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Abstract

The increasing penetration of wind and solar electricity becomes challenging for grid operators.
Interconnecting electrical and thermal networks through the Power-to-Heat concept brings flexibility to the
electrical grid while supplying a significant renewable source to District Heating (DH). In the present paper, we
study a DH production plant composed of a biomass generator, a heat-pump and a heat storage in the French
energetic context. We assess the techno-economic performances of this system using Mixed Integer Linear
Programming (MILP). A multi-objective parametric optimization method is applied to size the system using the
available quantity of biomass, the maximum CO: content and minimum renewable energy ratio (REnR) of the
heat production as e-constraints. Our analysis shows that without strong constraints, heat pump and daily
storage are used. For a limited amount of biomass available, we also show that investing in an inter-seasonal
storage is necessary to reach high REnR. For comparisons, this energy system is also assessed with the Danish
and German electric mix. We then verify the sizing stage results on the operational performances of a non-
linear numerical simulator. With that methodology, it is possible to evaluate the impact of the MILP modelling
level of detail on the obtained results. An error of 5.1% on the production trajectories is here obtained for a
given system.
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Nomenclature

Greek Letters

At Time step

n Efficiency

o Number of cycles of the storage

T Discharging time at maximum power for storage

Latin Letters

c Cost vector

CAPEX Capital Expenditure

COzi CO2 content of the production of equipment i

cop Coefficient of Performance of the Heat Pump

E Energy

EtoP, Energy to Power normalized ratio

feost Objective function

Kjoss Loss coefficient of the storage

LCOE Levelized Cost of Energy

LHV Low Heating Value

m Mass of biomass

Negu Number of heating equipment

Nsteps Number of time-steps considered

OPEX Operational Expenditure

P Power

r Ratio of minimum to maximum power of a given equipment
Tyife Lifetime of the equipment

Ton Minimum ON time of a given equipment

REnR! Renewable Energy Ratio of the production of equipment i
tactu Actualisation rate

Vol Volume

X Integer variable representing the startup of an equipment
x Vector of decision variables

Y Integer variable representing the ON/ OFF state of an equipment
Acronyms

DH District Heating

DHN District Heating Network

DHW Domestic Hot Water

MI(N)LP Mixed Integer (Non) Linear Programing

MOO Multi Objective Optimization

MPC Model Predictive Control

R&R Renewable and Recovery

REnR Renewable Energy Ratio

Subscripts and superscripts

ch/disch
el/th
invest
load
maint
max
max,int

min

Charge/discharge of the storage
Electrical/Thermal based
Investment

DHN heat load

Maintenance

Maximal value

Intermediate maximal value
Minimal value

(h]
[%]
(-]

(h]

[€/kWh] and [€/kW]
(€]
[8/kWh]
[-]
[kWh]
[-]

(€]

(h]
[€/kWh]
[kWh/kg]
[ke]

[-]

[-]

(€]

[kw]

[-]
[years]
[h]

[-]

(%]

[m?]




prod

start
bio

c
hp
mix,elec
st

T

tot

Production

Starting up of equipment
Biomass boiler

Constraint

Heat pump

Electric mix

Heat storage

Transpose of a matrix/vector
Yearly based value




1. Introduction

In France, similarly to other European countries, 35% of the final energy consumption is devoted to space
heating and domestic hot water preparation (DHW), which amounts to 665 TWh per year [1]. The French
energy planning of 2016 [2] has identified District Heating Networks (DHN) as a solution to reduce the use of
fossil energy to supply heat demands. Indeed, due to their ability to massively distribute renewable and
recovery energies (R&R), DHN are expected to deliver 5 times more R&R in 2030, to reach about 40TWh.
Similarly, the Heat Roadmap France [3] recommends that DHN should cover up to 25% of the heat demand by
2050 while its current share is only 6%.

In parallel, the concept of 4" Generation District Heating [4, 5] emphasizes the need to interconnect DHNs to
the power grid, as a way to provide the flexibility required for a broader integration of intermittent renewable
energies [6]. In France, while combined Heat and Power (CHP) is limited by the rather low price of nuclear-
based electricity, this integration will then be first driven by Power-to-Heat (PtoH) [7]. Indeed, combining PtoH
with thermal storage provides a cheap and efficient form of storing excess renewable power [8].

At the same time, and contrarily to other EU countries, biomass is expected to play a major role and reach 50%
in the French DHN mix by 2030 [9]. It is worth mentioning that the number of biomass-based DHN in France
has significantly grown over the last 10 years, mainly because of financial incentives. It is now estimated that
about 500 DHN [10] are using biomass in their energy mix. However, biomass must always be considered as a
limited resource, unevenly distributed and affected by transportation constraints [11]. Moreover, its renewable
nature depends on its usage rate.

In this paper, we study the optimal sizing of a DHN production plant combining PtoH, biomass and storage in
the French context. In particular, we consider the influence of several parameters on the need for different
thermal energy storage sizes, from small water tanks to large inter-seasonal storages. We consider only water-
based storage at the production side, although other technologies as well as storing heat at building level or in
the network itself could be considered at later stages [12].

According to the background and literature review, the paper is then structured as follows. In Section 2, we
provide an overview of the state-of-the-art on similar systems, as well as on the typical sizing methodologies
used for such studies. Section 3 presents the studied production plant, the methodology adopted in this study,
which combines an optimal sizing stage with a sizing validation stage. In Section 4, we detail the Mixed-Integer
Linear Programming (MILP) model used for optimal sizing definition, its implementation and the results
obtained under various annual constraints. Section 5 aims at validating the designed system by assessing its
operational performance through simulation with a numerical simulator of the system in order to calculate the
possible deviations from the optimal sizing calculation. In Section 6, we conclude and propose some
perspectives.



