Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1000 °C

Chao Chen, Tianquan Liang, Yan Guo, Xiyong Chen, Quanyan Man, Xiuhai Zhang, Jianmin Zeng, Vincent Ji

To cite this version:
Chao Chen, Tianquan Liang, Yan Guo, Xiyong Chen, Quanyan Man, et al.. Effect of scandia content on the hot corrosion behavior of Sc2O3 and Y2O3 co-doped ZrO2 in Na2SO4 + V2O5 molten salts at 1000 °C. Corrosion Science, 2019, 158, pp.108094 -. 10.1016/j.corsci.2019.108094 . hal-03488211

HAL Id: hal-03488211
https://hal.science/hal-03488211
Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Effect of Scandia content on the hot corrosion behavior of Sc$_2$O$_3$ and Y$_2$O$_3$ co-doped ZrO$_2$ in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C

Chao Chena, Tianquan Lianga,b,c,d,*, Yan Guoa, Xiyong Chena,b,*, Quanyan Mana, Xiuhai Zhanga,b,c, Jianmin Zenga,b,c, Vincent Jid

a School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
b Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Nanning 530004, Guangxi, PR China
c Center of Ecological Collaborative Innovation for Aluminum Industry in Guangxi, Nanning 530004, PR China
d ICMMO/SP2M, UMR CNRS 8182, Université Paris-Sud, 91405 Orsay Cédex, France

*To whom all correspondence should be addressed.

E-mail: liangtianquan@gxu.edu.cn, xiyongchen@gxu.edu.cn

ABSTRACT

The effect of Sc$_2$O$_3$ content on the hot corrosion behavior of x mol.% Sc$_2$O$_3$-1.5 mol.% Y$_2$O$_3$ co-doped ZrO$_2$ ceramics (ScYSZ) in Na$_2$SO$_4$ + V$_2$O$_5$ (50/50 wt.%) molten salts at 1000 °C was investigated. The experiments revealed that the hot corrosion resistance and phase stability of the ScYSZ ceramics increase with the Sc$_2$O$_3$ content as results of the enhanced strength of rare earth-oxygen bond and the increased prohibition effect on the vanadate penetration due to the small ionic radius of Sc$^{3+}$ and the weak reactivity of Sc$_2$O$_3$ with vanadates. The hot corrosion mechanism was also discussed.
Keywords: Scandia doped yittria stabilized zirconia; Phase stability; Hot corrosion; Sulfate and vanadate molten salts; Mechanism

1. Introduction

Thermal barrier coatings (TBCs) are widely used to protect hot sectional components of gas turbines from high temperature attack, and therefore to increase the operation temperature and thermal efficiency [1, 2]. The commercial 6-8 wt.% Y₂O₃ partially stabilized ZrO₂ (YSZ) is currently the primary choice for the TBCs topcoat due to its low thermal conductivity, comparative thermal expansion coefficient with the substrate, and excellent thermal shock resistance [3, 4]. However, further applications of YSZ are limited by the destructive tetragonal-to-monoclinic phase transformation and the serious sintering problem when the working temperature exceeds 1200 °C [5-7]. In addition, low quality fuels used in gas turbines or diesel engines usually contain impurities such as vanadium, sulfur and sodium. These impurities form Na₂SO₄ and NaVO₃, which will condense on the surface of TBCs and then form low-melting-point molten salts at the temperature of 600-1050 °C [8-10].

The molten salt will penetrate into the TBCs through the splat boundaries and open pores of YSZ coatings prepared by the air plasma spraying (APS), or through the inter-columnar gaps of ceramic coatings by the electron beam physical vapor deposition (EB-PVD) or plasma spray physical vapor deposition (PS-PVD). The penetrated corrosive salts would react with the stabilizers in ZrO₂, and further result in the leaching of stabilizers. As a result, non-transformable tetragonal zirconia (t'-ZrO₂) and the transformable tetragonal zirconia (t-ZrO₂) phases would transform to monoclinic zirconia (m-ZrO₂) phase accompanying with 4 % volume expansion,
which leads to the formation of macro-cracks and degradation of TBCs [11-13].

In recent years, a great deal of researches have been conducted to improve hot corrosion resistance of YSZ against sulfate and vanadate molten salts by doping rare earth oxides or other oxides such as CeO$_2$, TiO$_2$, Gd$_2$O$_3$, Yb$_2$O$_3$, Al$_2$O$_3$, HfO$_2$, Sc$_2$O$_3$, Ta$_2$O$_5$, etc [9,13-18]. Studies showed that the Sc$_2$O$_3$ and Y$_2$O$_3$ co-doped ZrO$_2$ (ScYSZ) was a promising material for TBCs application owing to its low thermal conductivity, long thermal cycling lifetime and excellent phase stability at ultra-high temperature above 1400 °C [19-24], as well as its outstanding hot corrosion resistance to V$_2$O$_5$ or Na$_2$SO$_4$ + V$_2$O$_5$ molten salts [24-27]. The significantly better tetragonal phase stability of Sc$_2$O$_3$ and Y$_2$O$_3$ co-doped ZrO$_2$ over YSZ at 1400 °C has been verified when the total stabilizer content is around 7 mol.% with relatively less Y$_2$O$_3$ (0.17 to 1.36 mol.%) [21]. Leoni [23] also claimed that the 6.57 mol.% Sc$_2$O$_3$-1.00 mol.% Y$_2$O$_3$ doped ZrO$_2$ APS coating has excellent tetragonal phase stability after exposure to 1400 °C for 1500 h. Liu et al. [15] reported that 8 mol.% Sc$_2$O$_3$-0.6 mol.% Y$_2$O$_3$-ZrO$_2$ TBCs exhibited superior phase stability after 300 h annealing at 1500 °C. Literature [23] showed that the 7.0 Sc$_2$O$_3$-0.5 Y$_2$O$_3$-ZrO$_2$, 6.5 Sc$_2$O$_3$-1.0 Y$_2$O$_3$-ZrO$_2$ and 5.5 Sc$_2$O$_3$-2.0 Y$_2$O$_3$-ZrO$_2$ (in mol.%) ceramics had good phase stability after 200 h annealing at 1500 °C with the exception of 5.5 Sc-2.0 Y-ZrO$_2$ in which about 4.6 mol.% monoclinic phase appears in the sample. All of these studies indicate that the Sc$_2$O$_3$ and Y$_2$O$_3$ co-doped ZrO$_2$ (ScYSZ) has excellent tetragonal phase stability at ultra-high temperature when total stabilizer concentration reaches 7.0 mol.% and the content of Y$_2$O$_3$ is within the range of 0.5-2.0 mol.. The high tetragonal phase stability of ScYSZ at high stabilizer concentrations can be strongly associated with the low crystal tetragonality (c/a ratio, c and a are the lattice
parameters). Jones [21] and Leoni [23] suggested that the crystal tetragonality decreases with the increase of the total stabilizer content within a certain concentration range, and lower tetragonality generally indicates the better tetragonal phase stability at high temperature.

