can not occurs. Thus, (4.27) follows. In addition to that, from (4.27), Proposition 4.1 and Lemma 4.5, we conclude the proof of item (i) of Proposition 3.9. Since, item (ii) follows from item (i) (see for instance the proof of Proposition 3.6, given in [START_REF] Duong | Profile for the imaginary part of a blowup solution for a complex-valued seminar heat equation[END_REF]). This concludes the proof of Proposition 3.9.

A. Cauchy problem for equation (1.1)

In this section, we giva a proof to a local Cauchy problem in time.

Lemma A.1 (A local Cauchy problem for a complex heat equation). Let u 0 be any function in L ∞ (R n , C) such that Re(u 0 (x)) ≥ λ, ∀x ∈ R n , (A.1) for some constant λ > 0. Then, there exists T 1 > 0 such that equation (1.1) with initial data u 0 , has a unique solution on (0,

T 1 ] . Moreover, u ∈ C ((0, T 1 ] , L ∞ (R n )) and Re(u(t)) ≥ λ 2 , ∀(t, x) ∈ [0, T 1 ] × R n .
Proof. The proof relies on a fixed-point argument. Indeed, we consider the space

X = C ((0, T 1 ], L ∞ (R n , C)) .
It is easy to check that X is an Banach space with the following norm

u X = sup t∈(0,T1] u(t) L ∞ , ∀u = (u(t)) t∈(0,T1] ∈ X.
We also introduce the closed set B + λ (0, 2 u 0 L ∞ ) ⊂ X defined as follows

B + λ (0, 2 u 0 L ∞ ) = {u ∈ X such that u X ≤ 2 u 0 L ∞ } ∩ u ∈ X|∀t ∈ (0, T 1 ], Re(u(t, x)) ≥ λ 2 a. e
Let Y be the following mapping

Y : B + λ (0, 2 u 0 L ∞ ) → X, where Y(u) = (Y(u)(t)) t∈(0,T1] is defined by Y(u)(t) = e t∆ (u 0 ) + t 0 e (t-s)∆ (u p (s))ds. (A.2)
Note that, when u ∈ B + λ (0, 2 u 0 L ∞ ) , u p is well defined as in (2.4) and (2.5). We claim that there exists T * = T * ( u 0 L ∞ , λ) > 0 such that for all 0 < T 1 ≤ T * , the following assertion hold:

(i) The mapping is reflexive on

B + λ (0, 2 u 0 L ∞ ) , meaning that Y : B + λ (0, 2 u 0 L ∞ ) → B + λ (0, 2 u 0 L ∞ ) . (ii) The mapping Y is a contraction mapping on B + λ (0, 2 u 0 L ∞ ) : Y(u 1 ) -Y(u 2 ) X ≤ 1 2 u 1 -u 2 X , for all u 1 , u 2 ∈ B + λ (0, 2 u 0 L ∞ ).
The proof for (i): By observe that, by using the regular property of operator e t∆ , we conclude that Y(u) ∈ C ((0,

T 1 ], L ∞ (R n , C) ∩ C(R n , C)) .
Besides that, for all u ∈ B + λ (0, 2 u 0 L ∞ ) we derive from (A.2) that for all t ∈ (0, T 1 ]

Y(u)(t) L ∞ = e t∆ (u 0 ) + t 0 e (t-s)∆ (u p (s))ds L ∞ ≤ e t∆ (u 0 ) L ∞ + t 0 e (t-s)∆ (u p (s))ds L ∞ ≤ u 0 L ∞ + t2 p u 0 p L ∞ . Hence, if we take T 1 ≤ 1 2 p u0 p-1 L ∞ then we have Y(u) X = sup t∈(0,T1] Y(u) L ∞ ≤ 2 u 0 L ∞ .
Now, let us note from (A.1) that Re e t∆ (u 0 ) = e t∆ (Re(u 0 )) ≥ e t∆ (λ) = λ.

Therefore, from (A.2) for all (t, x) ∈ (0,

T 1 ] × R n Re(Y(u)(t, x)) ≥ λ - t 0 e (t-τ )∆ (u p )(τ )dτ L ∞ . Note that, t 0 e (t-τ )∆ (u p )(τ )dτ L ∞ ≤ t2 p u 0 p L ∞ . So, if T 1 ≤ λ 2 p+1 u0 L ∞ , then for all t ∈ (0, T 1 ] × R n Re(Y(u)(t, x)) ≥ λ 2 .
Therefore, Y(u) ∈ B + λ (0, 2 u 0 L ∞ ) . The proof of (ii): We first recall that the function G(u) = u p , u ∈ C is analytic on

u ∈ C such that Re(u) ≥ λ 2 .
Then, there exists

C 2 ( u 0 L ∞ , λ) > 0 such that Y(u 1 ) -Y(u 2 ) X = sup t∈(0,T1] t 0 e (t-s)∆ (u p 1 -u p 2 ) (s)ds L ∞ ≤ T 1 C 2 sup t∈(0,T1] u 1 -u 2 L ∞ .
Then, if we impose

T 1 ≤ 1 2C 2 ,
(ii) follows.

