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Abstract

The effective wear behavior of enamel is investigated by considering the microstructure of

enamel and the wear properties of the rod and interrod phases forming it. This investigation

is guided by a recently proposed micromechanics theory of wear and realized by using the

finite element method. A representative surface element is determined for the unilateral

frictional contact with wear between enamel and a ball assimilated to food. Accounting for

the elastic properties and wear characteristics of the rod and interrod phase, using different

friction coefficients and considering sliding directions, the effective (or overall) wear coefficient

of enamel is quantitatively determined for different inclination angles of the rod phase. The

results of the present work suggests the existence of an optimal inclination angle of the rod

phase for reducing the effective wear of enamel, which can be inspiring for optimizing the

fiber orientation for a better wear-resistant fiber-reinforced composites.
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1. Introduction

Dental enamel in the human body is the hardest tissue and possesses remarkable wear

resistance. Its mass consists of 96% mineral and 4% organic material and water [1, 2, 3]. The

exquisite hierarchical microstructure of enamel contributes to its high hardness, toughness
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and anti-wear behavior. At the scale of ”multi-rods” which is around 50 µm [3], the key-hole

shaped rods are regularly distributed and separated by organic-riched interrod layer in the

view of the occlusal direction (Fig. 1). The long axis of rod bundles is arranged vertically to

the occlusal surface until a certain depth beneath the surfacial layer and turns into a curved

pattern in the inner layer of enamel [4, 5]. The depth of layer with vertical rods approximately

represents one third of the total depth of enamel while the curved layer takes up the rest two

thirds [6]. The geometric features of the fibrous structure of enamel, in particular, the key-

hole shape of rods and the orientation of rod bundles, vary with mammals having different

eating habits [7, 8] and may significantly affect the fracture and wear property of enamel [9].

Meanwhile, enamel grinds food or hard objects over the service life of teeth and the varia-

tion of enamel microstructure result in different degrees of damage in the counterparts. It is

important to understand how these geometric features relate to its macroscopic resistance to

wear and the efficiency of breaking objects in contact with enamel.

A large group of studies focus on the mechanical property of enamel at different scales,

in particularly, at the scale of one single rod to multiple rods. In the aspect of experiments,

nanoindentation is a widely applied tool to characterize the mechanical properties, i.e. elastic

modulus and hardness of rod and interrod phase. The rod phase exhibits significantly higher

elastic modulus and hardness compared with the interrod phase [10, 11]. Due to a small

amount of proteins, the constitutive law of enamel is time-dependent. The viscosity of

enamel makes energy dissipated under dynamic loading condition [11, 12, 13]. There exists a

discrepancy of the mechanical parameters in testing. Numerical simulations by finite element

were proposed to characterize the effective elastic modulus of enamel [4]. The tribological

behavior of enamel is also highly associated to the anisotropic microstructure [14]. The

nano-scratch technique can record the friction coefficient in rod and interrod region and the

depth of wear scar representing the wear resistance of rod or interrod phase. Jia et al. [16]

investigated the friction coefficient and wear rate within a single rod and the surrounding

interrod region. It has been reported that the wear depth and friction coefficient is larger

in interrod region compared to the rod one [15]. Friction and wear resistance along the axis

perpendicular to rods is observed to be slightly better than the one along the axis parallel to
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rods. Even though the anisotropic friction and wear properties of enamel were investigated

through experimental approaches, as far as the author’s knowledge, few numerical simulations

focus on the effective wear of enamel with consideration of the microstructure of enamel and

the local mechanical properties and wear characteristics of its rod and interrod phases. The

optimal orientations obtained can be inspiring for designing artificial wear-resistance com-

posites.

The present work aims at numerically studying how the local wear properties of enam-

el and the geometric features of its enamel microstructure relate to its macroscopic wear

while applying some newly introduced concepts of the micromechanics of wear [17]. A three-

dimensional model of enamel is built up, accounting for the material properties and mi-

crostructure of rods and interrods in enamel. The key-hole shaped cross-section of rods and

the angle between long-axis of rods and sliding direction of counterpart in contact are taken

into consideration, as illustrated in Fig. 1. The corresponding frictional unilateral contact

problem with wear is solved by the finite-element (FE) method. Assuming that the local

wear of rod and interrod phases follows Archard’s law. The wear coefficients of vertical and

oblique rods are compared under different sliding directions. The results obtained suggest

that an optimal fibrous structure exists. The lowest wear among enamels with different rod

orientations is related to the microstructure, bulk material properties (elastic modulus, Pois-

son’s ratios), frictional coefficients and and wear coefficients of the rod and interrod phases

in enamel.