Doping of Sc_2O_3 in YSZ can also improve the hot corrosion resistance significantly over YSZ. Jones[24] reported that Sc_2O_3-stabilized ZrO_2 (ScSZ) gave no detectable reaction or destabilization in NaVO_3 molten salt for 160 h at 900 °C since Sc_2O_3 has the strongest acidity of the rare earth and its effective stability to t-ZrO_2. And thus the Sc_2O_3 and Y_2O_3-stabilized ZrO_2 (SYSZ) is substantially more resistant to vanadate hot corrosion than Y_2O_3-stabilized ZrO_2 in corrosive molten salts at high temperatures of 700 °C-900 °C. The air plasma spraying (APS) prepared 3.4 mol.% Sc_2O_3-0.6 mol.% Y_2O_3-ZrO_2 coating also exhibited better hot corrosion resistance than YSZ coating in $\text{Na}_2\text{SO}_4 + \text{V}_2\text{O}_5$ molten salts at 910 °C [26]. Liu et al. [27] reported that 8 mol.% Sc_2O_3-0.6 mol.% Y_2O_3-ZrO_2 TBCs showed superior hot corrosion resistance compared with YSZ coating in the presence of $\text{Na}_2\text{SO}_4 + \text{V}_2\text{O}_5$ molten salts at 1000 °C. These results show that Sc_2O_3 and Y_2O_3 co-stabilized ZrO_2 has outstanding hot corrosion resistance to $\text{Na}_2\text{SO}_4 + \text{V}_2\text{O}_5$ molten salts at high temperatures.

In all, many research efforts pointed out that the excellent tetragonal phase stability of ScYSZ at ultra-high temperature (e. g. 1500 °C) can be achieved when the total stabilizer concentration reaches around 7-7.5 mol.% which the Y_2O_3 content as high as 2.0 mol.%. As for the hot corrosion resistance, most of the works focused on the corrosion properties of the ScYSZ ceramics containing relatively high level of Sc_2O_3 and low Y_2O_3 content. Very few studies have been carried out on the hot corrosion
resistance of the ScYSZ ceramics with relatively high content of Y$_2$O$_3$ stabilizer (e.g. 1.5 or 2.0 mol.%), possibly because of the fact that Y$_2$O$_3$ is easy to react with the molten salts of Na$_2$SO$_4$ + V$_2$O$_5$ at high temperatures and then accelerates the degradation of doped ZrO$_2$ ceramics in corrosive environments. To further understand the hot corrosion resistance of the Sc$_2$O$_3$ and Y$_2$O$_3$ doped ZrO$_2$ with high amount of Y$_2$O$_3$ (e.g. 1.5 mol.%) and the effect of the Sc$_2$O$_3$ content on the hot corrosion resistance of x mol.% Sc$_2$O$_3$ and 1.5 mol.% Y$_2$O$_3$ co-doped ZrO$_2$ (xSc1.5YSZ) against Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C, the phase stability and the corrosion behavior of the xSc1.5YSZ ceramics are investigated in this work. The corrosive mechanism of xSc1.5YSZ in the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts is also discussed.

2. Experimental procedures

2.1. Sample preparation

xSc$_2$O$_3$-1.5Y$_2$O$_3$-ZrO$_2$ (x=4.5, 5.5, 6.5, in mol.%) and 4.5 mol.% Y$_2$O$_3$-ZrO$_2$ powders were prepared by a chemical co-precipitation and calcination method. ZrOCl$_2$·8H$_2$O, YCl$_3$·6H$_2$O and ScCl$_3$·6H$_2$O were selected as raw materials, and were dissolved in deionized water respectively. Then the solutions were mixed and stirred to yield a 0.2mol/L homogeneous solution together with 2 wt.% PEG-2000 as the dispersing agent. The mixed homogeneous solution was gently agitated in a 60 °C water bath and added with an appropriate amount of ammonia solution drop-wisely at a speed of 5 mL/min to get precipitate. The final PH value of the mixture solution was controlled at the range of 10-11 by adding additional ammonia. After complete reaction, the precipitate was filtered and washed thoroughly by deionized water and alcohol for several times until the turbidity didn’t appear in the washed water when adding 1.0 mol/L AgNO$_3$ solution. The obtained precipitate was dried at 110 °C for 20 h, and
then ground into powders. The powders were calcined for 5 h at 900 °C for crystallization. The samples for the hot corrosion tests were obtained by mechanically pressing the powders into discs with 15 mm in diameter and 2 mm in thickness under 300 MPa for 10 min. The disc samples were later sintered in air for 5 h at 1500 °C.

2.2. Hot corrosion tests

The hot corrosion tests of the samples were conducted at 1000 °C in an ambient atmosphere. The samples were subjected to a 4-session hot corrosion process with 25 hours for each session. Prior to each session of hot corrosion test, the samples were rinsed thoroughly with deionized water and dried thereafter. The sample surfaces were then uniformly coated with a concentration of 10 mg·cm⁻² of corrosive salts containing 50 wt.% Na₂SO₄ + 50 wt.% V₂O₅.