We now choose T * = min

1 2 p u0 p-1 L ∞ , λ 2 p+1 u0 p L ∞ , 1 2C2 .
Then, for all T 1 ≤ T * , item (i) and (ii) hold. Thanks to a Banach fixed-point argument, there exists a unique u ∈

B + λ (0, 2 u 0 L ∞ ) such that Y(u)(t) = u(t), ∀t ∈ (0, T 1 ],
and we easily check that u(t) satisfies equation (1.1) for all (0, T 1 ] with u(0) = u 0 . Moreover, from the definition of

B + λ (0, 2 u 0 L ∞ ) we have Re(u)(t, x) ≥ λ 2 .
This concludes the proof of Lemma A.1.

B. Some Taylor expansions

In this section appendix, we state and prove several technical and straightforward results needed in our paper.

Lemma B.1 (Asymptotics of B1 , B2 ). We consider B1 ( w1 , w 2 ) as in (2.11), (2.12). Then, the following holds:

B1 ( w1 , w 2 ) = p 2κ w2 1 + O(| w1 | 3 + |w 2 | 2 ), (B.1) B2 ( w1 , w 2 ) = p κ w1 w 2 + O | w1 | 2 |w 2 | + O |w 2 | 3 . (B.2)
as ( w1 , w 2 ) → (0, 0).

Proof. The proof of (B.1) is quite the same as the proof of (B.2). So, we only prove (B.2), hoping the reader will have no problem to check (B.1) if necessary. Since, κ = (p -1) -1 p-1 > 0, we derive κ + w1 > 0 when w1 is near 0, so we can write B 2 ( w1 , w 2 ) as follows B2 ( w1 , w 2 ) = (κ + w1 ) 

= (I) + (II).

In addtion to that, we have the fact

sin(px) -px = O(|x| 3 ), w 2 (κ + w1 ) 2 + w 2 2 = O(|w 2 |),
as x → 0 and ( w1 , w 2 ) → (0, 0). Plugging these estimates in (II), we ontain

(II) = O(|w 2 | 3 ).
as ( w1 , w 2 ) → (0, 0). For (I), we use a Taylor expansion for ((κ + w1 ) 2 + w 2 2 ), around ( w1 , w 2 ) = (0, 0) :

((κ + w1 ) 2 + w 2 2 ) p 2 = 1 p -1 + (p -1) κ(p -1) w1 + O(| w -1| 2 ) + O(|w 2 | 2 ).
Plugging this in (I), we derive the following:

(I) = p κ w1 w 2 + O(| w1 | 2 w 2 ) + O(|w 2 | 3 ),
as ( w1 , w 2 ) → (0, 0). From the estimates of (I) and (II), we conclude the Lemma.

IN the following lemma, we aim at giving bounds on the principal potential V and the potentials V i,j :

Lemma B.2 (The potential functions V and V j,k with j, k ∈ {1, n}). We consider (ii) The potential functions V j,k with j, k ∈ {1, 2} satisfy the following

V, V 1,1 , V 1,2 , V
V 1,1 L ∞ + V 2,2 L ∞ ≤ C s 2 , V 1,2 L ∞ + V 2,1 L ∞ ≤ C s , |V 1,1 (y, s)| + |V 2,2 (y, s)| ≤ C(1 + |y| 4 ) s 4 , |V 1,2 (y, s)| + |V 2,1 (y, s)| ≤ C(1 + |y| 2 ) s 2 ,
for all s ≥ 1 and y ∈ R n .

Proof. We note that the proof of (i) was given in Lemma B.1, page 1270 in [START_REF] Nguyen | Finite degrees of freedom for the refined blow-up profile for a semilinear heat equation[END_REF]. So, it remains to prove item (ii). Moreover, the technique for these estimates is the same, so we only give the proof to the following estimates:

V 1,1 L ∞ + V 2,2 L ∞ ≤ C s 2 , (B.6) |V 1,1 (y, s)| + |V 2,2 (y, s)| ≤ C(1 + |y| 4 ) s 4 . (B.7)
+ The proof of (B.6): We recall the expression of V 1,1 and V 2,2 :

V 1,1 = ∂ u1 F 1 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) -pΦ p-1 1 , V 2,2 = ∂ u2 F 2 (u 1 , u 2 )| (u1,u2)=(Φ1,Φ2) -pΦ p-1 1 ,
where Φ 1 , Φ 2 are given by (3.4) and (3.7). Hence, we can rewrite V 1,1 and V 2,2 as follows

V 1,1 = p(u 2 1 + u 2 2 ) p 2 u 1 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 -u 2 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 -pΦ p-1 1 , V 2,2 = p(u 2 1 + u 2 2 ) p 2 u 1 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 + u 2 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 -pΦ p-1 1 ,
We first estimate to V 1,1 , from the above equalities, we decompose V 1,1 into the following

V 1,1 = V 1,1,1 + V 1,1,2 + V 1,1,3 , (B.8) where V 1,1,1 = p Φ 2 1 + Φ 2 2 p-2 2 Φ 1 -pΦ p-1 1 , V 1,1,2 = p Φ 2 1 + Φ 2 2 p-2 2 Φ 1 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 -1 , V 1,1,3 = -p(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 2 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 .
As matter of fact, from the definitions of Φ 

V 1,1,2 and V 1,1,3 V 1,1,2 (., s) L ∞ + V 1,1,3 (., s) L ∞ ≤ C s 2 . (B.14)
For V 1,1,1 , using (B.9), we derive

|V 1,1,1 | = pΦ p-1 1 1 + Φ 2 2 Φ 2 1 p-2 2 -1 ≤ C s 2 .
This gives the following

V 1,1 (., s) L ∞ ≤ C s 2 .
We can apply the technique to V 2,2 to get a similar estimate as follows Therefore, it is sufficient to give the estimate on the domain {|y| ≤ 2K 0 √ s}. On this domain, we have the following: there existes