The rest of the paper is organized as follows. In Section 2, elements of a recently proposed

micromechanics theory of wear are recalled for the purpose of the present work, and the

three-dimensional finite element model for the unilateral contact of enamel and food with

wear is presented. Section 3 is dedicated first to determinining a representative surface

element (RSE). In Section 4, main numerical results are given and discussed. Some concluding

remarks are provided in section 5.
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Figure 1: Three-dimensional model of enamel with vertical or oblique key-hole shaped rods

2. Wear model of enamel

2.1. Wear of enamel as a two-phase composite

Enamel is a complex biocomposite whose structure is hierarchical. In the present work,

only two scales are considered, i.e. the microscopic and macroscopic ones are considered. By

the microscopic scale, we mean a few micrometers where the mechanical properties of the

rod and interrod phases can be experimentally identified by nanoindentation or nanoscratch

[18, 19]. At this scale, enamel can be considered as a two-phase periodic composite. Precisely,

it is made of an rod phase coated with an interrod phase. In determining the effective bulk

properties of enamel, a unit cell of its microstructure acts as a representative volume element

(RVE) in the sense of micromechanics (see, e.g., [20, 21, 22, 23]). However, in investigating

the effective (or macroscopic) wear of enamel, a representative surface element (RSE) S as

the surface counterpart of RVE may need containing the surfaces of several unit cells of its

bulk microstructure. This important issue of determining a RSE for enamel will be studied

in detail in the next section.

In what follows, the rod and interrod phases of enamel are referred to as phases 1 and 2,
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respectively. Let Si be the subdomain of a RSE S of enamel occupied by phase i (= 1, 2).

The area fractions of these two constituent phases are defined by

fi =
|Si|
|S|

(1)

where |Si| and |S| represent the areas of Si and S, respectively. Clearly, we have f1+ f2 = 1.

The normal force P sustained by the RSE S of enamel consists of two parts:

P = P1 + P2. (2)

where P1 and P2 are the normal forces applied to the subdomains S1 and S2 of S.

In the present work, the isotropic Achard wear law [24] is adopted to describe the local

wear of the rod and interrod phases of enamel. Consequently, the volumetric wear rate Ẇi

of phase i is given by

Ẇi =
Ki

Hi

Piv (3)

where Hi and Ki are the respective hardness and wear coefficient of phase i, Pi is the normal

contact force supported by phase i and v the relative sliding speed which equals the norm

∥v∥ of the relative sliding velocity v . As argued in Ref. [25], it is convenient to introduce

the normalized wear coefficient

η̂i =
Ki

Hi

(4)

and to rewrite (3) in the equivalent form

Ẇi = η̂iPiv. (5)

The total wear rate of the RSE S in question is provided by

Ẇ = Ẇ1 + Ẇ2. (6)

Accounting for (5) in (6), we obtain

Ẇ = (η̂1P1 + η̂2P2)v. (7)
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Further, under the condition that the normal contact force Pi supported by phase i is

proportional to the total contact force P of the RSE S, i.e.

Pi = ζiP (8)

where the scalar ζi ∈ [0, 1] is the ratio of Pi to P , then the effective wear law follows from

introducing (8) into (7):

Ẇ = η∗Pv. (9)

In this formula, η∗ represents the effective (normalized) wear coefficient of enamel and is

given by

η∗ = ζ1η̂1 + ζ2η̂2. (10)

Noting that P = P1 + P2 = (ζ1 + ζ2)P so that

ζ1 + ζ2 = 1, (11)

then equation (10) can further be written as

η∗ = η̂1 + ζ2(η̂2 − η̂1) = η̂2 + ζ1(η̂1 − η̂2). (12)

This formula implies that it suffices to compute either of ζ1 and ζ2 for determining η∗ if η̂1

and η̂2 are given.