2.3. Characterization

The phase constitutions of the as-prepared samples and the corroded surfaces of YSZ and ScYSZ samples were characterized by X-ray diffraction (XRD, Model D/MAX 2500, Rigaku Co. Ltd., Japan) with Cu Kα radiation λ=1.5406 Å at a scan speed of 2 deg./min with a step size of 0.0065 deg. The volume fractions of the monoclinic (m), cubic (c), and tetragonal (t) phases are calculated by using the following equations [28, 29]:

\[
\frac{M_m}{M_{c,t}} = 0.82 \frac{I_m(111) + I_m(111)}{I_c(111)}
\]

\[
\frac{M_c}{M_t} = 0.88 \frac{I_t(400)}{I_{t1}(004) + I_{t1}(400) + I_{t2}(004) + I_{t2}(400)}
\]

\[
\frac{M_{t1}}{M_{t2}} = \frac{I_{t1}(004) + I_{t1}(400)}{I_{t2}(004) + I_{t2}(400)}
\]
\[M_t = M_{t1} + M_{t2} \] \hspace{1cm} (4)

\[M_m + M_c + M_{t1} + M_{t2} = 1 \] \hspace{1cm} (5)

where \(M_m, M_c \) and \(M_t \) are the volume fractions of \(m, c, t \) phases, respectively. \(M_{c,t} \) is the total amount of the volume fractions of the \(c, t \) phases, and \(I \) refers to the integral intensity corresponding to the peaks concerned. The subscribes, \(t_1 \) and \(t_2 \), represent the possible coexisting different \(t \) phases in the samples, i.e., the \(t \) and \(t' \) phases as described in [23] or the stabilizer-rich and -poor phases as in [23, 29].

To further analyze the phase transformation and the phase constitution in the ScYSZ ceramics, Raman spectrum measurements were conducted with a microscopic confocal Raman spectrometer (inVia Reflex, Renishaw, UK) using 532 nm excitation from an argon ion laser. The surface and cross-sectional morphologies of the specimens were obtained by a field emission scanning electron microscope (FESEM, Hitachi SU8020, Japan) equipped with an energy dispersive spectroscopy (EDS, Oxford X-MAX 80). The samples were sputtered with Au before the SEM observation.

3. Results and discussion

3.1 Phase constitution analysis

The XRD patterns of the as-prepared ceramics are shown in Fig. 1. One can clearly see that all the YSZ and ScYSZ samples are mainly composed of tetragonal zirconia phase (t-ZrO\(_2\)) according to Fig. 1a. No Sc\(_2\)O\(_3\) and Y\(_2\)O\(_3\) phases are detected. It indicates that all the rare earth stabilizers were completely dissolved in ZrO\(_2\) crystals. It should be noted that the diffraction peaks shift to the right as the Sc\(_2\)O\(_3\) content increases in the ZrO\(_2\) ceramics (Fig. 1a). The rightward peak shifting with Sc\(_2\)O\(_3\)
content in the ceramic composition mainly results from the shrinkage of the unit cell due to the reduced average rare earth anion radius [29, 30]. The lattice parameters of the as-prepared ScYSZ ceramics evaluated by the Rietveld refinement method are shown in Table 1. The data indicates that the YSZ and 4.5Sc1.5YSZ ceramics in this work have two tetragonal phases as shown in Fig. 1b-d, denoted as t₁ and t₂ phases. Note that t₁ and t₂ phases have the same tetragonal structure but different lattice parameters. The phase with a large tetragonality value ($c/\sqrt{2}a$), i.e., t₂ phase in this work, may refer to the “low-stabilizer” phase or RE-poor t-phase, and the other phase (t₁) with a small value is the “high-stabilizer” phase or RE-rich t-phase, as explained in literatures [23, 29]. The contents of t₁ phases are evaluated around 40 vol.% and 65 vol.% in the YSZ and 4.5Sc1.5YSZ ceramics, respectively. For the 5.5Sc1.5YSZ and 6.5Sc1.5YSZ ceramics, single t₁ phase structure can fit the corresponding XRD patterns very well. The results give a clue that increasing the stabilizer content in zirconia can result in an increased amount of t₁ phase in the sample. Pure t₁ phase can be produced even when the total stabilizer amount in zirconia is more than 7 mol.%.

Fig. 2 shows the XRD patterns obtained from the surface of specimens after hot corrosion in Na₂SO₄ + V₂O₅ molten salts at 1000 °C for different hours. And Fig. 3 shows the calculated amounts of the m-ZrO₂ phases in the specimens after corrosion according to Eq. (1). For YSZ, serious corrosion occurred when the ceramic exposed to the molten salts for only 25 h at 1000 °C. The corrosion products are mainly identified as YVO₄ and m-ZrO₂ phases (Fig. 2a). The amount of the corrosion product YVO₄ in YSZ increases with the corrosion time as evidenced by the increased diffraction peak intensity at about 25°. The content of the m-ZrO₂ phase is about 94 vol.% (Table 2 and Fig. 3). It indicates that Y³⁺ ions are easy to leach from the surface
layer of the t-ZrO$_2$ phase. The leached Y$^{3+}$ later reacts with the corrosive salts to form YVO$_4$. This results in the easy degradation of 4.5YSZ. 50 h corrosion can completely destroy the surface of the YSZ sample as the amount of the m-ZrO$_2$ phase becomes 100 vol.%.

