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In this paper, we suggest a new approach called the return function to deal with the determination of Bayesian-Nash equilibria in games of incomplete information. Whereas in the traditional approach players reply to each others' strategies, here each player replies to his own return function. In short, given a player's choice of action and the other players' strategies, the return function of that given player is the probability distribution of the outcome. Interestingly, we show that the dynamics of best-reply strategies, which are hard to compute in practice, are mapped to an observable and easier-to-compute dynamics of return functions. We propose a new algorithm for computing Bayesian-Nash equilibria, and illustrate its implementation on a cake-cutting problem. Finally, we prove the convergence of the dynamics of return functions to the Bayesian-Nash equilibrium under fairly general topological assumptions.

Introduction

Mechanism (or market) design has proven to be a successful approach for efficiently determining the value of a product or a service when there is no natural price that can be posted or negotiated for that product, as is the case for, e.g., a painting by Picasso, energy prices in a deregulated electricity market, or the exploitation rights for a hydrocarbon-rich basin. These examples, and many others, share the following features: (i) There is a finite number of strategic agents (players, bidders or claimers) interested in acquiring the object (product, service or resource). (ii) Each agent has a private value for the object under consideration, and does not know how much the other agents value the same object. For instance, the cost of producing a kilowatt is not the same for all electricity companies in a given market, and each company knows its own cost but only has incomplete knowledge of its competitors' costs. Similarly, a Picasso painting does not have the same value for all art collectors. (iii) The rules of the game are not given in advance, but are designed by an agent, called a mechanism designer, principal or regulator, who has an interest in the outcome. For instance, a public commission may auction off television airwaves to wireless carriers to create faster and more reliable networks, or to maximize its own revenues. A parent may ask children at a party their flavour preference to fairly allocate a heterogeneous birthday cake.

During the last two decades or so, important developments in market design have taken place for three main reasons: "(i) The creation by government agencies, private firms or industrial associations of a number of markets to privatize public assets, restructure deregulated industries, or enhance inter-firm relations; (ii) a renewed focus on strategic analysis and game theory that together with the emergence of experimental economics contributed to the establishment of market design as a serious research field in economics; (iii) and, most importantly, the explosive development of electronic business, e-business tools that can embed the most complex market rules and facilitate their deployment." [START_REF] Bourbeau | Design for optimized multi-lateral multi-commodity markets[END_REF]). The recent operations-research literature includes work on assignment problems: see, e.g., [START_REF] Su | Recipient choice can address the e ciency-equity trade-o in kidney transplantation: A mechanism design model[END_REF] for the kidney-transplant trade-off; Abdulkadirolu and Sönmez (2003) or [START_REF] Pathak | The mechanism design approach to student assignment[END_REF] for school choice; in supply chains, see, e.g., [START_REF] Jain | A queuing approach for inventory planning with batch ordering in multi-echelon supply chains[END_REF], Chen and Cheng (2012), [START_REF] Mes | Interaction between intelligent agent strategies for real-time transportation planning[END_REF]; and in revenue management, see, e.g., [START_REF] Vulcano | Optimal dynamic auctions for revenue management[END_REF], [START_REF] Manelli | Multidimensional mechanism design: Revenue maximization and the multiple-good monopoly[END_REF], [START_REF] Devenur | The adwords problem: Online keyword matching with budgeted bidders under random permutations[END_REF].

One approach to market design is Bayesian mechanism design, where the information about the types of agents is incomplete, but all agents and the principal have some beliefs about others' types. A belief is a probability distribution on the agents' types. This setting corresponds to a game with incomplete information, also known as a Bayesian game (see Harsnyi (1968a,b,c)), whose solution is called a Bayesian-Nash (BN) equilibrium. Finding BN equilibria is a very difficult task as it involves solving for agents' best-response strategies. Due to the revelation principle 1 [START_REF] Gibbard | Manipulation of voting schemes: A general result[END_REF], [START_REF] Holmstrom | On incentives and control in organizations[END_REF], [START_REF] Myerson | Incentive-compatibility and the bargaining problem[END_REF], [START_REF] Dasgupta | The implementation of social shoice rules: Some results on incentive compatibility[END_REF]), one can only confine one's attention to designing mechanisms whose equilibria consist of agents truthfully reporting their types.

In this paper, we propose a new approach, which we call the return function, to compute BN equilibria in mechanism design. In a nutshell, given a player's choice of action, the other players' strategies and the mechanism chosen by the market designer, the return function of that given player, is the probability distribution of the outcome. Given this return function, the expected utility of a player's outcome is then defined as a function of the player's type, of his action and of his return function. In particular, if a player has a good knowledge of his type and his return function, he can then determine his best course of action. Our formulation is fairly general and accounts for outcomes that cannot be defined deterministically.

We wish from the outset to highlight the following two intimately related contributions:

1. At a conceptual level, we introduce a new mathematical object, that is, the return function, which is defined for discrete (finite) strategy space as well as for continuous strategy space. The mechanism to be designed can be deterministic or stochastic, and a series of mathematical properties of the return function are derived in the paper. In particular, we show that a Bayesian-Nash equilibrium in return functions coincide with the classical Bayesian-Nash equilibrium in strategies.

2. At a computational level, the determination of Bayesian-Nash equilibria is based on implementing a best-reply dynamics of return functions, rather than of strategy profiles. We argue that inferences of return functions are usually information-theoretically and computationally more sensible than on strategies. A full analysis of the theoretical convergence of the return function is provided.

We shall illustrate our approach to compute BN equilibria with a cake-cutting problem, which is a metaphor of any resource-sharing problem that involves strategic agents. The setting is very general in the sense that the resource and the players' utility functions are assumed to be heterogenous.

The original motivation behind the theoretical development presented in this paper is a shift scheduling problem with employees' preferences, which was submitted by a firm designing optimization tools for companies operating in different sectors. Shift scheduling, which is an important problem in business, deals with assigning different shifts to different employees. This is a costminimization problem involving a series of constraints, with some of them stated in a labour contract. Now, suppose that an employer is willing to take into account the preferences of his employees when deciding the schedule. For instance, a parent may prefer to finish earlier his shift to spend more time with his kids, whereas another employee may prefer a night shift to be able to attend some classes in the afternoon. Accommodating these employees will undoubtedly lead to a higher cost than the optimal one, but the employer may believe this will lead to a good working atmosphere, which has an intangible value to the company. To keep it simple, suppose we have n employees and n shifts to be allocated. Without accounting for employees' preferences, the optimization problem of the employer is defined by min cost(x), subject to x = (x 1 , . . . , x n ) ∈ X, where X is the set of feasible shift allocations. One way for including employees' preferences is to define a set of feasible shift allocations with reasonable cost, e.g., X(α) = {x ∈ X | cost(x) ≤ α min cost(X)}, where α ≥ 1. Denote by a i the revealed preference of employee i (we shall refer to a i as agent's type in a Bayesian framework) and let u i (a i , x i ) be the utility that this employee obtains when he is allocated shift x i . Suppose that the employer's (mechanism designer's) objective is to max i∈N u i (a i , x i ), subject to x ∈ X(α). Then, we have a mechanism that has employees' preferences as an input, that is, (a 1 , . . . , a n ), and the allocation (x 1 , . . . , x n ) as an output. Of course, the mechanism designer would want the employees to reveal their true preferences, which are private information, and not gaming the system. The approach proposed here will guarantee that in equilibrium, each employee (player) will indeed behave truthfully. We note that our approach has a link with [START_REF] Rabinovich | Computing pure Bayesian-Nash equilibria in games with nite actions and continuous types[END_REF], where the fictitious-play algorithm is extended to compute pure-strategy Bayesian equilibria for games with continuous sets of types.

The rest of the paper is organized as follows: In Section 2, we introduce the model and the return function. Section 3 is devoted to the computation of Bayesian-Nash equilibria with the return function. In Section 4, we provide an illustration in the context of a cake-cutting problem. Section 5 discusses theoretical convergence of the return function, with assumptions that are backed through two examples, and Section 6 concludes.

Model and Equilibrium

Let N = {1, . . . , n} be the set of players and A the set of actions of player j ∈ N. Denote by a j an action of j, by a = (a 1 , . . . , a n ) ∈ A n the vector of all players' actions, and by a -j = (a 1 , . . . , a j-1 , a j+1,... , a n ) ∈ A n-1 the vector of the actions of all players other than j. Similar notations will be used throughout the paper for vectors of objects that refer to all players or to n -1 players.

The action profile a ∈ A n induces an outcome x from the set of outcomes X. This mapping is called a mechanism M, that is, M (a) = x ∈ X. To illustrate, x could be, e.g., the workers' schedule for a given week depending on their requests, the shares of a cake allocated to the different claimers according to their stated preferences, or the quantity of energy to be supplied the next day by the bidding electricity companies. Depending on the setting, the set X of outcomes thus may be finite or not.

