

Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae, Syntermitinae), in French Guiana

Michel Diouf, David Sillam-Dussès, Vanessa Alphonse, Sophie Frechault, Edouard Miambi, Philippe Mora

► To cite this version:

Michel Diouf, David Sillam-Dussès, Vanessa Alphonse, Sophie Frechault, Edouard Miambi, et al.. Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae, Syntermitinae), in French Guiana. Environmental Pollution, 2019, 254, pp.113064 -. 10.1016/j.envpol.2019.113064 . hal-03488210

HAL Id: hal-03488210 https://hal.science/hal-03488210v1

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1 Mercury species in the nests and bodies of soil-feeding termites, *Silvestritermes* spp.

2 (Termitidae, Syntermitinae), in French Guiana

3	
4	
5 6	Michel Diouf ¹ , David Sillam-Dussès ² , Vanessa Alphonse ³ , Sophie Frechault ¹ , Edouard Miambi ¹ , Philippe Mora ¹
7	
8	
9	
10 11	¹ Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (<u>i</u> EES, Paris). 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France.
12	
13	² Université Paris 13 - Sorbonne Paris Cité, Laboratoire d'Ethologie Expérimentale et Comparée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
14	
15 16 17	³ Faculté des Sciences et Technologie, Université Paris Est Créteil, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France.
18 19	*Corresponding author: michel.diouf@u-pec.fr; Tel: 0033-(0)-145171506; Fax: 0033-(0)-145171505, ORCID 0000-0002-6263-8216
20	

@ 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/

21 Abstract

22 Mercury pollution is currently a major public health concern, given the adverse effects of mercury on wildlife and humans. Soil plays an essential role in 23 speciation of mercury and its global cycling, while being a habitat for a wide range of terrestrial fauna. Soil fauna, primarily soil-feeding taxa that are in intimate 24 contact with soil pollutants are key contributors in the cycling of soil mercury and might provide relevant indications about soil pollution. We studied the 25 enrichment of various mercury species in the nests and bodies of soil-feeding termites Silvestritermes spp. in French Guiana. Soil-feeding termites are the only 26 social insects using soil as both shelter and food and are major decomposers of organic matter in neotropical forests. Nests of S. minutus were depleted in total 27 and mobile mercury compared to nearby soil. In contrast, they were enriched 17 times in methylmercury. The highest concentrations of methylmercury were 28 found in body of both studied termite species, with mean bioconcentration factors of 58 for S. minutus and 179 for S. holmgreni relative to the soil. The 29 assessment of the body distribution of methylmercury in S. minutus showed concentrations of 221 ng.g-1 for the guts and even higher for the gut-free carcasses 30 (683 ng.g⁻¹), suggesting that methylmercury is not confined to the gut where it was likely produced, but rather stored in various tissues. This enrichment in the 31 most toxic form of Hg in termites may be of concern on termite predators and the higher levels in the food chain that may be endangered through prey-to-predator 32 transfers and bioaccumulation. Soil-feeding termites appear to be promising candidates as bio-indicators of mercury pollution in soils of neotropical rainforest 33 ecosystems.

34 35 36

Keywords: soil-feeding termites; Syntermitinae; soil mercury; mercury methylation; bio-concentration

37 38

Nests of the soil-feeding termites *Silvestritermes* spp. and the tissues of the inhabiting worker caste are hotspots of methylmercury, but are depleted in total and
 mobile mercury.

41

42 Introduction

43 Mercury (Hg) is a pervasive neurotoxic heavy metal that has been introduced in diverse ecosystems through various mechanisms including natural erosion of the 44 parent bedrock and anthropogenic activities (Science for Environment Policy, 2017). Living organisms are generally more tolerant of inorganic forms of Hg than 45 its organic forms. Methylmercury (MeHg), a major form of organic mercury in food chain (Benford et al. 2018; Rice et al. 2014), is membrane-permeable, thiol 46 reactive (Clarkson & Magos 2006) and with a long biological half-life (Jo et al. 2015). It is therefore especially toxic and tends to accumulate in animal tissues, 47 especially in longer-lived organisms and in predatory species (Scheuhammer et al. 2007). One of the main sources of MeHg in biota is the biotransformation of 48 inorganic Hg to MeHg by microbial methylators carrying the hgcAB gene cluster that is required for Hg methylation in anoxic conditions (Parks et al. 2013; 49 Poulain and Barkay 2013; Gilmour et al. 2013). Aquatic microorganisms have been widely recognized as Hg biotransformers and, consequently, Hg methylation 50 has usually been associated with aquatic food webs, sometimes extending to terrestrial invertebrates feeding on aquatic organisms (Cristol et al. 2008; Becker et 51 al. 2018; Bartrons et al. 2015; Saxton et al. 2013). There is now, however, a paradigm shift with increasing evidence of Hg biotransformation by various 52 terrestrial invertebrates, amongst which earthworms (Zhang et al. 2009; Rieder et al. 2011; Rodríguez Álvarez et al. 2014; Álvarez et al. 2018; Rieder et al. 2011; Rodríguez Álvarez et al. 2014; Kaschak et al. 2014) and isopods (Jereb et al. 2003). This extends the process beyond aquatic and wetland ecosystems (reviewed 53 54 by Mahbub et al. 2017). 55 Nevertheless, the potential for Hg methylation significant differ between invertebrates in general, and between arthropod taxa in particular as shown by Podar and 56 colleagues (Podar et al. 2015) who found that only 4 metagenomes carried the hgcAB gene cluster out 27 metagenomes for arthropod microbiomes. Moreover, 57 most studies demonstrating methylation capability in terrestrial invertebrates have used diets spiked with Hg. There are few studies addressing the effect of 58 mercury contamination on terrestrial biota in natural conditions and even fewer for soil-inhabiting social insects which have high population densities in restricted 59 habitats. In the invasive red fire ant (Solenopsis invicta), high levels of total mercury typical of aquatic insects have been reported, with even higher levels in 60 reproductive males (Helms & Tweedy 2017). They only studied total Hg, but authors suggested that these high levels were due to predation on aquatic fauna with 61 high levels of MeHg, rather than to environmental exposure to inorganic mercury. Besides ants, the production of MeHg by the wood-feeding Australian termite 62 Mastotermes darwiniensis has been reported from a feeding experiment with an artificial diet spiked with Hg and cultures of the gut-derived sulfate-reducing 63 bacteria isolates showed Hg methylation activity (Limper et al. 2008). We are not aware of any study on the effect of soil Hg on soil-living social insects that are 64 primary consumers that are not only directly exposed to soil Hg, but also interact with Hg through the consumption and biotransformation of Hg-containing 65 substrates. 66 Termites are fully social insects living in highly populated colonies. Besides the brood (eggs and larvae), termite colonies include various castes that are devoted to different tasks such as reproductives (kings, queen, nymphs), and sterile castes (workers and soldiers) (Eggleton, 2011). The foraging activities are 67 68 accomplished only by the worker caste. The majority of termites are wood-feeders ie feed on woody materials at various levels of humification (Donovan et al. 69 2001; Eggleton and Tayasu, 2001). However, about one-third of known termite species are soil-feeders, feeding on mineral soil with little recognizable plant 70 material (Donovan et al. 2001; Inward et al. 2007). Nests of these soil-feeding termites are built by workers using firm amalgams of soil from the 10 top cm and

71 feces. The enrichment in organic matter and in small-size particles such as clay and limon relative to the soil from the nearby environment is one of the salient