The attack of the molten salts to the 4.5Sc1.5YSZ and 5.5Sc1.5YSZ samples at elevated temperature is also serious. According to Figs. 2b and c, significant amounts of m-ZrO$_2$ phases can be detected after 100h corrosion, which are 84 vol.% and 77 vol.%, respectively. Nevertheless, the overall corrosion processes for the 4.5Sc1.5YSZ and 5.5Sc1.5YSZ samples are less aggressive when compared to YSZ. Large quantities of tetragonal phases still remain in 4.5Sc1.5YSZ and 5.5Sc1.5YSZ after 50 h corrosion, and the amounts of the m-ZrO$_2$ phases in these samples are roughly 45 vol.% (Table 2 and Fig. 3). Both the samples appear a very close anti-corrosion behavior with slightly more severe corrosion effect on 4.5Sc1.5YSZ than 5.5Sc1.5YSZ during the first 75 h corrosion process in which the amount difference of the m-ZrO$_2$ phases in these two samples remains around 3 vol.%. In other words, the amount increase of the m-ZrO$_2$ phase with corrosion time in these two samples is similar. However, the most serious corrosion may occur during the second 25 h hot corrosion session in which the amount of m-ZrO$_2$ phase increases ~29 vol.% and the corresponding amount increase reduces in the later corrosion sessions. Additionally, YVO$_4$ is also found as one of the main corrosion products on the surfaces of the corroded 4.5Sc1.5YSZ and 5.5Sc1.5YSZ ceramics. These results show that the tetragonal phases in the 4.5Sc1.5YSZ and 5.5Sc1.5YSZ ceramics can also be degraded dramatically after 100h hot corrosion under the corrosive condition designed in this work.
Alternatively, the 6.5Sc1.5YSZ sample shows excellent corrosion resistance to the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C (Fig. 2d and Fig. 3, Table 2). There is no any detectable m-ZrO$_2$ phase in the XRD profiles of the samples obtained from the starting 50 h corrosions. Only trace amounts (less than 1 vol.%) of m-ZrO$_2$ phase can be observed in the further corroded samples. Similarly, only small amount of YVO$_4$ can be detected in the corroded 6.5Sc1.5YSZ samples. The result that the 100 h-corroded 6.5Sc1.5YSZ ceramics still retain the primary RE-rich t-ZrO$_2$ phase indicates that the ceramics is almost totally immune to the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C.

Raman spectrum measurements were conducted to further analyze the phase transformation behavior of the ceramics in this work. Fig.4 shows the Raman spectra of YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C for 100 h. According to Fig. 4, Raman reflections at ~175 cm$^{-1}$, ~190 cm$^{-1}$, ~331 cm$^{-1}$, ~376 cm$^{-1}$ and ~474 cm$^{-1}$ can be ascribed to m-ZrO$_2$ [31, 32], while those at ~146 cm$^{-1}$, ~258 cm$^{-1}$ and ~636 cm$^{-1}$ can be assigned to the t-ZrO$_2$ phases [32-34]. No cubic zirconia (c-ZrO$_2$) phase was detected according to Fig. 4. The characteristic Raman reflections for YVO$_4$ typically locate at ~258 cm$^{-1}$, ~378 cm$^{-1}$, ~815 cm$^{-1}$, ~839 cm$^{-1}$ and ~892 cm$^{-1}$ [35]. It can be seen that the amounts of the m-ZrO$_2$ phase and YVO$_4$ decrease while that of t-ZrO$_2$ phase increases with the increase of the Sc$_2$O$_3$ content. The 6.5Sc1.5YSZ sample shows excellent corrosion resistance to the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts, which is consistent with the previous XRD analysis.

The phase stability of the ZrO$_2$ ceramic could be clarified by the Y$_2$O$_3$- and Sc$_2$O$_3$-ZrO$_2$ phase diagrams [23] (Fig. 5). While a single tetragonal phase can be obtained by
adding more than 3.5 mol. % of Y$_2$O$_3$ to ZrO$_2$ at room temperature, it requires at least 6.5 mol.% for Sc$_2$O$_3$ to get a single t-ZrO$_2$ phase (Fig. 5b). Rather, a single t-ZrO$_2$ phase can also be produced when the doping amount of Sc$_2$O$_3$ reduces to 5.5 mol.% at high temperature, the materials will separate into t-ZrO$_2$ and m-ZrO$_2$ phases at room temperature. Fortunately, reports indicated that little amount of Y$_2$O$_3$ addition can help increase the stability of t-ZrO$_2$ phase when decreasing the Sc$_2$O$_3$ content in the Sc$_2$O$_3$-ZrO$_2$ ceramics [36, 37]. This is the exact case for the 4.5Sc-ZrO$_2$ sample investigated in this work, in which the tetragonal phase is obtained at room temperature with only 1.5 mol.% Y$_2$O$_3$ addition.

It is also reported that the ionic radius and the content of the substitutional rare earth elements (RE) have essential impacts on the phase stability and anti-corrosion performance of zirconia ceramics at elevated temperatures due to the lattice distortion and change of M-O bonding (M stands for a metal element) [38-41]. The effective radii of cation ions (8-fold coordination) in the ScYSZ ceramics are 0.084 nm, 0.102 nm and 0.087 nm for Zr$^{4+}$, Y$^{3+}$ and Sc$^{3+}$ [42], respectively. Since the radius of Y$^{3+}$ is larger than that of Zr$^{4+}$, the average M-O bond length would increase when zirconia is stabilized with Y$_2$O$_3$, and therefore the lattice expand. On the opposite, the smaller radius of Sc$^{3+}$ relative to that of Zr$^{4+}$ will lead to the decrease of M-O bond length and therefore the lattice shrinks. Indeed, the variation of the M-O bond length upon the rare earth doping in ZrO$_2$ has been frequently reported in literature [38, 40]. Reduction in the M-O bond length often results in the decrease of the cell parameters, as seen in Table 1, and the increase of the binding energy [40]. Stronger bonds in Sc$_2$O$_3$ co-doped Y$_2$O$_3$ stabilized ZrO$_2$ most likely enhance its ability to prevent the leaching of Y$^{3+}$ from the crystals, and therefore increase the anti-corrosion capability
of xSc1.5YSZ ceramics. Furthermore, the ionic radius of Sc$^{3+}$ is close to that of Zr$^{4+}$, which can reduce the size misfit between the Sc$^{3+}$ and Zr$^{4+}$ ions. This leads to lowering the driving force for the phase transformation [29], and further helps to increase the phase stability.