Example 1. Party planning problem. Assume n persons are invited to a party, with some of them preferring quiet intimate parties, while others prefer crowded ones. How many guests should the host expect? In this setting, an action for a player is a decision to come or not. This can be modeled by A j = {0, 1}, where 1 corresponds to going to the party. An outcome in this setting is a number x j = i a i of attending guests. Here, X = {0, 1, . . . , n}, that is, a finite set.

Example 2. Cake-cutting problem. Consider a cake that contains a set K of homogenous portions. An outcome is a matrix

x = {x jk } ∈ [0, 1] N ×K ,
where x jk is the portion k ∈ K allocated to player j ∈ N . The set X of admissible outcomes (allocations) is infinite and given by

X = {x ∈ [0, 1] N ×K | ∀k ∈ K, j∈N x jk ≤ 1}.
One approach to allocating the cake would be to solve the following linear optimization problem:

max x u subject to : k∈K a jk x jk = u, ∀j ∈ N, (1) 
x ∈ X, where the coefficients a jk ≥ 0 are chosen by player j and must satisfy k∈K a jk = 1. This defines the set A of actions of player j. Now, the outcome determined by the optimization program can thus be regarded as a function M, which inputs action profile a and outputs a division x of the cake. (Note that if the above optimization problem has multiple solutions, then we will simply choose one of them randomly.)

In practice, it may not be possible to choose an allocation in a deterministic way, because of some inherent random events. For instance, the next day's electricity demand depends on temperature, which cannot be predicted with certainty. To reflect this, we let mechanism M be a function in ∆(X), where ∆(X) is the set of probability distribution on the set 2 of outcomes X. If the mechanism is deterministic, then M(a) would be a Dirac distribution. Each player j ∈ N is defined by his type θ j . For each player j, a utility function matches his type and the outcome with a real number, as follows:

u j (θ j , x) ≥ u j θ j , x for x x ,
where the symbol means preferred to. Let θ = (θ 1 , . . . , θ n ) ∈ Θ n , where Θ is the set of types, assumed to be the same for all players. As we are dealing with mechanisms M(a) ∈ ∆(X), we extend the domain of the definition of u j (θ j , .) to the set ∆(X) of probabilities on outcomes by considering that, for all θ j ∈ Θ and all x ∈ ∆(X),

u j (θ j , x) = E x∼x [u j (θ j , x)],
where x ∼ x means that the random variable x follows the probability x.

Example 3. In the party planning, we may assume, as an example, that each guest j has a utility function of the form u j (θ j , x) = (n-(θ j -x) 2 )1 a j =1 , where θj is, for instance, a uniform distribution on [0, n].

Example 4. In the cake-cutting problem, denote by θ jk ≥ 0 the utility of player j ∈ N for portion k ∈ K. Thus, the type of player j is the vector θ j , and his utility function over any subset x j of the cake is u j (θ j , x j ) = k∈K θ jk x jk . We normalize the utility function of each player for the whole cake to one. Therefore, if 1 K = {1} k∈K is the allocation of the cake, then u j (θ j ,

1 K ) = k∈K θ jk = 1. As a result, the set Θ of types is the polytope Θ = {θ j ∈ R K + | k∈K θ jk = 1}.
We assume that each player knows his type and has incomplete knowledge of the other players' types. Denote by θ ∈ ∆(Θ n ) the probability distribution on types of all players, by θj the probability distribution of player j's type and by θ-j ∈ ∆(Θ -j ) the probability distribution on all players' types but j's. These probabilities are called beliefs. We assume the beliefs to be common to the principal and the agents, and that the beliefs on different players' types are independent. Although this assumption is not uncommon in the literature, it is surely of interest to relax this assumption in future work to enlarge the approach to other games such as the affiliated auctions and global games. Example 5. An example of belief θ in the cake-cutting setting is the product of uniform distributions over the simplex Θ of R K . It is well-known that this uniform distribution can be obtained by drawing |K| random variables (ζ ik ) k∈K independently according to an exponential distribution of rate λ = 1, and by defining

θ ik = ζ ik / l∈K ζ il .
Remark 1. For clarity of exposition, we are assuming here that the set of actions, the set of types and the beliefs are the same for all players. Admittedly, this is not the most general formulation, but in principle, there is no conceptual difficulty in extending the analysis to the case where the players have different action sets. In particular, the assumption that the set of types is the same for all players can easily be relaxed by defining a set Θ j for each j ∈ N . As we will be considering beliefs, this would then be equivalent to saying that each player has a set of types Θ = j∈N Θ j with a nil distribution over Θ -Θ j .

Remark 2. Classical modeling of Bayesian games fix X = A n and M = id |A n , i.e., the mechanism is simply the identity of A n . Utilities u j (θ j , a 1 , . . . , a n ) are then functions of the type and the profile of actions. However, for many problems such as the cake-cutting problem, it is more natural to consider a set of outcomes, which is really what players are interested in, i.e., the actual parts of the cake that are allocated, rather than the announced preferences of the other players.

Denote by σ j a strategy of player j, that is, a mapping that associates (possibly stochastically) an action a j to a type, i.e., σ j (θ j ) = a j . Denote by Σ = ∆(A)

Θ the set of strategies of this player, where ∆(A) denotes the space of probability distributions on A. (Put differently, Σ is the set of functions from Θ to ∆ (A)). As for the set of actions, we assume, without any loss of generality, that the set of strategies is the same for all players. Let σ = (σ 1 , . . . , σ n ) ∈ Σ n .

The relationships among all the variables defined so far are shown in Figure 1. We end this section by recalling the definitions of best-reply (BR) strategies and Bayesian-Nash (BN) equilibria. Definition 1. The set of best-reply strategies σ BR j for player j to strategy profile σ -j is given by

BR Σ,j (σ -j ) = arg max σ BR j ∈Σ E θ∼ θ u j θ j , M(σ BR j (θ j ), σ -j (θ -j )) . (2) 
The set BR Σ (σ) of vectors σ BR of best-reply strategy profiles for all players is given by

BR Σ (σ) = σ BR ∈ Σ n | ∀j ∈ N, σ BR j ∈ BR Σ,j (σ -j ) . (3) 
The notation BR Σ is used to denote that this is an operator that takes elements from Σ and outputs a subset of Σ. This remark will be useful when we get to the return-function best-replies.

Definition 2. The set BN Σ of Bayesian-Nash equilibria is the set of strategy profiles that are best replies against themselves, i.e.,

BN Σ = σ BN ∈ Σ n | σ BN ∈ BR Σ (σ BN ) . (4) 

Return Function

For a strategy profile σ -j ∈ Σ -j , we associate to player j the return function ϕ σ j (•). This function maps an action a j of player j to the induced probability of outcome. The probability distribution of outcomes when player j plays action a j and other players use strategies σ -j , and when other player types follow the belief θ-j is given by

P ϕ σ j (a j ) ∈ U = E θ j ∼ θj P M(a j , σ -j ( θ-j )) ∈ U , (5) 
for all subsets U of X. Intuitively, the return function ϕ σ j (•) answers the following question asked by player j: If I do that, what could happen and with what probability? Answering this question then enables the player to choose the best-reply action to his return function. This means, as we shall see, that the return function contains all the information required to define the concept of a best-reply, and thus of Bayesian-Nash equilibria. Example 6. In the cake-cutting example, a return function for player j maps his action, that is, the vector (a jk ) k∈K of his revealed preferences, to the probability distributions over the allocation (x jk ) k∈K of the cake he will receive. Note that, in this setting, the mechanism M is symmetric, and the beliefs follow identical probability distributions due to our way of generating the vector θ j , j ∈ N . Thus, we may search for symmetric Bayesian-Nash equilibria, in which the return function ϕ j is independent of j, and therefore, we have ϕ j = ϕ for all j ∈ N .

Note that the return function is determined by the other players' strategies, as well as by the belief θ and the mechanism M. However, since the belief θ and the mechanism M are fixed once and for all (i.e., no updating is required), we simplify the notation by not expliciting the dependencies of the return function on these objects.

As each return function ϕ σ j = ϕ σ j (•) is a function that to an action a j associates a probability x ∈ ∆(X) on outcomes, it is an object of the space Φ = ∆(X) A . (Φ is the set of functions from A to ∆ (X)). In fact, we can extend our concept of return functions to any function ϕ ∈ Φ that maps actions to probabilities on outcomes, even when ϕ is not obtained from a strategy profile σ. This will be of interest to us later, as we will be focusing on the natural topology of the space Φ of return functions to prove the convergence of our algorithms for the computation of Bayesian-Nash equilibria.

The fact that some return functions are deduced from a strategy profile can then be reinterpreted by the mapping φ : Σ n → Φ n , which maps strategy profiles to return-function profiles for all players. This mapping is defined by

φ : σ = (σ 1 , . . . , σ n ) → ϕ σ = (ϕ σ 1 (•), . . . , ϕ σ n (•)). ( 6 
)
Before proceeding further, we would like to highlight three important features of the return functions:

1. They avoid some of the inherent complexities related to the beliefs profile and to the mechanism. More precisely, given the knowledge of σ, it is in practice very hard to compute best-reply strategies, especially if the number of players is large, if the beliefs are not simple distributions or if the mechanism is non-analytical, as is the case in the cake-cutting example.

