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, which, applied to the partition function, is the basic ingredient of the proof.

Introduction

The model of directed polymers in random environment is a simple description of stretched chains which are sensitive to external random impurities. It was first introduced in the physics literature in [START_REF] Huse | Pinning and roughening of domain walls in Ising systems due to random impurities[END_REF] and several variations of the model have been studied ever since [START_REF] Imbrie | Diffusion of directed polymers in a random environment[END_REF][START_REF] Comets | Brownian directed polymers in random environment[END_REF]1,[START_REF] O'connell | Brownian analogues of Burke's theorem[END_REF]. Although the model has attracted significant attention, many expected results are still far from being proved with mathematical rigor. One can refer to [START_REF] Comets | Directed polymers in random environments[END_REF] for a recent review in the discrete setting. In the present paper, we consider a Brownian path directed polymer, where the external impurities are represented by a Poisson point process.

The model and its context

Let ((B t ) t≥0 , P x ) denote the Brownian motion starting from x ∈ R d and set P = P 0 . The environment is a Poisson point process ω = i δ si,xi on [0, ∞) × R d of intensity measure νdsdx. We assume that ω is defined on some probability space (Ω, G, P) and we will denote by ω t = ω |[0,t]×R d the restriction of the environment to times before t ≥ 0. Fix r > 0 and let U (x) be the ball of volume r d , centered at x ∈ R d . Define V t (B) as the tube around path B:

V t (B) = {(s, x) : s ∈ (0, t], x ∈ U (B s )}.

(1)

For any fixed path B, the variable ω(V t ) stands for the energy of the path until time t and corresponds to the number of points that the path encounters; it has the law of a Poisson variable of mean νr d t.

The polymer measure P β,ω t is the Gibbsian probability measure on the space C([0, ∞) × R) of continuous paths, defined by its density with respect to the Wiener measure:

dP β,ω t = 1 Z t exp (βω(V t )) dP, (2) 
where β ∈ R d is the inverse temperature parameter, and where Z t is the partition function of the polymer1 :

Z t (ω, β, r) = P [exp (βω(V t ))] . (3) 
This model was first introduced by Comets and Yoshida [START_REF] Comets | Brownian directed polymers in random environment[END_REF]. Under the polymer measure, the path is attracted by the Poisson points when β > 0, and repelled when β < 0.

The partition function Z t has mean exp(λ(β)νr d t), where

λ(β) = e β -1. (4) 
The normalized partition function:

W t (ω, β, r) = e -λ(β)νr d t Z t (ω, β, r), (5) 
is a mean one, positive martingale such that W t → W ∞ . In [START_REF] Comets | Brownian directed polymers in random environment[END_REF], it is shown that there is a dichotomy:

either W ∞ = 0 a.s. or W ∞ > 0 a.s. [START_REF] Bertini | The stochastic heat equation: Feynman-Kac formula and intermittence[END_REF] The first case corresponds to the strong disorder regime and the second to the weak disorder regime. Furthermore, it is proved that there exist critical values β - c (ν, r) ∈ [-∞, 0] and β + c (ν, r) ∈ [0, ∞], such that weak disorder holds for β - c < β < β + c and strong disorder holds for β / ∈ [β - c , β + c ]. A classical quantity in statistical physics is the deterministic quenched free energy:

p(β, ν, r) = lim t→∞ 1 t ln Z t (ω, β, r), (7) 
which can be compared to the annealed free energy, that is defined as the limit as t → ∞ of t -1 ln P[Z t ] and equals λ(β)νr d . The fact that the two energies agree or not also separates two regions, with some critical β thresholds: either p(β, ν, r) < λ(β)νr d or p(β, ν, r) = λ(β)νr d .

As strict inequality in [START_REF] Bertini | Giambattista: Stochastic Burgers and KPZ equations from particle systems[END_REF] implies strong disorder, this regime is sometimes called very strong disorder. When this holds, the difference of the two energies -also called the quenched Lyapunov exponent -describes the exponential decay of W t . Whether or not very strong disorder is equivalent to strong disorder is still an open question. Path localization properties of the polymer were studied by Comets and Yoshida in [START_REF] Comets | Localization transition for polymers in Poissonian medium[END_REF]. For all time t ≥ 0, they indentified a favorite path Y (t) s , depending only on the Poisson environment, such that for all s ≤ t,

P β,ω t B s ∈ U Y (t) s = max x∈R d P β,ω t (B s ∈ U (x)).
Denoting by

R * t (B) = t 0 1{B s ∈ U (Y (t)
s )}ds the time fraction any path B spends next to the favorite path, they showed that under strict inequality between the derivatives in β of the two free energies, the following localization property holds:

lim inf t→∞ PP β,ω t [R * t ] > 0. ( 9 
)
When this is verified, the polymer spends P β,ω t -a.s. a positive fraction of time close to a particular path in the environment, which is in contrast with the Brownian motion behavior.

As a preliminary step, one can define a favorite endpoint for the polymer on [0, t] in a similar way (as in [START_REF] Comets | Brownian directed polymers in random environment[END_REF]Remark 2.3.1]). A complete understanding of the endpoint distribution has been recently achieved [START_REF] Bates | The endpoint distribution of directed polymers[END_REF] in the discrete case.

Under weak disorder, the environment is supposed to have less influence over the polymer measure, so the polymer should behave similarly to Brownian motion (β = 0) and paths should not be localized. In the case of the discrete polymer, there is a functional central limit theorem on the polymer path, which holds in the whole weak disorder region [START_REF] Comets | Directed polymers in random environment are diffusive at weak disorder[END_REF]. For the Brownian polymer, a central limit theorem for the endpoint distribution was only proved in the smaller L 2 region [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF]. In this region, a local limit theorem for the discrete and continuous polymers was proved by Vargas [START_REF] Vargas | A local limit theorem for directed polymers in random media: the continuous and the discrete case[END_REF]. One can observe that in general, continuous models have received less attention and results are still incomplete compared to the discrete models. In contrast with weak disorder, the strong disorder regime should be characterized by localized paths and super-diffusivity (B t ≈ t ξ as t → ∞ with ξ > 1/2), but integrable models put aside, rigorous proofs of this facts seem still out of reach.

We end this section by mentioning two related models:

(i) The branching Brownian motion in Poisson environment [START_REF] Shiozawa | Central limit theorem for branching Brownian motions in random environment[END_REF][START_REF] Shiozawa | Localization for branching Brownian motions in random environment[END_REF], for which the mean population size at a given time equals the partition function [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF].

(ii) The Brownian polymer in a white noise, mollified in space environment, introduced in [START_REF] Rovira | On the Brownian-directed polymer in a Gaussian random environment[END_REF] and studied in [START_REF] Mukherjee | Weak and strong disorder for the stochastic heat equation and continuous directed polymers in d ≥ 3[END_REF] for its relation to the stochastic heat equation in dimension d ≥ 3.

KPZ universality for polymers and the intermediate disorder regime

From now on, we focus on dimension d = 1. In this case, the polymer is in the strong disorder phase as soon as β = 0. It is expected that under the polymer measure,

sup 0≤s≤t |B s | ≈ t 2/3 and ln Z t -P[ln Z t ] ≈ t 1/3 as t → ∞. (10) 
Moreover, it is conjectured that:

Conjecture 1.1. For all non-zero β, ν and r, there exists a constant σ(β, ν, r) such that, as t → ∞,

ln Z t -p(β, ν, r)t σ(β, ν, r)t 1/3 (d) -→ F GOE , (11) 
where the F GOE is the Tracy-Widom GOE distribution [START_REF] Tracy | Harold: Level-spacing distributions and the Airy kernel[END_REF].

These properties are characteristics of the KPZ universality class (cf. Section 1.5). They are in sharp contrast to the weak disorder regime, where one knows to a large extent that B t ≈ t 1/2 , and where the free energy ln Z t has order one fluctuations around its mean [START_REF] Comets | Brownian directed polymers in random environment[END_REF].

For general models, only non-sharp bounds for the fluctuations in [START_REF] Biroli | Extreme value problems in random matrix theory and other disordered systems[END_REF] have been obtained yet [START_REF] Comets | Brownian directed polymers in random environment[END_REF][START_REF] Mejane | Upper bound of a volume exponent for directed polymers in a random environment[END_REF][START_REF] Petermann | Superdiffusivity of polymers in random environment[END_REF][START_REF] Wüthrich | Fluctuation results for Brownian motion in a Poissonian potential[END_REF][START_REF] Wüthrich | Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential[END_REF]. For a specific, integrable and discrete model of polymer involving log-gamma distributed weights and some boundary conditions, Seppäläinen [START_REF] Seppäläinen | Scaling for a one-dimensional directed polymer with boundary conditions[END_REF] was able to obtain sharp bounds with probabilistic methods, while the Tracy-Widom fluctuations were obtained later via Fredholm determinant identities [START_REF] Corwin | Tropical combinatorics and Whittaker functions[END_REF][START_REF] Borodin | Log-gamma polymer free energy fluctuations via a Fredholm determinant identity[END_REF]. Similar results were obtained for the O'Connell-Yor polymer [START_REF] Borodin | Free energy fluctuations for directed polymers in random media in 1+ 1 dimension[END_REF].

A more accessible question is to look at the so-called intermediate disorder regime, in the transition between β > 0 (strong disorder) and β = 0 (weak disorder). In the seminal paper [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF], Alberts, Khanin and Quastel considered a time-space diffusive rescaling of the discrete directed polymer in i.i.d. environment, where they also rescaled the inverse temperature as β n = βn -1/4 . They proved that under this scaling, the point-to-point and point-to-line partition functions of the polymer converge, in distribution, toward the partition functions of the continuum directed polymer, which is a directed polymer of Brownian path and white noise environment.

We now outline the main results in the paper (Theorems 2.1 -2.3). We prove that the intermediate disorder regime also appears as a scaling limit of the Brownian directed polymer in Poisson environment. Here, thanks to the Poissonian environment, the model has a more general scaling (compared to the general discrete model) that involves parameters β, ν and r. In particular, at the price of tuning the other parameters, we show that the intermediate disorder regime can occur while keeping the temperature fixed. Similarly to [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF][START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF], the result is obtained via chaos expansion of the partition functions. In our case, W t admits an infinite Wiener-Itô chaos expansion [START_REF] Last | Lectures on the Poisson process[END_REF] which arises from the nice algebraic Poisson structure.

The paper is structured as follows: In the rest of this introduction, we discuss the link between the point-to-point partition function of the polymer and the stochastic heat equation. We will also say a few words about the KPZ equation, the KPZ universality class and the intermediate disorder regime in the discrete setting. The main results are presented in Section 2. Sections 3 and 4 are devoted to introducing the chaos expansions in the Poisson and white noise environment. In Section 5, we study the asymptotics of Poisson Wiener-Itô integrals. Proofs of the results will finally be given through Section 6.