72 features of the nest materials of soil-feeding termites. These are particularly abundant and diverse in tropical rain forests, appearing as one of the main 73 contributors in soil processing and humification. Through their soil consumption and burrowing activities, they have a major effect on soil physical, chemical and 74 biological properties, which, in turn, affects the cycling and speciation of elements, including trace metals, in the soil (Brauman 2000; Donovan et al. 2001; 75 Sarcinelli et al. 2009, 2013; de Lima et al. 2018). Their effect on soil properties could be compared to that of earthworms whose effects on heavy metals in soil 76 have been more widely studied. However, soil-feeding termites are ecologically distinct from earthworms in various ways: unlike earthworms, they are social and 77 thus live in densely populated colonies, they have longer-lasting biostructures than worm casts and burrows and they have a more complex gut structure hosting a 78 more complex microbiota. 79 Soil-feeding termites are the dominant feeding group of termites in various Amazonian rainforest ecosystems. In various oxisols of these ecosystems the soil 80 mercury concentration is between 0.25 and $0.5\mu g.g^{-1}$ (Lechler et al. 2000; Richard et al. 2000), well above the normal levels in soil (0.05 to 0.08 $\mu g.g^{-1}$) reported by the World Bank (1999). They also exceed the limits relative to soil organic matter (SOM) ($0.5 \,\mu g.g^{-1}$ SOM) proposed by de Vries and collegues (de Vries et al. 81 82 2007) and relative to the soil (0.13 µg.g⁻¹ of dry weight soil) proposed by Tipping and colleagues (Tipping et al. 2010). The topsoil of these ecosystems is

83 therefore subject to a generalized, chronic excess of Hg, although the background mercury level (in the bedrock) is significantly lower $(0.020 - 0.1 \,\mu g.g^{-1})$ (Aula 84 et al. 1993; Pfeiffer et al. 1993). This Hg overload is believed to arise mainly from atmospheric Hg deposition over several millions of years, which has been 85 particularly high from the end of the 15th century (Roulet and Grimaldi, 2001; Obrist et al. 2018). In forest soils on the French Guiana plateau, there is a high 86 abundance and diversity of soil-feeding termites, including many endemic species, which may indicate that this chronic exposition to these high levels of mercury 87 may not be directly harmful to these termites. Some animals can thrive at contamination levels generally considered to be lethal by sequestrating and accumulating the toxic agent in non-essential tissues (Lanno et al. 2004; Mahbub et al. 2017). Nevertheless, they may still pose a risk for the biota by exposing 88 89 their predators and the upper levels of the food chain to high levels of mercury in their food. For assessing this risk, Hg storage in animal tissues is more relevant 90 than the sensitivity to mercury exposure.

91 Our study addresses the processing of soil mercury by soil-feeding termites from the genus *Silvestritermes*. We compared the concentrations of various mercury 92 species in the soil around the nest harvested by the termites and the concentrations in their nests. *Silvestritermes* is an abundant genus of soil-feeding termites in 93 the neotropical forests, belonging to the subfamily Syntermitinae (Termitidae family) that is endemic to this region. <u>As for organic mercury, we compared</u> 94 <u>concentrations of methylmercury</u> in the nest, termite bodies and <u>termite</u> body parts <u>to</u> those of <u>the nearby soil</u>. We discuss the concerns raised by Hg 95 biotransformation by termites considering the role of termitophagy in the food webs.

96 Material and Methods

97 Sampling and sample processing

98 The main sampling site was at Crique Combat, which is an area of 1 km² covered by a primary rainforest, near the village of Cacao (Figure S1, Supplementary 99 information). The soil in this area is well-characterized since this site has hosted several research programs (such as "Mercury in Guyana" (2002-2007) run by 100 CNRS (French National Research Organization)) and several thesis projects (Guedron et al. 2009; Harris-Hellal et al. 2011). Six colonies of the soil-feeding

101 termite *Silvestritermes minutus* and four colonies of *S. holmgreni* were randomly sampled from the oxisol (USDA Soil Taxonomy) at the top of the slope, with a

- 102 minimum distance of 20 m between them. Both species build well-defined nests that are spherical to ellipsoid structures emerging a few centimeters above the
- 103 ground level. For *S. minutus*, nests were generally built on plants sprouts, thus penetrated and consolidated by a network of plants roots for mature colonies (see
- 104 Fig. S2). As for *S. holmgreni*, their nests are generally built laterally against the basis of tree trunks.

Nests were partially broken to collect a representative selection of the nest material, with termite individuals inside. A composite soil sample was collected from nearby each nest. This was a mix of four cores from the 0-10 cm layer where soil-feeding termites are mainly found (Brauman 2000), at a radius of 2 m from the nest. Then, the termites were separated from the nest material using plastic tweezers. Only workers were collected for mercury analyses: these are the only caste feeding directly on the soil, unlike the other castes which are fed by workers. The nest material and the soil were hand sorted to remove roots and pebbles and then crushed. All samples (workers, nest material and soil) were stored in sterile, trace metal-free Falcon tubes and frozen at -20°C. Then, they were transported in dry ice to mainland France, where they were frozen at -80°C until analysis.

- 111 Termites from the second sampling site near Petit Saut (*S. minutus* only) were used to analyze the MeHg distribution in their bodies. Whole colonies were
- 112 collected by disrupting at the base of nest the roots that maintain them tied to the ground (see fig. S2B). They were shipped to mainland France. Nearby soil
- samples were collected and transported as described above. Samples were processed within two days of arrival at the laboratory. The guts were removed from the
- 114 workers using fine sterile tweezers and the gut-free carcasses, with the head and the legs, were kept as separate samples. The guts and gut-free carcasses for each
- colony were pooled in separate sterile microtubes. All the samples (soil, guts and gut-free carcasses) were stored at -80°C until analysis.
- 116 Five to 10 soldiers were collected from each colony for the identification of the termite species. The species identity was checked from morphological criterion
- 117 and by DNA barcoding, based on the cytochrome oxidase I gene. For DNA extraction from the head of soldiers, PCR amplification and sequencing, the method
- used by Fougeyrollas and colleagues was applied (Fougeyrollas <u>et al.</u> 2018).

119 Total mercury and mobile mercury analyses of the nest material and the nearby soil

Total mercury (THg) was determined using an atomic absorption spectrometer AMA-254 (Advanced Mercury Analyser, Altec, Ltd., Czech Republic) following the protocol described by Sysalová et al. 2013. This measures trace levels mercury in samples directly without pre-treatment by mercury extraction. One hundred milligrams of soil or nest material were placed in a nickel boat and introduced into the spectrometer. After drying at 120°C, the samples were combusted at 550°C for 150 sec in an oxygen-saturated atmosphere transforming the total mercury into elementary mercury (Hg⁰) which is readily adsorbed onto a gold-trap. The mercury was then released by heating the gold-trap to 450°C and quantified by atomic adsorption spectrometry at a wavelength of 253.7 nm.

- 125 The mobile, toxic mercury (MHg) fraction, comprising soluble inorganic Hg and alkyl-Hg forms (methyl and ethyl Hg), was extracted using acidic ethanol with
 126 1:1 (v/v) 2% hydrochloric acid and 10% ethanol (Han et al. 2003; Reis et al. 2010; Frentiu et al. 2013). Except for the initial sample weight (500 mg in this
- study), the mercury was extracted using the protocol described by Frentiu et al. 2013. All samples were then filtered through PTFE filters (0.45 µm) and acidified
- to a pH of 1. This mercury fraction was measured using the AMA-254 as described above for the solid samples, manually injecting 200 µl of the filtrate.
- 129 The detection limit ranged from 0.01 to 500 ng of $\underline{H}g$ in a sample. Dilutions from a 1000 mg. \underline{I}^{-1} mercury standard solution (Hg PlasmaCAL, SCP Science) were
- 130 used for calibration. The data acquisition was driven by AMA 254 V5.0.2.4 software . The routine quality assurance metrics included in the standardized
- 131 analytical method were fulfilled by all samples. The mercury content of the standard reference materials namely LGC6139 (River clay sediment-Metals) and

- 132 BCR 277R (Estuarine sediment) was recovered within certified limits: 1.2 (±0.05) μg.g⁻¹ and 0.128 (±0.017) μg g⁻¹ respectively. Likewise, triplicated samples
- 133 passed the method criteria of <20% RSD (Relative Standard Deviation) for liquids samples and <5 % RSD for solids samples.