In fact, in the case where the set of actions is finite but the set of types is not, like in Rabinovich et al. ( 2013), the return functions become finite-dimensional objects, as opposed to the set of strategies, and determining best-replies to them is a straightforward computation. But, as we will illustrate it through our cake-cutting example, even when the set of actions is infinite, and even in complex (and relevant in practice) cases, the return functions can still perform the task of computing best-replies.

2. As opposed to other players' types, a player's own action and his outcome are information that are usually available to him in practice. Consequently, a player can use observable data to infer his own return function. Put differently, our approach does not require to estimate other players' strategies, which may be information-theoretically not feasible, as types often remain private information, even after the end of the game.

3. From Figure 2, we clearly see that there is a correspondence (mapping φ) between the bestreply strategies and the best-reply return functions. The same can be noted for the Bayesian-Nash equilibrium (see Theorem 1 below for a more precise statement). This means that all the classical descriptions of Bayesian games using strategy profiles can be translated in terms of return functions, which we will now do.

Given a return function profile ϕ, the set of best-reply strategies for player j is given by

BR Φ→Σ,j (ϕ) = arg max σ j ∈Σ E θ j ∼ θj ,x∼ϕ j (σ j (θ j )) u j (θ j , x) . (7) 
From this, similarly to what has been done earlier, we define the set of best-reply strategy profiles BR Φ→Σ (ϕ). The notation BR Φ→Σ highlights the fact that it is a correspondence from Φ to Σ as depicted in Figure 2. Observe that this definition is consistent with previous ones for best-reply strategy profiles, because we have BR Φ→Σ (φ(σ)) = BR Σ (σ).

We can now reformulate the Bayesian game by focusing on return functions only, that is, by defining the set of best-reply return-function profiles to a return-function profile as follows:

BR Φ (ϕ) = φ(BR Φ→Σ (ϕ)) = {φ(σ) ∈ Φ n | σ ∈ BR Φ→Σ (ϕ)}. (8) 
A return-function profile ϕ BN ∈ BN Φ is then a Bayesian-Nash equilibrium if ϕ BN ∈ BR Φ (ϕ BN ).

Since BR Φ→Σ (φ(σ)) = BR Σ (σ), our construction leads to φ being a sort of morphism that preserves best-replies, in the sense that

σ BR ∈ BR Σ (σ) ⇒ φ(σ BR ) ∈ BR Φ (φ(σ)). ( 9 
)
This property is represented graphically by the commutativity of the diagram of Figure 2, where double arrows represent correspondences, i.e., matching onto the power set of the output set.

In particular, this property implies the preservation of Bayesian-Nash equilibrium.

Theorem 1. A return-function profile ϕ BN is a Bayesian-Nash equilibrium if and only if there exists a Bayesian-Nash strategy profile σ BN ∈ BN Σ such that ϕ BN = φ(σ BN ). In other words,

BN Φ = φ(BN Σ ). Proof. Let ϕ ∈ BN Φ . Then, ϕ ∈ BR Φ (ϕ), which means that ϕ ∈ φ(BR Φ→Σ (ϕ)). Thus, there exists σ ∈ BR Φ→Σ (ϕ) such that ϕ = φ(σ). But BR Φ→Σ (ϕ) = BR Φ→Σ (φ(σ)), thus σ ∈ BR Φ→Σ (φ(σ)) = BR Σ (σ). Therefore, σ ∈ BN Σ , which means that ϕ ∈ φ(BN Σ ),

and proves the first inclusion

BN Φ ⊆ φ(BN Σ ). Reciprocally, assume ϕ ∈ φ(BN Σ ). Then, ϕ = φ(σ), where σ ∈ BN Σ . Thus, σ ∈ BR Σ (σ), which means that σ ∈ BR Φ→Σ (φ(σ)) = BR Φ→Σ (ϕ). Thus, φ(σ) = ϕ ∈ φ(BR Φ→Σ (ϕ)) = BR Φ (ϕ).
This proves the second inclusion BN Φ ⊇ φ(BN Σ ), and concludes the proof. What is more, a sequence {σ i } i∈N , where σ i+1 ∈ BR Σ (σ i ), is associated to the sequence ϕ i = φ(σ i ) = ϕ σ i , which then satisfies ϕ i+1 ∈ BR Φ (ϕ i ). This sequence defines a best-reply dynamics for return functions, which will be studied in the last section of this paper. It is this dynamics that is a generalization of the approach used by [START_REF] Rabinovich | Computing pure Bayesian-Nash equilibria in games with nite actions and continuous types[END_REF]. Remark 3. In Rabinovich et al. ( 2013), the authors compute Bayesian-Nash equilibria when the set of actions is finite and the game is symmetric. Their approach consists in computing the probability distribution of each action played. This corresponds to defining X = A n , M = id |A n and ϕ(a) = (a, h σ (•)), where h σ (•) maps each action a to the probability h σ (a ) that a player will choose this action. Later on, the authors retain the case where the utility functions are affine in the type θ ∈ [0, 1]. In such a setting, the outcome, that is, the relevant information for the players, is reduced to the slope s and the intercept ι of the utility function. Thus, their approach corresponds to using the return function ϕ : a → (s, ι) ∈ R 2 . Since the set of actions is finite, the return function is equivalently represented by the vector L = (s a , ι a ) a∈A ∈ (R 2 ) A . Next, the authors provide an algorithm to compute -equilibria of a large class of auction problems.

Further, if φ is continuous, then the convergence of the return-function sequence is implied by the convergence of the strategy-profile sequence.

Theorem 2. If the mapping φ is continuous and if the sequence σ i converges to a Bayesian-Nash equilibrium σ BN , then the sequence ϕ i = φ(σ i ) also converges to a Bayesian-Nash equilibrium.

Proof. Since φ is continuous,

ϕ i = φ(σ i ) converges towards φ(σ BN ). Since σ BN ∈ BN Σ , we have φ(σ BN ) ∈ φ(BN Σ ) = BN Φ , which proves the theorem.
In the last section of this paper, we will show that for natural topologies on the two spaces (strategies and return functions), and given assumptions on the mechanism M, the function φ is continuous.

Remark 4. In some Bayesian games, the types of the players are interdependent, and therefore the type of player could be an argument of the return function. For simplicity, we will not explicit such a dependence here, but there is a priori no conceptual difficulty to include such a relation in this model. Clearly, this would complicate the estimation of the return function, but, depending on the structure of the problem, its interpolation might still be computationally feasible.

Remark 5. When all players j have the same beliefs θ-j about the other players' types and when the mechanism is symmetric, it is natural to assume that ϕ j (•) = ϕ (•) , ∀j ∈ N . We will provide an illustrative example where this is the case. This would also occur in games with a large number of players, where excluding a player will not fundamentally affect the probabilistic representation of the game for the other players.

Best-Reply Dynamics with the Return Function

In this section, we provide a best-reply-dynamics based algorithm to compute a Bayesian Nash equilibrium with the return function. The best-reply dynamics consists of iteratively computing best-replies to what was computed in the previous iteration, until some convergence is hopefully found. Whereas one usually determines a player's best-reply strategy to the other players' strategies, here, we shall compute (or, at least, estimate) a player's best-reply return function to the other players' return functions. In other words, we do not aim at learning players' strategies; rather, the learning is on the return functions.

More specifically, we propose to compute a sequence (ϕ i ) i∈N of return function profiles, following the idea of having ϕ i+1 ∈ Φ BR (ϕ i ). Instead of directly considering the players' strategies, our approach consists, at each iteration, in choosing a type profile θ according to the belief θ, and then maximizing u j θ j , ϕ i j (a j ) with respect to a j . This yields an action profile a, with which an outcome x can be computed. The way the a j 's and the x j 's are paired then informs us about the best-reply return function. Given enough of such samples, we eventually interpolate a best-reply return function.

If the convergence is met, then the resulting return function will be a best-reply to itself. Thus, it will be a Bayesian-Nash equilibrium. The corresponding equilibrium in terms of strategies can then be computed as the best-reply strategy to the Bayesian-Nash return function. 3Algorithm 1 sketches the main steps of the best-reply dynamics adapted to the use of the return function. Note that we have been purposely vague about each of the points of the algorithm. Better implementations of each point may vary depending on applications.

Algorithm 1 Best-Reply Dynamics with the Return Function

while the convergence criterion is not verified do (0) Create an empty list l i of observations. while the sample is not large enough do (1) Generate a type profile θ according to belief θ.