The KPZ equation and the stochastic heat equation

The Kardar-Parisi-Zhang equation is the non-linear stochastic partial differential equation:

2 ∂H β ∂T (T, X) = 1 2 ∂ 2 H β ∂X 2 (T, X) + 1 2 ∂H β ∂X (T, X) 2 + βη(T, X), (12) 
where β ∈ R and η stands for the space-time Gaussian white noise (for a definition of this object, see section 4.1). The equation was first introduced in 1986 by Kardar, Parisi and Zhang [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF], in the study of scaling behaviors of random interface growth. Due to the non-linear term, it is difficult to give a proper definition of a solution of the KPZ equation. In [START_REF] Bertini | The stochastic heat equation: Feynman-Kac formula and intermittence[END_REF], it was argued that H β could be defined by the so-called Hopf-Cole transformation:

H β (T, X) = ln Z β (T, X), (13) 
where Z β is the solution of the stochastic heat equation (SHE):

∂Z β ∂T (T, X) = 1 2 ∂ 2 Z β ∂X 2 (T, X) + βZ β (T, X)η(T, X). ( 14 
)
As a first-approach justification, one can check that the relation ( 13) defines a solution to [START_REF] Borodin | Free energy fluctuations for directed polymers in random media in 1+ 1 dimension[END_REF], whenever Z is a solution of [START_REF] Borodin | Lectures on integrable probability[END_REF], where the white noise η is replaced with a smooth function. Shortly after, the authors in [START_REF] Bertini | Giambattista: Stochastic Burgers and KPZ equations from particle systems[END_REF] relied on this transformation to prove convergence of the normalized height function of the weakly asymmetric exclusion process (WASEP) towards the solution of the KPZ equation.

Developing new tools to make sense of ill-posed stochastic PDEs, Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF] later constructed a method giving a direct notion of solution to the KPZ equation. Hairer further showed that the solution coincided with the solution defined by the Hopf-Cole transformation. 

W (t, x; ω, β, r) = ρ(t, x)P t,x 0,0 exp{βω(V t ) -λ(β)νr d t} , (15) 
where P t,x 0,0 is the Brownian bridge (0, 0) → (t, x) and ρ(t, x) = e -x 2 /2t / √ 2πt is the heat kernel/Brownian motion transition function. In the next theorem, we state that the normalized point-to-point partition function verifies a weak formulation of the following stochastic heat equation, with multiplicative Poisson noise:

∂ t W (t, x) = 1 2 ∆W (t, x) + λ(β)W (t-, x)ω(dt × U (x)). (16) 
Let D(R) denote the set of infinitely differentiable functions of compact support.

Theorem 1.2. Abbreviate W (t, x) = W (t, x; ω, β, r). For all ϕ ∈ D(R) and t ≥ 0, we have

P-almost surely R W (t, x)ϕ(x)dx = ϕ(0) + 1 2 t 0 ds R W (s, x)∆ϕ(x)dx + λ(β) R dxϕ(x) (0,t]×R ω(ds, dy)W (s-, x)1 |y-x|≤r/2 , ( 17 
)
where ω denotes the compensated Poisson process ω = ω -νdsdx.

The proof of this result is standard and can be obtained, for example, following the lines of Section 10 in [START_REF] Comets | Brownian directed polymers in random environment[END_REF].

The continuous case

A special case of interest for the SHE, where Z β (T, X) can be interpreted as the point-to-point partition function of a directed polymer, started at X = 0 at time T = 0, is when Z β (0, X) = δ 0 (X).

In this case, Z β (T, X) can be expressed through the following shortcut:

Z β (T, X) = ρ(T, X) P T,X 0,0 : exp : β T 0 η(u, B u )du , (19) 
where : exp : denotes the Wick exponential.

Remark 1.1. Note that that the expression inside the exponential is only formal, as it is not possible to make direct sense of the integral of the white noise on a Brownian path. In fact, formula [START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF] only makes sense after integrating the Brownian term B (see [1]).

Normalization put aside, this formula is similar to the definition of the pointto-point partition of our polymer model [START_REF] Calabrese | Freeenergy distribution of the directed polymer at high temperature[END_REF] and the authors in [1] were indeed able to construct a polymer measure, with point-to-point partition function given by Z β (T, X). As both the environment (white noise) and the path (Brownian motion) of the polymer are continuous, it was named the continuum directed random polymer.

Some special care has to be taken to construct this measure, as it can be shown that contrary to the Poissonian medium polymer, the continuum polymer measure is almost surely (with respect to the noise) singular with respect to the Wiener measure (See [1]). A way to circumvent this issue is to define directly the transition functions of the polymer through the equation that they should satisfy.

At time horizon T = 1, the transition functions of the polymer path X are defined by

P η 1,β (X t1 ∈ dx 1 , . . . , X t k ∈ dx k ) = Z β (t k , x k ; 1, * ) Z β (0, 0 ; 1, * ) k-1 j=0 Z β (t j , x j ; t j+1 , x j+1 ) dx 1 . . . dx k where Z β (S, Y ; T, X) is the point-to-point partition function from (S, Y ) to (T, X): Z β (S, Y ; T, X) = Z β (T -S, X -Y ) • θ S,Y ,
letting θ S,Y be the shift by (S, Y ) in the white noise environment, and where

Z β (S, Y ; 1, * ) = R Z β (S, Y ; 1, X)dX.
The point-to-line partition function of the continuum polymer at time horizon T = 1 is given by

Z β = Z β (0, 0 ; 1, * ). ( 20 
)
Remark 1.2. One can check that the transition functions of the Brownian polymer in Poisson environment also satisfy the above equation.

Similarly to the Poisson polymer, the point-to-point free energy F β (T, X) can be defined as

F β (T, X) = ln Z β (T, X) ρ(T, X) , (21) 
so that the free energy of the polymer and the solution of the KPZ equation are related by the equation:

F β (T, X) = H β (T, X) + X 2 /2T + ln √ 2πT . (22) 
1.5. The KPZ universality class and the KPZ equation

The KPZ equation belongs to a wide class of mathematical and physical models, called the KPZ universality class, which gathers models that share similar statistical behaviors under long time or scaling limits and particular scaling exponents (3-2-1 in time, space and fluctuations, as in [START_REF] Billingsley | Convergence of probability measures[END_REF]). The reader may refer to [START_REF] Corwin | Kardar[END_REF][START_REF] Corwin | The Kardar-Parisi-Zhang equation and universality class[END_REF][START_REF] Quastel | The One-Dimensional KPZ Equation and Its Universality Class[END_REF] for reviews on the KPZ universality class and the KPZ equation, and [START_REF] Zygouras | Some algebraic structures in the KPZ universality[END_REF][START_REF] Borodin | Lectures on integrable probability[END_REF] for reviews on the algebraic structures that lie behind solvable models of the class. Notable models, that are proven or conjectured to belong to this class, include paths in a random environment (directed polymers in random environment, first and last passage percolation), random growing interfaces (corner growth model), interacting particle systems (asymmetric simple exclusion process (ASEP)), stochastic PDEs and random matrices.

In the begining of the 2010s, the computation [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF][START_REF] Sasamoto | One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality[END_REF][START_REF] Dotsenko | Bethe ansatz replica derivation of the GOE Tracy-Widom distribution in one-dimensional directed polymers with free endpoints[END_REF][START_REF] Calabrese | Freeenergy distribution of the directed polymer at high temperature[END_REF] of the pointwise distribution of H β (T, X) was a breakthrough and provided the proof that the KPZ equation lied in the KPZ universality class. The rigorous result [START_REF] Amir | Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions[END_REF] relied on two main results: the work of Bertini-Giacomin [START_REF] Bertini | Giambattista: Stochastic Burgers and KPZ equations from particle systems[END_REF], who were able to show that the solution of the KPZ equation appeared as the weak asymmetry limit of the ASEP height function; and on the papers of Tracy-Widom [START_REF] Tracy | Erratum to: (2008) Integral Formulas for the Asymmetric Simple Exclusion Process[END_REF][START_REF] Tracy | Harold: A Fredholm Determinant Representation in ASEP[END_REF][START_REF] Tracy | Asymptotics in ASEP with Step Initial Condition[END_REF], in which the authors obtained formulas to express this height function distribution.

As a consequence of the ASEP weak asymmetry limit of Bertini-Giacomin, the KPZ equation can be seen as a crossover between the positive asymmetry ASEP (which belongs to the KPZ universality class) and the symmetric simple exclusion process (which belongs to the Edwards-Wilkinson universality class with 4-2-1 scaling). The weak KPZ universality conjecture states that the KPZ equation is a universal object of the KPZ universality class. As a general idea, the KPZ equation should appear as a scaling limit at critical parameters for models that feature a phase transition between the Edwards-Wilkinson class (4-2-1 scaling) and the KPZ class. In recent years, several techniques have been used to prove convergence of different models to the KPZ equation in weakly asymmetric regimes. The Hopf-Cole transformation is one of them and provides the opportunity to deal with the linear stochastic heat equation, instead of the non-linear KPZ equation; we will rely on it in this paper. This transformation may be applied to models which can be controlled after exponentiation, as for [START_REF] Bertini | Giambattista: Stochastic Burgers and KPZ equations from particle systems[END_REF][START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF][START_REF] Dembo | Weakly Asymmetric Non-Simple Exclusion Process and the Kardar-Parisi-Zhang Equation[END_REF][START_REF] Corwin | KPZ equation limit of higher-spin exclusion processes[END_REF][START_REF] Labbé | Weakly Asymmetric Bridges and the KPZ Equation[END_REF]. When one cannot apply the transformation, another tool is the pathwise approach introduced by Hairer [START_REF] Hairer | Solving the KPZ equation[END_REF][START_REF] Hairer | A theory of regularity structures[END_REF], along with [START_REF] Gubinelli | Paracontrolled distributions and singular PDEs[END_REF] for the theory of paracontrolled distributions, and considered in [START_REF] Hairer | A central limit theorem for the KPZ equation[END_REF][START_REF] Gubinelli | KPZ Reloaded[END_REF][START_REF] Hoshino | Paracontrolled calculus and Funaki-Quastel approximation for the KPZ equation[END_REF]. Although very robust, the pathwise analysis requires quantitative estimates that may be hard to obtain. An alternative, relying on stationarity of the models, is the martingale approach developed in [START_REF] Gubinelli | Energy solutions of KPZ are unique[END_REF][START_REF] Gubinelli | Regularization by noise and stochastic Burgers equations[END_REF][START_REF] Gonçalves | Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems[END_REF] and applied to [START_REF] Diehl | The Kardar-Parisi-Zhang Equation as Scaling Limit of Weakly Asymmetric Interacting Brownian Motions[END_REF][START_REF] Gonçalves | Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems[END_REF][START_REF] Gonçalves | A stochastic Burgers equation from a class of microscopic interactions[END_REF][START_REF] Gonçalves | Second Order Boltzmann-Gibbs Principle for Polynomial Functions and Applications[END_REF][START_REF] Franco | Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond[END_REF]. Finally, we also mention [START_REF] Kupiainen | Renormalization Group and Stochastic PDEs[END_REF] for a renormalisation group approach.