2.2. FE contact model and wear computation

The frictional contact between enamel and food or other hard objects is simulated by a

three-dimensional (3D) FE model. At the microscopic scale, enamel can be assimilated to

an assemblage of composite cylinders (Fig. 2) [4, 5]. Each composite cylinder consists of a

rod coated by an interrod of thin thickness, and its cross-section is of key-hole shape. The

composite cylinders of enamel are periodically arrayed in the cross-section plane. In this

work, the area or volume fraction of the rods is taken to be 78% while that of the interrods is

equal to 22%; in addition, the largest head size of the rods in enamel is set to 5µm. As a first

approximation, the food or other objects in food is represented by a ball whose radius is of

500µm. Denoting by ϕ the inclination angle between the long-axis of the rods of enamel and
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the direction ez along which contact pressure will be applied, three values will be considered

for ϕ, i.e. ϕ = 5◦, 15◦ and 30◦ (see Fig. 2).

The unilateral contact between the upper ball and the enamel surface initiates at the

center of a rod and spreads over a surface domain whose size is required to be not smaller

than a RSE. Then, the frictional sliding of the upper ball on the enamel surface consists of a

forward movement along the direction −ex and a backward one along the opposite direction

ex. The total sliding distance accomplished during such a cycle is denoted by L.

The appropriate normal displacement (or contact force) has to be imposed so that the

contact surface covers a RSE of enamel. The normal displacement used is 0.3µm, generating

a circular contact area whose radius is of about 20µm, as detailed in Section 3. Thus, the

contact region covers around 15 rods of enamel. A minimum sliding distance is required to

ensure that the contact status of two surfaces be in total slip without stick. Two values for

the frictional coefficient µ are adopted, namely µ = 0.1 and 0.3.

ex

ey

.

Figure 2: The different inclination angles of rods in enamel: ϕ =0◦, 5◦, 15◦ and 30◦. The sliding movements

of a ball in −ex and ex are, respectively, referred to as ”Forward” and ”Backward”.

One complete cycle is composed of J substeps and there are N nodes in the contact region

belonging to rod or interrod phase. The letters j and n represent the current substep and

a node of i-th phase (i = 1 and 2 for the respective rod and interrod phases), respectively.
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The nodal frictional stress τ j and relative sliding distance δj are determined by the contact

condition of the j-th substep. The wear loss at n-th node is evaluated based on the discretized

Archard’s wear law and recorded as temporary data, as follows

∆hj = ηip
j(δj − δj−1), (13)

where ηi and represents the nodal wear coefficient of the rod or interrod phase. The term (δj−

δj−1) is the relative sliding distance at current step. Equation (13) amounts to discretizing

the material volumetric wear into a nodal depth variation [26] and [27]. Notice that, in total

sliding condition, the nodal frictional (or shear) stress τ j is proportional to the nodal contact

pressure pj according to the Coulomb’s frictional law, namely τ j = µpj with µ being the

friction coefficient. The substeps should be small enough so that the variation of pj during

the sliding cycle of the ball head is negligible. The variation ∆h of the depth of node n in

one cycle is the accumulation of those in all substeps:

∆h = ηi

J∑
j=1

pj(δj − δj−1). (14)

1
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Figure 3: Computation of the wear volume of one element SOLIDE185 in the FE model

The element type adopted for enamel is the solid element ”SOLIDE185” in the software

ANSYS which is hexahedron; and the total amount of elements is 955280. The volumetric

wear is calculated according to the coordinates variations of the 4 nodes on the contact
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surface of such an element, i.e. the volume of the body Ω5678−5′6′7′8′ in Fig. 3. The nodal

wear depths can be correspondingly converted to the rod and interrod wear volumes, W1 and

W2,. The normal loads P1 and P2 the rod and interrod phases bear during sliding can be

obtained from contact analysis. Starting from (9), we calculate the apparent (normalized)

coefficients η̂i of the constituents and the (normalized) effective wear coefficient η∗ of the

enamel as follows:

η̂i =
Wi

LPi

, η∗ =
W1 +W2

LP
, (15)

where L is the sliding distance.

The values used for the material parameters of the rod and interrod phases are given

below:

— Rod: E1 = 90 GPa, ν1 = 0.3, η1 = 2× 10−6;

— Interrod: E2 = 39.5 GPa, ν2 = 0.35, η2 = 2× 10−5;

— Ball: Eb = 82 GPa, νb = 0.25.