V 2,2 (., s) L ∞ ≤ C s 2 .
C(K 0 ) > 0 such that 1 C ≤ Φ 1 (y, s) ≤ C.
In addition to that, using the definition of Φ 2 given by (2.39), we derive the following

|Φ 2 (y, s)| ≤ C (|y| 2 + 1) s 2 , ∀(y, s) ∈ R n × [1, +∞). (B.15)
Then, from (B.8) we have

|V 1,1,2 (y, s)| ≤ |Φ 2 (y, s)| 2 ≤ C (1 + |y| 4 ) s 4 , |V 1,1,3 (y, s)| ≤ |Φ 2 (y, s)| 2 ≤ C (1 + |y| 4 ) s 4 .
We now estimate V 1,1,1 , thanks to a Taylor expansion of (Φ

2 1 + Φ 2 2 ) p-2 2 , around Φ 2 (Φ 2 1 + Φ 2 2 ) p-2 2 -Φ p-2 1 ≤ C|Φ 2 | 2 .
This directly yields

|V 1,1,1 (y, s)| ≤ C(K 0 )|Φ 2 | 2 ≤ C (1 + |y| 4 ) s 4 . So, |V 1,1 (y, s)| ≤ C (1 + |y| 4 ) s 4 , ∀y ∈ R n .
Moreover, we can proceed similarly for V 2,2 , and get

|V 2,2 (y, s)| ≤ C (1 + |y| 4 ) s 4 ∀y ∈ R n .
Thus, (B.7) follows. Now, we give some estimates on the nonlinear terms B 1 (q 1 , q 2 ) and B 2 (q 1 , q 2 ) Lemma B.3 (The terms B 1 (q 1 , q 2 ) and B 2 (q 1 , q 2 )). We consider B 1 (q 1 , q 2 ), B 2 (q 1 , q 2 ) as defined in (3.8) and (3.9), respectively. For all A ≥ 1, there exists s 9 (A) ≥ 1 such that for all s 0 ≥ s 9 (A), if (q 1 , q 2 )(s) ∈ V A (s) and q 1 (s) + Φ 1 (s) ≥ 1 2 e -s p-1 for all s ∈ [s 0 , s 1 ], then, the following holds: for all s ∈ [s 0 , s 1 ],

|χ(y, s)B 1 (q 1 , q 2 )| ≤ C |q 1 | 2 + |q 2 | 2 , (B.16) |χ(y, s)B 2 (q 1 , q 2 )| ≤ C |q 1 | 2 s + |q 1 ||q 2 | + |q 2 | 2 , (B.17) B 1 (q 1 , q 2 ) L ∞ ≤ CA 4 s p 2 , (B.18) B 2 (q 1 , q 2 ) L ∞ ≤ CA 2 s 1+min( p-1 4 , 1 2 
)

, (B.19)
where χ(y, s) is defined as in (3.12).

Proof. We first would like to note that the condition q 1 (s) + Φ 1 (s) ≥ 1 2 e -s p-1 is to ensure that the real part w 1 = q 1 (s) + Φ 1 (s) > 0. Then, (2.2) holds and F 1 , F 2 which iare involved in the definition of B 1 , B 2 , are well-defined (see (2.4)). For the proof of Lemma B.3, we only prove for (B.17) and (B. [START_REF] Merle | Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension[END_REF]), because the other ones follow similarly.

+ The proof for (B.17): Using the fact that the support of χ(y, s) is {|y| ≤ 2K 0 √ s}, it is enough to prove (B.17) for all {|y| ≤ 2K 0 √ s}. Since we have (q 1 , q 2 ) ∈ V A (s), we derive from item (ii) of Lemma 3.2 and the definition of Φ

1 , Φ 2 that 1 C ≤ q 1 + Φ 1 ≤ C, |q 2 + Φ 2 | ≤ C s .
and

|q 1 | ≤ CA √ s , |q 2 | ≤ CA 2 s p 1 +2 2 , ∀|y| ≤ 2K 0 √ s. (B.20)
In addition to that, we write B 2 (q 1 , q 2 ) as follows:

B 2 (q 1 , q 2 ) = F 2 (Φ 1 + q 1 , Φ 2 + q 2 ) -F 2 (Φ 1 , Φ 2 ) -∂ u1 F 2 (q 1 + Φ 1 , q 2 + Φ 2 )q 1 -∂ u2 F 2 (q 1 + Φ 1 , q 2 + Φ 2 )q 2 .
where

F 2 (u 1 , u 2 ) = u 2 1 + u 2 2 p 2 sin p arcsin u 2 u 2 1 + u 2 2 .
Using a Taylor expansion for the function F 2 (q 1 + Φ 1 , q 2 + Φ 2 ) at (q 1 , q 2 ) = (0, 0), we derive the following

F 2 (q 1 + Φ 1 , q 2 + Φ 2 ) = j+k≤4 1 j!k! ∂ j+k q j 1 q k 2 (F 2 (q 1 + Φ 1 , q 2 + Φ 2 )) (q1,q2)=(0,0) q j 1 q k 2 + + j+k=5 G j,k (q 1 , q 2 )q j 1 q k 2 ,
where