2. State-of-the-art

2.1.Smart energy systems combining biomass, power-to-heat and thermal storage
capacities

As pointed out by Kwon and Ostergaard [13], it seems rather evident that the biomass resource will be
subjected to a sever supply stress in the coming years with for example better purposes elsewhere in the
energy systems. Thus, methodologies that cannot account for the limited availability of this resource are
inappropriate in practice.

The on-going work of Koch and Gaderer [13] addresses the intelligent controlling of a system combining a solid-
driven biomass cogeneration heat plant (CHP) and PtoH with heat storage capacities enables a DHN to
contribute to the electricity and balancing market, thereby increasing the overall system efficiency. In their
recent work, a conceptual approach for studying the flexibility-oriented sizing of such system is described. Their
methodology relies on a set of simulated scenarios ran on a numerical simulator but does not account for
annual constraints limiting.

The work of Ostergaard et al. [15] investigates the transition from biomass-based DHN to heat pump and
storage based DHN from a business and socio-economic point of view. It is highlighted that even though the
heat pump and storage system is interesting especially thanks to the flexibility it offers, it seems rather limited
from an economical point of view. As pointed out in next section, it seems that the rule-based operation they
used to perform their analysis is not harnessing the full potential of such energy system, thus reducing its
economic benefit.

In the holistic approach of DHN production plant of Dahl et al. [14], applied in the Danish energetic context, it is
shown that when the fossil-based resources are limited, investing in large-scale heat pumps and heat storages
is desirable, phasing-out the use of CHPs, with only a slight increase of system cost.

As noticed previously, while biomass boiler is generally used as CHP throughout European DHNs, biomass
boilers are seldom used as CHP in the French energetic context because of the largely nuclear-based electrical
production. Even though there is a high potential to combine the numerous available biomass boilers with PtoH
and storage capacities, no studies dealing with such a system in the French context could be found in the open
literature.

2.2.0ptimal sizing methodologies

Concerning the sizing approach, traditional methods use either duration curves and linear cost characteristics
as explained in Frederiksen and Werner [17] or dynamic simulation tools with rule-based control strategies as
used by Ostergaard et al. [15] for combined heat pump and storage operation and Lund et al. [17] for
distributed small-scale CHP plants. Both methods are not capable of optimally sizing production plants when
resources exhibit highly variable costs, e.g. electricity, or when the plant has storage capacities. Moreover,
adding annual constraints, such as CO2 or renewable contents of the production or limited annual quantity of a
given resource, e.g. biomass, to these methods is complex and time consuming since iterative methods have to
be used. On the other hand, operational performances of complex energy systems can be significantly
underestimated when rule-based control is used. This has been shown by the work of Giraud et al. [19] in the
field of DHN operation and Dufo-Lopez et al. [20] in the field of hybrid photovoltaics-based system operation.
These elements explain why the results obtained using both aforementioned methods can be said sub-optimal.

In comparison, since their introduction by Grossmann [21] for the study of energy systems, Mixed Integer
Linear Programming (MILP) methods have been used successfully in numerous energy studies, e.g. for CO2
network and power to gas [22], process integration [23], refrigeration systems [24] and solar assisted heat
pumping [25]. A detailed review of optimization studies in energy systems dealing with electricity, heating and
cooling by Unal et al. [26], highlights the extensive growing usage of MILP approach in the community. The
advantages of such a method are the following: i) the close relation of a MILP formulation to the physical
equations, which facilitates the expression of realistic models, ii) the reasonable computational time, and iii)
the guarantee of finding global optimality, which especially ensures the perfect reproducibility of results when
performing comparisons.



The main drawback is the requirement of using only linear or quasi-linear models. When dealing with energy
systems, nonlinear behaviors are plentiful, e.g. fluid transportation and temperature dependent efficiencies,
leading to strong approximation of MILP approaches in some cases. The latter is the reason why some authors
have investigated global optimizers such as genetic algorithms, e.g. for trigeneration systems [19, 20] or Mixed
Integer Non Linear Programming (MINLP), e.g. for multi-period CHP plants [29]. Both strategies tend to be
computationally costly and thus not appropriate in sizing stage. Moreover, in both strategies, the available
algorithms are not robust enough and may converge to local, instead of global, optimum.

Instead of trying to overcome the main drawback of MILP programming, i.e. the linear approximation of all the
physical phenomena, the present study uses a detailed non-linear numerical simulator of the system to
validate and/or update the results from the MILP-based sizing. That innovative methodology allows to
incrementally add complexity to the sizing MILP until satisfactory operation of the detailed numerical simulator
is achieved. We present the adopted methodology in the next section of the present paper.



3. Methodology

The present section starts with the presentation of the studied heat production plant. An overview of the
methodology used throughout this study is then addressed. The boundary conditions and input data are
presented in sequence. Finally, the performance indicators we used are listed.

3.1.System description

Following the assessment presented in section 1, the present paper studies the production plant presented in
Figure 1. It comprises a biomass boiler, a heat pump as PtoH element and a thermal storage in parallel
arrangement. It also comprises a back-up gas boiler in serial arrangement just before the exit of the plant so
that the demand is always satisfied even during peak or maintenance periods.