Note that, among the numerical values listed above and used in the present work, those of

E1 and E2 correspond to the ones obtained experimentally [10, 28, 29]; those of Eb and νb

are the ones of rock reported in Ref. [30]; those of ν1, ν2, η1 and η2 are hypothetical, since no

experimentally determined values seem to be available for them. The boundary conditions

of the model(see Fig. 4) are as follows:

— On the lower cross-section surface Slower of Ω,

ux = uy = uz = 0

— On the lateral surface T2 and T4 of Ω,

uy = 0, tx = tz = 0,

— On the lateral surface T3 of Ω,

ux = 0, ty = tz = 0,

— On the lateral surface T1 of Ω,

ux = 0, ty = tz = 0, during the normal loading
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ux = ū, ty = tz = 0, during the sliding

RVE W

ex

ez
ey

Slower

T4

T2
T1

T3

Figure 4: The boundary conditions of the model

3. Determination of a RSE

A representative surface element (RSE) of enamel used in finite element analysis has to

be sufficiently large so that the wear computation results are independent of the rods and

interrods involved. It is important to note that, even though the microstructure of enamel

is periodic in the cross-section plane, a RSE cannot be taken to be just a unit cell of this

microstructure. Indeed, since the wear computation is carried out through a ball of radius r

indented on and sliding over the surface of enamel, the resulting circular contact domain of

radius a must be large enough so that the effective wear per unit area is independent of the

number of rods and interrods involved in the contact region.

The ball indenting enamel slides along three directions: the ex-direction, the ey-direction

and the direction of 45◦ (Fig. 5). The numerical results obtained are provided there. These

results show: (i) once the radius a of the contact domain is approximatively 5 times larger

than the rod head size r, i.e. a/r & 5, corresponding to a normal displacement of 0.3mm

for the material parameter values used, the effective wear per unit area is almost constant;

10



(ii) the effective wear amounts along the three directions in question present a difference

lower than 5%. The result (i) means that, when a/r & 5, the contact surface in question

can be considered as an RSE. The result (ii) implies that the macroscopic wear is almost

isotropic, even the microstructure is not isotropic. The last conclusion is not surprising due

to the Neumann principle [31]: the symmetry group of a macroscopic property of a material

includes the one of its microstructure as a subgroup.

In conclusion, concerning the wear computation in question, the radius of the contact

region must be at least 5 times larger than the head size of a rod in enamel. Thus, when this

sufficient condition is satisfied, the contact surface can be considered as a RSE for the wear

simulation of enamel.

.

Figure 5: Representative Surface Element (RSE) of enamel - the minimum contact surface of which the

effective (normalized) wear coefficient η∗ of enamel is independent on neither sliding direction nor sliding

distance

4. Results and discussion

4.1. Wear of enamel with vertical and oblique rods

In this section, by the finite element method and in light of the micromechanics concepts

introduced in Section 2, we numerically determine the (normalized) effective wear coefficient

η∗ of enamel through using (15) and discuss the influences of key factors on η∗. Three factors
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are considered. First, the rods in enamel are taken to be vertical and oblique; precisely, the

inclination angle ϕ is equal to 0◦, 5◦, 15◦ and 30◦. Second, two values, i.e. 0.1 and 0.3, are

employed for the friction coefficient µ. Third, the direction of sliding the ball on the enamel

surface is distinguished according as it is forward or backward with respect to the inclination

of rods in enamel.

Concerning the rod phase, when the inclination angle ϕ increases from 0◦ to 30◦, the

apparent wear coefficient η̂1 augments monotonously in both the cases of µ = 0.1 and µ = 0.3

and in both the forward and backward sliding (Fig. 6(a) and Fi.g. 7 (a)). This augmentation

appears more important during the forward sliding. Note also that the difference between

the values of the apparent wear coefficient associated to the forward and backward sliding

gets larger while the friction coefficient increases.

In regard to the interrod phase, when the inclination angle ϕ varies from 0◦ to 30◦, the

tendency is inverse. More precisely, the apparent wear coefficient η̂2 decreases with the

increase of ϕ for µ = 0.1 and µ = 0.3 and for the forward and backward sliding (Fig. 6(b)

and Fi.g. 7 (b)). This decreases becomes more pronounced when the forward sliding is in

question. Remark again that the difference of the values of the apparent wear coefficient

relative to the forward and backward sliding becomes more important when the friction

coefficient increases.

