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Monitoring electronic properties of two-dimensional (2D) materials is an essential step to open a way for
applications such as electronic devices and sensors. From this perspective, Bernal bilayer graphene (BLG) is
a fairly simple system that offers great possibilities for tuning electronic gap and charge carriers’ mobility by
selective functionalization (adsorptions of atoms or molecules). Here we present a detailed numerical study of
BLG electronic properties when two types of adsorption site are present simultaneously. We focus on realistic
cases that could be realized experimentally with adsorbate concentration c varying from 0.25% to 5%. For a
given value of c, when the electronic doping is lower than c, we show that quantum effects, which are ignored
in usual semiclassical calculations, strongly affect the electronic structure and the transport properties. A wide
range of behaviors is indeed found, such as gap opening, metallic behavior, or abnormal conductivity, which
depend on the adsorbate positions, the c value, the doping, and eventually the coupling between midgap states
which can create a midgap band. These behaviors are understood by simple arguments based on the fact that
BLG lattice is bipartite. We also analyze the conductivity at low temperature, where multiple scattering effects
cannot be ignored. Moreover, when the Fermi energy lies in the band of midgap states, the average velocity of
charge carriers cancels but conduction is still possible thanks to quantum fluctuations of the velocity.

DOI: 10.1103/PhysRevB.104.245125

I. INTRODUCTION

Monolayer graphene (MLG) is a two-dimensional carbon
layer that has been of increasing interest for the scientific
community since its first experimental realization in 2004
[1–3]. Indeed, its chirality and linear dispersion at low en-
ergies are responsible for its fascinating properties [4] such
as Klein tunneling [5], quantum Hall effect [6], and their
potential applications in electronic devices, graphene-based
nanocomposites, or chemical sensors [7–12]. However, these
applications are severely limited by the absence of a gap.
Hence, the band-gap opening and the control of graphene
bilayer become essential for applications in various electronic
devices. One way to create a gap in graphene is the selective
functionalization, which has been used, for example, with
hydrogen adsorption on a moiré of graphene-Ir(111) [13]. A
functionalization by an adatom (or admolecule) covalently
bounded to a carbon atom is a resonant scatterer for con-
duction states which strongly affect electronic structure and
transport properties [14–19]. Since graphene is a zero-gap
material with a bipartite lattice, such functionalization states
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create so-called midgap states at the Dirac energy ED. Bernal
bilayer graphene (BLG) is a system formed by two layers of
MLG translated from one to the other. One of its advantages
is the control of its gap by applying an external gate voltage
[20–22], which opens the way to multiple applications for
nanodevices [23–25]. On the other hand, the BLG devices can
be based on changes in their electrical conductivity, which
can be performed with using the influence of substrate [26],
vacancies, adatoms, or admolecules adsorbed on the surface
of BLG [27–34]. Recently, it has been shown that single-
and double-sided fluorination affect strongly conductivity, ex-
hibiting insulating and conducting behavior, respectively [34].
From a theoretical point of view, the study of transport by
semiclassical methods has been well done (see for instance
Refs. [4,22]). This approach is valid when EF is far enough
from the Dirac energy. But for EF close to Dirac energy,
abnormal transport due to quantum localization has been pre-
dicted for a random distribution of absorbates [30] and some
very specific cases of selective functionalization [29,31].
These effects are important when the resonant scatterer con-
centration (defect concentration) is large with respect to the
charge carrier concentrations; indeed, each resonant scatterer
creates one midgap state at Dirac energy ED. Since these quan-
tum effects, beyond the semiclassical behavior, are extremely
dependent on the type of functionalization, a more systematic
theoretical study is still needed to understand current experi-
mental results and stimulate new experimental studies.
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FIG. 1. Sketch of the crystal structure of AB stacked (Bernal)
bilayer graphene (BLG). Atoms A1 and B1 are on the lower layer
(layer 1); A2 and B2 on the upper layer (layer 2).