Gas

Electricity

Biomass
Boiler

Heat Pump

To DHN

Water
Storage

Biomass

><H

4 L

Figure 1: Studied combined Biomass and PtoH production plant

3.2.0verview

Figure 2 gives an overview of the methodology used in this work, which combines an optimal sizing stage with a
sizing verification stage.

Starting from given input data (investment costs, efficiencies, technical limitations) and boundary conditions
(DHN load, variable costs), optimal sizing of the system is firstly performed with quasi-linear models (Stage 1 in
Figure 2). For the latter, the decision variables are gathered in two groups, i.e. the operational ones that
require a value at each time step (e.g. Power level of each equipment) and the sizing ones that have a unique
value (e.g. size of the storage). For this sizing stage, a single optimisation is performed with a fixed horizon of 1
year. The results are then extrapolated over the life time of the production plant Ty;¢, set in the present study
at 20 years. The results of this optimal sizing stage are i) the sizing of the system and ii) the operational
variables trajectories and indicators (presented in section 3.4).

("Input Data ) Stage 1
P ( 9 Optimal
- - Sizin —————————» - Trajectories
Technical/Economical 9 )
- Indicators lg;,;,
Parameters Sized A 1zing
System
Stage 2 (comparison )
Boun_d_ary Operational ~State . i
Conditions Control Stur, . v
Sef Foin: Numerical - Trajectories
S ) s Simulator - Indicators |pperation

Figure 2: Overview of the methodology used in the present study

Secondly, the sizing is verified in operation (Stage 2 in Figure 2) with the same given input data and boundary
conditions. For that stage, the sizing parameters are fixed and used by the operational control module. The
latter uses a Model Predictive Control (MPC) algorithm to calculate the operational variables trajectories on a
receding horizon. Results of this calculation are used as set points for a numerical simulator of the system, i.e. a
detailed thermal-hydraulic and non-linear model of the production plant. The outputs of this numerical



simulator, i.e. the operational variables trajectories and indicators, are compared to the ones obtained during
the sizing stage to validate the sizing.

The same boundary conditions are considered for the optimal sizing, the operational control and the numerical
simulator. The latter means for example that the load curve considered during the sizing stage is the same as
the one considered for the numerical simulator, which is representing real life operation. The latter thus
represents idealistic conditions with no uncertainties in the prediction models. It is worth mentioning that the
present methodology is able to deal with uncertainties on the boundary conditions.

While studies dealing with the sizing of energy systems generally consider only the sizing based on a single
MILP optimization using an horizon of 1 year (Stage 1 in Figure 2), the present work uses a non-linear numerical
simulator to both verify the sizing and evaluate more realistically the operational performances (Stage 2 in
Figure 2).

3.3.Boundary conditions and input data

This section presents the main boundary conditions and input data used for both the sizing and the validation
stages in sections 4 and 5. Part of this data is highly dependent on the country, so specific cases for France,
Denmark and Germany have been considered (see section 3.3.2). Denmark and Germany energetic contexts
are here used as comparisons with the French case.

3.3.1. Country-independent data

Electricity Price.

The electricity price considered is composed of a constant part, representing taxes and transportation, and a
variable part, i.e. the electricity exchange price. In France, the constant part is approximately equal to
45€/MWh. As for the variable price, it was extracted from the 2017 EPEX-Spot database [30], the most used
electricity exchange market in Europe. It is worth mentioning here that the same electricity costs were
considered in all the energetic contexts. In reality, even though the day-ahead market prices are similar [30],
that assumption is incorrect since transportation and taxes are different. However, this assumption is
acceptable here since i) the error introduced in the electricity cost is in the order of 15% and ii) the objective
here is to compare the electric mix influence.

Network Load

We generated a representative load using a tool [31] which provide an hourly profile demand of a DHN
accounting for space heating, DHW preparation and network losses. We consider 3000 equivalent dwellings,
for which the distributed monthly consumption is presented in Table 1. We used weather data for the year
2017 in Chambéry in France, and we reconstructed cold water temperature (for DHW) and ground temperature
(for DHN losses) using the models of Burch and Christensen [32] and Kasuda and Archenbach [33] respectively.
A heating law was considered for the supply network temperature (65 to 95°C) and a return temperature of
45°C and 55°C was set respectively during heating (01/10 to 15/05) and non-heating seasons. DHN overall
losses were assumed to represent 10% of the DHN supplied energy and were recalculated on an hourly profile
using the ground temperature. The peak network load Ppyy peqr and total demand Eppy yeqri, Obtained are
respectively of 18 MW and 40.10° MWh. This leads to a EtoP, (=) ratio, as defined by Equation (1), of 0.25,
where 8760 is the number of hours composing a year and which is a typical value for DHN. The network load
was considered the same in all the energetic-context so that the total heat demand was preserved.

EDHN,yea‘rly 1
PDHN,peak . 8760

EtoP, = =0.25 (1)



Table 1: Inputs monthly total and DHW consumption normalized respectively by the average monthly value of total and
DHW consumption, for an equivalent dwelling in Chambéry area for the averaged building stock [31]

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec TOT

Monthly Consumption of the equivalent dwelling (normalized by the average monthly value)

2.1 1.7 1.5 1.0 0.5 0.2 0.2 0.2 0.2 1.0 1.5 2.0 12.0

Monthly consumption of DHW(normalized by the average monthly value)

1.13 1.11 1.04 1.04 1.0 0.93 0.80 0.74 0.98 1.0 1.09 1.14 12

Costs.