134 Analysis of methylmercury in termites, nests and soil samples

- 135 MeHg concentrations were measured at the Wisconsin State Laboratory of Hygiene (WSLH), by the Inorganic Chemistry Unit of the Environmental Health
- 136 Division. After extraction by grinding freeze-dried samples with an agate mortar and pestle and digesting known amounts of matter with KOH-methanol, MeHg
- 137 was measured by aqueous ethylation, purge and trap, desorption and Cold Vapor Atomic Fluorescence Spectrophotometer (CVAFS, Brooks Rand model III)
- 138 following a standard procedure (ESS INO METHOD 545.1 rev. 4). All samples passed the routine assurance quality metrics included in this standardized
- analytical method. For example, both NRCC standard materials (National Research Council Canada), TORT-3 and DORM-3 were recovered within the certified
- 140 limits 105% and 119% respectively. Also, matrix spikes on samples were recovered at 108% and 95.4%. Finally, duplicated samples passed the acceptance
- 141 criteria of <35% RSD. On a dry weight basis, duplicate 1 was 481 and 383 ng.g⁻¹ and duplicated 2 was 2.08 and 2.83 ng.g⁻¹ dry weight.

142 Statistical analyses

- 143 The statistical analyses were performed using the Statgraphics software (Centurion XVI, Sigma Plus, France). For the concentrations of total (THg), mobile Hg
- 144 (MHg) and the ratio of MHg to THg, the data was not normally distributed (Shapiro-Wilk test at 95% confidence). Therefore, the non-parametric Kolmogorov-
- Smirnov test was used to assess the significance of the differences in concentration, with p < 0.05. MeHg concentrations were, however, normally distributed.
- 146 Differences between samples of each termite species were analyzed using one-way ANOVA. Correlations between the various mercury fractions were tested
- using Spearman's rank correlation (p < 0.05) and the correlation curves were constructed using *ggplot2* and *ggpubr* packages in R version 3.4.4.

148 **Results**

149 Concentration of total (THg) and mobile Hg (MHg) in S. minutus nests and the nearby soil

150 THg concentration was not statistically different between nests and the nearby soil (p=0.149) (fig. 1A). The THg concentration in the nests appear to be related to

- 151 the concentration in the nearby soil as shown by the high positive correlation between THg concentrations in the two compartments (R=0.93; p=0.007 (fig. 2A).
- 152 The MHg concentration in the nest material was significantly lower than in the soil (fig. 1B). The MHg concentration was less variable between the nest materials
- than between the soils. Unlike THg, the MHg concentrations in the nest materials were not correlated with that in the nearby soil. However, the MHg
- 154 concentration in both the nest and the soil seems to be related to THg concentration (R=0.76; p=0.0041) (fig. 2B). The mobile mercury percentage (relative to
- 155 THg) was significantly lower in the nest than in the soil (p=0.037) (fig. 1C) and was correlated with the MHg concentration (R=0.85; p=0.0005) rather than with
- 156 the THg concentration (R=0.38; p=0.22) (fig. 2 C & D).

157 MeHg concentration in soil, nests and the termite whole bodies of *S. minutus* and *S. holmgreni*

- 158 At the Crique Combat site, the concentration of MeHg was lower in the nearby soil than in all other samples of S. minutus, covering only a small fraction of the
- 159 THg (0.18 \pm 0.10 %) (Table 1). For this termite species, unlike THg and MHg, the MeHg concentrations in the nest material were far higher than in the nearby
- soil and covered a significantly higher fraction of THg ($4.73 \pm 4.42\%$). MeHg concentration was independent of THg or MHg concentrations according to the

- 161 correlation tests. The bodies of *S. minutus* had higher concentrations of MeHg than the nearby soil and nests. Since termite workers reside either in the soil (for
- 162 the foraging tasks) or in the nest (for the social and building tasks), the bio-concentration factor (BCF) of MeHg in the termite body was calculated relative to
- 163 <u>both habitats. The resulting BFC was much higher relative to the nearby soil (57.84 \pm 25.85), but remained substantial high relative to the nest (3.76 \pm 1.61).</u>
- 164 While the body concentration of MeHg was uncorrelated with the concentration in the soil, it was significantly correlated positively with the concentration in the

165 nest (R=0.89).

- 166 For the congeneric species, S. holmgreni, living in sympatry with S. minutus, except the lack of statistical difference between MeHg in the soil and in the nest, the
- results were similar, with even a higher BCF in the bodies relative to the nest and to the soil.
- The second set of samples, from Petit Saut, was analyzed to determine whether the high amounts of MeHg in the body of termites were restricted to the gut or widespread through the tissues. The MeHg concentration was measured for the whole gut (accounting for over two-thirds of the termite body weight) and for the gut-free carcasses separately, as well as for the nest and the nearby soil (Table 2). The MeHg concentration of the nearby soil was below the detection limit of the analysis method while in the nests, it was in the same order of magnitude as <u>in nests from Cacao</u>. The MeHg concentration in the termite body parts was much higher than in the soil and nests. The highest concentrations of MeHg were found in the termite carcasses. The BCF in the body parts could not be calculated relative to the soil, but was very high relative to the nest material both for the termite guts and for the gut-free carcasses.

174 **Discussion**

- 175 In this study, we assess various mercury forms in nests and the bodies of soil-feeding termites. Several studies have pointed out the effects of termite activities on 176 soil physical and chemical properties and, thereby, on soil heterogeneity at the landscape level (Jouquet et al. 2011). These effects on soil properties are 177 characteristic of all termite feeding groups, even including the majority of termites feeding on above ground litter and wood material. However, soil-feeding 178 termites consume, partially or exclusively, soil (Inward, Vogler and Eggleton 2007; Eggleton and Tayasu 2001) in a similar way to earthworms, and have a more 179 significant contribution (Brauman 2000; Donovan et al. 2001; Sarcinelli et al. 2009, 2013; de Lima et al. 2018). This is particularly true in neotropical rainforests 180 where they are among the most representative feeding-groups of termites in various forest habitats (Ackerman et al. 2009; de Sales Dambros et al. 2013; de Souza 181 and Brown 1994; Davies et al. 2003). This is the case in French Guiana where up to 73 species of termites are soil-feeding out of 100 species locally recorded 182 (Davies et al. 2003).
- The THg concentration in the soil at Crique Combat averaged 0.383 μ g.g⁻¹ of dry soil, which is within the range of concentrations recorded in various Amazonian oxisols (0.250-0.500 μ g.g⁻¹) (Lechler et al. 2000; Richardet al. 2000) and, in particular, previously recorded for oxisols from the same study site (Guedron et al. 2009; Da Silva et al. 2016). This THg concentration is well above normal levels in soil (0.05 to 0.08 μ g.g⁻¹) reported by the World Bank (1999). It also exceeds proposed limits relative to SOM (0.5 μ g.g⁻¹ SOM, de Vries et al. 2007), as the SOM in this horizon is around 5.6 ± 0.6% dry soil (Da Silva et al. 2013), and relative to the soil (0.13 μ g.g⁻¹ dry soil, Tipping et al. 2010). Soil-feeding behavior in this case may result in a handling of huge amounts of mercury by termites. Indeed, a humid savannah ecosystem, soil-feeding termites from the genus *Cubitermes* were reported to ingest annually up to 4.5 kg m⁻² (Lavelle et al. 1997).
- 189 Likewise, a daily consumption of soil ranging from 0.72 to 0.911 mg of soil has been reported for another species *Cubitermes* (Okwakol, 1980), that is almost the

- 190 equivalent of its own weight (~10 mg). Though to our knowledge, the daily consumption of soil was not yet reported for the Silvestritermes species understudy,
- 191 the fate of the Hg that is ingested all the time with soil emerged as a crucial question.