(2) Compute the actions a j maximizing the utility of the approximated return function u j θ j , ϕ i j (a j ) . (3) Given actions a, compute an outcome x, according to probability M (a). ( 4) Add (a, x) to list l i . end while (5) Infer the return functions ϕ i+1 j from the list l i of observations. (6) Increment i.

end while

The first and third steps of this algorithm are only as difficult as the problem's inputs, that is, the belief θ and the mechanism M. In some problems, the mechanism may require solving a large optimization problem, which may be quite difficult in itself. That being said, it is the second step that is most demanding in most applications, as it involves n non-linear optimization problems with a potentially large action space. To get around some of these difficulties, we will use some local optimization tools (e.g., a gradient-based method), interpolation and perturbation schemes. Finally, the fourth step represents the learning process used by a player to infer his return function. Remark 6. Algorithm 1 is very general and could apply as well to strategies. However, when mechanisms M are not easy to compute and have no remarkable mathematical properties, it is not clear how to compute best-response strategies to a given strategy profile. In particular, note that for a given type θ j , the best-response action is derived as arg max

a j ∈A E θ -j ∼ θ-j ,x∼M(a j ,σ -j (θ -j )) [u(θ j , x)] .
The mere computation of the expectation requires querying the mechanism M a large number of times, which may be undesirable if the computation time of the mechanism M is not very fast. The challenge is even greater, as the search for the optimal action a * j will probably require the exploration of numerous candidate values for a * j . Each candidate, will involve the computation of additional expectation terms, which corresponds to even more queries of mechanism M. The return function allows to shortcut the repeated use of the mechanism M. For mechanisms M with large computation time, such an approach will be clearly more efficient.

In the next section, we shall implement the second step by a basic tabu search, on a grid of diminishing size, while the fourth step will be essentially a basic radial basis function. More precisely, we interpolate the return function to compute u j (θ j , ϕ j (a j )) using observed values a j close to a j . This interpolation relies on an assumption of continuity of the return function ϕ j in a j . This is a realistic hypothesis, especially in the Bayesian setting, as the probability on types obtained through θ -j ∼ θ-j will smooth the return function through averaging. Denoting by d A (a j , a j ) the distance between the actions a j and a j and by w(d A (a j , a j )) the weight that decreases with distance, then the value of u j (θ j , ϕ j (a j )) is given by

u j (θ j , ϕ j (a j )) = (a j ,x j ) observed w(d A (a j , a j ))u j (θ j , x j ) (a j ,x j ) observed w(d A (a j , a j )) . ( 10 
)
The weight can be defined in different ways as long as it is decreasing in the distance between the two considered points. To illustrate, we retain in Section 4 w(d (a, a )) = 1/(1 + d(a, a )) 2 . Note that, other sophisticated interpolation methods can be considered, but this is not a main focus of the paper. For complex large-scale problems, it may be highly desirable to involve machine-learning algorithms, e.g., neural networks, as the estimation of the return function boils down to inferring a function from sample data.

Our algorithm belongs to the wide family of best-reply dynamics algorithms. These algorithms are known not to converge to a Nash equilibrium in general. However, in many relevant settings, convergence has been studied and proved, in, e.g., resource allocation games [START_REF] Feldman | Convergence of best-response dynamics in games with conicting congestion effects[END_REF]) or congestion games [START_REF] Fanelli | The speed of convergence in congestion games under best-response dynamics[END_REF]). Convergence has even been studied for weaker variants of the best-reply dynamics, e.g., for asynchronous best-reply dynamics [START_REF] Nisan | Asynchronous best-reply dynamics[END_REF]) or for better-reply dynamics [START_REF] Dindos | Better-reply dynamics and global convergence to nash equilibrium in aggregative games[END_REF]). When the best-reply dynamics does not converge, variants of the best-reply dynamics, e.g., like the Mann dynamics or the Ishikawa dynamics, may still converge (see, e.g., [START_REF] Tembine | Mean-field learning: a survey[END_REF]). Both of these dynamics rely on averaging the best-reply with the current strategy profile, in a manner similar to fictitious play, and they could be straightforwardly adapted to dynamics of return functions.

Besides, it can be argued that if a Nash equilibrium is hardly ever reached by a best-reply dynamics or a variant of it, then this Nash equilibrium is unlikely to be found by players as well. In particular, such a Nash equilibrium could be unstable, in the sense that if a player slightly deviates from the Nash equilibrium, then other players' best-reply strategies to this slight deviation may drive them away from the Nash equilibrium. One might argue that such unstable Nash equilibria are irrelevant in practice.

On the other hand, one (strong) way to characterize of the stability of a Nash equilibrium is by demanding it to be (locally) strictly contractive. In such a case, the Banach fixed-point theorem shows that the rate of convergence of the best-reply dynamics when caught around a (locally) strictly contractive equilibrium is linear, in the sense that the distance between the computed return function profile and the equilibrium is bounded by O((1 -ν) i ) at the i th iteration, where ν ∈ (0, 1). This rate of convergence is often regarded as very fast, and is typical of fixed-point algorithms.

However, such a convergence is only guaranteed when the best-reply dynamics can be computed exactly. In a Bayesian framework, especially when the beliefs and the mechanism do not allow for analytical computations, it may be impossible to perform exact implementations of the best-reply dynamics. In Section 5, we shall discuss convergence despite an inexact implementation of the best-reply dynamics.

Finally, let us briefly discuss the effects of the number of players. It does not seem that the number of players greatly affects the number of best-reply iterations required to converge. In fact, it even seems that, in the case where the number of players is larger, the estimator of the return function will undergo less variance. Moreover, at each iteration, by aggregating data from each player, we obtain more data to better estimate the return function. Overall, while increasing the number of players increases linearly the computation time at each iteration, it seems that it also allows for significantly better estimations of the return function, and thus faster convergence of the computed best-reply dynamics.

Illustrative Example: A Cake-Cutting Problem

To illustrate the theory developed above, we will study in greater depth the example of the cakecutting problem we have been using to illustrate the concepts of Section 2. The cake cutting problem is of great use in operations research, as it allows the modelling of an assignment problem that includes the preferences of the agents involved. For instance, some shift-scheduling and matching problems fit the cake-cutting problem (CCP) formalism. This problem can be stated as follows: given a cake and a set of players having additive utility functions over the subsets of the cake, the problem is how to allocate the cake to optimize a certain objective, while satisfying some constraints, such as fairness. This class of problem has been the subject of numerous papers; see, e.g., Brams andTaylor (1995, 1996) 

A Simple Two-Player Example

In principle, the cake-cutting example we presented can be solved for any number of players and any set K. However, for the sake of graphical representation and analytical calculation, we first focus on the simplest possible setting of two players, and |K| = 2. Let a 1 = (a 11 , a 12 ) and a 2 = (a 21 , a 22 ). In this context, the optimization program (1) becomes max u [START_REF] Feldman | Convergence of best-response dynamics in games with conicting congestion effects[END_REF] subject to :u = a 11

x 11 + (1 -a 11 )x 12 , (12) 
u = a 21 (1 -x 11 ) + (1 -a 21 )(1 -x 12 ), (13) 
x 11 , x 12 ≥ 0, [START_REF] Harsanyi | Games with incomplete information played by Bayesian players part I. the basic model[END_REF] where x jk represents the portion k = 1, 2 allocated to player j = 1, 2. The description of the type θ j and the action a j of each player j can now be reduced to one real variable each in [0, 1] that is, θ j1 and a j1 . As a result, a strategy σ j is a mapping from [0, 1] into [0, 1]. For clarity of exposition, let us re-scale values of θ and a by multiplying them all by 100. The equations [START_REF] Gibbard | Manipulation of voting schemes: A general result[END_REF][START_REF] Gibbs | On choosing and bounding probability metrics[END_REF] then imply the equality

(a 11 + a 21 )x 11 = a 21 + (100 -a 21 )(1 -x 12 ) -(100 -a 11 )x 12 , (15) 
Using Algorithm 1, we compute a Bayesian-Nash equilibrium. We have proceeded to 20 bestreply iterations. The sample sizes at the first iteration is 500, and it increases by 100 at each iteration.

Figure 3 represents the equilibrium strategies σ BN . More precisely, it stands for the best-reply strategy to the return function obtained after 20 iterations. In Figure 3, 200 dots have been obtained by randomly drawing a player's type, and computing the best-reply action to the return function obtained after 20 best-reply iterations. The x-axis is the player's weight for a portion, while the y-axis is his announced weight for the portion. Different portions k ∈ K of the cake are depicted by different colors of dots. The dotted diagonal line corresponds to the truthful strategy σ truth 1 .

As we can see in this figure, the equilibrium strategy σ BN j consists of overvaluing the portion he desires less, and undervaluing the portion he prefers. Let ϕ BN = φ(σ BN ).

The plain line in the figure represents a linear regression of the equilibrium strategy. It is given by σ BN j (θ j ) = 35 + 0.3θ j . Interestingly, this gives us a measure to analyze the convergence of the algorithm. Figure 4 displays the evolution of the linear regression slopes, as well as the corresponding average sum of squares.