G j,k (q 1 , q 2 ) = 5 j!k! 1 0 (1 -t) 4 ∂ 5 q j 1 q k 2 (F 2 (Φ 1 + tq 1 , Φ 2 + tq 2 ))dt.
In particular, we have

|G j,k (q 1 , q 2 )| ≤ C, ∀j + k = 4.
As a matter of fact, we have

∂ j+k q j 1 q k 2 (F 2 (q 1 + Φ 1 , q 2 + Φ 2 )) (q1,q2)=(0,0) = ∂ j+k u j 1 u k 2 F 2 (u 1 , u 2 ) (u1,u2)=(0,0) (B.21)
Therefore, from (B.20), we have

F 2 (q 1 + Φ 1 , q 2 + Φ 2 ) - j+k≤3 1 j!k! ∂ j+k u j 1 u k 2 F 2 (u 1 , u 2 ) (u1,u2)=(Φ1,Φ2) q j 1 q k 2 ≤ C 5 j=0 |q j 1 q 5-j 2 | ≤ C |q 1 | 2 s + |q 1 ||q 2 | + |q 2 | 2 .
In addition to that, we have the following fact,

|∂ j+k u j 1 u k 2 F 2 (u 1 , u 2 ) (u1,u2)=(Φ1,Φ2) | ≤ C, ∀j + k ≤ 3,
and for all 1 ≤ j ≤ 4, we have

∂ j u j 1 F 2 (u 1 , u 2 ) (u1,u2)=(Φ1,Φ2) ≤ C s .
This concludes (B.17).

The proof of (B.19): We rewrite B 2 (q 1 , q 2 ) explicitly as follows:

B 2 (q 1 , q 2 ) = (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 p 2 sin p arcsin q 2 + Φ 2 (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 -(Φ 2 1 + Φ 2 2 ) p 2 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 -p Φ 2 1 + Φ 2 2 p-2 2 Φ 1 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 -Φ 2 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 q 1 -p Φ 2 1 + Φ 2 2 p-2 2 Φ 2 sin p arcsin Φ 2 2 1 + Φ 2 2 + Φ 1 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 q 2 .
Then, we decompose B 2 (q 1 , q 2 ) as follows:

B 2 (q 1 , q 2 ) = B 2,1 (q 1 , q 2 ) + B 2,2 (q 1 , q 2 ) + B 2,3 (q 1 , q 2 ) + B 2,4 (q 1 , q 2 ) + B 2,5 (q 1 , q 2 ) + B 2,6 (q 1 , q 2 ), where

B 2,1 (q 1 , q 2 ) = p(q 2 + Φ 2 ) (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 p-1 2 -p(Φ 2 1 + Φ 2 2 ) p-1 2 Φ 2 (B.22) -p Φ 2 1 + Φ 2 2 p-2 2 Φ 1 q 2 , B 2,2 (q 1 , q 2 ) = ((q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 ) p 2 sin p arcsin q 2 + Φ 2 (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 - p(q 2 + Φ 2 ) (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 , (B.23) B 2,3 (q 1 , q 2 ) = Φ 2 1 + Φ 2 2 p 2 pΦ 2 Φ 2 1 + Φ 2 2 -sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 , (B.24) B 2,4 (q 1 , q 2 ) = p(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 1 1 -cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 q 2 , (B.25) B 2,5 (q 1 , q 2 ) = p Φ 2 1 + Φ 2 2 p-2 2 Φ 2 cos p arcsin Φ 2 Φ 2 1 + Φ 2 2 -Φ 1 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 q 1 , (B.26) B 2,6 (q 1 , q 2 ) = -p(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 2 sin p arcsin Φ 2 Φ 2 1 + Φ 2 2 q 2 . (B.27)
we prove that: for all y ∈ R n :

|B 2,j (q 1 , q 2 )| ≤ CA 2 s 1+min( p-1 4 , 1 2 ) 
, ∀j = 1, ..., 6.

We now aim at an estimate on B 2,1 (q 1 , q 2 ): We first need to prove the following:

(Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-1 2 ≤ C |Z| min( p-1 2 ,1) , (B .28) 
where |Z| = 2q 1 Φ 1 + 2q 2 Φ 2 + q 2 1 + q 2 2 . Note that Z is bounded. On the other hand, we have Φ

1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 = (Φ 2 1 + Φ 2 2 + Z) p-1 2 . Then, if p-1 2 ≥ 1, using a Taylor expansion of the function (Φ 2 1 + Φ 2 2 + Z) p-1 2 
around Z 0 = 0 (note that Φ 2 1 + Φ 2 2 is uniformly bounded), we obtain the following:

(Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-1 2 ≤ C |Z| , which yields (B.28). If p-1 2 < 1, then, we have (Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-1 2 = Φ 2 1 + Φ 2 2 p-1 2 (1 + ξ) p-1 2 -1 , where ξ = Z Φ 2 1 + Φ 2 2 .
In particular, we have ξ ≥ -1. In addition to that, we have the following fact: for all ξ ≥ -1

(1 + ξ) p-1 2 -1 ≤ C |ξ| p-1 2 (B.29)
Therefore, (B.29) gives the following

(Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 -(Φ 2 1 + Φ 2 2 ) p-1 2 ≤ C Φ 2 1 + Φ 2 2 p-1 2 Z Φ 2 1 + Φ 2 2 p-1 2 ≤ C |Z| p-1 2 
.