192 The THg concentration for each nest was below that of the nearby soil, although this was not statistically significant, but there was a significant positive 193 correlation between THg concentrations in the soil and in the nest material, indicating that the THg concentration in the nests of soil-feeding termites could be

194 predicted from the THg concentration in the soil.

The toxicity to biota of heavy metals in general, and of mercury in particular, depends on the bioavailable soluble fraction rather than on the total concentration. Extracting Hg with an acid ethanol solution can be used to assess the mobile, toxic fraction comprising of soluble inorganic and alkyl Hg species (Han et al. 2003). We anticipated that soil processing by the termites should release adsorbed mercury, and therefore, lead to a higher fraction of mobile mercury in the nest than in the soil. Unexpectedly, the MHg concentration and its proportion of THg were significantly lower in the nests than in the nearby soil. Soil processing did not therefore increase the MHg concentration, unless the mobilized Hg was then converted into volatile or immobile organic forms.

200 As far as we know, no data are available on the effect of termites' nest building activities on the mercury naturally present in the soil. As stated above, nests of 201 soil-feeding termites are a fine mixture of soil and fecal matter and, as such, are not strictly comparable with true feces of other arthropods. Various factors related 202 either to the foraging and building behavior or to mercury biotransformation after ingestion could explain this decrease in the nests, especially for the MHg 203 fraction. The first possibility is that soil-feeding termites preferentially select soil fractions with less affinity for Hg during harvesting. The question of food particle selection by soil-feeding termites remains unanswered (Brauman 2000; Brauman et al. 2000), but their nests are commonly enriched in organic matter 204 (OM) and in small-size particles such as clay (Brauman 2000; Brauman et al. 2000; Fall et al. 2001; Sarcinelli et al. 2009, 2013; Ngugi et al. 2011; de Lima et al. 205 2018). Strangely, both SOM and clay are considered to have high affinity for, and are often positively correlated with, soil Hg (Gabriel and Williamson 2004; 206 207 Różański et al. 2016). Particle selection does not, therefore, seem to explain the low mercury concentration in the nests. The lower concentration of THg and, 208 especially, MHg in the nests could be related to the microbial transformation of soil Hg. From ingestion by the termites, up to deposition on the lining of nest, the 209 soil moves through various oxic and redox conditions (Brune et al. 1995; Brune and Friedrich 2000; Kappler and Brune 2002) compatible with the microbial 210 transformation of Hg(II), either by dissimilatory reduction into elemental Hg (Hg⁰) or by methylation into MeHg. The reduction of Hg(II) into volatile Hg⁰ is 211 performed by bacteria carrying the mer operon is the most common Hg dissimilatory pathway (Boyd & Barkay 2012). It operates under aerobic conditions that 212 are found in various gut sections (fore-gut, mid-gut and the terminal subsections of the hind-gut) and even at the periphery of the paunch that is believed to be 213 internally anaerobic (Brune & Friedrich 2000). Moreover, it is possible that Hg is reduced under anaerobic conditions through constitutive pathways whose 214 mechanisms are less well documented (Wiatrowski et al. 2006). Anoxic conditions are found mainly in the paunch that is the largest part of the termites' gut. To 215 the best of our knowledge, this process has not yet been explored in termites. Although the conditions in the gut are potentially favorable to Hg reduction and 216 volatilization, its occurrence should be substantiated by measuring mercury fluxes and testing for the presence of the genes or microorganisms involved. 217 Methylation of Hg to MeHg was the other possible pathway explaining the depletion of inorganic Hg in the nests since the MeHg concentration increased as MHg

and THg decreased, MeHg concentrations being on average 17 times higher in the nests than in the soil. This enrichment could hardly be explained by the bio-

- concentration of the small amounts of MeHg from the ingested soil. Additionally, part of the ingested MeHg might have been assimilated or demethylated during
- the gut transit (Nolde et al. 2005). This enrichment is probably, therefore, the result of *de novo* synthesis of MeHg through Hg-methylation by the termites'

221 microbiota during soil processing. This hypothesis is supported by the MeHg concentration in the termites which was several orders of magnitude greater than in 222 the soil or nests. The MeHg concentrations in the body were similar for S. minutus and the congeneric species S. holmgreni but the latter had even higher average 223 BCFs values relative to the soil and relative to the nests suggesting that the high MeHg enrichment in termites could be a widespread phenomenon among 224 Guyanese soil-feeding termites. The mercury methylation potential of termites was first reported for Mastotermes darwiniensis, a wood-feeding species endemic 225 to Northern Australia (Limper et al. 2008). Unlike soil-feeding termites with purely prokaryotic microbiotas, M. darwiniensis also hosts protozoa (like all lower 226 termites), and is the sole extant member of the Mastotermitidae family, the most basal in the termite phylogeny. As well as the differences between termite taxa, 227 the experimental approach was different. The Hg-methylation potential of M. darwiniensis was tested in a short-term experiment (14 days) based on an artificial 228 diet (sawdust) spiked with much higher Hg concentrations (25-250 µg.g⁻¹ HgCl₂) than in the soil of our study. The resulting MeHg concentrations in the termites 229 were in the same range as in our study (15.9-53.8 $ng.g^{-1}$ DW). Although the biological traits of the taxa may be different, the similar enrichment in MeHg in the 230 body with much lower mercury concentrations under natural conditions may suggest that the length of exposure may significantly affect termites' accumulation 231 of mercury in their bodies. Soil-feeding termites are also known to re-ingest fresh nest material (Brauman et al. 2000), which could contribute to this body 232 accumulation of MeHg, given its higher concentrations in the nest relative to the soil.

233 MeHg is the most problematic form of mercury for living organisms. Due to its affinity with thiol groups (R-SH) and selenol groups (R-SeH, that easily replace

234 thiol groups in amino-acids), MeHg is readily binds to cysteine, tripeptide glutathione and cysteine moieties of proteins and enzymes (Wang et al. 2012) that are 235 structurally and functionally pivotal in biological systems. As a result, MeHg is readily adsorbed into animal tissues and bioaccumulated throughout food chains 236 (Gaur et al. 2017). The distribution of MeHg in the termite body was assessed to establish whether MeHg was limited to the gut content, and, therefore, likely to 237 be transitory, or diffusely and durably stored within termite tissues. The MeHg concentrations in the guts and gut-free carcasses from Petit Saut were much higher 238 than those in the soil and nests, in agreement with the higher concentration in the whole workers from Crique Combat. However, both body parts contained 239 substantially higher MeHg levels than the whole workers from Crique Combat. MeHg concentrations were not directly measured in the whole body, but the 240 higher concentrations in both body parts clearly indicate that workers from Petit Saut had higher whole body concentrations. The inorganic forms of mercury 241 were not measured in Petit Saut. However, the MeHg concentrations in the nests, which, for Crique Combat, were closely correlated with the MeHg concentration 242 in the body, was of the same order of magnitude as for nests from Crique Combat and soil MeHg concentrations were even lower than in soils from Crique 243 Combat. More in-depth investigation is therefore needed to explain this difference between sites in MeHg concentrations in the termite bodies.

The highest average concentrations of MeHg were found in worker gut-free carcasses, rather than in the gut, but the difference was not statistically significant. Moreover, the gut samples were mixtures of the food bolus and the gut-wall tissues, and as the MeHg concentration was lower in the nest which is (at least partly) constructed with feces, MeHg in the gut-wall tissue might have been underestimated. The main conclusion from the high MeHg concentration in the carcasses was that MeHg was not confined to the gut bolus and wall, but distributed through the termite tissues. Gut-free carcasses were also mixtures: integuments (cuticle), heads and legs which are more sclerotized body parts. In the Isopod *Porcellio scaber*, a higher proportion of MeHg (relative to the total MeHg or THg) was recorded in the residue and attributed to the high affinity of MeHg for the sylfhydryl (-SH) groups of some compounds involved in cuticle sclerotization (Bittner 2006). The high proportion of sclerotized parts (head and legs) in these samples might explain the association of MeHg with the carcasses in our study.