3.2. Hot corrosion behavior analysis

Figs. 6a and b present the surface morphologies of YSZ ceramics after 100 h hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts. Many large bar-shaped corrosion products with various sizes could be clearly observed sitting on the sample surface. A magnified view indicates the surface is mainly consisting of small polyhedral particles with many fine needle-like phases filling in-between the particles. The needle-like phases are considered to be the newly formed corrosion products as the bar-shaped ones. EDS analysis on Region B in Fig. 6b indicates the bar-shaped materials has the chemical composition of YVO$_4$, as listed in Table 3. Alternatively, the constitutional elements of the substrate surface (e.g. region A in Fig. 6a) are mainly Zr and O with trace amount of Vanadium. No any sign of yttrium can be detected at the surface of the YSZ ceramics after 100h corrosion. Along with the XRD characterization as shown in Fig. 2a, the surface phase can be determined as m-ZrO$_2$ phase.

Instead of the bar-shaped corrosion products found on the surface of the corroded YSZ ceramics, the corrosion products on the 4.5Sc1.5YSZ sample mainly present granular shapes after 100 h corrosion in the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts (Figs. 6c and d). The chemical composition of these granular corrosion products can be assigned to YVO$_4$ as well according to the EDS elemental characterization (Table 3). Since little Zr (0.7 at.%) and Sc (1.5 at.%) can be detected, the granular particles may contain
very small amounts of ZrO$_2$ and Sc$_2$O$_3$. Similar to YSZ, many polyhedral ZrO$_2$ phases also present at the surface of the corroded 4.5Sc1.5YSZ sample, but the sizes become a bit larger. Moreover, a close look at the granular grains indicates some corrosion pits can be observed on the grain surfaces. The corrosion pits may be attributed to the corrosion of ZrO$_2$ during the formation of YVO$_4$ grains. In all, the addition of Sc$_2$O$_3$ can greatly change the corrosive sample morphologies.

The surface morphologies of 5.5Sc1.5YSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ salts for 100h at 1000 °C, as shown in Figs. 6e and f, are very close to that of 4.5Sc1.5YSZ. However, the granular corrosion product of YVO$_4$ becomes much less and smaller compared to that on the corroded surface of 4.5Sc1.5YSZ ceramics. Small corrosion pits can also be seen on the grain surface (Fig. 6e). Besides, the size of the polyhedron ZrO$_2$ phase is slightly larger than that formed in the 4.5Sc1.5YSZ ceramics.

The amount of granular YVO$_4$ phase on the surface of 6.5Sc1.5YSZ ceramics after 100h hot corrosion is much less than that on all the other specimens, as shown in Figs. 6g and h. The size is only about 3 μm in diameter. In general, no polyhedral ZrO$_2$ phases but the equiaxed ones can be seen at the surface of 6.5Sc1.5YSZ ceramics. Corrosion pits can be observed on the ZrO$_2$ phases, indicating that the ceramic surface was slightly corroded by the molten salts. And some undamaged gain boundaries of the ZrO$_2$ phase after 100h corrosion as shown in Fig. 6h further proves the excellent corrosion resistance of 6.5Sc1.5YSZ.

Figs. 7a and b show the cross-sectional morphologies of YSZ ceramics after hot corrosion in the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts for 100 h at 1000 °C. An about 60 μm-
A thick corrosion zone in the surface layer can be clearly observed. The holes in the corrosion region are filled with vanadates, where is defined as the vanadate-rich zone due to the abundance of V_2O_5 and NaVO_3. About 14.0 at.% V, 0.6at.% Na and 13.6 at.% Y are detected in region J marked in Fig. 7b. Since both V_2O_5 and NaVO_3 have low melting points of 690 °C and 610 °C, respectively, the vanadate salts have excellent mobility and permeability at 1000 °C. This allows the molten vanadates to penetrate into the inner YSZ ceramics through micro-cracks and open pores, and then to react with Y_2O_3 to form YVO_4. The resulted Y depletion in the YSZ substrate results in the t-ZrO_2 to m-ZrO_2 phase transformation.

The corresponding corrosion zones of the corroded 4.5Sc1.5YSZ and the 5.5Sc1.5YSZ ceramics are about 8 and 6 μm, respectively, in depth (Figs. 7c-f) which are much less than that of the 4.5YSZ ceramics. It clearly indicates that the addition of Sc_2O_3 to zirconia seems to have the capability to effectively prohibit the penetration of vanadates into the inner ScYSZ ceramics, and greatly improve the corrosion resistance in the molten vanadate salts at elevated temperatures. As for 6.5Sc1.5YSZ, no such surface corrosion zone exists, as shown in Figs. 7g and h. This further proves little attack to 6.5Sc1.5YSZ by the molten salts at high temperature. The material exhibits excellent performance in hot corrosion resistance to the Na_2SO_4 + V_2O_5 molten salts at elevated temperature.

The elemental distributions across the cross-sections of the samples under current investigation are shown in Fig. 8. The corroded YSZ ceramics clearly show a roughly 60 μm-thick corrosion zone of which the top ~12 μm layer is barely Y and V detectable and the lower 50 μm is rich in V resulted from vanadate penetration (Fig.
Actually the penetration depth of V can be more than 100 μm. The penetration of vanadates (especially the NaVO₃) improves the Y³⁺ diffusion mobility [9], and therefore promotes the leaching of Y from the zirconia substrate and the growth of the corrosion product as YVO₄ on the surface of the ceramics. As a consequence, tetragonal-to-monoclinic phase transformation occurs, which results in the degradation of anti-corrosion performance for the ceramics. For ScYSZ ceramics with low Sc content less than 5.5mol.% (Figs.8 b and c), the depths of V element penetration are much less than that in 4.5YSZ, which indicates that the addition of Sc₂O₃ to ZrO₂ can greatly prohibit the vanadate penetration and its further damages to the substrate. Further increase of Sc₂O₃ can make such effect more apparent. Only little V can be detected within the top layer of 6.5Sc1.5YSZ ceramics, whereas a lot of V present on the sample surface (Fig.8 d). All these findings show that the hot corrosion resistance to the Na₂SO₄ + V₂O₅ molten salts increases with the Sc₂O₃ addition to zirconia, and the obtained ScYSZ ceramic becomes almost immune to the attack of the molten salts when the doped Sc₂O₃ amount is more than 6.5 mol.%.