The intermediate disorder regime for the discrete polymer with i.i.d. weights

The fact that the KPZ equation can emerge as a crossover regime appears in the result of Alberts, Khanin and Quastel [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF], who showed that in dimension d = 1, the rescaled logarithm of the point-to-point partition function of the discrete directed polymer (see below) converges to H β (T, X) = ln Z β (T, X). The point-to-point partition function of the polymer is defined as

Z β (n, x) = P (S n = x) × P[e β n k=0 w(i,Si) |S n = x], ( 23 
)
where S is the simple symmetric random walk and w(i, x) are i.i.d. random variables with finite exponential moments. They showed that, as

n → ∞, √ n 2 Z βn -1/4 (nT, √ nX)e -µ(βn -1/4 )nT (d) -→ Z β (T, X), (24) 
where µ(β) = ln P[e βw(i,x) ], and where the limit in distribution is proven in terms of convergence of processes. When β = 0 (no disorder), the polymer measure reduces to the simple symmetric random walk measure. When β > 0 (strong disorder), a long-standing conjecture is to prove that the discrete polymer model lies in the KPZ universality class. In particular, what is expected is the following, where the 1/3 coefficient and the limiting Tracy-Widom distribution are characteristics of the KPZ universality class: Conjecture 1.3. [START_REF] Biroli | Extreme value problems in random matrix theory and other disordered systems[END_REF] Suppose that the w(i, x) are i.i.d. of finite fifth moment. Then, there exists some constants c(β) et σ(β) such that, as n → ∞,

ln Z β (n, 0) -c(β)n σ(β)n 1/3 (d) -→ F GUE .
Because in the limit [START_REF] Comets | Chiranjib: Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder[END_REF], βn -1/4 → 0, the KPZ equation -or equivalently the continuum directed random polymer -can be interpreted as a crossover regime between the weak disorder polymer regime and the strong disorder regime, so that it was named in [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF] the intermediate disorder regime. Moreover, the intermediate disorder regime features both characteristics of the strong disorder (a limiting universal law that does not depend on the law of the initial environment, a limiting polymer model that in the KPZ universality class) and the weak disorder (a diffusive scaling and a random local limit theorem for the endpoint density [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF]).

For the discrete polymer, the authors in [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF] conjectured that the result should still hold under the weaker asumption of a sixth-moment on the w(i, x) viariables. This was later proved in [START_REF] Dey | Nikos: High temperature limits for (1 + 1)dimensional directed polymer with heavy-tailed disorder[END_REF]. In the same article, the authors gave conjectures on the behaviour of the heavy-tailed polymer under the regime β n → 0. These conjectures as well as the understanding of five different regimes were shown under this regime in [START_REF] Berger | Directed polymers in heavy-tail random environment[END_REF]. Finally, we mention the work of [START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF], where the intermediate disorder regime was also studied for the pinning model, the longrange jumps discrete polymer and the random field Ising model. In this paper, the authors rely on a Lindeberg principle to compare polynomial chaos expansions with general independent weights, to the same expansion with Gaussian weights which feature the same means and variances. In our case, this approach does not seem to be directly applicable because of the underlying Poissonian structure.

The situation in dimension d = 2 and d ≥ 3

In the case of d = 2, it has been shown that for the discrete model, there is a phase transition under the diffusive scaling when the inverse temperature is scaled as

β n = β | log n| -1
. More precisely it was proved in [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF] that the pointto-line normalized partition function converges under this scaling to a Gaussian variable when β < βc and vanishes in probability when β ≥ βc . In addition to this, the authors in [START_REF] Caravenna | On the moments of the (2+1)-dimensional directed polymer and stochastic heat equation in the critical window[END_REF] have extended the results of [START_REF] Bertini | The two-dimensional stochastic heat equation: renormalizing a multiplicative noise[END_REF] and are able to identify, in a second order window around βc , the first three moments of a non-trivial limit. In the region β < βc , the fluctuations of the logarithm of the normalized partition function field3 around its mean have been studied in [START_REF] Chatterjee | Constructing a solution of the (2 + 1)-dimensional KPZ equation[END_REF][START_REF] Caravenna | The two-dimensional KPZ equation in the entire subcritical regime[END_REF]. Under a suitable normalization, the fluctuations were shown to converge towards the solution of the Edwards-Wilkinson equation (i.e. the additive stochastic heat equation, that is [START_REF] Borodin | Free energy fluctuations for directed polymers in random media in 1+ 1 dimension[END_REF] with no quadratic term). This latter equation is known to be outside of the KPZ-universality class (in particular, it features Gaussian laws and standard scaling exponents), hence no KPZ properties are expected below criticality. In these papers, the same results were proven in the case of the Brownian polymer in regularized white noise environment, from which it is possible to translate the results to the solutions of the SHE and KPZ equations, where the equations are considered under a regularized in space white noise. When d ≥ 3, a similar phenomena appears under the diffusive scaling. In this case, the phase transition happens when β n = β is chosen to be constant and corresponds to the dichotomy (6), so that the limit of the normalized partition function is simply W ∞ . Inside the L 2 -region of the polymer, the fluctuations of the logarithm of the partition function field are again converging to the solution of the Edwards-Wilkinson equation in the sense of distributions. This has been shown for the Brownian polymer in regularized white noise environment in [START_REF] Dunlap | Fluctuations of the solutions to the KPZ equation in dimensions three and higher[END_REF][START_REF] Magnen | The Scaling Limit of the KPZ Equation in Space Dimension 3 and Higher[END_REF][START_REF] Gu | The Edwards-Wilkinson Limit of the Random Heat Equation in Dimensions Three and Higher[END_REF]. In addition to this, pointwise approximations of the partition function field have been studied in [START_REF] Comets | Chiranjib: Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder[END_REF][START_REF] Comets | Chiranjib: Renormalizing the Kardar-Parisi-Zhang equation in d ≥ 3 in weak disorder[END_REF][START_REF] Dunlap | The random heat equation in dimensions three and higher: the homogenization viewpoint[END_REF]. See also [START_REF] Mukherjee | Weak and strong disorder for the stochastic heat equation and continuous directed polymers in d ≥ 3[END_REF] for an introduction on the link between polymers and the regularized SHE equation in dimension d ≥ 3.

Main results

We will show that a similar result to convergence [START_REF] Comets | Chiranjib: Fluctuation and Rate of Convergence for the Stochastic Heat Equation in Weak Disorder[END_REF] holds in our model. In this respect, we consider parameters β t ∈ R, ν t > 0 and r t > 0 that depend on time t, and we fix a parameter β * ∈ R * . We introduce three asymptotic relations, when t → ∞:

(a) ν t r 2 t λ(β t ) 2 ∼ (β * ) 2 t -1/2 , (b) ν t r 3 t λ(β t ) 3 → 0, (c) r t / √ t → 0. ( 25 
)
Remark 2.1. Suppose the radius r t and the intensity ν t are positive constants.

Then, the relations imply that β t scales like t -1/4 , as in equation ( 24).

Remark 2.2 (Interpretation of (a) as disorder intensity). From the proof of Theorem 3.3.1 in [START_REF] Comets | Brownian Polymers in Poissonian Environment: a survey[END_REF] and the asymptotics P [

t 0 1 |Bs|≤1 ds] ∼ Ct 1/2 , one can observe that W t (ω νt , β t , r t ) is bounded in L 2 as soon as λ(β t ) 2 ν t r 2 t t 1/2 < α,
for some constant α > 0, hence relation (a) implies that this condition is verified when |β * | is small enough 4 . On the other hand, for fixed parameters β, ν, r > 0, the martingale W t is not bounded in L 2 since we know that β ± c = 0 for d = 1. The regime [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF] should thus be interpreted as a crossover between strong disorder (β, ν, r > 0) and weak disorder (L 2 -region), which explains the denomination of intermediate disorder regime.

Remark 2.3. The relations can be compared to the regime of complete localization [START_REF] Comets | Localization transition for polymers in Poissonian medium[END_REF], corresponding to the extremal parameters regime (with r fixed):

ν → ∞, |β| ≤ β 0 , such that νβ 2 → ∞. (26) 
In the complete localization regime, the polymer measure is highly concentrated around a favorite path, and the rest of the environment is neglected.

We say more about the scaling relations (25) in Section 5.1. We are now ready to state the main theorem: Theorem 2.1. Under conditions (a), (b), (c) and as t → ∞:

W t (ω νt , β t , r t ) (d) -→ Z β * , ( 27 
)
where ω νt is the Poisson point process with intensity measure ν t dsdx.

We will also show that the result extends to the normalized point-to-point partition function:

W (s, y; t, x; ω, β, r) = W (t -s, x -y; ω, β, r) • θ s,y , (28) 
where θ s,y denotes the shift of vector (s, y) in the Poisson environment, i.e. θ s,y ( i δ (si,yi) ) = i δ (si-s,yi-y) .

Theorem 2.2. Let S, T ≥ 0 and Y, X ∈ R. Under conditions (a), (b), (c) and as t → ∞:

√ tW tS, √ tY ; tT, √ tX; ω νt , β t , r t (d) -→ Z β * (S, Y ; T, X) . ( 29 
)
Remark 2.4. The √ t term appears here as a normalization in the scaling of the heat kernel:

√ tρ tT, √ tX = ρ(T, X).
Let D (R) denote the space of distributions on R, and D [0, 1], D (R) the space of càdlàg function with values in the space of distributions, equipped with the topology defined in [START_REF] Mitoma | Tightness of probabilities on C[END_REF]. We also define the rescaled and normalized point-to-point partition function [START_REF] Calabrese | Freeenergy distribution of the directed polymer at high temperature[END_REF]:

Y t (T, X) = ρ(T, X)W tT, √ tX; ω νt , β t , r t . (30) 
The two variables function Y t can be seen as an element of

D ([0, 1], D (R)) through the mapping Y t : T → ϕ → Y t (T, X)ϕ(X)dX .
The same holds for the solution Z β (T, X) of the SHE equation. We have:

Theorem 2.3. Suppose that (β t ) t≥0 is bounded from above. Then, as t → ∞: Y t (T, X) (d) -→ Z β * (T, X), (31) 
where the convergence in distribution holds in D [0, 1], D (R) .