For the production plant heating equipment, Table 2 lists the values of the investment and production costs
(Chipese and Cri;rod)' For the heat pump, the production costs are obtained by dividing the sum of the variable
and constant electricity prices by the heat pump coefficient of performance (COP), considered to be 3 in the
present work.
hp
COP = PtThp (2)
el

where the heat pump COP is defined as the ratio of thermal power provided to the DHN Pt';f' over the electrical
. hp
consumption of the heat pump P,;".

Concerning the storage, cf,fvestE and cf,f,,estp respectively the investment related to the energy and power

sizing, are obtained from a study dedicated to PtoH and storage in France [7] and from the work of Eames et al.

[34]. cf,fvestE is calculated using a two-parts piecewise linear formulation, in which the bottom part relates to
low capacity tank (3 €/kWhy) while the upper part relates to high capacity pit storages (0.8 €/kWhy). For
Cirvest pr It 1S S€t t0 4.6 €/kW.

Input data.

Table 2 contains other data such as the ratio of minimum power to maximum power ¢ of all the heating
equipment. The latter aims at representing the technical limits of the different components which play a
decisive role in the way the production plant is conducted (e.g. switch off of the biomass boiler when the load
is below the minimum technical limit). The values were averaged from various manufacturers catalogues. The
last two rows of Table 2 are related to the CO2 content and Renewable Energy Ratio (REnR) of each equipment.

Table 2: Parameter values for the production plant equipment

Parameters  Unit Biomass Boiler Heat Pump Back up Gas Boiler
c;rod €/kWhg, 0.03 (Ref.[35]) 0.015 to 0.082 (Ref. [30]) 0.065 (Ref.[35])
Clvest €/kW 940 (Ref. [36]) 300 (Ref. [7]) 100 (Ref. [36])

TS, h 10 (Ref. [7]) 1 (Ref. [7]) 1 (Ref. [7])

Tt - 0.4 0.1 0

21 to 894 (variable and context-
dependent, see section 3.3.2)
7 to 96 (variable and context-
dependant, see section 3.3.2)

Co; g/kWhy, 24 (Ref. [37]) 240 (Ref. [37])

REnR}, % 100 0

3.3.2. Country-dependent data

Although the study focuses on the French context, we also performed a comparison with the Danish and
German contexts, especially regarding the CO2 content and REnR of electricity. Figure 3 presents the CO:
emissions in g/kWhe of the electricity production for the three countries. It was obtained using the annual
electricity production planning from the European Network of Transmission System Operators for Electricity
database of year 2017 [38]. In order to convert these profiles to CO2 emissions in g/kWhw of the heat pump
production, the values are divided by the COP of the heat pump.



Similarly, Figure 4 presents the REnR of the electricity production for the year 2017 in France, Germany and

Denmark. In order to convert these profiles to the REnR of the heat pump production, Equation (3) must be
used.

REnRM™etec () L cor—1
cop cop

where REnR?,f (t) is the thermal renewable energy ratio of the heat pump, REnR™" ¢ (t) is given by Figure
4.

REnR? (t) =

(3)

The main conclusions to draw from the profiles of Figure 3 and Figure 4 are the following: i) France exhibits
both a low CO:2 content but also a low REnR because of its nuclear-based electrical production, ii) in Denmark,
the very-intermittent wind power backed up by coal-fired power plant leads to highly variable CO2 content and
RENR both at much larger values than in France, and iii) Germany lies in between the French and Danish

contexts, since its electricity production exhibits a significant share of photovoltaics also backed-up by coal-
fired power plants.

—— France 1.0
_‘800 —— Germany
[ Denmark
§ l l I ---- Biomass Eq. — 08 AM MM /\A
< 600 l =
= | | ‘ ‘ l \ ' 8 —— France
@ “| LI " 1 I | 2 05{ —— Germany
2 400 ) | ' ' I M\ | “ & Denmark |
2 ‘ \ ‘ LE ---- Biomass Eq.
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0
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Time
Figure 3: CO, emissions of the electrical production in Figure 4: REnR of the electrical mix production for the year
g/kWhe for the year 2017 in France, Germany and Denmark. 2017 in France, Germany and Denmark. The Biomass REnR
The equivalent Biomass CO, emissions per kWhe is s considered to be 1.
calculated accounting for a factor of 3 (COP of the heat
pump)

3.4.Indicators

The main indicator used here is the Levelized Cost of Energy (LCOE), calculated with Equation (4) in €/kWhy,. It

represents the average minimum price at which the produced heat must be sold in order to break-even over
the lifetime of the production plant Tj; .

LCOE = Ctot
- NS eps
ZTlife thtl ’ Pioaa (t) At (4)
y:1 (1 + tactu)y_l

Where Py,q4(t) [kW] represents the DHN heat load at time step t (see section 3.3.1), At [h] and Ngeps
represents respectively the time step and the number of time steps, t .ty [%] is the annualization factor (set to

5%), Ctor 1S the sum of the capital expenditure (CAPEX) and the annualized operating expenditure (OPEX) over
the life time of the equipment Tj;¢.. ¢y, is calculated using Equation (5).

Tiife
E —1 5
Ctot = Cinvest T A+t k-1 (Cprod + Cstart + Cmaint) (5)
= actu

10



Where Cinpests Cmaints Cprod, aNd Cgeqre are respectively the investment, maintenance, production and starting
costs. These terms are further detailed in the next section.