The wear amount of enamel is the sum of those of the rod and interrod phases. The

numerical results show that, when the inclination angle ϕ of the rod phase takes 0◦, 5◦, 15◦

and 30◦, the effective (nomalized) wear coefficient η∗ of enamel is maximum when ϕ = 15◦

regardless of the two friction coefficient values used, i.e. µ = 0.1 and µ = 0.3 (Fig. 6). This

holds for both the forward and backward sliding cases (Figs. 6 and 7). The numerical results

also show that, when the forward sliding is concerned, the minimum value of the effective

(nomalized) wear coefficient η∗ of enamel occurs when ϕ = 0◦. However, when the backward

sliding is in question, the minimal value of η∗ of enamel appears when ϕ = 30◦ (Fig. 6).

To explain the numerical results given above, recall equation (12). According to this

formula, the ratio ζ1 of the normal force P1 supported by the rod phase to the total normal

force P applied is the key to determining the effective wear coefficient η∗ of enamel. The
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elastic modulus of the rod phase is 2.27 times larger than the one of the interrod phase

and and 10 times more wear-resistant than the interrod phase. The more load that the

rods undertakes, the less load is left for the matrix phase and the effective wear of enamel

is reduced. The lowest value of the load ratio ζ1 of the rod phase in Fig. 8 (a) and (b)

corresponds to the largest value of the effective wear coefficient of enamel (Fig. 6(c) and

7(c)).

4.2. Optimal effective wear coefficient of enamel

Apart from the effect of load ratio ζ1, the effective wear coefficient η∗ of enamel is also

affected by the wear coefficients of the rod and interrod phases. The microscopic wear volume

can be identified experimentally by nanoscratch tests and it is found that the wear of interrod

phase is larger than that of rod phase i.e., η̂1 < η̂2, η1 < η2 [13, 19]. However, the wear mea-

sured by nanoscratch could be affected by sample preparation and indentation parameters,

which result in a large deviation of the value of η̂1, η̂2, η1 and η2. In the numerical application,

we adopt a wide range of wear coefficients at FE nodes, in order to investigate the effect of

the ratio η2/η1 on the maximum and minimum values of the effective wear coefficient η∗ while

considering different inclinations of the rod phase.

In Fig. (9-12), η∗ is linearly related to η2/η1 and the slopes of ϕ in the different cases are

slightly different. In order to better illustrate the intersection points of the four lines, the

enlarged images are attached below. We mainly focus on the maximum and minimum values

of η∗ in different ranges of η2/η1. In the case of forward sliding with µ = 0.1, the maximum

η∗ occurs, as in Fig. (9), at: ϕ = 30◦ when η2/η1 ∈ [1, 9.02]; ϕ = 15◦ when η2/η1 ∈ [9.02,

11.91]; ϕ = 5◦ when η2/η1 ∈ [11.91, 26.49]; ϕ◦ = 0 when η2/η1 ∈ [26.49, +∞]. In the case

of backward sliding, the maximum η∗ takes place at ϕ = 30◦, 15◦and 5◦ according as η2/η1

belongs to [1, 7.82], [7.82, 12.92], [12.92, +∞] as shown in Fig. (10) and Fig. 13(a). When

µ = 0.3 of forward sliding, the intersection points of the four lines change slightly and the

maximum value is observed at ϕ = 30◦, 15◦, 5◦ and 0◦ with η2/η1 belonging to [1, 9.16], [9.16,

11.2], [11.2, 17.24], [17.24, +∞], respectively, as shown in Fig. (11) and Fig. 13(a).

The minimum of the effective wear of enamel is observed to appear only when ϕ = 0◦
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or 30◦. In the case of forward sliding with µ = 0.1, the minimum value of η∗ is achieved at

ϕ = 0◦ when η2/η1 ∈ [1, 10.86] and at ϕ = 30◦ when η2/η1 ∈ [10.86, +∞], as shown in Figs.

(9) and Fig. (13(b)). In both the forward and backward sliding conditions, the minimum of

the effective wear of enamel occurs for ϕ = 0◦ or ϕ = 30◦ according as η2/η1 is smaller or

larger than a critical value Fig. (13(b)).