Then, (B.28) follows. Using (q 1 , q 2 )(s) ∈ V A (s) and Z = 2Φ 1 q 1 + 2Φ 2 q 2 + q 2 1 + q 2 2 , we write

Z L ∞ ≤ CA 2 √ s , ∀s ≥ 1.
So, we deduce from (B.28) that

pΦ 2 ((Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 ) p-1 2 -pΦ 2 (Φ 2 1 + Φ 2 2 ) p-1 2 L ∞ ≤ CA 2 s 1+min( p-1 4 , 1 2 ) 
. (B.30)

Using (B.28), we have the following

(Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 -(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 1 L ∞ ≤ CA 2 s min( p-1 4 , 1 2 ) 
. (B.31) Indeed, we have

(Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 1 ≤ (Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-1 2 
+ (Φ 2 1 + Φ 2 2 ) p-1 2 
-(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 1 ≤ CA 2 s min ( p-1 2 ,1 ) 2 + C s 2 .
Then, (B.31) holds.

On the other hand, using (B.31) and the following

q 2 (., s) L ∞ ≤ CA 3 s p 1 +2 2 , p 1 > 0,
we conclude that

pq 2 (Φ 1 + q 1 ) 2 + (Φ 2 + q 2 ) 2 p-1 2 -(Φ 2 1 + Φ 2 2 ) p-2 2 Φ 1 L ∞ ≤ CA 2 s 1+min( p-1 4 , 1 2 ) , (B.32) 
provided that s ≥ s 1,9 (A). From (B.30) and (B.32), we have

B 2,1 (q 1 , q 2 ) L ∞ ≤ CA 2 s 1+min( p-1 4 , 1 2 ) 
.

(B.33)

We next give a bound to B 2,2 (q 1 , q 2 ) : Using the following fact

|sin(p arcsin x) -x| ≤ C|x| 3 , ∀|x| ≤ 1,
we derive the following sin p arcsin

q 2 + Φ 2 (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 - p(q 2 + Φ 2 ) (q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 ≤ C |(q 2 + Φ 2 )| 3 ((q 1 + Φ 1 ) 2 + (q 2 + Φ 2 ) 2 ) 3 2 
.

Plugging the above estimate into B 2 (q 1 , q 2 ), we deduce the following 3) , Using (q 1 , q 2 ) ∈ V A (s), it gives the following

|B 2,2 (q 1 , q 2 )| ≤ C (q 1 + Φ 1 ) 2 + (Φ 2 + q 2 ) 2 p-3 2 |q 2 + Φ 2 | 3 , which yields |B 2,2 (q 1 , q 2 )| ≤ C|q 2 + Φ 2 | min(p,
|q 2 + Φ 2 | ≤ C s , provided that s ≥ s 2,9 (A). Then, B 2,2 (q 1 , q 2 ) L ∞ ≤ C s min(p,3) . (B.34) It is similar to estimate to B 2,3 (q 1 , q 2 ) B 2,3 (q 1 , q 2 ) L ∞ ≤ C s 3 . (B.35)
We estimate to B 2,4 (q 1 , q 2 ), using the following

|1 -cos(p arcsin x)| ≤ C|x| 2 , ∀|x| ≤ 1, we write |B 2,4 (q 1 , q 2 )| ≤ C Φ 2 Φ 1 2 L ∞ q 2 L ∞ ≤ CA 3 s 3 . Then, we derive that B 2,4 (q 1 , q 2 ) L ∞ ≤ CA 3 s 3 . (B.36)
We also estimate to B 2,5 , B 2,6 as follows: 

B 2,5 (q 1 , q 2 ) L ∞ ≤ CA 2 s 3 2 , (B.37) B 2,6 (q 1 , q 2 ) L ∞ ≤ CA 3 s 2 . (B.
≥ 1 R 1 (., s) L ∞ (R n ) ≤ C s , R 2 (., s) L ∞ (R n ) ≤ C s 2 .
Proof. The proof for R 1 is quite the same as the proof for R 2 . For that reason, we only give the proof of the estimates on R 2 . This means that, we need to prove the following estimates:

R 2 (y, s) = - n(n + 4)κ (p -1)s 3 + R2 (y, s), (B.39) with | R2 (y, s)| ≤ C(1 + |y| 6 ) s 4 , ∀|y| ≤ 2K 0 √ s. and R 2 (., s) L ∞ ≤ C s 2 . (B.40)
We recall the definition of R 2 (y, s): 

R 2 (y, s) = ∆Φ 2 - 1 2 y • ∇Φ 2 - Φ 2 p -1 + F 2 (Φ 1 , Φ 2 ) -∂ s Φ 2 ,
-Φ p-1 1 
) .

It is similar to the proofs of estimations given in the proof of Lemma B. In addition to that, we introduce R2 as follows:

R2 (y, s) = ∆Φ 2 - 1 2 y • ∇Φ 2 - Φ 2 p -1 + pΦ p-1 1 Φ 2 -∂ s Φ 2 .
Then, we aim at proving the following: R2 (y, s) + n(n + 4)κ (p -1)s 