Two other indicators are used, i.e. the yearly thermal REnR and CO: content of the heat production, as defined
respectively in Equations (6) and (7). It is worth mentioning that from now on, all the decision variables for the
optimal sizing or the operational control will be highlighted in bold font to ease the reading of the equations.

Nsteps xwNequ i i
coue = Zetr” T COL PO 4t 6

NS eps
thi P Pload (t) At

Nsteps xwNequ i i
ot Y oY S REnR], (). P(t)
REnRy, = Nsteps
thl Ploacl (t)

Where the CO% and REnRih represent the CO2 content and the thermal REnR of the production by the
different N4, equipment. Their values were listed in Table 2. Additionally, Pi(t) [kW], represents the power
value at time step t of equipment i. From now on, the REnR will always be the thermal one.

(7)

11



4. Optimal System Sizing

The present section deals with the sizing problem formulation and implementation of the optimal sizing
presented in Figure 2 of the previous section. The obtained results are then discussed.

4.1. Base MILP problem formulation

At the optimal sizing stage, we formulate a MILP problem, with an objective to find the vector of decision
variables xT = (xl, o Xj, Xjyq, ...,xn) solution of the problem of Equation (8), x being composed of continuous
(1, ...,j) and integer (j + 1, ..., n) variables.
min f,,q = cT.x
X
. LHS < A.x < RHS (8)
with
lb <x< Up

where c [n] is a vector of cost, A[m x n], LHS[m] and RHS[m] are respectively the matrix and vectors of linear
constraints, and [, [n] and u,, [n] are respectively the lower and upper bounds vector for the decision variables.

4.1.1. Objective Function
The problem objective in Equation (8) is the minimization of the cost function f,,s; which is calculated with
Equation (9) (as ¢, in Equation (5)).
Tiife
f ) e (Cproa + Cstare + Coaine)
=cC = C; ———(C C Cmai
cost tot invest & (1 + tactu)k_l prod start maint

Nequ

— St st st st i i
Cinvest = Cinvestg Emax + Cinvestp- Pmax + E Cinvest- Pmax
i=1
Nequ

Cmaint = Z Cinvest- Pmax-0.01 (9)
i=1
Nsteps Nequ
Cprod = Z Z Cproa- P*(t). At
t=1 i=1
Nsteps Nequ

— i i
Cstart = Z Z Cstare- X' (1)
t=1 i=1

Where Cinyests Cmaints Cprod, and Cspqre are respectively the investment, maintenance, production and starting
costs. For confidentiality reasons, it is generally rather complicate to get correct values for the starting
costs ¢ qpe. In Order to prevent incorrect optimization because of too high starting costs, the latter have been
set to a negligible value and are only used to write the constraint on the minimum ON time of the component,
as explained in section 4.1.4. ESt,. [kWhw], PS,, [kW] and Pi,.. [kW] represents the sizing values of
respectively the maximum energy content of the storage, the maximum power of the storage, the maximum
power of equipment i, and X(t) is an integer variable equal to 1 when the equipment just started and 0
otherwise.

4.1.2. Modelling assumptions
In the sizing MILP model, the following assumptions were made in order to have a tractable problem:

- The COP of the heat pump does not vary with the temperature or power levels of the heat pump;

- Thermal stratification is not accounted for in the storage;

- Resource costs are not affected by the operation of the DHN. In reality, the electricity or biomass costs
may be influenced by the large consumptions of many such production plants;

- Inthe sizing stage, the heat loss of the storage are considered null because a constant value (required
for the linear models) would give misleading results since the losses should be dependent on the size

12



of the storage which is a decision variable. Heat loss are however accounted for in operation in section
5.

4.1.3. Equality Constraints
Plant Energy Balance. As written in Equation (10), the total DHN heat load must be met at each time step t.
Nequ
D P + Plscn() = PO + Plyga(® (10
where Il;f}isch(t) [kW] and PS!,(t) [kW] represent the discharging and charging power at time step t.
Storage Energy Balance. As written in Equation (11), a second energy balance can be written for the storage.
ESt(t) — Est(t—1)
At

where ESt(t) [kWh] is the energy content of the storage at time t, and K;,5; [h™!] is the overall heat loss
coefficient. As explained beforehand, the latter is set to null in the sizing phase but is used during the
operational validation in section 5.

= Pi;l(t) - sztisch(t) — Kjpss- ESt(t) (11)

4.1.4. Inequality Constraints

Equipment Power Capacity Bounds. The power supplied by each equipment is bounded by minimum and
maximum values which are also decision variables, as shown in Equation (12).

ri Pl Yi(E) < Pi(t) < Pi,,. YD) (12)
where Yi(t) is an integer variable representing the ON or OFF state of the equipment i and ri is the ratio
between the minimum and maximum power of the equipment i. Because of the product of two decision
variables, Equation (12) is nonlinear and must be rewritten using a big-M constraint formulation [39],
introducing an intermediate variable P;'nax,-nt(t) representing a dynamic bound and M a very large number, as
shown in Equation (13).

;'naxint(t) <M. Yi(t)
P:'nax - M. (1 - Yi(t)) < P:.naxint(t) < anax (13)
ri * anaxint(t) < Pi(t) < anaxint(t)

Storage Power Capacity Bounds. The power charged to or discharged from the storage at each time step is
bounded by minimum and maximum values which are also decision variables, as shown in Equation (14).