In our model with numerical applications, the best wear resistance is the enamel with

vertical rods provided η2/η1 varies within a certain range. This range is dependent on the

relative sliding direction and friction coefficient (Fig. 13b). As an extension, for a fiber-rein-

forced composite, the optimal orientation of fibers with the best wear resistance is associated

with the friction coefficient, volume fraction and the elastic parameters of fibers and matrix

which corresponds to the rod and interrod phases for tooth enamel. From the optimal orienta-

tion of the rods of enamel we can learn how the microstructure of fibrous composites affects

its macroscopic wear. The optimal orientations obtained are not necessarily found in the

teeth of people or other animals but can be inspiring for designing artificial wear-resistance

composites.

4.3. Efficiency of breaking food

The main function of teeth is the smashing and grinding food between upper and lower

teeth into small pieces. In our model, the food is assimilated as the upper ball in contact with

enamel. The failure property of food is assumed to be characterized by von-Mises stress, giv-

ing rise to the distribution shown in Fig. 14. In fact, one of the main difficulties in simulating

the fragment of food is due to the large variety of foods in terms of their physical/mechanical

behaviors and geometrical shapes, which may be met in such a process. Assimilating food to

an elastic ball may appear to be oversimplified but this is a first step toward constructing

more realistic model. However, even with our first-step model, the food breaking process

can be simulated in an approximate way and the useful first-order results about it can be

obtained in some cases such as in investigation of the teeth of rodent animals.

The efficiency of enamel is here evaluated by the maximum value of the von-Mises stress

of the ball (assimilated to food) divided by the normal load. The enamel with oblique rods
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has higher efficiency compared with the one with vertical rods, and the enamel with rods of

ϕ = 30◦ exhibits the highest efficiency for a given friction coefficient value and along a given

sliding direction. The larger friction coefficient results in greater shear stress at local area

and is more efficient in breaking food. With the same friction coefficient, the forward sliding

movement appears always more effective in comparison to the backward sliding, as shown in

Fig. (15).

5. Closing Remarks

To sum up, the present work numerically studies how the local wear properties of enamel

and the geometric features of its microstructure relate to its macroscopic wear while applying

some newly introduced concepts of the micromechanics of wear [17, 20, 25]. The key-hole

shaped rod and interrod phases are builded up by three dimensional finite element model

while considering different inclinations of rods. The wear volumes of rod, interrod phase and

enamel are discretized as the variations of nodal depths, which are related to the nodal wear

coefficient, local contact pressure and relative sliding distance. To be a RSE, the contact

region should cover at least 15 rods. The effects of the friction coefficient, sliding directions,

wear coefficients of the rod and interrod phases, and the inclination angle of rods on the

effective (normalized) wear coefficient are numerically analyzed. A simplified evaluation of

efficiency of different inclined rods in grinding food or hard objects is carried out in this

study.

The methodology we propose necessitates identifying the wear coefficients of the rod and

interrod phases of enamel. Now, these microscopic properties can be identified experimentally

by nanoindentation or nanoscratch tests [10, 18, 19]. However, a micromechanical model al-

lows estimating the effective wear coefficient of enamel in terms of its microscopic phases and

microstructure, and this model is of theoretical and practical interest at least for two reasons.

First, it helps us in getting a better understanding of the biomechanical behavior of enam-

el; Second, it is useful and inspiring for designing and fabricating the relevant biomimetic

materials.

The following remarks can be drawn from this work:
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(I) The effective wear coefficient of enamel depends on the relative sliding direction and

the friction coefficient. Four values, namely 0◦, 5◦, 15◦ and 30◦, have been considered for the

inclination angle ϕ of the rod phase. The effective (nomalized) wear coefficient η∗ of enamel

turns out to be maximum when ϕ = 15◦ regardless of the two friction coefficient values used.

The minimum value of η∗ of enamel occurs at ϕ = 0◦ or 30◦ according to the sliding direction

is forward or backward.