It is important to notice that these figures show some convergence of the algorithm. The slopes stabilize at about 0.55, while the average sum of squares decreases stays around 10. However, it is to be expected that this average sum will actually never reach zero. After all, it is clear from Figure 3 that the Bayesian-Nash equilibrium does not involve affine strategies.

Analytical Analysis

In this simple example of two players and two attributes, using equation [START_REF] Harsanyi | Games with incomplete information played by Bayesian players part II. Bayesian equilibrium points[END_REF], the mechanism can be drawn as in Figure 5. The main diagonal of the square corresponds to the two players having identical utility functions, in which case there are numerous solutions, all yielding utilities of 50 for both players. The other diagonal is another discontinuity of the mechanism, which appears when the first player's preference for the first portion equals the second player's preference for the second portion. The two diagonals define four areas. In each area, the mechanism is defined analytically as a function of the players' actions, as represented in Figure 5. This will enable us to verify the validity of our numerical determination of the Bayesian-Nash equilibrium; first, by analytically computing the best-reply strategy to the interpolated Bayesian-Nash strategy, and next, by showing that this analytical best-reply strategy is close to the interpolated Bayesian-Nash strategy. The numerical value of a * min is approximately 35. Now, supposing that player 2 chooses to play the computed Bayesian-Nash equilibrium strategy, we can evaluate the return function for player 1, and write his payoff if he chooses action a 11 and has a type θ 1 : .

u 1 (θ 1 , ϕ BN (a 1 )) = θ 2 u 1 (θ 11 , M(a 1 , σ BN (θ 2 )))d θ2 , (16) 
Therefore, the level curves, for which u 1 (θ 11 , ϕ BN (a 1 )) is constant, are described by the following equation: The level curves for expected utility u 1 (θ 11 , ϕ BN (a 1 )), as functions of θ 11 and a 11 , at the Bayesian-Nash equilibrium are shown in Figure 6, where an approximated best-reply affine strategy is drawn in red. The best-reply action of player 1 is the action that maximizes the expected value of u 1 (θ 11 , ϕ BN (a 1 )), given a value of θ 11 . Therefore, if θ 11 = 20 for instance, the largest value he can obtain for u 1 (θ 11 , ϕ BN (a 1 )) is 75, which is reached by choosing action a 11 = 35. As we can easily see, the best-reply strategy does not coincide with the computed Bayesian-Nash equilibrium, but is very close to it. This shows that the use of the return-function method has been efficient for computing the Bayesian-Nash equilibrium.

In this simple example, the type is a continuous variable taking its values in [0, 1]. One alternative approach to ours to compute a BNE would be to discretize the type space, to have an explicit table to describe the action chosen by each type, and to apply a fixed-point algorithm. Such an approach would need to memorize one action per discretized type. There are, however, two major limitations with such an approach. One limitation is that the computation of the best-reply strategy would still be non-trivial. This is because, even given other players' strategies, the computation of a player's optimal strategy also depends on the mechanism M. In our case, this computation could be performed by long analytical calculations, but we cannot expect this to be the case for general non-analytical blackbox mechanisms M.

A second limitation is that the discretization approach would scale poorly if the type space becomes more complex. In particular, if a type is now a continuous variable in [0, 1] n , then discretizing each dimension would yield an exponential number of possible types. If n ≥ 30 and if we discretize [0, 1] into {0, 1/2, 1}, then the number of discretized types would be at least 3 30 , which is about 10 14 . The mere memorization of a strategy for such a discretized type space would be essentially intractable. More generally, when the type space is combinatorial, the number of possible types is too large to describe strategies exactly.

In contrast, our approach does not require the preprocessing of all actions to be taken for all imaginable types. In particular, we never compute the BNE strategies directly. Instead, we compute the BNE return function. For any given type, we can then compute the associated BNE action by involving the BNE return function. Thereby, the computation of the BNE action is done only for the type whose BNE action is demanded.

The Non-Linear Component

An interesting observation can be made regarding a pattern in the Bayesian-Nash equilibrium strategies. Indeed, a closer look at the best-reply curves in Figure 3 reveals that they are S-shaped (like an arctan(•) function). Computing the best-reply strategy to the interpolated strategy in Figure 3, we again get this S-shaped curve as shown in Figure 7. 

A More General Example

Now, we consider a more general case with 20 players and 3 attributes. As before, we use Algorithm 1 to derive a Bayesian-Nash return function after 20 best-reply iterations. Figure 8 displays the computed best-reply to this return function, and thus represents the Bayesian-Nash equilibrium strategy. Once again, we have plotted the announced weights as a function of the type weights. However, this time, because the sets of types and of actions are 2-dimensional (they are the simplex of the 3-dimensional space), the figure only displays a projection of the full strategy at Bayesian-Nash equilibria. This explains the fuzziness of the cloud of dots. 8: Bayesian-Nash Equilibrium with 20 Players and 3 Attributes when˜θ is uniform Again, the Bayesian-Nash equilibrium shows an overbid for portions of the cake that the players do not want, while the portions they do want are underbid. This shift between underbidding and overbidding occurs at 100/3, which corresponds to the player liking the portion just as much as the average of other players. In this more complex setting, analytical calculations are too complicated. Indeed, both the belief and the mechanism are hard to write algebraically, and consequently, it is extremely difficult to algebraically compute this Bayesian-Nash equilibrium.

Similarly to what we did in the 2-player 2-attribute case, we computed the slope of the linear regression of Figure 8, as well as the average of the squares in Figure 9.

We finish by commenting on the complexity of our algorithm. First, the algorithm's complexity time does not increase much with the number of players. Indeed, although the time it takes to perform one iteration of the loop of Algorithm 1 increases (only linearly) in the number of players, we generate many more observations at each iteration, which speeds up the approximation of the return function. Therefore, we expect to need fewer best-reply iterations in total to reach a Bayesian-Nash equilibrium. On the other hand, the complexity time increases more rapidly with the number of attributes. This is due to the algorithm's second step, which involves an optimization Figure Slopes and Least Average Squares of Linear Regressions for 20 Players and 3 Attributes when˜θ is uniform over the set of actions. Obviously, the higher-dimensional this set is, the more time it takes to solve this optimization problem. Again, we mention that more advanced methods for nonlinear optimization could be used to speed up the computation at this step.

Theoretical Convergence

In this section, we restrict our analysis to the study of a best-reply dynamics, when the exact bestreply dynamics is assumed to converge to a Bayesian-Nash equilibrium, but we cannot guarantee an exact computation of the best-replies. This inexact computation is an unavoidable feature of the Bayesian setting, both when we try to compute it through Monte-Carlo-like methods or when Bayesian games are played in practice. We shall show that return functions provide a natural setting to analyze this effect, and that, under this noisy estimation of best-replies, we can still guarantee a convergence to a Bayesian-Nash equilibrium.

We start with some necessary preliminaries of topology, define the metric topology in which the convergence is defined, and conclude with a convergence theorem. The next proposition introduces a metric topology on the set of outcome probabilities, which is the output set of the return function.

Proposition 1. The following distance d ∆(X) is a pseudometric 4 on ∆(X): d ∆(X) (x 1 , x2 ) = sup j∈N,θ j ∈Θ j |u(θ j , x1 ) -u(θ j , x2 )|. ( 23 
)
Proof. The function d ∆(X) is obviously non-negative and symmetric, and it clearly satisfies the triangle inequality.

The natural topology on return-function profiles is given by the following metric:

Proposition 2. The following distance d Φ is a pseudometric on Φ:

d Φ (ϕ 1 , ϕ 2 ) = sup j∈N,a j ∈A d ∆(X) (ϕ 1 (a j ), ϕ 2 (a j )). (24) 
Proof. The function d Φ is obviously non-negative and symmetric, and it clearly satisfies the triangle inequality.

From now on, Φ will refer to the space occurring after the metric identification corresponding to d Φ is done. In particular, (Φ, d Φ ) is a metric space.

Continuity of φ

When we introduced the return function, we pointed out that the convergence of a sequence of best-replying strategy profiles could induce the convergence of the associated sequence of returnfunction profiles, provided that the mapping φ is continuous. In this section, we characterize a sufficient conditions under which this mapping is indeed continuous.

To talk about continuity of φ, we first need some topology on the set of strategy profiles. An important remark to be made first is that many strategy profiles yield the same outcomes. More precisely, if two strategy profiles lead to different for a set of types of probability zero, then they will be virtually identical. A usual way of formalizing this idea is by using quotient spaces, i.e., we group virtually identical strategies into a set. By doing this for all strategies, we divide the set of strategies into subsets, each containing virtually identical strategies. The quotient space is defined as the set of all these subsets. This construction is characterized by the following theorem. Theorem 3. Let us denote σ 1 ∼ σ 2 if σ 1 (θ) differs from σ 2 (θ) on a set of nil probability according to θ. Then, ∼ is a well-defined equivalence relation on Σ, and it defines the quotient space Σ ∼ = Σ/ ∼. Moreover, the spaces BR Σ (σ)/ ∼ are well-defined in Σ ∼ for all σ ∈ Σ and do not depend on the representative σ of its equivalence class.