Finer analyses, separating the gut wall from the content, and separating the various parts of the carcass, are, therefore, needed to shed light on the contribution of each part.

253 There is a growing body of data for THg concentrations for various arthropods under diverse conditions of mercury pollution but there is less data about the 254 concentration of organic forms of mercury in terrestrial arthropods, and much less in social insects. The concentrations of MeHg measured here in termite tissues 255 are much higher than those of THg reported for various ants, including invasive fire ants (Solenopsis invicta) for which the concentrations were considered to be 256 significantly high (Helms & Tweedy 2017). The lack of information about the THg concentrations in the ants' habitat limits any comparison. MeHg 257 concentrations in the bodies of various terrestrial arthropods at the same trophic level (primary consumers) have often been lower than those reported here for 258 termites. This is the case for herbivorous insects (Locusta migratoria manilensis, Acrida chinensis) (1-12 ng.g-1) (Zheng et al. 2008), for pill bugs and ground 259 beetles (Ortiz et al. 2015) in Hg-polluted environments. However, the MeHg concentrations within the range we found in termites was reported for the sap-260 feeding cicada, Cryptotympana atrata, in a polluted environment, probably due to a higher degree of exposure related to the longer lifespan and to a long 261 underground larval stage (4-5 years) during which the larvae feed on the Hg-rich sap from roots (Zheng et al. 2010). MeHg concentrations similar to or higher 262 than those measured here in termites are fairly common in aquatic or wetland arthropods (Ackerman et al. 2010; Bates & Hall 2012) due to high Hg-methylation 263 in these environments, as well as in terrestrial predators such as spiders, Odonata, centipedes and scorpions (Bartrons et al. 2015; Bates & Hall, 2012; Ortiz et al. 264 2015; Tavshunsky et al. 2017; Tsui et al. 2014).

265 As well as the high MeHg concentration in the termites reported here, there is a large body of evidence supporting the hypothesis that termites can methylate the Hg naturally present in ingested food. The first argument is that sulfate reducing bacteria (SRB), which are the best-known group of Hg-methylators, are 266 267 widespread in termite microbiotas from wood-feeding lower termites (Trinkerl et al. 1990; Kuhnigk et al. 1996; Fröhlich et al. 1999; Dröge et al. 2005; Limper et 268 al. 2008) to higher termites (protozoa-free) including soil-feeders (Brauman et al. 1990; Kuhnigk et al. 1996). SRB from the genus Desulfovibrio, about 26% of 269 known bacterial methylators (Gilmour et al. 2018), and those from the genus Desulfarculus, are highly conserved across termite microbiotas (Abdul Rahman et 270 al. 2015), including in soil-feeders (Brauman et al. 1990; Kuhnigk et al. 1996). Additionally, several SRB strains isolated from termite guts can methylate Hg(II) 271 in vitro (Kaschak et al. 2014; Limper et al. 2008), including a strain from a soil-feeding termite Cubitermes sp. (Kaschak et al. 2014). The second argument is that 272 the hgcAB gene cluster for Hg-methylation (Parks et al. 2013; Poulain and Barkay 2013) has been found in various higher termite metagenomes, including those 273 of soil-feeding species (Podar et al. 2015; Martín-Doimeadios et al. 2017). Methanogenic archaea, including Hg methylators (Gilmour et al. 2018), are also very 274 prevalent in termite microbiotas (reviewed by Brune, 2018) including those of soil-feeders (Ohkuma et al. 1999; Donovan et al. 2004). Since the bacterial and 275 methanogenic archaeal methylators probably share the same micro-environment, the syntrophic interactions for Hg-methylation that are probably widespread in 276 complex systems (Yu et al. 2018) may also occur in the termite gut. All this evidence that termites are potentially Hg methylators, strongly suggest that the high 277 MeHg concentrations in the termite bodies arise from the activity of Hg-methylators in the gut microbiota. Additional experiments comparing the extent and 278 diversity of the hgcAB gene cluster in the gut, as a predictor of Hg-methylation potential, with the MeHg concentrations in the body tissues under various levels 279 of mercury pollution are needed for a better understanding of the role of these microbial methylators.

280 Conclusion

281 To our knowledge, this is the first study addressing the effect of termites on the fate of soil mercury under natural conditions. Nests of the soil-feeding termites 282 that significantly contribute to the heterogeneity of soils in tropical forests are depleted in inorganic mercury while the environmental levels of mercury were 283 rather high. The turnover of their nests (erosion, colony death) reduces soil mercury concentrations at local scales. Organic mercury shows the opposite pattern 284 with the nests and their inhabiting termites being hotspots of MeHg. These high MeHg concentrations found, especially in termite tissues, can be a concern, 285 especially in heavily contaminated sites. This preoccupation is further justified by the findings that MeHg enrichment seems to be widespread within soil-feeding 286 termites that are among the most common termites in neotropical rainforest ecosystems (Ackerman et al. 2009; de Sales Dambros et al. 2013; de Souza and 287 Brown 1994; Davies et al. 2003). Moreover, termites are either opportunistic or specialized prey for various invertebrates such as many species of ants 288 (Buczkowski & Bennett 2007; Eggleton 2011; Wen et al. 2017), spiders (Pekár & Toft 2015) and vertebrates like anteaters, pangolins, aardvarks, etc. (Eggleton 289 2011). With prey-to-predator transfer and bioaccumulation of MeHg, the health of termite predators, especially those feeding regularly on termites from heavily 290 polluted sites may be placed at risk for MeHg contamination. As primary consumers whose body Hg concentration is the direct reflection of environmental 291 exposure rather than prey-derived transfer, soil-feeding termites are potentially suitable candidates as bio-indicators of mercury pollution in soils of neotropical 292 rainforest ecosystems. This study was performed in chronically contaminated sites where termites likely tolerate the pollutant. Given the potential risk of MeHg 293 accumulation by termites on their predators, this study deserves to be extended to newly contaminated environments such as sites around artisanal and small-scale 294 gold mining (ASGM) that are extended worldwide including in tropical areas (UN Environment, 2019; Gerson et al. 2018), where termites are amongst the most

295 representative faunal groups. If the survival of termites and their mercury-methylation capacity as shown in this study are not affected when new mercury

296 contaminations occur, their use as bio-indicators Hg pollution could be extended to various tropical and subtropical ecosystems.

297 Acknowledgments

298 The authors would like to acknowledge Virginie Roy for her help in sampling and identification of termites, Mira Toubassy for assistance in the collection of 299 samples in the field, My-Dung Jusselme and Hervé Vincent for their contribution to the statistical analyses.

300 Figures and tables

- **Figure 1**. Concentrations of total mercury (A), mobile mercury (B) and percentage of mobile mercury (relative to total Hg, C) in nests of the soil-feeding termite
- 302 S. minutus at Crique Combat and the nearby soil (0-10 cm depth). The concentrations are given for dry weights. The non-parametric Kolmogorov-Smirnov test
- 303 was performed separately for each mercury fraction. Different bold letters indicate significantly different values between nests and the nearby soils (p <0.05).
- **Figure 2.** Linear regressions between concentrations of total mercury in the nests and in the nearby soils (A), between total mercury and mobile mercury in the
- nests and in the nearby soils (B), between total mercury and the percentage of mobile mercury (C), and between mobile mercury and the percentage of mobile
- 306 mercury (**D**) in all samples. The measurements are for *S. minutus* at Crique Combat. Shaded areas correspond to the 95% confidence interval; R is the Spearman
- 307 coefficient, p the p-value. The concentrations are given for dry weights.