{0 < Pi;l(t) < Pfrfax' (1 - YSt(t))
0 < P¥icn () < Pito YSU(B)
where Y5t(t) is an integer variable equal to 1 when the storage is discharging and 0 when it is charging,
forbidding the storage to charge and discharge at the same time. Similarly to Equation (12), Equation (14) is
nonlinear and must be rewritten using a big-M constraint formulation [39] similar to Equation (13).

(14)

Storage Energy Capacity Bounds. The energy content of the storage at each time step is bounded by a
maximum value which is also decision variable, as shown in Equation (15).

0 < ES'Y(t) < E3t,, (15)

Minimum ON Time of the different equipment. In order to prevent the different equipment to start and stop
too frequently, a minimum time of operation after a startup has been added as a constraint (see Equation (16)
using a formulation similar to the one used by Yang et al. [40] for the so-called unit commitment problem in the
electrical power production field.
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Yi(t) - Yi(t—1) < Xi(t) < Yi(D)

i
Ton

oo . (16)
To X'() < ) Y (t+k—-1)
o=,

where T/, represents the minimum time ON of equipment i, and X! and Y? are integer decision variables
already introduced beforehand and respectively representing the starting of the equipment and the state ON
or OFF of the equipment.

4.1.5. Periodic Constraints

Additionally, some variables such as the energy content of the storage EStand the ON/OFF state of the
equipment Y are subjected to a periodic constraint stating that values at initial and final time steps are
identical.

4.2. Annual e-constraints

More than only minimizing the combined CAPEX and OPEX (see Equation (9)), other annual objectives faced by
the DHN operator are added. Instead of implementing complex and computationally costly Multi-Objective
Optimization (MOO), these objectives are added by the means of e-Constraints as explained by Haymes et al.
[41]. It is a simple approach to MOO but it requires a preselection of the values of these objectives prior to the
optimization which might lead to unfeasible problem. The paragraphs below present the three different e-
Constraints considered in the present study.

4.2.1.  Maximum amount of Biomass available
As discussed in section 1, biomass must be seen as a limited resource. Thus, an annual e-constraint is added as
shown in Equation (17)
Nsteps
Z PP (1), At < mbi. . LHVbio pbio (17)
where Igz"l"(t) [kW] is the power supplied by the biomass boiler at each time step, LHV?®[kWhw/kg] is the

Low Heating Value of the biomass (set to 3.8 kWh/kg), m2i9, [kg] is the amount of biomass available for one
year, n%% is the biomass boiler efficiency (set to 90%).

4.2.2. Maximum CO: content of the production

In general, one of the main advantage of DHNs compared to other heating solutions is to exhibit a low emission
of CO2. In France, the building envelope regulatory framework is for example relaxed if the DHN production to
which the building is connected is below 50g/kW:,. The annual e-constraint presented in Equation (18) thus
forces the plant to operate below a predefined level of emission.

Co%t < cotote (18)

where CO%° [g/kWin] and COL°" [g/kWin] are respectively the yearly CO2 content of the plant production as
defined respectively in Equation (6)and the yearly CO2 content epsilon constraint of the plant production.

4.2.3. Minimum Renewable Energy Ratio (REnR) of the production

In France, DHN benefits from a reduced VAT if the REnR of their production is above 50%. Then, it is interesting
to add an annual e-constraint on the REnR, as shown in Equation (19).

REnR'Y* > REnR""¢ (19)

where REnR"™" [%] represents the yearly REnR of the plant heat production as defined in Equation (7), and
RENR'™"* [%] is the RENR epsilon constraint of the production.
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4.3. Optimal sizing implementation and solving

The optimization problem is implemented inside an in-house C++ based framework called PEGASE [42] which
embeds MILP formulation capabilities based on the Eigen linear algebra library [44].

The overall sizing optimization problem is solved using CPLEX [43] for one year and a time-step of 2 hours. It
leads to 35k continuous decision variables, 18k integer decision variables and 120k constraints. The latter leads
to a computational time of 10 minutes for each optimization on an office laptop. Numerous optimizations were
performed for different e-constraints, as defined in section 4.2, and in different energetic contexts (French,
Danish and German). The results are presented in next section.

4.4.0ptimal sizing results

As discussed above, the focus is on the French energetic context for which the present heat production plant is
meaningful. For comparisons purpose, the sizing is also performed with the REnR and CO: content of the
electrical production from Denmark and Germany (see Figure 3 and Figure 4).

Figure 5 presents the LCOE-REnR Pareto front obtained for the three countries with no constraint on the CO>
emissions and an available quantity of biomass equivalent to 36% of the total yearly load of the DHN. It is first
observed that the studied production plant is intrinsically highly renewable (i.e. high x-axis values). Second, the
LCOE increases with an increase of the minimal REnR constraint for France and Germany but not for Denmark.
For the two former, the increase in LCOE highlights an increase of investment into a biomass boiler and a larger
storage. For Denmark for which the electricity REnR is the highest (see Figure 4), the heat pump alone is
sufficient even for these high constraints. Finally, it is worth mentioning that, for this available biomass
constraint of 36% of the total DHN demand, France cannot reach REnR higher than 85% with its current
electrical mix.

Figure 6 presents the LCOE-CO2 content Pareto front for the three countries with no constraint on the available
amount of biomass and a REnR constraint of 85%. That figure shows that the CO2 constraint has no effect on
the French case due to its decarbonized nuclear-based electricity. It is also shown that the higher is the CO:
content of the electricity and the more it is required to invest in biomass and then in larger storage to cope
with the CO2 constraint.