Proof. This is an immediate consequence of defining best-replies as the maximization of an expectation. Thus, nil probability spaces have no influence on a strategy's optimality. This theorem indicates that, to study best-reply dynamics and Bayesian-Nash equilibria, the right topology of strategy profiles should be defined on Σ ∼ . Now, to go further, let us assume that there is some metric d ∆(A) on ∆(A). There is no canonical way of choosing such a metric on the space of probability distribution ∆(A) (see, e.g., [START_REF] Gibbs | On choosing and bounding probability metrics[END_REF] for a list of such metrics). For this reason, we will remain vague regarding the choice of the metric and simply ask that the following property be satisfied: Hypothesis 1. For any parameterized probabilities on actions ã1 (t) and ã2 (t), where the parameter t follows some probability distribution t, the metric d ∆(A) satisfies

d ∆(A) E t∼ t[ã 1 (t)], E t∼ t[ã 2 (t)] ≤ E t∼ t d ∆(A) (ã 1 (t), ã2 (t)) . ( 25 
)
This property is a sort of convexity property. It states that the distance between two means of probabilities on actions is smaller than the average distance between these two actions. Remark 7. If A is finite, then the space ∆(A) of probability distributions on A can be embedded into R A . Now, for any norm ||.|| on R A , we have

|| ÊE[ã 1 (t)] -E[ã 2 (t)] Ê || = || ÊE[ã 1 (t) -ã2 (t)] Ê || ≤ E Ê||ã 1 (t) -ã2 (t)|| Ê . (26) 
This proves that, if A is finite, all norms on R A define metrics on ∆(A) that satisfy Hypothesis 1.

We can now define a metric on ∆(A n ) using, for instance,

d ∆(A n ) (ã 1 , ã2 ) = sup j∈N d ∆(A) (ã 1 j , ã2 j ). (27) 
Based on this (or on a similar metric that would rather involve an expectation), we can define the following metric on Σ ∼ .

Proposition 3. The distance d Σ is a pseudometric on Σ ∼ by d Σ (σ 1 , σ 2 ) = sup j∈N E θ j ∼ θj d ∆(A) (σ 1 j (θ j ), σ 2 j (θ j )) .
Proof. The function d Σ is obviously non-negative and symmetric, and it clearly satisfies the triangle inequality.

This construction leads us to a framework to define the continuity of φ, and a sufficient condition to prove it. To do so, we need the following lemma.

Lemma 1. For any strategies σ 1 , σ 2 , the following relation holds:

sup j∈N d ∆(A n ) (a j , σ 1 -j ( θ-j )), (a j , σ 2 -j ( θ-j )) ≤ d Σ (σ 1 , σ 2 ). ( 28 
)
Proof. First note that, for any player j, we have

d ∆(A n ) (a j , σ 1 -j ( θ-j )), (a j , σ 2 -j ( θ-j )) = sup i =j d ∆(A) σ 1 i ( θi ), σ 2 i ( θi ) . (29) 
Thus, by taking the supremum over all players j, we have

sup j∈N d ∆(A n ) (a j , σ 1 -j ( θ-j )), (a j , σ 2 -j ( θ-j )) = sup j∈N d ∆(A) σ 1 j ( θj ), σ 2 j ( θj ) . (30) 
Now, using Hypothesis 1 on the metric d ∆(A) , given that σ 1 j ( θj ) = E θ j ∼ θj [σ 1 j (θ j )], we have, for all j,

d ∆(A) σ 1 j ( θj ), σ 2 j ( θj ) ≤ E θ j ∼ θj d ∆(A) σ 1 j (θ j ), σ 2 j (θ j ) . (31) 
By taking the supremum over j in both sides, we obtain the exact formula in the lemma.

Theorem 4. the mechanism M is continuous from (∆(A n d ∆(A ) ) to (∆(X), d ∆(X) ), then so is the mapping φ from (Σ ∼ , d Σ (Φ, d Φ ).

Proof. Let > 0. Since M is uniformly continuous, then there exists δ > 0 such that, for any probabilities ã1 , ã2 on actions, we have

d ∆(A) (ã 1 , ã2 ) ≤ δ ⇒ d ∆(X) (M(ã 1 ), M(ã 2 )) ≤ . (32) 
Note that we have

d ∆(X) φ j (σ 1 ) (a j ), φ j (σ 2 ) (a j ) = d ∆(X) M a j , σ 1 -j ( θ-j ) , M a j , σ 2 -j ( θ-j ) (33) 
Now, using Lemma 1 and equation (32), if d Σ (σ 1 , σ 2 ) ≤ δ, then the right-hand side of equation ( 33) can be upper-bounded by . By taking the supremum over all players j and all actions a j ∈ A, we obtain the inequality

d Φ (φ(σ 1 ), φ(σ 2 )) ≤ . ( 34 
)
This proves the uniform continuity of φ.

The of φ then implies that any convergence of a sequence (σ i ) i∈N of strategy profiles implies the convergence of the sequence (φ(σ i )) i∈N of return function profiles. In other words, φ does not only preserve best-replies and Bayesian-Nash equilibria, it also preserves the topology of these spaces.

Best-Reply Dynamics

Let us now turn our attention to the best-reply dynamics. To start with, we assume that there exists some subspace U of Φ such that, for any ϕ ∈ U , the best-reply return function is uniquely defined and that BR Φ (ϕ) ⊂ U . With a slight abuse of language, this unique best-reply return function 5 is simply denoted by BR Φ (ϕ). We will discuss the case of best-reply return functions that are not uniquely defined in section 5.3.

In our present setting, we thus have a mapping BR Φ : U → U that defines the best-reply dynamics by (BR i Φ (ϕ)) i∈N , where BR i Φ is the composition of i best-replies BR Φ , i.e., BR i Φ (ϕ) = BR Φ (BR Φ (. . . BR Φ ( i times ϕ) . . .)).

Recall that Theorem 2 translated the convergence of the best-reply dynamics of strategy profiles into one of the best-reply dynamics of return functions. However, it assumed that the return function was computed exactly at each iteration. This is usually not true, as a sampling error is made at each iteration. However, by sampling more and more at each iteration, we could guarantee that this sampling error goes to 0. Would convergence be guaranteed if sampling errors decrease this way at every best-reply iteration? To answer this question positively, we need to introduce additional topological properties on the best-reply dynamics.

Hypothesis 2. The best-reply function BR is a uniformly continuous function from U ⊆ Φ into itself. This hypothesis will be useful when we consider reciprocal images of convergence spaces. Hypothesis 3. All (exact) sequences (BR i (ϕ)) i∈N ∈ U N converge uniformly, i.e.,

∀ > 0, K = inf K ∈ N, ∀ϕ ∈ U, ∃ϕ ∞ ∈ BN ∩ U, ∀i ≥ K, BR i (ϕ) ∈ B(ϕ ∞ , ) < ∞. ( 35 
)
Let us define BN by

BN = ϕ BN ∈BN ∩U B(ϕ BN , ) ∩ U. (36) 
Then, Hypothesis 3 can be reinterpreted as U = BR -K (BN ) for any ρ > 0, where BR -i (V ) denotes the reciprocal image of V by the mapping BR i .

Hypothesis 4. Bayesian-Nash return functions of U are locally contracting points of BR, i.e.,

∃ν, ρ > 0, ∀ϕ BN ∈ BN, ∀ϕ ∈ B(ϕ BN , ρ), d Φ (BR(ϕ), ϕ BN ) ≤ (1 -ν)d Φ (ϕ, ϕ BN ). ( 37 
)
This hypothesis is necessary to ensure that once the approximated sequence gets close to the Bayesian-Nash Equilibrium, it will remain close and actually converge. Proof. If ϕ ∈ BR -Kρ (B(ϕ BN , ρ)), then BR Kρ (ϕ) ∈ B(ϕ BN , ρ). The contracting hypothesis allows us to conclude the convergence of BR i (ϕ) towards ϕ BN . Reciprocally, assume that BR i (ϕ) converges to ϕ BN . Since BR Kρ (ϕ) is necessarily in a contracting area, it will necessarily converge. For the limit to be ϕ BN , it needs to be the contracting area of ϕ BN . Thus, BR Kρ (ϕ) ∈ B(ϕ BN , ρ). This proves the inverse inclusion, and concludes the proof.

Corollary 1. Assume Hypotheses 3-4 hold true. If BR is continuous from U into itself, then the limit of sequences BR i (ϕ) depends only on the connected component of ϕ in U .