- Table 1. MeHg concentrations in the whole bodies of workers and nests for two soil-feeding termites, *S. minutus* and *S. holmgreni* at Crique Combat, in comparison with the nearby soils. MeHg concentrations are given for dry weights and the percentage of MeHg relative to total mercury (THg) was calculated for *S. minutus* nests and the nearby soils. The MeHg bioconcentration factors for the termite bodies were calculated relative to the nearby soils (BCF_{soil}) and the nests
- 311 (BCF_{nest}). One-way ANOVA was performed separately for each termite species and values with different bold letters differ at p < 0.05.
- 312 Table 2. Distribution of MeHg in termite bodies between the whole gut and the gut-free carcass of *S. minutus* at Petit Saut, in comparison with the concentrations
- 313 in the nests and nearby soils. The concentrations of MeHg are given for dry weights and <DL indicates that the MeHg concentration in the soil was below the
- detection limit of the analytical instrument. Consequently, BCFs were calculated only relative to nests. Values with different bold letters differ significantly
- **315** according to the one-way ANOVA at p < 0.05.

316 References

- 317 Abdul Rahman N, Parks DH, Willner DL et al. (2015) A molecular survey of Australian and North American termite genera indicates that vertical inheritance is
- 318 the primary force shaping termite gut microbiomes. *Microbiome*, **25**(3), 5.
- Ackerman IL, Constantino R, Gauch Jr HG et al. (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in Central
 Amazonia. *Biotropica*, 41, 226–233.
- Ackerman JT, Miles AK, Eagles-Smith CA (2010) Invertebrate mercury bioaccumulation in permanent, seasonal, and flooded rice wetlands within California's
 Central Valley. *Science of The Total Environment*, 408, 666–671.
- Álvarez CR, Jiménez-Moreno M, Bernardo FJG, Martín-Doimeadios RCR, Nevado JJB (2018) Using species-specific enriched stable isotopes to study the effect
 of fresh mercury inputs in soil-earthworm systems. *Ecotoxicology and Environmental Safety*, 147, 192-199.
- 325 Aula I, Braunschweiler H, Leino T et al. (1993) Levels of surrounding, mercury in the Tucurui reservoir and itsarea in Para, Brazil. In: Mercury Pollution:
- 326 Integration and Synthesis (eds Huckabee CJW and JW, (Eds.)), pp. 21–40. Lewis, Chelsea, MI.
- Bartrons M, Gratton C, Spiesman BJ, Zanden MJ Vander (2015) Taking the trophic bypass: Aquatic-terrestrial linkage reduces methylmercury in a terrestrial
 food web. *Ecological Applications*, 25(1), 151-9.
- Bates LM, Hall BD (2012) Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. *Environmental Pollution*, 160(1), 153-60.
- Benford D, Ceccatelli S, Cottrill B, DiNovi M, Dogliotti E, Edler E et al. (2018) EFSA Panel on Contaminants in the Food Chain (CONTAM): Scientific Opinion
- 332 on the risk for public health related to the presence of mercury and methylmercury in food. *EFSA Journal*, **10**(12), 2985.
- Bittner S (2006) When quinones meet amino acids: Chemical, physical and biological consequences. *Amino Acids*, **30**(3), 205-224.
- Boyd E, Barkay T (2012) The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. *Frontiers in Microbiology*, 3, 349.
- Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. *European Journal of Soil Biology*, 36(3–4), 117-125.

- 338 Brauman A, Bignell DE, Tayasu I (2000) Soil-Feeding Termites: Biology, Microbial Associations and Digestive Mechanisms. In: Termites: Evolution, Sociality,
- 339 *Symbioses, Ecology* (eds Abe T, Bignell DE, Higashi M), pp. 233–259. Springer Netherlands, Dordrecht.
- Brauman A, Koenig JF, Dutreix J, Garcia JL (1990) Characterization of two sulfate-reducing bacteria from the gut of the soil-feeding termite, *Cubitermes* speciosus. Antonie van Leeuwenhoek, 58(4), 271–275.
- Brune A (2018) Methanogens in the digestive tract of termites. In: *(Endo)symbiotic Methanogenic Archaea* (ed Hackstein JHP), pp. 81–101. Springer
 International Publishing, Cham.
- Brune A, Emerson D, Breznak JA (1995) The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of
- 345 lower and higher termites. *Applied and Environmental Microbiology*, **61**, 2681-2687.
- Brune A, Friedrich M (2000) Microecology of the termite gut: structure and function on a microscale. *Current Opinion in Microbiology*, **3**, 263–269.
- Buch AC, Brown GG, Correia MEF, Lourençato LF, Silva-Filho EV (2017) Ecotoxicology of mercury in tropical forest soils: Impact on earthworms. *Science of The Total Environment*, 589, 222–231.
- 349 Buczkowski G, Bennett G (2007) Protein marking reveals predation on termites by the woodland ant, *Aphaenogaster rudis*. *Insectes Sociaux*, 54(3), 219-224.
- 350 Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609-662.
- 351 Cristol DA, Brasso RL, Condon AM et al. (2008) The movement of aquatic mercury through terrestrial food webs. *Science*, **320** (5874), 335
- 352 Dang F, Zhao J, Zhou D (2016) Uptake dynamics of inorganic mercury and methylmercury by the earthworm *Pheretima guillemi*. *Chemosphere*, 144, 2121-2126.
- Davies RG, Hernández LM, Eggleton P et al. (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical
 forest islands. *Journal of Tropical Ecology*, 19(5), 509-524.
- 355 Donovan SE, Eggleton P, Dubbin WE, Batchelder M, Dibog L (2001) The effect of a soil-feeding termite, *Cubitermes fungifaber* (Isoptera: Termitidae) on soil
- properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. *Pedobiologia*, **45**(1), 1-11
- 357 Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes
- 358 *fungifaber* across different soil types. *Applied and Environmental Microbiology*, **70**, 3884-3892.
- 359 Dröge S, Limper U, Emtiazi F et al. (2005) In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rose-chafer
- 360 Pachnoda marginata. The Journal of General and Applied Microbiology, 51(2), 57-64.
- 361 Eggleton P (2011) An Introduction to Termites: Biology, Taxonomy and Functional Morphology. In: Biology of Termites: a Modern Synthesis (eds Bignell DE,
- 362 Roisin Y, Lo N), pp. 1–26. Springer Netherlands, Dordrecht.
- **363** Eggleton P, Tayasu I (2001) Feeding groups, lifetypes and the global ecology of termites. *Ecological Research*, **16**, 941–960.
- Fall S, Brauman A, Chotte JL (2001) Comparative distribution of organic matter in particle and aggregate size fractions in the mounds of termites with different
- 365 feeding habits in Senegal: *Cubitermes niokoloensis* and *Macrotermes bellicosus*. *Applied Soil Ecology*, **17**(2), 131-140
- 366 De Souza OFF, Brown VK (1994) Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology, 10(2), 197-206
- 367 Fougeyrollas R, Dolejšová K, Křivánek J et al. (2018) Dispersal and mating strategies in two neotropical soil-feeding termites, *Embiratermes neotenicus* and
- 368 *Silvestritermes minutus* (Termitidae, Syntermitinae). *Insectes Sociaux*, 65, 251–262.

- 369 Frentiu T, Pintican BP, Butaciu S et al. (2013) Determination, speciation and distribution of mercury in soil in the surroundings of a former chlor-alkali plant:
- assessment of sequential extraction procedure and analytical technique. *Chemistry Central Journal*, **7**, 178.
- 371 Fröhlich J, Sass H, Babenzien H et al. (1999) Isolation of *Desulfovibrio intestinalis* sp. nov. from the hindgut of the lower termite *Mastotermes darwiniensis*.