The Wiener-Itô integrals with respect to Poisson process

In this section, we expose the basic theory of multiple integration over Poisson processes. We rely on the reviews of Günter Last and Mathew Penrose [START_REF] Last | Lectures on the Poisson process[END_REF][START_REF] Last | Stochastic Analysis for Poisson Processes[END_REF].

Let us first introduce some notations that will prove useful throughout the paper. For any k ≥ 1, s 1 , . . . , s k ∈ R + and x 1 , . . . , x k ∈ R, write s = (s 1 , . . . , s k ) and x = (x 1 , . . . , x k ). Let

∆ k (u, t) = {s ∈ [u, t] k | u < s 1 < • • • < s k ≤ t}, (32) 
be the k-dimensional simplex and ∆ k = ∆ k (0, 1). In addition, for any given function

g of R k + × R k , define the symmetrized version of g Sym g (s, x) = 1 k! π∈S k g(πs, πx), (33) 
where S k denotes the set of permutation of {1, . . . , k}, and where any π ∈ S k acts on R k by permutation of indices. We say that a function is symmetric whenever Sym g = g. We see from the definition that the function Sym g is indeed symmetric.

The factorial measures

For all function f on R + × R, define its sum over the Poisson process as ω(f ) := f (s, x)ω(dsdx). Suppose for a moment that one wants to evaluate P[ω(f ) 2 ]. A solution is to decompose the square of the sum as

ω(f ) 2 = (s,x)∈ω f (s, x) 2 + (s,x) =(s ,x )∈ ω f (s, x)f (s , x ), (34) 
in order to apply the multivariate Mecke equation [START_REF] Last | Lectures on the Poisson process[END_REF]Th. 4.4] to evaluate the expectation of the second term on the right-hand side. One can observe that this particular term is an integral over a certain point process measure, which depends on ω and defines a measure on R 2 + × R 2 , called the second factorial measure of ω. The first factorial measure is simply ω.

As an example, we saw that the simple functional ω(f ) 2 can be written as a sum of two integrals over factorial measures. More generally, we will see in Theorem 3.2 that any square-integrable functionals of ω can be expressed through an infinite sum of integrals over similar measures; in particular, it will be the case for the normalized partition function W t .

To give a proper definition of the factorial measures, let t > 0 and let B t denote the product Borel sets of [0, t]×R, B ⊗k t the product Borel sets of [0, t] k × R k . Definition 3.1. For any positive integer k, define the k-th factorial measure ω (k) t to be the point process on [0, t] k × R k , such that, for any measurable set

A ∈ B ⊗k t , ω (k) t (A) = = (s1,x1),...,(s k ,x k )∈ ωt 1 ((s1,x1),...,(s k ,x k ))∈A , (35) 
where the sign = indicates that the summation is made over pairwise different

(s i , x i ). Otherwise stated, ω (k) t = = (s1,x1),...,(s k ,x k )∈ ωt δ ((s1,x1),...,(s k ,x k )) . ( 36 
) Remark 3.1. If A is a Borel set of B t and A k = A × . . . × A, then ω (k) t (A k ) is the number of k-tuples of distinct points of ω t that belong to A, that is ω (k) t (A k ) = ω t (A)(ω t (A) -1) . . . (ω t (A) -k + 1),
which is the reason why it is called a "factorial" measure. For A 1 , . . . , A k a collection of pairwise disjoint sets of B t , the situation is substantially different as we have

ω (k) t (A 1 × • • • × A k ) = k i=1 ω t (A i ). ( 37 
)
Since the sum is over all distinct k-tuples, symmetry plays an important role in factorial measures, and one should keep in mind that symmetric functions are the natural functions to integrate. As an example, the integral of a function g is in fact the integral of its symmetrized function:

ω (k) t (Sym g) = 1 k! π∈S k = (si,xi)∈ ωt g(πs, πx) = 1 k! π∈S k = (si,xi)∈ ωt g(s, x) = ω (k)
t (g).

Multiple stochastic integral over a Poissonian medium

Now that we have defined the factorial measures of ω t , we seek to define a similar quantity for the compensated measure ωt = ω t -νdsdx, which is also called the Wiener-Itô integral. In particular, we still want to avoid points belonging to the diagonal in the integration process.

Let A 1 , . . . A k be a collection of pairwise disjoint, finite sets of B t . Then, observe that

k i=1 ωt (A i ) = k i=1 ω t (A i ) -ν|A i | = J⊂[k] i∈J 1 Ai (s, x) ω t (dsdx) i∈J c -1 Ai (s, x) νdsdx ,
where [k] = {1, 2, . . . , k} should not be confused with the integer part. Using the fact that the A i are disjoint, by [START_REF] Dunlap | Fluctuations of the solutions to the KPZ equation in dimensions three and higher[END_REF] the above product over J can be written as an integral with respect to the measure ω

(|J|) t : k i=1 ωt (A i ) = J⊂[k] (-1) k-|J| [0,t] k ×R k k i=1 1 Ai ω (|J|) t (ds J , dx J ) ν k-|J| ds J c dx J c , (38) 
where the notations ds J and dx J mean that the integration is done with respect to the variables (s i ) i∈J and (x i ) i∈J . This leads to the following definition of the multiple Wiener-Itô integral :

Definition 3.2. For k ≥ 1 and g ∈ L 1 ([0, t] k × R k ), denote the multiple Wiener-Itô integral of g as ω(k) t (g) := J⊂[k] (-1) k-|J| [0,t] k ×R k g(s, x) ω (|J|) t (ds J , dx J ) ν k-|J| ds J c dx J c . (39) 
When k = 0, define ω(0)

t to be the identity on R.

The two following results can be found in [START_REF] Last | Lectures on the Poisson process[END_REF][START_REF] Last | Stochastic Analysis for Poisson Processes[END_REF]:

Proposition 3.1. For k ≥ 1, the map ωt (k) can be extended to a map ω(k) t : L 2 ([0, t] k × R k ) → L 2 (Ω, G, P) g → ω(k) t (g),
which coincides with the above definition of ω(k)

t on the functions of L 1 ∩ L 2 ([0, t] k × R k ). Property 3.1. (i) For k ≥ 1 and g ∈ L 2 ([0, t] k × R k ), then P ω(k) t (g) = 0.
(ii) For every square-integrable function g,

ωt (k) (Sym g) = ωt (k) (g). ( 40 
) (iii) For any k ≥ 1 and l ≥ 1, g ∈ L 2 ([0, t] k × R k ) and h ∈ L 2 ([0, t] l × R l )
, the following covariance structure holds:

P ω(k) t (g) ω(l) t (h) = δ k,l k! ν k < Sym g, Sym h > L 2 ([0,t] k ×R k ) . (41) 
(iv) The map ω(k) t is linear, in the sense that for all square-integrable f, g and reals λ, µ,

P-a.s. ω(k) t (λf + µg) = λ ω(k) t (f ) + µ ω(k) t (g).
Multiple Wiener-Itô integral of a function on the simplex: When g is a function of L 2 (∆ k (0, t) × R k ), denote by g its extension set to zero outside of the simplex, and define

ω(k) t (g) := ω(k) t ( g). (42) 
Observing that

[0, t] k × R k is made of k! copies of ∆ k (0, t) × R k , one gets that P ω(k) t (g) 2 = ν k g 2 L 2 (∆ k (0,t)×R k ) . ( 43 
)
Remark 3.2. This tells us that ω(k)

t is an isometry on L 2 (∆ k (0, t) × R k ) with measure ν k dsdx. This is one of the reasons why we will mainly consider functions of the simplex.

A Wiener-Itô Chaos Expansion of the normalized partition function

The next theorem, proven in [61, §18.4], states that every square-integrable function F (ω) admits a Wiener-Itô chaos expansion, i.e., it can be written as an infinite sum of orthogonal multiple Wiener-Itô integrals. In order to be able to state the theorem, we first need to introduce a new operator.

For any function F (ω t ) of the point-process up to time t, define the derivative operator

D (s,x) (F ) = F (ω t + δ (s,x) ) -F (ω t ), for all (s, x) ∈ [0, t] × R. Now, for any given (s i , x i ) ∈ [0, t] × R, i ≤ k, define the iterated operator: D (s1,x1),...,(s k ,x k ) = D (s1,x1) • D (s2,x2) • • • • • D (s k ,x k ) , (44) 
and the function

T k F : [0, t] k × R k → R, by letting 
T k F (s 1 , . . . , s k , x 1 , . . . , x k ) = P D (s1,x1),...,(s k ,x k ) F (ω t ) . (45) 
We also set

T 0 F = P[F (ω t )]
. By induction, we see that

D (s1,x1),...,(s k ,x k ) F (ω t ) = I⊂[k] (-1) k-|I| F ω t + i∈I δ (si,xi) .
Theorem 3.2. Let F (ω t ) be any measurable function of the point process up to time t, verifying P F (ω t ) 2 < ∞. Then, for all k, T k F is a symmetric, square-integrable function, and we have P-almost surely:

F (ω t ) = ∞ k=0 1 k! ω(k) t T k F . (46) 
The orthogonal series [START_REF] Gubinelli | KPZ Reloaded[END_REF] converges in L 2 (Ω, G, P), and it is called the Wiener-Itô chaos expansion of F (ω t ).

Remark 3.3. Note that the terms in the sum are pairwise orthogonal. As a possible interpretation of the theorem, one can view T k as a k-th derivative, and the Wiener-Itô expansion as a Taylor expansion.

We can now apply the theorem to normalized partition function W t , which is square-integrable. For this purpose, define for all path B and all δ > 0,

χ δ s,x (B) = 1{|x -B s | ≤ δ/2}. (47) 
Note that when δ = r, we have χ r s,x (B) = 1{x ∈ U (B s )}. Proposition 3.2. The normalized partition function has the following Wiener-Itô chaos expansion:

W t = ∞ k=0 1 k! ω(k) t (T k W t ) , (48) 
where, for all s ∈ [0, t] k , x ∈ R k and k ≥ 0:

T k W t (s, x) = λ(β) k P k i=1 χ r si,xi (B) , (49) 
with the convention that an empty product equals 1.

Proof. Fix a path B and observe that

ω (V t (B)) = [0,t]×R χ r s,y (B) ω(dsdy).
For all (s, x) ∈ [0, t] × R, we get that D s,x e βω(Vt) = λ(β) χ r s,x e βω(Vt) . Hence,

T k W t (s, x) = PP e βω(Vt) k i=1 λ χ r si,xi e -tνλr d = λ k P k i=1 χ r si,xi .
Remark 3.4. Note that because of the continuous Poisson normalization in W t , we could not get the expansion (48) directly through a "high-temperature" or "linearization" expansion as in [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF][START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF]. The normalization also induces a centering which makes the iterated Wiener-Itô integrals better suited than the factorial measures to give a chaos expansion to W t .

The Wiener integrals

We repeat the construction of Section 3 for white noise instead of Poisson noise. In this section, we consider another probability space (Λ, F η , Q).