Proof. The set of points that converge to an equilibrium ϕ BN is the set BR -Kρ (B(ϕ BN , ρ)). Now, all points of BR -Kρ ( B(ϕ BN , ρ)) also lead to a convergence to ϕ BN , which implies that BR -Kρ (B(ϕ BN , ρ)) = BR -Kρ ( B(ϕ BN , ρ)).

(38)

Since the left-hand term is an open set, while the other is a closed set, this means that the set of all points converging to ϕ BN is both open and closed in U . Now, from Hypothesis 3, we know that U is the union of all BR -Kρ (B(ϕ BN , ρ)). This proves that each connected component of U belongs to one of the BR -Kρ (B(ϕ BN , ρ)), for ϕ BN ∈ BN , and proves the corollary.

This means that every connected component of U is matched with a Bayesian-Nash Equilibrium.

Discussion of Hypotheses

In this section, we briefly discuss the hypothesis needed to guarantee the theoretical convergence of the return functions towards a Bayesian-Nash equilibrium. Note that the two next subsections will further provide examples where the hypotheses are satisfied. Let us first give an intuition on why a non-unique best-reply is rare. Suppose that ϕ had two best-replies, ϕ 1 = ϕ 2 ; then these would be images by φ of two best-replies σ 1 = σ 2 . Consequently, this means that there is a set of types of strictly positive probability for which u j (θ j , ϕ(σ 1 j (θ j ))) = u j (θ j , ϕ(σ 2 j (θ j ))). In other words, a return function profile ϕ that has two best-reply strategies must be a zero of the mappings

ϕ → u j (θ j , ϕ(σ 1 j (θ j ))) -u j (θ j , ϕ(σ 2 j (θ j ))), (39) 
for a set of θ j of positive probability. Now, this mapping is continuous, and from our construction of the topology of ϕ, we expect that a slight change of ϕ will yield a non-zero value for this function.

If this were the case, then the set of ϕ that has both σ 1 and σ 2 as best-replies would be some strict closed submanifold of the space of return functions. We acknowledge the fact that it is hard to rigorously state these intuitions, partly because, in general, these spaces are of infinite dimensions. Still, we may expect the set of return functions exhibiting multiple best-replies to be a union of such strict closed submanifolds. Consequently, we can expect its complement to be a dense open set of Φ. Now, observe that if U is a compact set, then a sufficient condition for Hypothesis 2 to be satisfied is for BR to be continuous. Hypothesis 3 holds if the union of BR -k (B(ϕ ∞ , )) covers U for some integer k. Of course the actual satisfaction of this hypothesis depends on the choice of the set U . Here, there is a trade-off: the larger the set U , the easier it is to achieve the convergence (see Theorem 5 below), but the harder it is to satisfy Hypothesis 3. In any event, choosing a very large k should help to ensure the coverage of U .

Considering U to be the set of all return functions whose best-replies are uniquely defined is not sufficient to guarantee a continuous function BR to be uniformly continuous. However, BR may still be uniformly continuous, as we expect BR to be naturally extended by continuity on each closure of each connected component of U . Each closure could then be compact, which would prove BR to be uniformly continuous. Now if this closure leads to discontinuities on BR, it would be still possible to cut the edges of the connected components to define a compact set U , which would be a strict subset of the set of return functions whose best-replies are uniquely defined. This is illustrated in Figure 10 where curved lines represent the submanifolds mentioned above, and where the shaded area corresponds to the chosen U . Finally, Hypothesis 4 is only slightly stronger than the asymptotic stability, which is almost necessary for any convergence. In particular, in the context of the next section, where the approximation errors are interpreted as the addition of small perturbations to the trajectory of sequences BR i (ϕ), this strong stability will be essential to guarantee any convergence.

Cake-Cutting Example

Let us illustrate the hypothesis in a simple cake-cutting example. Assume that each player j must choose which portion a j ∈ K he wants a share of, and that all players who choose a portion k equally share that portion k. This means that the allocation M j (a) of player j when the action profile is a is a share of a j ∈ K that is inversely proportional to the number of players j who also chose a j ∈ K. More formally, denoting (e k ) k∈K the canonical base of R K , then

M j (a) = 1 |{j ∈ N | a j = a j }| e a j . (40) 
Consider that the beliefs θj on players j are independent and identically distributed on the simplex Θ of R K . Once again, the mechanism and the belief are symmetric, and we may search for symmetric Bayesian-Nash equilibria. In this setting, a return function ϕ ∈ φ(σ) is now of the form ϕ(a) = (1/ϕ a )e a , where ϕ a is a random real variable.

To simplify the analysis, let us now consider the limit when the number of players goes to infinity. In this case, the randomness of ϕ a vanishes due to the law of large numbers, so that it is now a real number, which equals

ϕ a = P θ j ∼ θj [σ(θ j ) = a].
Let us simplify once more the setting by assuming K = {1, 2} has cardinality two. Then, σ BR ∈ BR Φ⇒Σ (ϕ) if and only if

ϕ 2 θ j1 > ϕ 1 θ j2 =⇒ s(θ j ) = 1 and ϕ 2 θ j1 < ϕ 1 θ j2 =⇒ s(θ j ) = 2. ( 41 
)
Note that if the event ϕ 2 θ j1 = ϕ 1 θ j2 for θ j ∼ θj has probability 0, then σ BR is unique in Σ ∼ . In particular, BR is a function from Φ to Φ. Now, using ϕ 1 + ϕ 2 = 1 and θ j1 + θ j2 = 1, we have 

ϕ 2 θ j1 ≥ ϕ 1 θ j2 ⇐⇒ θ j1 ≥ ϕ 1 , (42) 
so that BR 1 (ϕ 1 ) = P θ j ∼ θj [θ j1 ≥ ϕ 1 ] = 1 -F θj1 (ϕ 1 ), where F θj1 : [0, 1] → [0,

Party-Planning Example

We further illustrate the hypotheses with the party planning problem example. Recall that we had a set of n invited persons. We assume that each person j is a player whose utility function can be written u j (θ j , (a j , x)) = (n -(θ j -x) 2 )1 a j =1 ,

where a j = 1 is the action of coming to the party (otherwise a j = 0). Then,

E x∼x [u j (θ j , (a j , x))] = (n -(θ j -E x∼x [x]) 2 -V ar(x))1 a j =1 . (44) 
Plus, we assume that all player's types θ j are independent and are uniformly distributed in Θ j = [1, n]. Let us search for a symmetric equilibrium σ. Now, because of this symmetry and independence between players' beliefs, we know that the outcome x must be of the form 1 a j =1 + X, where X is a binomial of parameters n -1, and some parameter p = P a 1 ∼σ( θ1 ) [a 1 = 1]. Let us call ϕ p the return function that corresponds to this parameter p. Then, it is not too hard to see that the set of ϕ p for p ∈ [0, 1] with the topology derived from d Φ is homeomorphic to [0, 1]. In particular, by denoting ϕ br(p) = BR(ϕ p ), the convergence of the best-reply dynamics in return functions is equivalent to that of br(p). Let us determine this function br : [0, 1] → [0, 1] analytically. 

Graphically, we see that this solution p * is unique for all integers n. Plus, for n ≥ 10, it satisfies (n -1)p * = 2 n -(n -1)p * (1 -p * ), which yields (n -1)(n -5)(p * ) 2 + 4(n -1)p * -4n = 0. Therefore, p * = -2(n -1) + 2 (n -1) 2 + n(n -1)(n -5) (n -1)(n -5) (47)

As n goes to infinity, we have p * ← 2/ √ n, and thus about 2 √ n guests coming. Now, perhaps more importantly, it is easy from Figure 11 that the set U of return functions ϕ p , for p ∈ [0, 1], satisfies all of our hypotheses when n is larger or equal to 10. In particular, the Bayesian-Nash equilibrium is locally contracting.

Approached Best-Reply Dynamics

In this section, we deal with the convergence of the algorithm, where the approximation ϕ i+1 ≈ BR(ϕ i ) is used. To have convergence, we assume that the distance between ϕ i+1 and BR(ϕ i ) is a decreasing function of i that goes to 0. We suppose that this can be achieved by more sub-iterations at iteration i to better approximate ϕ i+1 . Hypothesis 5. The sequence (ϕ i ) satisfies d Φ (ϕ i+1 , BR(ϕ i )) → 0. Theorem 5. Assume Hypotheses 4-5 are satisfied. Consider the values ν, ρ > 0 defined by Hypothesis 4. If for a sufficiently large i, ϕ i ∈ BN ρ , then the sequence (ϕ i ) converges towards a Bayesian-Nash Equilibrium.