372 *Canadian Journal of Microbiology*, **45**(2), 145-152.

- 373 Gabriel MC, Williamson DG (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment.
- 374 *Environmental Geochemistry and Health*, **26**, 421–434.
- 375 Gaur, S., Singh, N., Singh, A., & Singh H (2017) Biological influences of mercury on living organisms. International Journal of Medical and Biomedical Studies,
- **376 1**, 16–25.
- Gerson JR, Driscoll CT, Hsu-Kim H, Bernhardt ES (2018) Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in
 soils, sediments, and rivers. *Elementa Science of the Anthopocene*, 6(1), 11.
- 379 Gilmour CC, Bullock AL, McBurney A, Podar M, Elias DA (2018) Robust mercury methylation across diverse methanogenic Archaea. *mBio*, 9 (2), e02403-17.
- 380 Gilmour CC, Podar M, Bullock AL et al. (2013) Mercury methylation by novel microorganisms from new environmental Science and Technology,
- **381 47**(20), 11810-11820.
- Guedron S, Grangeon S, Lanson B, Grimaldi M (2009) Mercury speciation in a tropical soil association; Consequence of gold mining on Hg distribution in
 French Guiana. *Geoderma*, 153, 331–346.
- Han Y, Kingston HM, Boylan HM et al. (2003) Speciation of mercury in soil and sediment by selective solvent and acid extraction. *Analytical and Bioanalytical Chemistry*, 375, 428-436.
- 386 Harris-Hellal J, Grimaldi M, Garnier-Zarli E, Bousserrhine N (2011) Mercury mobilization by chemical and microbial iron oxide reduction in soils of French
- **387** Guyana. *Biogeochemistry*, **103**, 223–234.
- Helms JA, Tweedy B (2017) Invasive fire ants contain high levels of mercury. *Insectes Sociaux*, 64(1), 169-171.
- 389 Inward DJG, Vogler AP, Eggleton P (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology.
- 390 *Molecular Phylogenetics and Evolution*, 44(3), 953-67.
- 391 Jo S, Woo HD, Kwon H-J et al. (2015) Estimation of the biological half-life of methylmercury using a population toxicokinetic model. International Journal of
- 392 *Environmental Research and Public Health*, **12**, 9054-9067.
- Jereb V, Horvat M, Drobne D, Pihlar B (2003) Transformations of mercury in the terrestrial isopod *Porcellio scaber* (Crustacea). *Science of the Total Environment*, 304(1-3), 269-84.
- Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell D (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites.
 European Journal of Soil Biology, 47(4), 215-222.
- 397 Kappler A, Brune A (2002) Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites
- 398 (*Cubitermes* spp.). Soil Biology and Biochemistry, 34, 221–227.
- 399 Kaschak E, Knopf B, Petersen JH, Bings NH, König H (2014) Biotic methylation of mercury by intestinal and sulfate-reducing bacteria and their potential role in

- 400 mercury accumulation in the tissue of the soil-living *Eisenia foetida*. Soil Biology and Biochemistry, **69**, 202-211.
- 401 Kuhnigk T, Branke J, Krekeler D, Cypionka H, König H (1996) A feasible role of sulfate-reducing bacteria in the termite gut. *Systematic and Applied* 402 *Microbiology*, 19(2), 139-149.
- 403 Lanno R, Wells J, Conder J, Bradham K, Basta N (2004) The bioavailability of chemicals in soil for earthworms. *Ecotoxicology and Environmental Safety*, 57(1),
- 404 39-47.
- 405 Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P et al. (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers.
- 406 *European Journal of Soil Biology*, **33**, 159-193.
- 407 Lechler PJ, Miller J, Lacerda L et al. (2000) Elevated mercury concentrations in soils, sediments, water, and fish of the Madeira River basin, Brazilian Amazon:
- 408 <u>A function of natural enrichments? *The Science of the total environment*, **260**, 87-96.</u>
- de Lima SS de, Pereira MG, Santos GL dos, Pontes R de M, Diniz AR (2018) Soil physical and chemical properties in epigeal termite mounds in pastures. *Floresta e Ambiente*, 25(1), e20160110.
- 411 Limper U, Knopf B, König H (2008) Production of methyl mercury in the gut of the Australian termite Mastotermes darwiniensis. Journal of Applied
- 412 *Entomology*, **132**(2), 168-176.
- 413 Lockey KH (1985) Insect cuticular lipids. In *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry*, **81**, 263–273.
- 414 Mahbub KR, Krishnan K, Naidu R, Andrews S, Megharaj M (2017) Mercury toxicity to terrestrial biota. *Ecological Indicators*, 74: 451-462.
- 415 Martín-Doimeadios RCR, Mateo R, Jiménez-Moreno M (2017) Is gastrointestinal microbiota relevant for endogenous mercury methylation in terrestrial animals?
 416 *Environmental Research*, 152, 454-461.
- 417 Ngugi DK, Ji R, Brune A (2011) Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A15N-based approach.
 418 *Biogeochemistry*, 103, 355-369.
- 419 Nolde N, Drobne D, Horvat M, Jereb V (2005) Reduction and methylation of mercury in the terrestrial isopod *Porcellio scaber* (Crustacea) and its environment.
- 420 Environmental Toxicology and Chemistry, 24, 1697–1704.
- 421 Obrist D, Kirk JL, Zhang L et al. (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of
- 422 emissions, climate, and land use. *Ambio*, 47(2), 116-140
- 423 Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. *FEMS Microbiology Letters*, **171**, 147–153.
- 424 Okwakol MJ (1980) Estimation of soil and organic matter consumption by termites of the genus *Cubitermes*. African Journal of Ecology, **18**, 127-131.
- 425 Ortiz C, Weiss-Penzias PS, Fork S, Flegal AR (2015) Total and monomethyl mercury in terrestrial arthropods from the central california coast. Bulletin of
- 426 *Environmental Contamination and Toxicology*, **94**(4), 425–430.
- 427 Parks JM, Johs A, Podar M et al. (2013) The genetic basis for bacterial mercury methylation. *Science*, **339**(6125), 1332-1335.
- 428 Pekár S, Toft S (2015) Trophic specialisation in a predatory group: The case of prey-specialised spiders (Araneae). *Biological Reviews*, **90**(3):744-61.
- 429 Pfeiffer WC, Lacerda LD, Salomons W, Malm O (1993) Environmental fate of mercury from gold mining in the Brazilian Amazon. *Environmental Reviews*, **1**(1),
- 430 26–37.