50 50
—o— France -

45 Germany 45 ™
% - ®- Denmark %‘ =
£ mbio,= 36% Ejoaq g RENRpp = 0.85
o 40 CO2max = + = 5 40 [ ] mbi9, =100% Ejpaq
° - | |
- i n
< <
=35 235
< s
~ < n
& Y | eses® 00— o g o o ¢
w 30 w 30
8 8 —8— France L |
= = ™ n ] Germany = - i »

25 u 25

-] ® - Denmark oni
HP Only ---- Biomass Only HP Only
20 20
076 0.78 080 0.82 084 0.86 0.88 0.90 20 40 60 80 100 120 140

RENR Constraint [-] C0O2 Emission Constraint [g/kWh thermal]

Figure 5: Pareto Front LCOE-REnR for France, Denmark and
Germany with no e-constraint on the CO, and an available
mass of biomass equivalent to 36% of the total DHN load.

Figure 6: Pareto Front LCOE-CO, emission for France,
Denmark and Germany with an e-constraint on the REnR of
85% and an infinite mass of biomass available. Biomass

HP only scenario is highlighted. only and HP only scenario are highlighted.

Figure 7 presents the LCOE-REnR Pareto front obtained in France for two different levels of availability for
biomass and no constraint on the CO2 content (which has no effect, see Figure 6). It shows how increasing the
availability of biomass affects the Pareto front. Two main conclusions can be drawn from this figure: i) the LCOE
increases almost linearly with the REnR constraint until a transition point at which it rapidly increases, and ii)
increasing the available quantity of biomass first displaces this transition point towards higher REnR and
second, allows reaching feasible solution at higher REnR constraint (85% for 36% biomass available and 90% at
58% biomass available).
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Figure 7: Pareto Front LCOE-RENR for France with no e-constraint on the CO; and a variable available mass of biomass. S1
and S2 systems have been selected for comparisons

This transition point is linked to the need of drastically increasing the capacity of the storage. The latter is
underlined by studying more specifically two different sizing S1 and S2, located in Figure 7. The main
characteristics of these two systems are listed in Table 3. It is shown that they are not that different in terms of
heat pump and biomass capacities. However, storages characteristics are completely different with S2
highlighting a clear inter-seasonal behavior compared to S1: i) 40 times higher capacity, ii) 2 cycles o5t (see
Equation (20)) instead of 48, and iii) a maximum discharge time at maximum power 75t (see Equation (21)) of
more than 500 hours. That inter-seasonal behavior of S2 compared to the behavior of sizing S1 is illustrated in
the yearly profiles of Figure 8 (S1) and Figure 9 (S2) where the remaining discharge time at maximum power

st
(TSt = pft ) is shown. Interestingly, the weekly profiles of Figure 10 (S1) and Figure 11 (S2), shown for a week

max
in March, are very similar. It is worth mentioning that both sizing do not consider any back-up capacity in their
investments.
ysteps pst (1) At
_ Zt=1 ch (20)
E%ax
Efriax

st —
T =
max St
Piax

O_St

(21)

Table 3: Differences between the two systems of Figure 7

SIZING s1 S2

m"" [%E 1pqq] 41% 58% (contraint)
P /Ploadmax [-] 0.34 0.44
Phe/Proadmax ] 0.46 0.40
Piax/Ploaamax [] 0.49 0.74
E;:ax/E;:ax,Sl [-] 1 40

ot [] 48 2

Thiax [h] 20 537
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5. Sizing Verification through Operation

While the calculations that led to sizing S1 in Section 4 were performed with simple quasi-linear models, the
purpose is now to evaluate the real performance of the production plant with a detailed non-linear simulator.
As explained in the methodology presented in Section 3, the same input data and boundary conditions are
applied to the simulator. The latter is controlled by a MPC using a modified MILP formulation from the one of
Section 4. Implementation and solving of the production plant operational control are then presented. Finally,
indicators of the more realistic performances are recalculated and compared to the ones obtained during the
sizing-stage.

5.1.0perational MILP

The MILP formulation for the operation is slightly different than the one presented in Section 4, which dealt
with both the sizing and the operation. Table 4 summarizes the differences between the sizing and the
operational MILP formulations.

Table 4: Differences between the sizing and the operational MILP

MILP Sizing Operation

Decision Variables Sizing + Operational Operational Only

Annual Constraints Yes No

Power Bounds Constraints Equ. (12) and (14) non linear Equ. (12) and (14) linear
Objective function Cinvest T Cproa T Cstart T Cmaint Cproda T Cstart

Storage Loss None Kipss = 0.009h71 (2%/day)

5.2. Operational MILP implementation and solving

First, a detailed dynamic thermal-hydraulic model of the production plant has been implemented using
Modelica programming language with the Standard Modelica and DistrictHeating [44] validated libraries. In this
model, all the non-linear phenomena linked to the conservations of mass, momentum and energy are
modelled using 1D unitary models of the production equipment and storage. The conservation equations are
discretized using a finite volume scheme and relying on a staggered mesh for the fluid domain. The same
approach is also used to model the “solid” domain where the heat conduction problem is solved.

For the production equipment, thermal inertia of the solid parts and heat losses to the ambient are respectively
modelled using equivalent, i.e. lumped, thermal capacitance and heat transfer coefficient. Regarding the heat
pump, a half-Carnot model has been used for the COP.