A schematic of the corrosion behavior of ScYSZ ceramics in the Na₂SO₄ + V₂O₅ molten salts at 1000 °C can be illustrated as Fig. 9, based on the analysis presented above. The depth of vanadate penetration and the resulted grain shapes and amounts of the corrosion products vary with the doping levels of Sc₂O₃ in ScYSZ. For example, vanadates penetrate into the substrate much deeper with no Sc₂O₃ doping in the ceramics. The corrosion products of YVO₄ appear bar-shapes in YSZ and turn into granular shapes along with the amount reduction when more Sc₂O₃ is doped in YSZ. Significant amount of YVO₄ formation usually causes the obvious Y-depletion and results in the phase transformation of t-ZrO₂ to m-ZrO₂ in the top surface layers, and
therefore a severe corrosion behavior.

3.3. Mechanism analysis

Numerous studies have been conducted on the corrosion behavior of the YSZ ceramic coatings with different dopants in molten salts containing vanadium and sulfur [6-9, 13, 28, 43]. It is reported that the ScYSZ ceramics can be corroded by the molten salts of $\text{V}_2\text{O}_5 + \text{NaVO}_3$ due to the mineralization effect [44]. When the sample surfaces are exposed to the $\text{Na}_2\text{SO}_4 + \text{V}_2\text{O}_5$ molten salts at 1000 °C, many chemical reactions will occur. Firstly, Na_2SO_4 can promote the formation of an intermediate product, NaVO_3, which has a low melting point of ~ 610 °C through the reaction between Na_2SO_4 and V_2O_5 at 1000 °C, as described in Eq. 6. The existence of NaVO_3 enhances the activity and migration of V^{5+} ion and rare earth cations (RE$^{3+}$), which promotes the severe reactions between the rare earth oxides (RE$_2$O$_3$) and the corrosive salts. More clearly, NaVO_3 reacts with RE$_2$O$_3$ in ZrO$_2$ to form the corrosion products such as REVO$_4$ crystal and the monoclinic ZrO$_2$ (m- ZrO$_2$) (Eq. 7), and V_2O_5 reacts with RE$_2$O$_3$ to form REVO$_4$ (Eq. 8). The resultant SO_3 in Eq. 6 and Na$_2$O in Eq. 7 can produce Na_2SO_4 back. In other words, Na_2SO_4 in the molten salts acts as a catalyst during the hot corrosion test in this work [45].

\[
\text{V}_2\text{O}_5(l) + \text{Na}_2\text{SO}_4(l) \rightarrow 2\text{NaVO}_3(l) + \text{SO}_3(g)
\]
\[\text{6}\]

\[
\text{ZrO}_2(\text{RE}_2\text{O}_3)_x(s) + 2\text{NaVO}_3(l) \rightarrow m\text{-ZrO}_2(s) + 2\text{REVO}_4(s) + \text{Na}_2\text{O}(l)
\]
\[\text{7}\]

\[
\text{V}_2\text{O}_5(l) + \text{RE}_2\text{O}_3(s) \rightarrow 2\text{REVO}_4(s)
\]
\[\text{8}\]

\[
\text{SO}_3(g) + \text{Na}_2\text{O}(l) \rightarrow \text{Na}_2\text{SO}_4(l)
\]
\[\text{9}\]

By combining the above reactions, the overall corrosion reaction in this study can be described by Eq. 10 and Eq. 11 as follows. It should be noted that the reaction involves the dissolution of the rare earth elements (RE) from the tetragonal ZrO$_2$. The
possible reaction between ZrO$_2$ and V$_2$O$_5$ is also listed as Eq. 12.

\[
\text{V}_2\text{O}_5(\text{l}) + \text{Y}_2\text{O}_3(\text{s}) \rightarrow 2\text{YVO}_4(\text{s}) \quad (10)
\]

\[
\text{V}_2\text{O}_5(\text{l}) + \text{Sc}_2\text{O}_3(\text{s}) \rightarrow 2\text{ScVO}_4(\text{s}) \quad (11)
\]

\[
\text{V}_2\text{O}_5(\text{l}) + \text{ZrO}_2(\text{s}) \rightarrow \text{ZrV}_2\text{O}_7(\text{s}) \quad (12)
\]

It is well known that the reaction between V$_2$O$_5$ and the ceramic oxides follows the Lewis acid-base rule. Among Y$_2$O$_3$, Sc$_2$O$_3$ and ZrO$_2$, Y$_2$O$_3$ has the strongest basicity and therefore the acidic V$_2$O$_5$ will preferentially react with it to form YVO$_4$. Relatively, Sc$_2$O$_3$ is an oxide with weak basicity, which implies its inertness to be corroded by V$_2$O$_5$ and keeps the zirconia substrate maintain the phase stability.

To better illustrate the corrosion behavior in a system of ScYSZ and Na$_2$SO$_4$ + V$_2$O$_5$ molten salts, the Gibbs free energies (\(\Delta G\)) of the above reactions at 1000 °C are calculated with \(\Delta r G_m = \Delta r H_m - T\Delta r S_m\), \(\Delta r H_m = \sum \Delta r H_m^{products} - \sum \Delta r H_m^{reactants}\), and \(\Delta r S_m = \sum \Delta r S_m^{products} - \sum \Delta r S_m^{reactants}\). The relevant enthalpies and entropies of formation of the chemicals used for \(\Delta G\) calculations are obtained from the literatures [46-48].