- 431 Podar M, Gilmour CC, Brandt CC et al. (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Science
- **432** *Advances*, **1** (9), e1500675.
- 433 Poulain AJ, Barkay T (2013) Cracking the mercury methylation Code. *Science*, **339**, 1280–1281.
- 434 Reis AT, Rodrigues SM, Davidson CM, Pereira E, Duarte AC (2010) Extractability and mobility of mercury from agricultural soils surrounding industrial and
- 435 mining contaminated areas. *Chemosphere*, **81**, 1369–1377.
- 436 Rice KM, Walker EM Jr, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. Journal of Preventive Medicine & Public Health,
- **437 <u>47(2), 74-83.</u>**
- 438 Richard S, Arnoux A, Cerdan P, Reynouard C, Horeau V (2000) Mercury levels of soils, sediments and fish in French Guiana, South America. *Water, Air, and*439 *Soil Pollution*, 124, 221–244.
- Rieder SR, Brunner I, Daniel O, Liu B, Frey B (2013) Methylation of mercury in earthworms and the effect of mercury on the associated bacterial communities.
 PLOS ONE, 8, 1–9.
- Rieder SR, Brunner I, Horvat M, Jacobs A, Frey B (2011) Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils.
 Environmental Pollution, 159(10), 2861-2869.
- 444 Rodríguez Álvarez C, Jiménez Moreno M, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC, Berzas Nevado JJ (2014) Mercury methylation, uptake and
- bioaccumulation by the earthworm *Lumbricus terrestris* (Oligochaeta). *Applied Soil Ecology*, **84**, 45-53.
- 446 Roulet M., Grimaldi C. (2001). Le mercure dans les sols d'Amazonie : origine et comportement du mercure dans les couvertures ferrallitiques du bassin
- 447 amazonien et des Guyanes. In : Carmouze Jean-Pierre (ed.), Lucotte M. (ed.), Boudou A. (ed.) Le mercure en Amazonie : rôle de l'homme et de
- 448 *l'environnement, risques sanitaires.* Paris : IRD, 121-165.
- 449 Różański SŁ, Castejón JMP, Fernández GG (2016) Bioavailability and mobility of mercury in selected soil profiles. Environmental Earth Sciences, 75, 1065.
- 450 de Sales Dambros C, da Silva VNV, Azevedo R, de Morais JW (2013) Road-associated edge effects in Amazonia change termite community composition by
- 451 modifying environmental conditions. *Journal for Nature Conservation*, **21**, 279–285.
- 452 Sarcinelli TS, Schaefer CEGR, Fernandes Filho EI, Mafia RG, Neri AV (2013) Soil modification by termites in a sandy-soil vegetation in the Brazilian Atlantic
- 453 rain forest. *Journal of Tropical Ecology*, **29**(05), 1-10.
- 454 Sarcinelli TS, Schaefer CEGR, Lynch L de S et al. (2009) Chemical, physical and micromorphological properties of termite mounds and adjacent soils along a
 455 toposequence in Zona da Mata, Minas Gerais State, Brazil. *Catena*, **76**(2), 107-113.
- 456 Saxton HJ, Goodman JR, Collins JN, Black FJ (2013) Maternal transfer of inorganic mercury and methylmercury in aquatic and terrestrial arthropods.
- 457 *Environmental Toxicology and Chemistry*, **32**(11), 2630-6
- 458 Scheuhammer MA, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish.
 459 *AMBIO: A J. of the Human Environment*, **36**, 12–19.
- 460 Science for Environment Policy (2017) Tackling mercury pollution in the EU and worldwide. In-depth Report 15 produced for the European Commission, DG
- 461 Environment by the Science Communication Unit, UWE, Bristol.

- 462 Da Silva E, Nahmani J, Lapied E et al. (2016) Toxicity of mercury to the earthworm *Pontoscolex corethrurus* in a tropical soil of French Guiana. *Applied Soil* 463 *Ecology*, 104, 79–84.
- 464 Sysalová J, Kučera J, Fikrle M, Drtinová B (2013) Determination of the total mercury in contaminated soils by direct solid sampling atomic absorption
 465 spectrometry using an AMA-254 device and radiochemical neutron activation analysis. *Microchemical Journal*, **110**, 691-694
- 466 Tavshunsky I, Eggert SL, Mitchell CPJ (2017) Accumulation of methylmercury in invertebrates and masked shrews (Sorex cinereus) at an upland Forest-
- 467 Peatland interface in Northern Minnesota, USA. *Bulletin of Environmental Contamination and Toxicology*, **99**, 673–67.
- 468 Teršič T, Gosar M (2012) Comparison of elemental contents in earthworm cast and soil from a mercury-contaminated site (Idrija area, Slovenia). Science of The
- 469 *Total Environment*, **430**, 28–33.
- 470 Tipping E, Lofts S, Hooper H et al. (2010) Critical Limits for Hg(II) in soils, derived from chronic toxicity data. *Environmental Pollution*, **158**(7), 2465-71.
- 471 Trinkerl M, Breunig A, Schauder R, König H (1990) Desulfovibrio termitidis sp. nov., a carbohydrate-degrading sulfate-reducing bacterium from the hindgut of a
- 472 termite. *Systematic and Applied Microbiology*, **13**(4) 372-377.
- 473 Tsui MT-K, Blum JD, Finlay JC et al. (2014) Variation in terrestrial and aquatic sources of methylmercury in stream predators as revealed by stable mercury
- 474 isotopes. *Environmental Science & Technology*, 48, 10128–10135.
- 475 UN-Environment (2019) Global Mercury Assessment 2018. UN-Environment Programme, Chemicals and Health Branch, Geneva, Switzerland. 59 pp.
- de Vries W, Lofts S, Tipping E et al. (2007a) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil
 solution in view of ecotoxicological effects. *Reviews of Environmental Contamination and Toxicology*, **191**, 47-89.
- 478 de Vries W, Römkens PFAM, Schütze G (2007b) Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals.
- 479 *Reviews of Environmental Contamination and Toxicology*, 191, 91-130.
- 480 Wang F, Lemes M, Khan MA (2011) Metallomics of mercury: role of thiol- and selenol-containing biomolecules. In Environmental Chemistry and Toxicology of
- 481 Mercury (eds Liu G, Cai Y. O'Driscoll N). John Wiley & Sons, Inc., Hoboken, New Jersey.
- 482 Wen XL., Wen P., Dahlsjö C., Sillam-Dussès D., Šobotník J. (2017). Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite
- 483 prey. *Proceedings. Biological sciences*, **284**(1853), 20170121.
- 484 Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury(ii) by mercury-sensitive dissimilatory metal reducing bacteria. *Environmental Science*
- **485** & *Technology*, **40**, 6690–6696.
- 486 World Bank (1999) *Pollution prevention and abatement handbook, 1998.* The World Bank.
- 487 Yu R-Q, Reinfelder JR, Hines ME, Barkay T (2018) Syntrophic pathways for microbial mercury methylation. *The ISME Journal*, **12**, 1826–1835.
- Zhang ZS, Zheng DM, Wang QC, Lv XG (2009) Bioaccumulation of total and methyl mercury in three earthworm species (*Drawida* sp., *Allolobophora* sp., and
 Limnodrilus sp.). *Bulletin of Environmental Contamination and Toxicology*, 83(6), 937-42.
- 490 Zheng D-M, Wang Q-C, Zhang Z-S, Zheng N, Zhang X-W (2008) Bioaccumulation of total and methyl mercury by Arthropods. Bulletin of Environmental
- 491 *Contamination and Toxicology*, **81**, 95–100.
- 492 Zheng D, Zhang Z, Wang Q (2010) Total and methyl mercury contents and distribution characteristics in cicada, Cryptotympana atrata (Fabricius). Bulletin of

Environmental Contamination and Toxicology, **84**, 749–753.

	S. minutus			S. holmgreni	
	MeHg (ng g ⁻¹) (Mean ± SD)	Range (ng g ⁻¹)	% MeHg (% of THg)	MeHg (ng g ⁻¹) (Mean ± SD)	Range (ng g ⁻¹)
Nearby soils	0.66 ± 0.30 A	0.35 - 0.96	0.18 ± 0.10	0.48 ± 0.27 A	0.18 - 0.70
Nests	11.21 ± 6,70 B	5.93 - 22.78	4.73 ± 4.42	1.30 ± 0.32 A	0.94 - 1.67
Termite bodies	38.45 ± 28.83 C	15.29 - 94.47		38.01 ± 34.25 B	9.64 - 83.42
BCF _{soil}	57.84 ± 25.85	34.37 - 106.12		178.91 ± 234.73	23.33 - 448.91
BCF _{nest}	3.76 ± 1.61	1.87 - 5.56		33.64 ± 31.68	6.75 - 71.24

	MeHg (ng.g ⁻¹)	BCF (relative to nest)
Nearby soil	< DL	
Nest	4.22 ± 4.06 a	
Termite carcass	683.33 ± 473.98 b	191.37 ± 53.59
Termite gut	221.13 ± 175.66 ab	58.14 ± 18.35