Proof. Under the assumptions, there exists K ∈ N such that ϕ K ∈ BN ρ and d Φ (ϕ i+1 , BR(ϕ i )) ≤ νρ/2 for all i ≥ K + 1. Let ϕ BN be the equilibrium corresponding to ϕ K . We have the following inequalities: ∀i ≥ K, d Φ (ϕ i+1 , ϕ BN ) ≤ d Φ (ϕ i+1 , BR(ϕ i )) + d Φ (BR(ϕ i ), ϕ BN ) (48)

≤ d Φ (ϕ i+1 , BR(ϕ i )) + (1 -ν)d Φ (ϕ i , ϕ BN ) (49) ≤ νρ/2 + (1 -ν)d Φ (ϕ i , ϕ BN ). ( 50 
)
We used an induction argument to justify that ϕ i belonged to BN ρ . Another induction argument implies that d Φ (ϕ i , ϕ BN ) ≤ ρ, which leads to

d Φ (ϕ i+1 , ϕ BN ) ≤ (1 -ν/2)d Φ (ϕ i , ϕ BN ), (51) 
and completes the convergence proof.

Finally, we state this section's main theoretical result.

Theorem 6. Assume Hypotheses 2, 3, 4 and 5 are satisfied. If for a sufficiently large i, ϕ i ∈ U , then the sequence (ϕ i ) converges to a Bayesian-Nash Equilibrium.

Proof. See Appendix.

Intuitively, we have contracting neighborhoods of Nash equilibria, whose inverse images by the best-reply dynamics take over nearly all the space of the return functions. The trouble though comes from errors. While the image of a neighborhood contracts it, errors dilate it. So, we need to make sure we can guarantee falling strictly enough in the interior of the neighborhood through contractions. This is where the uniform continuity of BR is required.

Conclusion

In this paper, we introduced the return function as a new approach to study Bayesian games and to compute Bayesian-Nash equilibria. The main novelty consists in studying best-reply dynamics in the space of return functions instead of doing it in the space of strategies. We theoretically showed the near equivalence of analyses in the different spaces. Then, we provided an algorithm that exploits this equivalence by using approximations of best-reply return functions, with samplings and interpolations. This algorithm turned out to be extremely efficient at computing Bayesian-Nash equilibria in settings that are hardly analytically accessible. In the simple 2-player case of cake-cutting, where some analytical remarks could be made, we showed how accurate numerical computations are, as they revealed patterns in the Bayesian-Nash equilibria that could hardly have been anticipated otherwise. In the much more complex setting of 20 players, we achieved successful computations with our methods. Finally, we put these experimental results on solid mathematical foundations in our last section, as we proved convergence despite inherent cumulative computational errors due to samplings and interpolations. We believe this work to provide a novel approach to Bayesian games, opening up new research orientations in further understanding Bayesian-Nash equilibria, with improvements in computational performance and with applications to diverse fields like Bayesian mechanism design.
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θ 11 =

 11 k -2a 11 -ln 4(100-a 11 ) 2 200-a 11 -a * min ln 200-a 11 -a * min 4(100-a 11 ) 2 (100+a 11 -a * min ) , for a 11 ≤ 1/2, (22) with k = (100 -2a * min )u 1 (θ 11 , ϕ BN (a 1 )) + 2a * min . Therefore, we get u 1 (θ 11 , ϕ BN (a 1 )) = k-2a * min 100-2a * min .
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  If a 11 ≤ 50, we can separate the integral into the cases where a 21 ≤ a 11 , a 11 ≤ a 21 ≤ 100 -a 11 and a 21 ≥ 100 -a 11 . The three resulting terms are

	Calculating these integrals yields		
	(100 -2a * min )u 1 (θ 11 , ϕ BN (a 1 )) =		
	2(a 11 -a * min ) + ln	4(100 -a 11 ) 2 200 -a 11 -a * min	+ θ 11 ln	200 -a 11 -a * min 4(100 -a 11 ) 2 (100 + a 11 -a * min )
					=	100-a * min a 2 =a * min	u 1 (θ 11 , M(a 1 , a 2 )) min 100 -2a *	da 2 .	(17)
	1 100 -2a * min	θ 11 a * min	θ 11 + (100 -θ 11 )(1 -	100 200 -a 11 -a 21	) da 21 ,	(18)
		1 100 -2a * min	100-a 11 a 11	(100 -θ 11 )	100 200 -a 11 -a 21	da 21 ,	(19)
		1 100 -2a * min	100-a * min 100-a 11	θ 11 (1 -	100 a 11 + a 21	(20)

) + (100 -θ 11 ) da 21 .

The revelation principle states: "For any Bayesian-Nash equilibrium there corresponds a Bayesian game with the same equilibrium outcome but in which players truthfully report type."

In particular, we assume that a sigma-algebra on X is given.

It is worth mentioning that this algorithm can easily be parallelized, to speed up the learning process.

We use the term pseudometric to highlight the fact that the distance could be equal to zero, without necessarily involving the same object.

To improve the chances of uniqueness, Φ is identified to the space separated by the pseudometric dΦ, i.e. the space Φ/ ∼ where ϕ 1 ∼ ϕ 2 if dΦ(ϕ 1 , ϕ 2 ) = 0.

Appendices

A Proof of Theorem 6 In order to control deviations of sequences, let us introduce the narrowing concept.

Definition 1. The α-narrowing N α (U ) of a subset U of a metric set X is defined as follows

Since all open sets contain balls, for all open sets U , there always is µ > 0 such that the µnarrowing of U is a non-empty. Any non-empty narrowing therefore contains balls, which means that it is a neighbourhood of some of its points. Definition 2. A set V is a strict narrowing of U if it is included in an α-narrowing of U , and we denote this by V < U , i.e.,

Proposition 5. Assume V ⊆ U . Then, we have the following equality:

This shows that the first term is greater than the second. Now, let β = inf

) ≤ α cannot be outside of U . Thus, x ∈ U , which shows that B(x V , α) ⊆ U . As a result V ⊆ N α (U ). By having α tending towards β, this shows that the second term is at least β. This proves the other inequality, and concludes the proof.

, and concludes the proof.

Proof. It suffices to take β = α/2 and to apply the previous lemma.

Proof. Let y ∈ B(x, β), and z ∈ B(y, α). We have

thus z ∈ B(x, α+β), which proves that B(y, α) ⊆ B(x, α+β). Incidentally, B(x, β) ⊆ N α (B(x, α+ β)).

Lemma 4. For any α, β > 0, we have

we know that for all y ∈ B(x, α), y ∈ N β (U ). This shows that x ∈ N α (N β (U )), and concludes the proof.

Corollary 3. If V is a strict narrowing of U , then there exists an α-narrowing of U for which V is still a strict narrowing, i.e.,

Proof. Let β > 0 such that V ⊆ N β (U ), and let α = β/2. Then,

which proves that V is a strict narrowing of N α (U ).

Theorem 7. Let f be a uniformly continuous function from X into itself. If V is a strict narrowing of U , then there exists an α-narrowing of U such that the reciprocal image of V is a strict narrowing of the reciprocal image of N α (U ), i.e., f uniformly continuous and

Proof. Let α such that V < N α (U ), which exists because of Corollary 3. Let = d(V, N α (U ) c ). We know that > 0 because of Proposition 5. Now, since f is uniformly continuous, there exists δ > 0 such that whenever d(f (x), f (y)) ≥ , we have d(x, y) ≥ δ. If we take x ∈ f -1 (V ) and

If U is a subset, then we denote

Corollary 4. Assume that U has a non-empty narrowing and that f is uniformly continuous. Then,

Proof. It suffices to apply Theorem 7 to construct the sequence of (µ i ) 1≤i≤n .

Finally, we can prove Theorem 6.

Proof. Consider ν, ρ > 0 which corresponds to Hypothesis 4. Let = ρ/2. According to lemma 3, we have BN ⊆ N (BN ρ ). Now, because of Hypothesis 2 of uniform continuity, we can apply Corollary 4 for n = K , which provides the existence of (µ

Thus,

according to Hypothesis 3. Now, let α = inf{µ i , 1 ≤ i ≤ K } ∪ {νρ/2}. We know that α > 0, because all µ i are positive, and because there is a finite number of them. Hypothesis 5 now implies that there is a rank K 0 such that, for all i ≥ K 0 , we have d Φ (ϕ i+1 , BR(ϕ i )) ≤ α. Now, if (ϕ i ) comes an infinite number of times inside U , then there is K 1 ≥ K 0 such that ϕ K 0 ∈ U . Now, let us show by induction over i that ϕ

Let us now assume that the induction is true for i. Then, using the definition of BR -n µ ,

This means that BR(ϕ

, and implies that all points within a distance less than or equal to µ K -i are included in BR -K +i+1 µ 1 ,...,µ K -i-1 (BN ρ )). Since d Φ (BR(ϕ K 1 +i ), ϕ K 1 +i+1 ) ≤ α ≤ µ K -i , we deduce that

which proves the induction proof. Eventually, ϕ K 1 +K ∈ BN ρ . Since, K 1 was chosen such that d Φ (ϕ i+1 , BR(ϕ i )) ≤ α ≤ νρ/2 for all i ≥ K 1 , we can then apply Theorem 5, which proves that the sequence ϕ i converges towards a Bayesian-Nash Equilibrium.