The Gibbs free energy of NaVO$_3$ formation is about -12.45 KJ /mol at 1000 °C, and those values for the formation of YVO$_4$, ScVO$_4$, and ZrV$_2$O$_7$ are -238.05 KJ /mol, 47.86 KJ/mol and -60.71 KJ /mol, respectively. From the calculated \(\Delta G\) values, one can determine Y$_2$O$_3$ is preferential to react with V$_2$O$_5$ to form YVO$_4$ and Sc$_2$O$_3$ is hard to react with V$_2$O$_5$, which is consistent with the results according to the Lewis acid-base rule. Rather, ZrO$_2$ could react with V$_2$O$_5$ to form ZrV$_2$O$_7$ at 1000 °C due to its negative \(\Delta G\) value, ZrV$_2$O$_7$ tends to decompose into a mixture of ZrO$_2$ and liquid V$_2$O$_5$ when the temperature is above 747 °C [49]. In other words, ScVO$_4$ and ZrV$_2$O$_7$ are unlikely to present physically at the temperature of 1000 °C. As a result,
no evidence of such chemicals can be observed in the samples in current study.

4. Conclusion
Doping with Sc$_2$O$_3$ in the YSZ ceramics can increase its hot corrosion resistance to the Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C. The morphologies and amounts of the corrosion products vary with the Sc$_2$O$_3$ content. Significant amount of the main the corrosion product, YVO$_4$, appears in bar-shaped configurations at the surface of the corroded YSZ ceramics, while it turns into granular shapes with reduced amounts when more Sc$_2$O$_3$ doped in YSZ. The formation of YVO$_4$ is mainly due to the relatively easy reaction of the vanadates which penetrate into the substrate with Y leached from the substrate lattice. Leaching of Y will further result in the tetragonal-to-monoclinic transformation. Introduction of Sc$_2$O$_3$ into YSZ can enhance the M-O bond strength and the substrate’s ability to prohibit the vanadate penetration due to its relatively shorter ionic radius of Sc$^{3+}$ than that of Y$^{3+}$ and Zr$^{4+}$. Furthermore, the least possibility to react Sc$_2$O$_3$ with V$_2$O$_5$, according to the Gibbs free energy calculation and the Lewis acid-base rule, promotes the phase stability of the ScYSZ ceramics. The excellent hot corrosion resistance can be achieved for those ScYSZ ceramics with higher Sc$_2$O$_3$ content, such as 6.5Sc1.5YSZ.

Acknowledgments
This work is supported by Guangxi Natural Science Foundation (Grant No. 2018GXNSFAA281176, 2016GXNSFAA380214), National Natural Science Foundation of China (Grant No. 51361003), the Youth Foundation of Guangxi Key Laboratory of Processing for Non-Ferrous Metallic and Featured Materials (Grant No. GXYSYF1801), and the Incubation Programme for thousands of Youth backbone
Data Availability

References

[28] X.L. Chen, Y. Zhao, L.J. Gu, B.L. Zou, Y. Wang, X.Q. Cao, Hot corrosion behaviour of plasma sprayed YSZ/LaMgAl$_{11}$O$_{19}$ composite coatings in molten sulfate-

Captions

Table 1 Summary of the lattice parameters of as prepared YSZ and ScYSZ ceramics through Rietveld refinement

Table 2 The calculated m-ZrO$_2$ content in the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C (vol.%) for various exposure time

Table 3 The chemical compositions (in at.%) of the selected regions indicated in Fig. 6 using EDS analysis

Fig. 1. XRD patterns of as-prepared YSZ and ScYSZ ceramics: (a) 20-90 ° region, (b) 72-76 ° region, and the refined XRD pattern of (c) YSZ and (d) 4.5Sc1.5YSZ.

Fig. 2. XRD patterns of the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C for different time: (a) 4.5YSZ, (b) 4.5Sc1.5YSZ, (c) 5.5Sc1.5YSZ and (d) 6.5Sc1.5YSZ.

Fig. 3. The calculated m-ZrO$_2$ contents in the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C as functions of exposure time.

Fig. 4. Raman spectra of the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts for 100 h at 1000 °C.

Fig. 5. Phase diagrams for the RE$_2$O$_3$-ZrO$_2$ systems: (a) Y$_2$O$_3$-ZrO$_2$ and (b) Sc$_2$O$_3$-ZrO$_2$ [33]. The red and blue dashed lines in (a) represents the mole fractions of Y in the ceramics with and without Sc$_2$O$_3$ doping, respectively. The blue dashed line in (b) represents the mole fraction of Sc in 6.5Sc1.5YSZ.

Fig. 6. Surface morphologies of the YSZ and ScYSZ ceramics after 100 h hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C: (a, b) YSZ; (c, d) 4.5Sc1.5YSZ;
(e, f) 5.5Sc1.5YSZ; and (g, h) 6.5Sc1.5YSZ.

Fig. 7. Cross-sectional morphologies of the YSZ and ScYSZ ceramics after 100 h hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C: (a, b) YSZ, (c, d) 4.5Sc1.5YSZ, (e, f) 5.5Sc1.5YSZ and (g, h) 6.5Sc1.5YSZ.

Fig. 8. Elemental mapping of the YSZ and ScYSZ ceramics after 100h hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C: (a) YSZ, (b) 4.5Sc1.5YSZ, (c) 5.5Sc1.5YSZ and (d) 6.5Sc1.5YSZ.