Stochastic integral over the white noise

Definition 4.1. A time-space Gaussian white noise environment η, is a random measure on [0, 1] × R, which satisfies the two following properties:

(i) For all measurable sets A 1 , . . . , A k of [0, 1] × R, η(A 1 ), . . . , η(A k ) is a centered Gaussian vector.

(ii) For all measurable sets A, B of

[0, 1] × R, Q[η(A)η(B)] = |A ∩ B|. (50) 
In the following, we suppose that a white noise process is defined on the probability space (Λ, F η , Q). It is then possible to construct a stochastic integral over the white noise measure, which has the following properties: Proposition 4.1. There exists an isometry

I 1 : L 2 [0, 1] × R → L 2 (Λ, F η , Q) verifying that: (i) For all measurable set A of [0, 1] × R, we have I 1 (A) = η(A).
(ii) For all g ∈ L 2 , the variable I 1 (g) is a centered Gaussian variable of variance g 2 L 2 ([0,1]×R) . We call I 1 (g) the stochastic integral of g over the white noise. Note that the integral will sometimes also be written as

I 1 (g) = [0,1] R g(s, x) η(ds, dx). (51) 

Multiple stochastic integral

It is again possible to extend I 1 to a multiple stochastic integral. One can find the details of such a procedure in Janson's book [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]Chapter 7]. This integral has very similar properties to the Wiener-Itô integral: Theorem 4.1. For all k > 0, there exists a map

I k : L 2 ([0, 1] k × R k ) → L 2 (Λ, F η , Q), which has the following properties: (i) If g is any square-integrable function, then I k (Sym g) = I k (g). (ii) For all g ∈ L 2 ([0, 1] k × R k ) and h ∈ L 2 ([0, 1] j × R j ), the variable I k (g) is centered and 
Q [I k (g)I j (h)] = δ k,j k! < Sym g, Sym h > L 2 ([0,1] k ×R k ) . (52) 
(iii) For all orthogonal family (g 1 , . . . , g k ) of functions in L 2 ([0, 1] × R), we have

I k   k j=1 g j   = k j=1 I 1 (g j ). (53) 
(iv) The map I k is linear.

Remark 4.1. Similar to (42), we define multiple Wiener integral of a function defined on the simplex. If g is a function of L 2 (∆ k × R), and if g is the extension of g set to zero outside of the simplex, we define I k (g) := I k ( g) and have

Q[I k (g) 2 ] = g 2 L 2 (∆ k ×R k ) . ( 54 
)
Remark 4.2. We will sometimes use the notation

I k (g) = [0,1] k R k g(t, x)η ⊗k (dt, dx), (55) 
where [0, 1] k can be replaced with ∆ k when dealing with functions of the simplex. See [START_REF] Janson | Gaussian Hilbert Spaces[END_REF] for a justification of the tensor product notation.

Wiener chaos decomposition

Definition 4.2. For any family G = (g k ) k≥0 such that for all k ≥ 0,

g k ∈ L 2 (∆ k × R k )
, and that

G 2 2 := ∞ k=0 g k 2 L 2 (∆ k ×R k ) < ∞,
we say that G is an element of the Fock space

∞ k=0 L 2 (∆ k × R k )
, which is a normed vector space with norm G 2 , also called Fock norm.

The next proposition is a consequence of Remark 4.1: Proposition 4.2. The linear map

I : ∞ k=0 L 2 (∆ k × R k ) → L 2 (Ω, F η , Q) G = (g k ) k≥0 → ∞ k=0 I k (g k ) =: I(G), (56) 
is an isometry. Note that the sum is well defined as an L 2 -limit.

Remark 4.3. If we were dealing with functions of [0, 1] k × R k , we would have defined I(G) as

∞ k=0 1 k! I k (g k
) and the Fock norm as

∞ k=0 1 k! g k 2 2
. We now consider a key example. Let k > 0, and introduce the k-th dimensional Brownian transition function, for (s, x)

∈ ∆ k × R k : ρ k (s, x) = P (B s1 ∈ dx 1 , . . . , B s k ∈ dx k ) = ρ(s 1 , x 1 )   k-1 j=1 ρ(s j+1 -s j , x j+1 -x j )   , (57) 
where ρ(s, x) is the standard heat kernel. We will also use the convention that ρ 0 = 1.

Proposition 4.3 ([2]). The family R(β) = (β k ρ k ) k≥0 is in ∞ k=0 L 2 (∆ k × R k ) for all β ∈ R.
In particular, the variable

Z β := I R(β) , (58) 
is well defined and square-integrable.

Remark 4.4. This quantity is in fact the continuum polymer partition function (cf. Section 4.4).

Proof. First observe that ρ(s, x) 2 = 1 2 √ πs ρ(s/2, x).

Expressing ρ k in terms of product of ρ function, with the convention s 0 = x 0 = 0,

ρ k (s, x) 2 = ρ k (s/2, x) k j=1 1 2 π(s j -s j-1 ) , so, ∆ k R k ρ k (s, x) 2 dsdx = 2 -k π -k/2 ∆ k k j=1 1 √ s j -s j-1 ds.
The last integral is the normalizing constant of the order k+1 Dirichlet distribution, taken with parameter α = ( 1 2 , . . . , 1 2 , 1). As this constant is known to be the multivariate Beta function

k+1 i=1 Γ(α i )Γ k+1 i=1 α i -1 and since Γ(1/2) = √ π, R(β) 2 2 = ∞ k=0 (β k ) 2 2 k Γ(k/2 + 1) < ∞.

Expression of the point-to-point and point-to-line functions of the continuum polymer

In this section, we give the proper definitions of the continuum polymer partition functions that were mentioned in Section 1.4.2. We start with the point-to-point partition function: in [1], it is shown that by iterating the mild formulation of the SHE equation, one gets that

Z(T, X) = ∞ k=0 β k I k ρ k (•; 0, 0; T, X) , (59) 
where, for s ∈ ∆ k (s, t) and x ∈ R d ,

ρ k (s, x ; s, y ; t, x) = ρ(s 1 -s, x 1 -y)   k-1 j=1 ρ(s j+1 -s j , x j+1 -x j )   ρ(t -s k , x -x k ), (60) 
with the convention that ρ 0 (•, • ; s, y; t, x) = ρ(t -s, x -y). Note that the ratio

ρ k (s,x ; s,y ;t,x) ρ(t-s,x-y)
is the k-steps transition function of a Brownian bridge, starting from (s, y) and ending at (t, x). Again, it is possible to check that the ρ k (• ; S, Y ; T, X) have finite Fock space norm [1].

One can further define the shifted point-to-point functions:

Z β (S, Y ; T, X) = ∞ k=0 β k I k ρ k (• ; S, Y ; T, X) . (61) 
Moreover, integrating over X equation [START_REF] Labbé | Weakly Asymmetric Bridges and the KPZ Equation[END_REF], we recover the previous definition of the point-to-line partition function [START_REF] Kupiainen | Renormalization Group and Stochastic PDEs[END_REF]:

Z β = Z β (0, 0; 1, * ) = ∞ k=0 β k I k (ρ k ) = I(R(β)).
We also get that for any test function

ϕ ∈ C ∞ c : R Z β (T, X)ϕ(X)dX = ∞ k=0 β k I k ρ k (• ; 0, 0; T, X)ϕ(X)dX . ( 62 
)
5. Asymptotic study of Wiener-Itô integrals

The scaling relations

From now on, we will suppose that conditions in (25) hold, that is, as t → ∞,

(a) ν t r 2 t λ(β t ) 2 ∼ (β * ) 2 t -1/2 , (b) ν t r 3 t λ(β t ) 3 → 0, (c) r t / √ t → 0.
There are two main reasons why we chose these relations. First, as t → ∞, conditions (a) and (b) assure that under a scaling of t in time and √ t in space, the Poisson environment over time [0, t] × R becomes a white noise environment on [0, 1] × R. This fact is properly stated in Theorem 5.1, and the k = 1 case of the proof gives good insights about how the parameters relate to one another. The addition of condition (c) ensures that the properly rescaled and normalized T k W t functions converge to the Brownian transition functions.

Gaussian limits of Wiener-Itô integrals

We are interested in the limit of rescaled Wiener-Itô integrals, and more generally at sums of these integrals. We show that we can adapt the techniques developed for the study of U-statistics made out of an i.i.d. sequence of random variables, in chapter 11 of [START_REF] Janson | Gaussian Hilbert Spaces[END_REF].

For any function g defined on

[0, 1] k × R k (resp. ∆ k × R k ), denote by gt the rescaled function of g, defined on [0, t] k × R k (resp. ∆ k (0, t) × R k ) and such that gt (s, x) = g s/t, x/ √ t , (63) 
and let γ t be proportional to the vanishing parameter appearing in (b):

γ t := (β * ) -3 ν t r 3 t λ(β t ) 3 → 0. ( 64 
) Theorem 5.1. Let g ∈ L 2 ([0, 1] k × R k ) for k ≥ 0.
The following convergence holds, as t → ∞,

γ k t ω(k) t (g t ) (d) -→ [0,1] k R k g(t, x)η ⊗k (dt, dx). ( 65 
)
The convergence can be extended for any finite collection k 1 , . . . , k m ∈ N and g 1 , . . . , g m , which satisfy

g i ∈ L 2 ([0, 1] ki × R ki ), γ k1 t ω(k1) t (g 1 t ), . . . , γ km t ω(km) t (g m t ) (d) 
-→ I k1 (g 1 ), . . . , I km (g m ) .

(

) Corollary 5.2. Let G = (g k ) k≥0 belong to the Fock space k≥0 L 2 (∆ k × R k ). 66 
Then, the sum ωt (G) :

= ∞ k=0 γ k t ω(k) t (g k t )
is well defined, and when t → ∞,

ωt (G) = ∞ k=0 γ k t ω(k) t (g k t ) (d) -→ ∞ k=0 ∆ k R k g k (t, x)η ⊗k (dt, dx) = I(G). ( 67 
)
The convergence can be extended to a joint convergence for any finite collection

G 1 , . . . , G m in k≥0 L 2 (∆ k × R k ): ωt (G 1 ), . . . , ωt (G m ) (d) -→ I(G 1 ), . . . , I(G m ) . ( 68 
)
Remark 5.1. Note that all functions in the corollary are defined on simplexes, as we have defined the Fock space for such functions.

We first state a lemma that we will use several times. For a proof of the result, see [START_REF] Billingsley | Convergence of probability measures[END_REF]Ch. 1. Th. 3.2].