C. Preparation of initial data

Here, we here give the proof of Lemma 3.7. We can see that part (II) directly follows from item (i) of part (II). The techniques of the proof are given in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF] and [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF]. Although those papers are written in the real-valued case, unlike ours, where we handle the complex-valued case, we reduce in fact to the real case, for the real and the imaginary parts. In addition to that, the set D K0,A,s0 is the product of two parts, the first one depends only on d 1 , and the other one depends only on d 2 . Moreover, the real part is almost the same as the initial data in the Vortex model in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF], except for the new term 1, but this term is very small after changing to similarity variabl: e -s p-1 . In fact, handling the imaginary part is easier than handling the real part. For those reasons, we kindly refer the reader to Lemma 2.4 in [START_REF] Merle | Reconnection of vortex with the boundary and finite time quenching[END_REF] and Proposition 4.5 in [START_REF] Tayachi | Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term[END_REF] for the proof of item (i) of (I) and (II). So, we only prove that the initial data satisfies item (ii) in definition of S(0) (the item (iii) is obvious). Let us consider T > 0, K 0 , α 0 , 0 , δ 1 which will be suitably chosen later, then we will prove that for all |x| ∈ K0 It is very easy to estimate for (C.8) for 0 small enough. We now estimate (C.9): We rewrite U 2 (x, ξ, τ 0 ) by using (3.30) as follows: as |x| → 0, we derive that, there exists α 3,3 (K 0 , δ 1 ) such that for all α 0 ≤ α 3,3 , there exists 3,3 (K 0 , α 0 , δ 1 ) such that for all 0 ≤ 3,3 , for all x ∈ 99 100 R(0), 0 and for all |ξ| ≤ 2α 0 | ln θ(x)|, we obtain

|(II 1 )| ≤ δ 1 2 .
It remains to bound (II 2 ). From (C.3), the fact that |x| ≥ 99 100 R(0) and the monotonicity of θ(x), we have

|(II 2 )| ≤ θ(0) θ(R(0))
≤ C| ln θ(0)| -(p-1) ≤ δ 1 2 , provided that T ≤ T 4,3 (K 0 , δ 1 ). This gives (C.1), and concludes the proof of Lemma 3.7.

8 T 8 T

 88 | ln T |, we have Re(u(x, 0)) ≥ 1. Now, if |x| ≥ K0 | ln T |, then we have φ 1,K0,A,d1 (y, s 0 ) = 0. Since Φ 1 (y, s 0 ) > 0 from(2.39) and U * (x) > 0 from (3.33), we directly see from the definition (3.29) for Re(u(0)) that Re(u(x, 0)) ≥ 1.

1 4 and obtain: sup |ξ|≤ 1 2 | 1 4 1 4

 1211 .48) where F 2 is defined in(2.4). Besides that, from (3.39) and (3.47), we can apply Lemma 3.10 toU when |ξ| ≤ | ln(T -t 0 (x 0 ))| ln(T -t0(x0))| ,τ ∈[0,1) |U (x 0 , ξ, τ )| ≤ C.(3.49)and we aim at proving for V 2 (x 0 , ξ, τ ) that sup|ξ|≤ 1 16 | ln(T -t0(x0))| ,τ ∈[0,1) |V 2 (x 0 , ξ, τ )| ≤ C.(3.50)+ The proof for (3.50): We first use (3.49) to derive the following rough estimate:

  and ln(T -t 0 (x 0 )) ∼ 2 ln(|x 0 |), as x 0 → 0. (3.71) Plugging (3.71) into (3.69) and (3.70), we get the conclusion of item (ii) of Theorem 1.1.

  ξ, τ ) satisfies equation (3.47), then |U (x, ξ, τ )| ≤ C * 7 (p) and Re (U (ξ, τ )) ≥ C * * 7 (K 0 , p), where U (ξ, τ ) is defined as in (3.20), t(x) is defined in (3.21), and C * 7 depends only on the parameter p and C * * 7 (K 0 , p) depends on the parameters K 0 and p. (ii) For all |ξ| ≤ 2α 0 | ln(T -t(x))|, if we define

4 T 2 0 | ln θ 0 | p 2 . (C. 2 ) 2 0θ 0 | 2 0θ 0 | 1 p- 1 U 1 U 2 2 x 4 , 4 , 4 , 4 ,

 42222020111224444 | ln T |, 0 and |ξ| ≤ 2α 0 | ln(T -t(x))| and τ 0 (x) = -t(x) T -t(x) , we have U (x, ξ, τ 0 (x)) -Û (τ 0 (x)) ≤ δ 1 . (C.1)We now introduce some neccessary notations for our proof,θ 0 = T, r(0) = K 0 4 θ 0 | ln(θ 0 )| and R(0) = θ 1Then, we have the following asymptotics:θ(r(0)) ∼ θ 0 , θ (R(0)) ∼ 16 K ln θ 0 |, θ (2R(0)) ∼ 64 K ln θ 0 | p-1 , (C.3) ln θ(r(0)) ∼ ln θ(R(0)) ∼ ln θ(2R(T )). (C.4)In addition to that, if α 0 ≤ K0 16 and 0 ≤ 2 3 C * , where C * is introduced in (3.33), then, from the definition (3.21) and |x| ∈ [r(0), 0 ] , and for all |ξ| ≤ 2α 0 | ln θ(x)|, with θ(x) = T -t(x), we have ξ θ(x) (3.20), (3.4) and definition of χ 1 and |ξ| ≤ 2α 0 θ(x) wa haveU (x, ξ, τ 0 ) = U 1 (x, ξ, τ 0 ) + iU 2 (x, ξ, τ 0 ),whereU 1 (x, ξ, τ 0 ) = (I)χ 1 (x + ξ θ(x)) + (II)(1 -χ 1 (x + ξ θ(x))) + (III), * x + ξ θ(x) , (III) = (θ(x)) 1 p-(x, τ, τ 0 ) = θ+ ξ θ(x) √ T -t 0 , | ln(T -t 0 )| ,The conclusion of (C.1) follows from the 4 following estimates:(I) -Û (τ 0 ) ≤ δ 1 for all |x| ∈ r(0),2100 99 R(0) and for all |ξ| ≤ 2α 0 θ(x), (C.6) (II) -Û (τ 0 ) ≤ δ 1 for all |x| ∈ 99 100 r(0), 0 and for all |ξ| ≤ 2α 0 θ(x), for all |x| ∈ [r(0), 0 ] and for all |ξ| ≤ 2α 0 θ(x), (C.8) |U 2 (x, ξ, τ 0 )| ≤ δ 1 for all |x| ∈ r(0), 2 100 99 R(0) and for all |ξ| ≤ 2α 0 θ(x).(C.9)