For the sensible storage, stratification is accounted for with the usage of a 1D vertical mesh for which axial
conduction and heat losses through the lateral walls are considered for each discretized element.

Finally, to increase the time-step that can be used by the numerical integrator, the dynamics of the various PID
controllers (e.g. supply temperature controller, power discharge controller ...) are ignored by the simulator.
This is done by formulating the regulators model in a continuous form. This simplifying assumptions is coherent
with our objective to perform monthly to annual simulations.

Second, this Modelica model is used inside an in-house simulation framework called PEGASE [42] which, in
addition to the MILP formulation capabilities already mentioned in Section 4.3, also embeds a master of co-
simulation compatible with the FMI 2.0 standard.

Instead of doing a single optimization for a horizon of 1 year as in Section 4, we now realize an optimization
every 15 minutes for the next 24h. With the MPC strategy, at each time step, the MILP problem is formulated
and solved using the GLPK open source solver [45] and the simulator uses the outputs of the MPC strategy,
sending back to the control module state returns such as the level of energy in the storage.
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At a time step of 15 minutes, each operational optimization problem has about 700 continuous decision
variables, 360 integer decision variables and 2400 constraints. On an office laptop, the latter leads to a
computational time of about 3 hours for a yearly simulation with an optimization every 15 minutes and a
receding horizon of 24h (96 time steps). In other words, each time step requires approximately half a second.

5.3. Sizing verification and realistic operational performances

Figure 12 presents the profiles of biomass, heat pump and storage power and DHN load obtained with the
numerical simulator. These results are in the forms of 2D maps where the x-axis represents the hours of the
days and the y-axis represents the days of the year. In this way, each horizontal line corresponds to a daily

profile while each vertical line corresponds to a yearly profile at a given hour of the day. For clarity reasons, the
results focus on the January to May heating season only.

The two main conclusions to draw from these profiles are the following:

i) The biomass boiler is used as base load throughout the operation, since no sharp peaks of power
are spotted;

ii) The heat pump and the storage have a combined action to cope with the demand peaks. First, the
heat pump is used during the nights at low electricity cost hours to charge the storage. Second,
the storage is discharged during the demand peaks in the mornings when electricity costs are high
thus reducing the operational costs. It is interesting to notice that the charging of the storage
takes place just before the discharge so that heat losses in the storage are limited.
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Figure 12: Biomass power, Heat Pump power, Storage power and DHN load for the January to May heating season
operation of the S1 system. The results are normalized by the peak load of the DHN (18MW). A positive storage power
means discharge while a negative one means charge.

We compared the power trajectories obtained during the sizing stage and the ones from Figure 12, i.e. the
ones obtained during the operational control of the numerical simulator. While no back-up power (see Figure
1) was used during the sizing stage, 5.1% of the total heat demand was here supplied by the back-up gas boiler.
The latter highlights that the assumptions considered for the sizing MILP of Section 4 such as the neglecting of

temperature effects on COP, the stratification in the storage and the zero losses of the storage, led to an error
of 5.1% on the energy mix.

Finally, we calculated in Table 5 the indicators listed in Section 3.4 for both the sizing and the operational
stages. It is shown that the LCOE increases because of the storage losses and the use of the back-up. Also, the
operational REnR is lower than what was expected during the sizing stage. The conclusion is that the results
obtained during the sizing stage are too optimistic. The obtained differences highlight that a feedback between
the operational results and the sizing results is still required and needs to be included in a future upgraded
methodology. The later will be addressed in future studies.
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Table 5: Indicators Comparisons between sizing and operational stage

MILP Sizing Operation
E (back-up) [%Eload] 0 5.1

LCOE [€/MWhth] 31 33.6

RENR [%] 85 83.2
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6. Conclusion and Outlook

In the present study, optimal sizing and operation of a DH production plant consisting of a biomass heat-only
generator, a PtoH equipment and a heat storage was investigated in the French energetic context.

MILP formulation together with various e-constraints were used to optimize the sizing. It was shown that the
CO: constraint had no influence but that when high REnR were targeted with limited availability of the biomass,
investments in inter-seasonal storage were required. For comparisons purposes, the Danish and German
electrical mix were used to perform the optimal sizing. In these cases, the CO2 constraint was proven to be the
most decisive constraint.

One of the system sized in the French context was then tested in operation using a numerical simulator and a
MPC strategy. The latter was shown to use at its best the association PtoH / storage by storing electricity in the
form of heat when costs were low and restoring the heat at peak demands coincident with high electricity
costs.

The methodology used here allows verifying the sizing by comparing indicators calculated with a simplified
MILP formulation to indicators calculated with the simulated operation of a non-linear numerical simulator,
keeping identical boundary conditions. It was here shown that a deviation of 5% of the energy mix was
obtained which led to errors on the LCOE and RENR content of 2.6€/MWh, and 1.8% respectively.

With the take-off of heat pump technology on district heating in France where a lot of medium-sized DHNs are
already based on biomass, it is here proven that the combination of both associated to some storage
capabilities represents an attractive solution.

Addressing the topic of sizing in a more holistic approach is a future ambition with the addition of cogeneration
plant, simultaneous heating and cooling heat pumps and cold storage to respond to electric, heat and cold
demands. Regarding MPC optimization, future studies will include multi-horizons optimization in the
methodology in order to be able i) to account for annual constraint, ii) properly optimize the operation of an
inter-seasonal storage and iii) minimize the observed deviations between the sizing and operational stages.
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