Lemma 5.1. Let (S, S) be a metric space with his Borel σ-field. Suppose that (X n t , Y t ) for t ≥ 0, n ∈ N are random variables on S 2 and assume that the following diagram holds :

X n t (d) ----→ t→∞ Y n P, unif in t   n→∞ (d)   n→∞ Y t Y then Y t (d) -→ Y .
Proof of Theorem 5.1. We follow [START_REF] Janson | Gaussian Hilbert Spaces[END_REF]. In particular, we will focus in the first place on k = 1 and g

∈ L 1 ∩ L 2 ([0, 1] × R). k = 1 case.. Let g ∈ L 1 ∩ L 2 ([0, 1] × R).
When k = 1, we have ω(1) = ω, so we can use the complex form of the exponential formula for Poisson point processes (see equation ( 71) below) to compute the characteristic function of γ t ωt (g t ). Let u ∈ R, we have

P e iuγt ωt(gt) = exp [0,t] R e iuγtg(s/t,x/ √ t) -1 -iuγ t g(s/t, x/ √ t) ν t dsdx = exp [0,1] R ν t t 3/2 e iuγtg(s,x) -1 -iuγ t g(s, x) dsdx ,
where the last equality comes from a change of variables. By Taylor-Lagrange formula, we obtain

ν t t 3/2 e iuγtg(s,x) -1 -iuγ t g(s, x) ≤ ν t t 3/2 γ 2 t u 2 2 g(s, x) 2 ,
which gives L 1 domination, since g is square-integrable and since conditions (a) and (b) in [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF] imply that ν t γ 2 t ∼ t -3/2 . Using again this asymptotic equivalence and the fact that γ t → 0, we get that the integrand converges pointwise to the function (s, x) → -u 2 2 g 2 (s, x). Therefore, dominated convergence proves that, as t → ∞, P e iuγt ωt(gt) → exp -

u 2 2 g 2 2 .
The limiting term is the Fourier transform of a centered Gaussian random variable of variance g 2 2 , which has the same law as I 1 (g). This proves the first part of the theorem in the k = 1 and L 1 ∩ L 2 case.

To prove the second part, we use the Cramér-Wold device which tells us that for a collection of real random variables, it is equivalent to show convergence in distribution of all finite linear combinations or to show joint convergence.

Thus, let α 1 , . . . , α m ∈ R and g 1 , . . . ,

g m ∈ L 1 ∩ L 2 ([0, 1] × R). By linearity of the stochastic integrals m i=1 α i γ t ωt (g i t ) = γ t ωt m i=1 α i gi t (d) -→ I 1 m i=1 α i g i = m i=1 α i I 1 (g i ),
where the convergence as t → ∞ is ensured by the foregoing, since the combination m i=1 α i g i is square-integrable. By the Cramér-Wold device and as t → ∞,

γ t ωt (g 1 t ), . . . , γ t ωt (g m t ) (d) 
-→ I 1 (g 1 ), . . . , I 1 (g m ) .

k ≥ 1 case.. Let k ≥ 1 and let g 1 , . . . , g k be the indicator functions of disjoint, finite and measurable sets A 1 , . . . , A k ⊂ [0, 1] × R, and consider

g(s, x) = g 1 (s 1 , x 1 ) . . . g k (s k , x k ). (69) 
Equation ( 38) writes

γ k t ω(k) t (g t ) = k i=1 γ t ωt (g i t )
, so joint convergence of the γ t ωt (g i t ), i ≤ k, from the k = 1 case, implies that

ω(k) t (g t ) (d) -→ k i=1 I 1 (g i ) = I k (g),
where the equality comes from property [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] and the fact that the g i 's are orthogonal in L 2 .

In fact, if one takes g 1 , . . . , g m of the form (69), so that they write g i (s, x) = ki j=1 g i,j (s j , x j ), the same argument, combined with the joint convergence of the γ t ωt (g i,j t ) for 1 ≤ i ≤ m and 1 ≤ j ≤ k i , proves that

γ k1 t ω(k1) t (g 1 t ), . . . , γ km t ω(km) t (g m t ) (d) 
-→ I k1 (g 1 ), . . . , I km (g m ) .

Now, denote by V k the linear subspace of L 2 ([0, 1] k × R) spanned by the functions of the form (69), with fixed dimension k. By linear combinations, (70) can be extended for any collection g i ∈ V ki 1≤i≤m , so this proves the whole theorem for functions of

V k , k ≥ 1. It is a standard result that V k is dense in L 2 ([0, 1] k × R k ) for all k ≥ 1. Let then g be any function of L 2 ([0, 1] k × R k
) and (g n ) n≥1 be a sequence of functions of V k that converges to g in L 2 norm. Conditions (a) and (b) imply that ν t t 3/2 γ 2 t ∼ 1. Hence, by the covariance structures and the linearity of ω(k) t , we obtain for large enough t:

P γ k t ω(k) t (g n t ) -γ k t ω(k) t (g t ) 2 = ν k t γ 2k t k! (g n -g)(•/t, •/ √ t) 2 L 2 ([0,t] k ×R k ) = t 3k/2 ν k t γ 2k t k! g n -g 2 L 2 ([0,1] k ×R k ) ≤ 2k! g n -g 2 L 2 ([0,1] k ×R k ) → 0,
as n → ∞. Similarly for I k :

Q I k (g n ) -I k (g) 2 = k! g n -g 2 L 2 ([0,1] k ×R k ) → 0
We get the following diagram:

γ t ω(k) t (g n t ) (d) ----→ t→∞ I k (g n ) L 2 , unif in t   n→∞ (d)   n→∞ γ t ω(k) t (g t ) I k (g) so that γ t ω(k) t (g t ) → I k (g) by Lemma 5.
1. This proves the first part of the theorem. The joint convergence can be shown by the same argument, using again the Cramér-Wold device and approaching any linear combinations of Wiener-Itô integrals of L 2 functions with linear combinations of integrals of V k functions.

Proof of Corollary 5.2. We focus on the first part of the corollary, since the joint convergence follows from the Cramér-Wold device and linearity of ωt (G) and I(G).

First and by definition, we know that

M k=0 I k (g k ) L 2 -→ ∞ k=0 I k (g k ) as M → ∞.
Moreover, since we are now dealing with functions on the simplex, equation [START_REF] Gu | The Edwards-Wilkinson Limit of the Random Heat Equation in Dimensions Three and Higher[END_REF] 

leads to ω(k) t (g k t ) 2 2 = ν k t g k (•/t, •/ √ t) 2 L 2 (∆ k (0,t)×R k ) = ν k t t 3k/2 g k 2 L 2 (∆ k ×R k ) .
Conditions (a) and (b) imply that ν t t 3/2 ∼ γ -2 t . Hence, as g k 2 2 is summable, we obtain by absolute convergence that, uniformly in t and as M → ∞,

M k=0 γ k t ω(k) t (g k t ) L 2 -→ ∞ k=0 γ k t ω(k) t (g k t ).
Moreover, it is a consequence the joint convergence part of the theorem that, for all M and when t → ∞,

M k=0 γ k t ω(k) t (g k t ) (d) -→ M k=0 I k (g k ).
Putting things together, we get the following diagram:

M k=0 γ k t ω(k) t (g k t ) (d) ----→ t→∞ M k=0 I k (g k ) L 2 , unif in t   M →∞ (d)   M →∞ ∞ k=0 γ k t ω(k) t (g k t ) ∞ k=0 I k (g k ), so by Lemma 5.1, ωt (G) = ∞ k=0 γ k t ω(k) t (g k t ) (d) -→ ∞ k=0 I k (g k ).
6. Proofs of Theorems 2.1, 2.2 and 2.3

Some useful formulas

• For all non-negative and all non-positive measurable functions h, defined on R + × R d , the Poisson formula for exponential moments (chapter 3. of [START_REF] Last | Lectures on the Poisson process[END_REF]) writes

P e h(s,x)ωt(dsdx) = exp ]0,t]×R νdsdx e h(s,x) -1 . (71) 
The formula remains true when h is replaced by ih, for any real integrable function h.

• For all s ≥ 0, we have

R χ r s,x dx = r. (72) 
6.2. Proof of Theorem 2.1 : convergence of the point-to-line partition function Introduce the following time-depending functions of [0, 1] k × R k :

φ k t (s, x) = γ -k t λ(β t ) k P k i=1 χ rt/ √ t si,xi (B) 1 ∆ k (s, x), (73) 
where we recall that γ t is defined in [START_REF] Mitoma | Tightness of probabilities on C[END_REF] and that ∆ k is the simplex defined below [START_REF] Corwin | KPZ equation limit of higher-spin exclusion processes[END_REF]. Note that for all (s, x), the diffusive scaling property of the Brownian motion implies that

χ rt/ √ t s/t,x/ √ t = 1 |B s/t -x/ √ t|≤rt/2 √ t law = χ rt s,x .
Therefore, using notation 63), we see that after simple rescaling, equation [START_REF] Hairer | A theory of regularity structures[END_REF] gives

φ k t := ( φ k t ) t = φ k t (•/t, •/ √ t) from (
γ k t φ k t = T k W t 1 ∆ k (0,t) . (74) 
Besides, observe that by the symmetric property of T k W t and the invariance of the Wiener-Itô integrals under symmetrization [START_REF] Gonçalves | Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems[END_REF], we obtain 5 :

ω(k) t T k W t = k! ω(k) t T k W t 1 ∆ k (0,t) .
Hence, Proposition 3.2 and equation ( 74) lead to the following expression of W t :

W t = ∞ k=0 γ k t ω(k) t φ k t . (75) 
Considering from now on φ k t as a function of the simplex, this writing of W t is of the type ωt (G) (cf. Corollary 5.2), although there is a time dependence in the φ k t functions. The purpose of the two following lemmas is to study the asymptotic behavior of these functions, as t → ∞. 6.2.1. Approximations in L 2 -norm Lemma 6.1. Let k be a positive integer. We have the following properties:

(i) For all s ∈ ∆ k , there exists a non-negative function

h s ∈ L 2 (R k ), such that ∀ε ∈ (0, 1], x ∈ R k , ε -k P k i=1 χ ε si,xi (B) ≤ h s (x).
(ii) There exists a non-negative function

H ∈ L 2 (∆ k ), such that ∀ε > 0, ∀s ∈ ∆ k , R k ε -k P k i=1 χ ε si,xi (B) 2 
dx ≤ H(s).

(iii) We have the pointwise convergence, as ε → 0,

∀s ∈ ∆ k , ∀x ∈ R k , ε -k P k i=1 χ ε si,xi (B) → ρ k (s, x),
where ρ k (s, x) is defined in [START_REF] Kardar | Dynamic Scaling of Growing Interfaces[END_REF].

Proof. We use the convention s 0 = y 0 = x 0 = u 0 .

(i) By Markov property of the Brownian Motion,

ε -k P k i=1 χ ε si,xi (B) = ε -k R k k i=1 1 |xi-yi|≤ε/2 ρ(s i -s i-1 , y i -y i-1 )dy (76) = [-1 2 , 1 2 ] k k i=1 ρ s i -s i-1 , x i -x i-1 + ε(u i -u i-1 ) du, (77) 
where we have taken y i = x i + εu i and where ρ(s, x) is the standard heat kernel.