|U 2 1 p- 1 1 .|U 2 1 0| ln T | ≤ δ 1 4 , 2 0 16 | 2 θ 2 0 16 |δ 1 4 , 4 | 2 | 4 | 2 | 4 | 2 | 1 ≤ 4 | 2 | 4 | 2 | 8 .

 211121421622164424242142428 (x, ξ, τ 0 )| = U 2 x, ξ, -t(x) T -t(x) |x + ξ θ(x)| 2 T | ln T | p -1 + |x + ξ θ(x)| 2 T | ln T |In addition to that, for all |x| ∈ r(0), 2 100 99 R(0) and |ξ| ≤ 2α 0 θ(x), we have|x + ξ √ x| 2 θ(x)| ln(θ 0 )| (x, ξ, τ 0 )| ≤ CK 2 pif T ≤ T 1,3 (K 0 , δ 1 , α 0 )and for all |x| ∈ r(0), 2 100 99 R(0) .The estimate of (C.6): We derive from the definition of Φ 1 in (2.39) and the definition of Û (τ ) in (3.59) that (I) -Û -t(x)In addition to that, from (3.21), we have(1 -2α 0 ) 2 K ln θ(x)| | ln θ 0 | ≤ x + ξ θ(x) (x)| ln θ 0 | ≤ (1 + 2α 0 ) 2 K ln θ(x)| | ln θ 0 | , ∀|ξ| ≤ 2α 0 θ(x). (C.10)Using the monotonicity of θ(x), we have for all |x| ∈ r(0),2 100 99 R(0) | ln r(0)| | ln θ 0 | ≤ | ln θ(x)| | ln θ 0 | ≤ | ln R(0)| | ln θ 0 | .Thanks to (C.3), we have| ln θ(x)| | ln θ 0 | ∼ 1 as T → 0. (C.11)This yields(I) -Û -t(x) θ(x) ≤ C(K 0 ) |x + ξ θ(x)| 2 θ(x)| ln θ 0 | -|x| ∈ r(0), 2 100 99 R(0) , |ξ| ≤ 2α 0 θ(x) as α 0 → 0 and T → 0. Hence, there exists α 2,3 (K 0 , δ 1 ) and T 2,3 (K 0 , δ 1 ) such that (I) -Û -t(x) θ(x) ≤ for all |x| ∈ r(0), 2 100 99 R(0) , |ξ| ≤ 2α 0 θ(x) provided that α 0 ≤ α 2,3 and T ≤ T 2,3 . This concludes the proof of (C.6).The estimate of (C.7): Let |x| ∈ 99 100 R(0), 0 . We use the definition of U * to rewrite (II) as follows (ln θ(x)| + ξ ln(x + ξ θ(x))| ln θ(x)| + ξ ln(x + ξ θ(x))| ln θ(x)| + ξ ln(x + ξ θ(x))| -C(K 0 )((II 1 ) + (II 2 )), where (II 1 ) = K0 ln θ(x)| + ξ ln(x + ξ θ(x))| -Let us give a bound to (II 1 ): Because |ξ| ≤ 2α 0 ln θ(x), we have |(II 1 )| ≤ K0 ln θ(x)| + 2α 0 ln θ(x) ln |x + 2α 0 θ(x)| ln θ(x)||| -Using the fact that ln θ(x) = ln(T -t(x)) ∼ 2 ln |x|, and | ln(|x + 2α 0 θ(x) ln θ(x)|)| = | ln |x + K 0 2 |x||| ∼ | ln |x||,

  2,1 and V 2,2 defined in (3.3) and (3.4) -(3.7). Then, the following holds: (i) For all s ≥ 1 and y ∈ R n , we have |V (y, s)| ≤ C,

	and					
	V (y, s) = -	(|y| 2 -2n) 4s	+ Ṽ (y, s),	(B.4)
	where Ṽ satisfies					
	| Ṽ (y, s)| ≤ C	(1 + |y| 4 ) s 2	, ∀s ≥ 1, |y| ≤ 2K 0	√	s.	(B.5)
	|V (y, s)| ≤	C(1 + |y| 2 ) s	,	(B.3)

  1 , Φ 2 , we have the following

	Φ 2 (., s) Φ 1 (., s) L ∞	≤	C s	,	(B.9)
	Φ 1 (., s) L ∞ ≤ C,	(B.10)
	Φ 2 (., s) L ∞ ≤	C s	,	(B.11)
	for all s ≥ 1 and				
	|cos(p arcsin x) -1| ≤ C|x| 2 ,	(B.12)
	|sin(p arcsin x) -x| ≤ C|x| 3 ,	(B.13)
	for all |x| ≤ 1. By using (B.9), (B.10), (B.11), (B.12) and (B.13), we get the following bound for	