Fig. 9. Schematic illustrations of the corrosion behavior for the Sc$_2$O$_3$ doped YSZ ceramics: (a) YSZ, (b) ScYSZ with low Sc$_2$O$_3$ content, and (c) ScYSZ with high Sc$_2$O$_3$ content.
Table 1 Lattice parameters of as-prepared YSZ and ScYSZ ceramics through Rietveld refinement (Å)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Phases</th>
<th>2θ/°</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>c/√2a</th>
<th>vol.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>YSZ</td>
<td>t₁</td>
<td>30.096</td>
<td>3.6294</td>
<td>3.6294</td>
<td>5.1501</td>
<td>1.0034</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>t₂</td>
<td>30.167</td>
<td>3.6075</td>
<td>3.6075</td>
<td>5.1779</td>
<td>1.0149</td>
<td>60</td>
</tr>
<tr>
<td>4.5Sc1.5YSZ</td>
<td>t₁</td>
<td>30.305</td>
<td>3.6025</td>
<td>3.6025</td>
<td>5.1228</td>
<td>1.0055</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>t₂</td>
<td>30.254</td>
<td>3.5979</td>
<td>3.5979</td>
<td>5.1617</td>
<td>1.0145</td>
<td>35</td>
</tr>
<tr>
<td>5.5Sc1.5YSZ</td>
<td>t₁</td>
<td>30.314</td>
<td>3.601</td>
<td>3.601</td>
<td>5.1230</td>
<td>1.0060</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>t₁</td>
<td>30.325</td>
<td>3.6009</td>
<td>3.6009</td>
<td>5.1179</td>
<td>1.0050</td>
<td>100</td>
</tr>
<tr>
<td>6.5Sc1.5YSZ</td>
<td>t₁</td>
<td>30.314</td>
<td>3.601</td>
<td>3.601</td>
<td>5.1230</td>
<td>1.0060</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 The calculated m-ZrO₂ content in the YSZ and ScYSZ ceramics after hot corrosion in Na₂SO₄ + V₂O₅ molten salts at 1000 °C (vol.%) for various exposure time

<table>
<thead>
<tr>
<th>time/h</th>
<th>YSZ</th>
<th>4.5Sc1.5YSZ</th>
<th>5.5Sc1.5YSZ</th>
<th>6.5Sc1.5YSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>94</td>
<td>17</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>46</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>100</td>
<td>68</td>
<td>65</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>84</td>
<td>77</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3 The chemical compositions (in at.%) of the selected regions indicated in Fig. 6 using EDS analysis

<table>
<thead>
<tr>
<th></th>
<th>Zr</th>
<th>O</th>
<th>Y</th>
<th>Sc</th>
<th>V</th>
<th>Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>34.8</td>
<td>63.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
<td>42.3</td>
<td>27.8</td>
<td>0.0</td>
<td>29.4</td>
<td>0.6</td>
</tr>
<tr>
<td>C</td>
<td>35.1</td>
<td>63.6</td>
<td>0.0</td>
<td>0.5</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>D</td>
<td>0.7</td>
<td>62.9</td>
<td>17.8</td>
<td>1.5</td>
<td>16.7</td>
<td>0.5</td>
</tr>
<tr>
<td>E</td>
<td>37.8</td>
<td>59.8</td>
<td>0.0</td>
<td>0.8</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>F</td>
<td>0.4</td>
<td>44.5</td>
<td>25.1</td>
<td>2.0</td>
<td>27.6</td>
<td>0.4</td>
</tr>
<tr>
<td>G</td>
<td>27.5</td>
<td>63.7</td>
<td>0.7</td>
<td>3.8</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td>H</td>
<td>0.8</td>
<td>48.5</td>
<td>23.5</td>
<td>2.1</td>
<td>24.6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Note: Due to the inevitable analytical errors pertain to the EDS evaluation, the presented data are for qualitative analysis only.
Fig. 1. XRD patterns of as-prepared YSZ and ScYSZ ceramics: (a) 20-90 ° region, (b) 72-76 ° region, and the refined XRD patterns of (c) YSZ and (d) 4.5Sc1.5YSZ.
Fig. 2. XRD patterns of the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C for different time: (a) YSZ, (b) 4.5Sc1.5YSZ, (c) 5.5Sc1.5YSZ and (d) 6.5Sc1.5YSZ.
Fig. 3. The calculated m-ZrO_2 contents in the YSZ and ScYSZ ceramics after hot corrosion in Na_2SO_4 + V_2O_5 molten salts at 1000 °C as functions of exposure time.
Fig. 4. Raman spectra of the YSZ and ScYSZ ceramics after hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts for 100 h at 1000 °C.
Fig. 5. Phase diagrams for the RE$_2$O$_3$-ZrO$_2$ systems: (a) Y$_2$O$_3$-ZrO$_2$ and (b) Sc$_2$O$_3$-ZrO$_2$ [23]. The red and blue dashed lines in (a) represents the mole fractions of Y in the ceramics with and without Sc$_2$O$_3$ doping, respectively. The blue dashed line in (b) represents the mole fraction of Sc in 6.5Sc1.5YSZ.
Fig. 6. Surface morphologies of the YSZ and ScYSZ ceramics after 100 h corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts (a, b) YSZ, (c, d) 4.5Sc1.5YSZ, (e, f) 5.5Sc1.5YSZ and (g, h) 6.5Sc1.5YSZ.
Fig. 7. Cross-sectional morphologies of the YSZ and ScYSZ ceramics after 100 h corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts: (a, b) YSZ, (c, d) 4.5Sc1.5YSZ, (e, f) 5.5Sc1.5YSZ and (g, h) 6.5Sc1.5YSZ.
Fig. 8. Elemental mapping of the YSZ and ScYSZ ceramics after 100h hot corrosion in Na$_2$SO$_4$ + V$_2$O$_5$ molten salts at 1000 °C: (a) YSZ, (b) 4.5Sc1.5YSZ, (c) 5.5Sc1.5YSZ and (d) 6.5Sc1.5YSZ.
Fig. 9. Schematic illustrations of the corrosion behavior for the Sc$_2$O$_3$ doped YSZ ceramics: (a) YSZ, (b) ScYSZ with low Sc$_2$O$_3$ content, and (c) ScYSZ with high Sc$_2$O$_3$ content.