Observe that, for 0 < ε ≤ 1 and u ∈ [-1, 1],

e -(x+εu) 2 2s √ 2πs = ρ(s, x)e -ε 2xu 2s e -ε 2 u 2 2s ≤ ρ(s, x)e |x|/s , which leads to the following domination :

ε -k P k i=1 χ ε si,xi (B) ≤ k i=1 ρ(s i -s i-1 , x i -x i-1 )e |xi-xi-1|/(si-si-1) . (78) 
Define h s (x) to be the right-hand side of [START_REF] Vargas | A local limit theorem for directed polymers in random media: the continuous and the discrete case[END_REF], so that what is left to prove is that h s ∈ L 2 (R k ) for s ∈ ∆ k . With the change of variables z i = x i -x i-1 of Jacobian J = 1 and by Tonelli's theorem

R k h s (x) 2 dx = R k k i=1 e -(xi-xi-1) 2 /(si-si-1) 2π(s i -s i-1 ) e 2|xi-xi-1|/(si-si-1) dx = k i=1 R e -z 2 i /(si-si-1)
2π(s i -s i-1 ) e 2|zi|/(si-si-1) dz i , which is finite as each integral converges.

(ii) One can first note that for all s > 0, ρ(s, x) ≤ 1/ √ 2πs. This combined with equation [START_REF] Tracy | Harold: A Fredholm Determinant Representation in ASEP[END_REF] gives us, for all s ∈ ∆ k ,

P k i=1 χ ε si,xi (B) ≤ (2π) -k/2 k i=1 1 √ s i -s i-1 R k k i=1 1 |xi-yi|≤ε/2 dy ≤ ε k k i=1 1 √ s i -s i-1 . ( 79 
)
Let H(s) = k i=1 (s i -s i-1 ) -1/2 be the product appearing in the last inequality. We saw in the proof of Proposition 4.3 that H is an element of L 1 (∆ k ).

Furthermore:

R k ε -k P k i=1 χ ε si,xi (B) 2 dx ≤H(s) R k ε -k P k i=1 χ ε si,xi (B) dx =H(s), (80) 
where we have used Tonelli's theorem in the equality.

(iii) This result can be derived from equation ( 77), using continuity in x of ρ(s, x) for a fixed s > 0.

From the last lemma, we can derive L 2 properties of φ k t : Lemma 6.2. Let k be a positive integer. We have:

(i) The following convergence holds:

φ k t -(β * ) k ρ k L 2 (∆ k ×R k ) -→ t→∞ 0,
where φ k t is defined in [START_REF] Shiozawa | Localization for branching Brownian motions in random environment[END_REF] and ρ k (s, x) is defined in (57).

(ii) There exists a positive constant C = C(β * ), such that

sup t∈[0,1] φ k t L 2 ([0,1] k ×R k ) ≤ C k ρ k L 2 (∆ k ×R k ) .
Proof. (i) Recall that on ∆ k (0, t) × R k :

φ k t (s, x) = γ -k t λ k P k i=1 χ rt/ √ t si,xi (B) .
Conditions (a) and (b) in [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF] imply that, as t → ∞,

γ -1 t λ(β t ) ∼ β * √ t r t , (81) 
which leads to the existence of a constant c > 1, such that, for t large enough and all k ≥ 1:

γ -k t λ k ≤ c k |β * | k r t √ t -k . ( 82 
)
Observe that r t / √ t → 0 by condition (c). Then, Lemma 6.1 implies the existence of two non-negative dominating functions h s ∈ L 2 (R k ) and H ∈ L 1 (∆ k ), such that, for large enough t and s

∈ ∆ k , ∀x ∈ R k φ k t (s, x) ≤ h s (x), (83) 
and

R k φ k t (s, x) 2 dx ≤ H(s). (84) 
Furthermore, because of the equivalence [START_REF] Wüthrich | Superdiffusive behavior of two-dimensional Brownian motion in a Poissonian potential[END_REF], point (iii) of the same lemma shows that we have the pointwise convergence:

∀s ∈ [0, 1], ∀x ∈ R k , φ t k (s, x) -→ t→∞ (β * ) k ρ k (s, x).
From (83), we get by the dominated convergence theorem that

∀s ∈ ∆ k , R k φ k t (s, x) -(β * ) k ρ k (s, x) 2 dx -→ t→∞ 0,
and as we have

R k φ k t (s, x) -(β * ) k ρ k (s, x) 2 dx ≤ R k 2φ k t (s, x) 2 + 2(β * ) 2k ρ k (s, x) 2 dx,
where the right hand side is dominated in L 1 (∆ k ) using equation ( 84), we can use the dominated convergence theorem and obtain the convergence

φ t k -(β * ) k ρ k 2 L 2 (∆ k ×R k ) = ∆ k R k φ t k (s, x) -(β * ) k ρ k (s, x) 2 dx ds -→ t→∞ 0.
(ii) Using inequalities ( 82) and ( 80), we get

φ t k 2 L 2 ([0,1] k ×R k ) ≤ c k |β * | k ∆ k k i=1 1 √ s i -s i-1 ds = C k ρ k 2 L 2 (∆ k ×R k ) , with C = 2 √ πc|β * |.

Conclusion of the proof of Theorem 2.1

From Proposition 4.3, we have R(β * ) = ((β * ) k ρ k ) k≥0 ∈ k≥0 L 2 (∆ k × R k ), so we get from Corollary 5.2 that when t → ∞,

∞ k=0 (β * ) k γ k t ω(k) t (ρ k t ) (d) -→ Z β * . (85) 
In addition to this, we saw at equation [START_REF] Tracy | Harold: Level-spacing distributions and the Airy kernel[END_REF] 

-→ Y and Y n -X n 2 -→ 0, then X n (d)
-→ Y . Hence, in order to prove that

W t (d) -→ Z β * , it suffices to show that ∞ k=0 γ k t ω(k) t ( φk t ) - ∞ k=0 (β * ) k γ k t ω(k) t (ρ k t ) 2 2 -→ t→∞ 0. ( 86 
)
By linearity of ω(k) t and orthogonality of the terms for two different k, we get from Pythagoras' identity that the norm can be written as

∞ k=0 γ 2k t ω(k) t φ k t (•/t, •/ √ t) -(β * ) k ρ k (•/t, •/ √ t) 2 2 .
For all g ∈ L 2 (∆ k × R k ), equation ( 43) and a substitution of variables lead to

ω(k) t g(•/t, •/ √ t) 2 2 = ν k t g(•/t, •/ √ t) 2 L 2 (∆ k (0,t)×R k ) = ν k t t 3k/2 g 2 L 2 (∆ k ×R k ) ,
so that the above sum is given by

∞ k=0 γ 2k t ν k t t 3k/2 φ k t -(β * ) k ρ k 2 L 2 (∆ k ×R k ) .
Conditions (a) and (b) imply that γ 2 t ν k t t 3/2 ∼ 1, so by lemma 6.2, the summand tends to zero, as t → ∞, and it is dominated by C 2k ρ k 2 2 , where C = C(β * ) is some positive constant. As this dominating sequence is summable (Proposition 4.3), the dominated convergence theorem concludes the proof.

Proof of Theorem 2.2 : convergence of the point-to-point partition function

Using again Theorem 3.2, and after similar normalization to what was done in the beginning of Section 6.2, we find that

√ tW (β t , tS, √ tY ; tT, √ tX) = ∞ k=0 γ k t ω(k) t ψ k t (S, Y ; T, X) , (87) 
where

ψ k t (S, Y ; T, X)(s, x) = γ -k t λ(β t ) k ρ(T -S, X -Y )P T,X S,Y k i=1 χ rt/ √ t si,xi (B) 1 ∆ k (S,T ) .
Analogous calculations to those of Section 6.2.1 will show that for all k ≥ 0, as t → ∞,

ψ k t (S, Y ; T, X) L 2 -→ β * k ρ k (• ; S, Y ; T, X),
where, by Corollary 5.2, the limiting functions have the property that

∞ k=0 γ k t β * k ω(k) ρk t (• ; S, Y ; T, X) (d) -→ Z β * (S, Y ; T, X). (88) 
The theorem then follows from similar arguments to those of the proof of the convergence of the point-to-line partition function, that is by showing that the right-hand side of (87) and the left-hand side of (88) are close in L 2 norm.

Proof of Theorem 2.3 : convergence in terms of processes

In order to show tightness of Y t , we will rely on Mitoma's criterion [START_REF] Mitoma | Tightness of probabilities on C[END_REF][START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. It will help us reduce the problem of showing tightness of a two variables process, to the problem of showing tightness of a set of one variable processes.

From now on, for any function F (T, X) of variables T ≥ 0, X ∈ R and for all ϕ ∈ D(R), we set

F (T, ϕ) := F (T, X)ϕ(X)dX. (89) 
Moreover, for any function F ∈ D ([0, 1], D (R)), we also denote by F (T, ϕ) the product of F (T ) with ϕ.

Proposition 6.1 ( [START_REF] Mitoma | Tightness of probabilities on C[END_REF]). Let (F t ) t≥0 be a family of processes in D ([0, 1], D (R)).

If, for all ϕ ∈ D(R), the family

T → F t (T, ϕ), t ≥ 0 is tight in the real cadlàg functions space D([0, 1], R), then (F t ) t≥0 is tight in D ([0, 1], D (R)).
Then, in order to prove uniqueness of the limit, we use the following proposition: Proposition 6.2 ([64]). Let (F t ) t≥0 be a tight family of processes in the space D ([0, 1], D (R)). If there exists a process F ∈ D ([0, 1], D (R)) such that, for all n ≥ 1, T 1 , . . . , T n ∈ [0, 1] and ϕ 1 , . . . , ϕ n ∈ D(R), we have as t → ∞:

(F t (T 1 , ϕ 1 ), . . . , F t (T n , ϕ n )) (d) -→ (F t (T 1 , ϕ 1 ), . . . , F t (T n , ϕ n )) , then F t (d)
-→ F .

Identification of the limit

We start by identifying the limit as in Proposition 6.2: Proposition 6.3. Let ϕ ∈ D(R). Then, for all T ≥ 0 and as t → ∞,

Y t (T, ϕ) = Y t (T, X)ϕ(X)dX (d) -→ Z β * (T, X)ϕ(X)dX. (90) 
Moreover, the convergence extends to a joint convergence as in Proposition 6.2.