  Then, we can rewrite R 2 as followsR 2 (y, s) = ∆Φ 2 -Φ 2 -∂ s Φ 2 + R * 2 (y, s),Using the defintions of Φ 1 , Φ 2 given in (2.39) and (2.40), we obtain the following:

		1 2	y • ∇Φ 2 -	Φ 2 p -1	+ pΦ p-1 1
	where						
	R * 2 (y, s) = Φ 2 1 + Φ 2 2	p 2 sin p arcsin	Φ 2 Φ 2 1 + Φ 2 2	-pΦ p-1 1	Φ 2 .
	|R * 2 (y, s)| ≤	Φ 2 1 + Φ 2 2	p 2	sin p arcsin	Φ 2 Φ 2 1 + Φ 2 2	-p	Φ 2 Φ 2 1 + Φ 2 2
	+ pΦ 2 ((Φ 2 1 + Φ 2 2 )	p-1 2	

  3, we can prove the following

	|R * 2 (y, s)|	≤	C(1 + |y| 6 ) s 4	, ∀|y| ≤ 2K 0	√	s,
		and				
	R * 2 (., s) L ∞	≤	C s 2 .			

  + The proof of (B.41): We first aim at expanding ∆Φ 2 in a polynomial in y of order less than 4 via the Taylor expansion. Indeed, ∆Φ 2 is given by Besides that, we make a Taylor expansion in the variablez = |y| √ s for p -1 + (p-1)2 It is similar to estimate the other termes in ∆Φ 2 as the above. Finally, we obtain As we did for ∆Φ 2 , we estimate similarly the other termes in R2 : for all |y| ≤ 2K √ s The proof (B.42): We rewrite Φ 1 , Φ 2 as follows Φ 1 (y, s) = R 1,0 (z) + where R 1,0 and R 2,1 are defined in (2.34) and (2.36), respectively. In addition to that, we rewrite R2 in termes of R 1,0 and R 2,1 , and we note that R 1,0 and R 2,1 satisfy (2.30) and (2.32). Then, it follows that | R2 (y, s)| ≤ C s 2 , ∀y ∈ R n . Hence, (B.42) follows. This concludes the proof of this Lemma.

										-	1 2	y • ∇Φ 2 +	κ|y| 2 (p -1)s 2 -	κ|y| 4 4(p -1)s 3 -	κ|y| 4 4(p -1)s 3	≤	C(1 + |y| 6 ) s 4	, (B.44)
											-		Φ 2 p -1	+	κ|y| 2 (p -1) 2 s 2 -	κ|y| 4 4(p -1) 2 s 3 -	2nκ (p -1) 2 s 2	≤	C(1 + |y| 6 ) s 4	, (B.45)
	pΦ p-1 1	Φ 2 -	pκ|y| 2 (p -1) 2 s 2 +	(2p -1)κ|y| 4 4(p -1) 2 s 3 -	nκ|y| 2 (p -1)s 3 +	2pnκ (p -1) 2 s 2 +	n 2 κ (p -1)s 3	≤	C(1 + |y| 6 ) s 4	, (B.46)
														-∂ s Φ 2 -	2κ|y| 2 (p -1)s 3 +	4nκ (p -1)s 3	≤	C(1 + |y| 6 ) s 4	. (B.47)
	Thus, we use (B.43), (B.44), (B.45), (B.46) and (B.47) to deduce the following
								R2 (y, s) +	n(n + 4)κ (p -1)s 3 ≤	C(1 + |y| 6 ) s 4	, ∀|y| ≤ 2K	√	s,
	and (B.41) follows								
	+ nκ 2ps	and Φ 2 (y, s) =	1 s	R 2,1 (z) -	2nκ (p -1)s 2 where z =	y √ s	,
														3	≤	C(1 + |y| 6 ) s 4	, for all |y| ≤ 2K 0	√	s	(B.41)
										R2 (., s) L ∞ (R n ) ≤	C s 2 .	(B.42)
	∆Φ 2 =	2n s 2 p -1 +	(p -1) 2 |y| 2 4ps		-p p-1	-	(p -1)|y| 2 s 3	p -1 +	4p (p -1) 2	s |y| 2	-2p-1 p-1
	-	(n + 2)(p -1)|y| 2 2s 3		p -1 +	(p -1) 2 4p	|y| 2 s	-2p-1 p-1	+	(2p -1)(p -1) 2 |y| 4 4ps 4	p -1 +	(p -1) 2 4p	|y| 2 s	-3p-2 p-1	.
														4p	|y| 2 s	-p p-1 when |z| ≤ 2K,
	and we get												
				p -1 +	(p -1) 2 |y| 2 4ps			-p p-1	-	κ p -1	+	κ 4(p -1)	|y| 2 s	≤	C(1 + |y| 4 ) s 2	, ∀|y| ≤ 2K	√	s.
	which yields											
	2n s 2 p -1 +	(p -1) 2 |y| 2 4ps	-p p-1	-	2nκ (p -1)s 2 +	nκ|y| 2 2(p -1)s 3 ≤	C(1 + |y| 4 ) s 4	≤	C(1 + |y| 6 ) s 4	, ∀|y| ≤ 2K	√	s.
					∆Φ 2 -	2nκ (p -1)s 2 +	nκ|y| 2 (p -1)s 3 + 2	k|y| 2 (p -1)s 3 ≤	C(1 + |y| 6 ) s 4	, ∀|y| ≤ 2K	√	s.	(B.43)
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