(II) An optimal wear resistance of the enamel exists and depends on the sliding direction

and the local tribological properties of the rod and interrod phases. The minimum wear of

enamel appears at ϕ = 0◦ and ϕ = 30◦ when η2/η1 is, respectively, smaller and larger than

a critical value. As an extension, for a fiber-reinforced composite, the optimal inclination

angles of fibers with best wear resistance is associated with the friction coefficients, volume

fraction and the elastic parameters of fibers and matrix. The numerical model can be helpful

in selecting the angle of fibers to meet the requirement of the specified wear property of the

composite.

(III) The forward sliding movement, a significant inclination angle of rods and a large

friction coefficient are factors favorable to the high efficiency of breaking food.
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Figure 6: The apparent wear coefficients of the rod interrod phases, η̂1 and η̂2, and the effective wear

coefficient η∗ of enamel with vertical or oblique rods in the case of µ = 0.1
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Figure 7: The apparent wear coefficient of the rod η̂1, interrod phase η̂2 and the effective wear coefficient η∗

of enamel with vertical or oblique rods in the case of µ = 0.3
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(a) ζ1 in the case of forward sliding

 = 0°  = 5°  = 15°  = 30°
0.648

0.651

0.654

0.657

0.660

0.663

Backward

 

 

Lo
ad

 ra
tio

 o
f r

od
 

(b) ζ1 in the case of backward sliding
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(c) ζ2 in the case of forward sliding
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(d) ζ2 in the case of forward sliding

Figure 8: The ratio ζ1 of the load supported by the rod phase to that by the interrod phase during the

friction and wear process and the ratio ζ2 equal to 1− ζ1.
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Figure 9: The effective wear coefficient η∗ of enamel is linearly related to η2/η1. The inclination angle ϕ =0◦,

5◦, 15◦ and 30◦. There are four lines and the neighborhood of intersection points are enlarged and shown in

(a1)-(a4). The friction coefficient µ = 0.1 and the sliding direction is forward.

23



6.0 8.0 10.0 12.0 14.0
6.00

7.00

8.00

9.00

10.00
( 10-7)

(b3)

(b2)

Ef
fe

ct
iv

e 
w

ea
r c

oe
ffi

ci
en

t *

Ratio of the wear coefficient of  

Backward
 0°
 5°
 15°
 30°

(b1)

interrod to that of rod 2/ 1

7.5 7.7 7.9 8.1 8.3 8.5
6.90

7.04

7.18

7.32

7.46

7.60

*

2/ 1

( 10-7)(b1)

10.2 10.4 10.6 10.8 11.0 11.2
8.20

8.34

8.48

8.62

8.76

8.90
(b2) ( 10-7)

*

2/ 1

12.5 12.7 12.9 13.1 13.3 13.5
9.30

9.44

9.58

9.72

9.86

10.00
(b3)

*

( 10-7)

2/ 1

.

Figure 10: The effective wear coefficient η∗ of enamel is linearly related to η2/η1. The inclination angle

ϕ =0◦, 5◦, 15◦ and 30◦. There are four lines and the neighborhood of intersection points are enlarged and

shown in (b1)-(b3). The friction coefficient µ = 0.1 and the sliding direction is backward.
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Figure 11: The effective wear coefficient η∗ of enamel is linearly related to η2/η1. The inclination angle

ϕ =0◦, 5◦, 15◦ and 30◦. There are four lines and the neighborhood of intersection points are enlarged and

shown in (c1)-(c4). The friction coefficient µ = 0.3 and the sliding direction is forward.
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Figure 12: The effective wear coefficient η∗ of enamel is linearly related to η2/η1. The inclination angle

ϕ =0◦, 5◦, 15◦ and 30◦. There are four lines and the neighborhood of intersection points are enlarged and

shown in (d1)-(d3). The friction coefficient µ = 0.3 and the sliding direction is backward.
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(a) The maximum value of η∗ occurs at the enamel with rods of ϕ which is dependent on the value

of η2/η1

(b) The minimum value of η∗ occurs at the enamel with rods of ϕ which is dependent on the value

of η2/η1

Figure 13: The maximum and minimum values of the effective wear coefficient η∗ of enamels are dependent

on the ratio η2/η1 of the nodal wear coefficient of interrod to that of rods.
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Figure 14: The distribution of normalized von-Mises stress of the ball when µ = 0.3.
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Figure 15: Efficiency of breaking food: the maximum value of the von-Mises stress of the ball (assimilated to

food) divided by the normal load.
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