Proof. Once again, we rely on Theorem 3.2 and similar normalization to the beginning of Section 6.2 to get that

Y t (T, ϕ) = ∞ k=0 γ k t ω(k) ψ k t (T, ϕ) ,
where

ψ k t (T, ϕ)(s, x) = γ -k t λ(β t ) k R ρ(T, X)P T,X 0,0 k i=1 χ rt/ √ t si,xi (B) ϕ(X)dX 1 ∆ k (s, x).
Then, for all k ≥ 0 and as t → ∞, we have:

ψ k t (T, ϕ) L 2 -→ g k := β * k R ρ k (• ; 0, 0; T, X)ϕ(X)dX.
To see this, apply Cauchy-Schwarz's inequality to obtain that

ψ k t (T, ϕ) -g k 2 2 = ∆ k ×R k R ϕ(X) γ -k t λ(β t ) k ρ(T, X)P T,X 0,0 k i=1 χ rt/ √ t si,xi -β * k ρ k (s, x, 0, 0; T, X) dX 2 dsdx ≤ ϕ 2 2 ∆ k ×R k+1 γ -k t λ(β t ) k ρ(T, X)P T,X 0,0 k i=1 χ rt/ √ t si,xi -β * k ρ k (s, x; 0, 0; T, X) 2 dsdxdX.
By similar estimates to those obtained in Section 6.2.1, we get that this last integral goes to 0.

Equation ( 62) and Corollary 5.2 imply that

∞ k=0 γ k t ω(k) gk t (d) -→ R Z β * (S, X)ϕ(X)dX,
so that convergence (90) follows from the same arguments we used for the convergence of the point-to-line functions. Finally, the joint convergence can be obtained using (68) in Corollary 5.2.

Tightness

We now turn to proving that the condition of Proposition 6.1 holds for Y t . Putting things together, this will end the proof of Theorem 2.3.

The process Λ t is a Poisson point process of intensity measure t 3/2 ν t dSdX. By simple rescaling of the Poisson stochastic heat equation [START_REF] Caravenna | Universality in marginally relevant disordered systems[END_REF], one can write that

Y t (T, ϕ) = ϕ(0) + A t T (ϕ) + M t T (ϕ), (91) 
where

A t T (ϕ) = 1 2 T 0 R ∆ϕ(X)Y t (S, X)dSdX, M t T (ϕ) = λ(β t ) R ϕ(X) (0,T ]×R Y t (S-, X)1 |X-Y |≤rt/2 √ t Λ t (dSdY ) dX.
We will show that both A t (ϕ) and M

t (ϕ) are tight in D([0, 1], R). If this is proven, then A t (ϕ), M t (ϕ) is tight, hence Y t (•, ϕ) is tight.
Tightness of A t (ϕ):. To prove tightness, we will use Kolmogorov's criterion [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 12.3]. For this we need estimates on the moments on the variations of A t (ϕ), which will be derived through the next lemma: Lemma 6.3. Suppose that (β t ) t≥0 is bounded from above. Then, there exists a constant C = C(β * , p) verifying 0 < C < ∞ and that for t large enough and all p > 1, T > 0 and X ∈ R,

P[Y t (T, X) p ] ≤ Cρ(T, X) p . (92) 
Suppose for a moment that the lemma is proven, and let p ≥ 2 be an integer and U ≤ T in [0, 1]. We have:

P A t T (ϕ) -A t U (ϕ) p ≤ 2 -p P [U,T ]×R |∆ϕ(X)| Y t (S, X)dSdX p ≤ 2 -p ∆ϕ p ∞ [U,T ] p ×R p P p i=1
Y t (S i , X i ) dSdX.

By Lemma 6.3, the functions Y t (S i , X i )/ρ(S i , X i ) are bounded in L p , so we can use the generalized Hölder inequality to bound the expectation of the product in the right-hand side. We get that there is constant C = C(p) > 0 such that (93)

P A t (ϕ) T -A t (ϕ) U p ≤ C ∆ϕ p
We claim that for each q > 0 and k ≥ 2, there exists a constant C = C(q, β * ) > 0, such that for all t large enough and all T, X,

P ⊗p exp qν t |λ(β t )| k [0,tT ]×R k i=1 χ rt s,x (b pi ) dsdx ≤ C. ( 94 
)
If this is proven, then the generalized Hölder inequality implies that the righthand side of (93) is bounded, which is the claim of the lemma. First, notice that for all k ≥ 2, 

U i -U i-1 -1 dU = (Cr t t -1/2 T 1/2 ) m √ π m Γ(m/2) ,
where C > 0 is some constant, Γ is the Gamma function and where the value of the integral in the third equation was identified via the Dirichlet distribution. Since β t is assumed to be bounded from above, λ(β t ) is bounded. Then, for all k ≥ 2, the scaling relation (a) in [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF] implies that there exists a constant C 1 = C 1 (β * ) > 0, such that t 1/2 r 2 t ν t λ(β t ) k ≤ C 1 . Added to the fact that T ≤ 1, we get that there exists a finite constant C 2 > 0, depending only on β * and q, such that for t large enough:

∞ m=0 1 m! (qtr t ν t |λ| k ) m P T 0 1 | bS |≤rt/ √ 8t dS m ≤ ∞ m=0 C m 2 Γ(m/2) < ∞.
This proves (94), which ends the proof of the lemma.

Tightness of M t (ϕ):. The process T → M t T (ϕ) is a martingale (see equation (95) below) with respect to the filtration induced by (ω tT ) T ∈[0,1] . It is therefore possible to rely on Aldous' criterion to show tightness: Theorem 6.1 (Aldous' criterion for martingales [START_REF] Jacod | Limit theorems for stochastic processes[END_REF]Chap. VI Theorem 4.13]). Let (N t ) t≥0 be a family of martingales in D([0, 1], R). Assume that:

(i) The family (N t 0 ) t≥0 is tight.

(ii) The family of previsible brackets ( N t ) t≥0 is tight in C([0, 1], R).

Then, the (N t ) t≥0 are tight in D([0, 1], R).

In our case, point (i) is immediately verified, as M t 0 (ϕ) = 0. To show that point (ii) holds, we use Kolmogorov's criteria. We have: Then, observe that by our scaling relations [START_REF] Comets | Some new results on Brownian directed polymers in random environment[END_REF], the quantity t 1/2 ν t r t λ(β t ) 2 is bounded by some constant C > 0. Expanding the power of the integral, we get:

M t T (ϕ) = (0,T ]×R f (S, Y, ω)Λ t (dSdY ), (95) 
P M t (ϕ) T -M t (ϕ) U p ≤ C ϕ 2p ∞ [U,T ] p ×R p P p i=1 Y t (S i -, X i ) 2 dSdX
As we know by Lemma 6.3 that Y t (S, X)/ρ(S, X) is bounded in L 2p , we can again use the generalized Hölder inequality to bound the expectation of the product, and obtain that there is constant C > 0 such that

P M t (ϕ) T -M t (ϕ) U p ≤ C ϕ 2p ∞ [U,T ] p ×R p p i=1 ρ(S i , X i ) 2 dSdX = C ϕ 2p ∞ [U,T ]×R ρ(S, X) 2 dSdX p = C ϕ 2p ∞ π -p/2
|T 1/2 -U 1/2 | p . Thus, Kolmogorov's tightness criterion [START_REF] Billingsley | Convergence of probability measures[END_REF]Theorem 12.3] applies, so the bracket M t (ϕ) is tight. Hence Aldous' criterion applies, which concludes the proof of tightness of M t (ϕ).

1. 4 .

 4 Connections between the stochastic heat equation(s) and the directed polymers in random environments 1.[START_REF] Bates | The endpoint distribution of directed polymers[END_REF].1. The Poisson caseIntroduce the normalized point-to-point partition function:

=

  C ∆ϕ p ∞ |T -U | p . This shows that A t (ϕ) verifies the assumptions of Kolmogorov's criterion.Proof of Lemma 6.3. Let p > 1, T > 0 and X ∈ R. We have:Y t (T, X) p = ρ(T, X) p P ⊗p exp [0,tT ]×R p i=1 β t χ rt s,x (b i ) ω(dsdx) e -ptT λνtrt ,where b 1 , . . . , b p are independent Brownian bridges from (0, 0) to (tT, √ tX). By the exponential formula (71), we getP[Y t (T, X) p ] ρ(T, X) p = P ⊗p exp (b i ) -1 ν t dsdx e -ptT λνtrt . (b pi ).Using equation (72), we are left with:P[Y t (T, X) p ] ρ(T, X)

  , where b is a Brownian bridge (0, 0) → (T, 0), we can bound the left hand side of (94) by∞ m=0 1 m! (qtr t ν t |λ(β t )| k ) m P S i -S i-1 , X i-1 -X i ) ρ(T, 0) dSdX,where S 0 = X 0 = X m+1 = 0 and S m+1 = T . Using that ρ(S, X)

  ) k ρ k by Lemma 6.2. It is a standard result that if X n and Y n are real random variables such that

	that the normalized partition
	function writes W t = -→ (β Y n ∞ k=0 γ k t ω(k) t φk t , where φ k t L 2 (d)

* 

  where f (S, Y, ω) = λ(β t ) Since f is predictable and Λ t has intensity t 3/2 ν t dSdX, the bracket can be expressed [53, Section II.3.] by M t (ϕ) T = t 3/2 ν t so for all U ≤ T in [0, 1] and integer p ≥ 2, we get by Tonelli's theorem thatP M t (ϕ) T -M t (ϕ) U

							f (S, Y, ω) 2 dSdY.
							[0,T ]×R		
	Now, by Cauchy-Schwarz inequality, we have:		
		f (S, Y, ω) 2 ≤	r t λ 2 2 √ t R	Y t (S-, X) 2 ϕ(X) 2 1 |X-Y |≤rt/2 √	t dX,
						p			
	≤	t 3p/2 ν p t r p 2 p t p/2 t λ 2p	P	[U,T ]×R	Y t (S-, X) 2 ϕ(X) 2	R	1 |X-Y |≤rt/2 √	t dY dSdX	p
	= 2 -p t p/2 ν p t r 2p t λ 2p P					
							Y t (S-, X)ϕ(X)1 |X-Y |≤rt/2 √	t dX.
							R		

[U,T ]×R Y t (S-, X) 2 ϕ(X) 2 dSdX p .

For every probability measure P and variable X, we will use the convention that P[X] denotes the expectation of X under P.

We will try to reserve capital letters (T, X,...) for the macroscopic scale (KPZ, SHE and continuum polymer) and lower case (t, x,...) for the microscopic scale (Poisson polymer and associated quantities).

where the term field signifies that one keeps track of the starting point of the path

In fact, we will see in Lemma 6.3 and its proof that condition (a) implies that the normalized point-to-point partition function has finite L p -moments for all p > 0 as soon as (βt) t≥0 is bounded from above. In particular, no restriction on β * is needed

Note that from now on, we will always assume that ω law = ω ν t , even if we drop the superscript notation.
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