The unit cell of Bernal BLG contains four carbon atoms,
A1, B1 in layer 1 and A2, B2 in layer 2 (Fig. 1). Atoms A have
three B first neighbors in the same layer and one A neighbor
in the other layer, while atoms B have only three A first
neighbors in the same layer. Thus, the local environment of
A and B atoms is different, and the probability that an atom or
molecule will stick to an atom A or an atom B should be differ-
ent. It is thus reasonable to think that the functionalization of
B atoms is favored. This simple argument has been confirmed
by DFT calculations [35] showing that H adsorption energy
difference between A site and B site is about �E = 85 meV in
favor of B site, when the number of adsorbates is very low. For
a larger number of adsorbates, one can therefore expect com-
petition between two contradictory effects: on the one hand
preferential adsorption on the B sites of the bilayer, and on
the other hand adsorption on different sublattices of the same
layer as expected in MLG [35,36]. Indeed in MLG, it exists an
interaction between defects states that favors configurations
with adsorbates on different sublattices. Such asymmetric
adsorption properties between sublattice A and sublattice B
have been recently suggested by experimental measurements
[32], where the distribution of hydrogen adsorbates on the
sublattices is adequately controlled. Overall, BLG lattice is
a bipartite lattice of the two sublattices α {A1, B2} and β

{A2, B1}, from which one expects very specific electronic
properties produced by selective functionalization. Since BLG
is metallic, an isolated functionalization creates an isolated
state that is a kind of “midband” state, so-called midgap states
by analogy with MLG. In a previous paper [31] we have
considered the limiting cases where adsorbates are randomly
distributed only on A sublattice or B sublattice of layer 1
while layer 2 remains pristine. On one hand, such a selective
functionalization leads to the creation of a gap when sublattice
B1 is functionalized. This gap is a fraction of 1 eV of at least
0.5 eV for a concentration c of adsorbates larger than 1% of
the total number of atoms. On the other hand, functionaliza-
tion of sublattice A1 decreases the effective coupling between
layers, and thus the conductivity increases when c increases,
since the pristine layer is less perturbed by the disordered
layer when c increases. These two types of selective function-
alization exhibit very different and unusual behaviors. This
opens the way to the control of electronic properties through
selective functionalization, which is experimentally feasible

[32]. However, these extreme cases (A1 or B1 functionaliza-
tion only) seem too simple to correspond to the experimental
sample. Indeed, the complexity of the bipartite BLG lattice
requires further theoretical studies of other selective adsorbate
distributions. This is why it is necessary to study a combined
functionalization of several sublattices. In particular, we have
to consider cases where midgap states are coupled to each
other and thus form a midgap band, leading to new diffusivity
properties that are not a simple combination of the extreme
situations studied in Ref. [31], in which midgap states are not
coupled together.

In this paper we present a detailed study of the electronic
structure and quantum transport in BLG with adsorbates (de-
fects) located on two different sublattices among the four
sublattices A1, A2, B1, and B2. We analyze how the sym-
metry is broken between sublattices under this selectivity,
which may cause either a gap or abnormal behavior of the
conductivity. We will pay particular attention to cases where
B atoms are preferentially functionalized, since these cases
should be energetically favorable. For instance, under some
specific conditions (adsorbates on B1 and B2 sublattices), a
spectacular increase of diffusivity of charge carrier of midgap
states band edge is obtained when the concentration c of
adsorbates increases. The study of conductivity—taking into
account all the effects of quantum interference—requires a
distinction between several cases, depending on the value of
the inelastic mean free path Li, mainly due to temperature. At
high temperatures (typically room temperature) we calculate
the microscopic conductivity σM ; then we will analyze the
quantum corrections at low temperature (very large Li values),
i.e., at the localization regime. In the latter regime we also
study how localized states due to defects (midgap states) are
at the origin of a particular quantum conductivity that cannot
be explained by the Boltzmann’s transport theory, and which
is similar to the one found in quasicrystals [37,38], twisted
bilayer graphene [39], and recently graphene with defects
inducing flat bands [40,41].

The remainder of this paper is organized as follows.
Section II introduces the model and the formalism to compute
the density of states (DOS) and the conductivity. Sections III
and IV focus on selective distributions of vacancies distributed
in layer 1 only, and the two layers, respectively. Localiza-
tion effects on conductivity are discussed in Sec. V. Finally,
Sec. VI provides a summary and conclusions.

II. ELECTRONIC STRUCTURE AND NUMERICAL
METHODS

A. TB Hamiltonian

The tight-binding (TB) Hamiltonian model for BLG with
the pz orbitals only is given by

H =
∑
(i, j)

ti j |i〉〈 j|, (1)

where i is the index of pz orbitals, the sum runs over neighbor
sites i, j, and ti j is the hopping element matrix between site
i and site j. In this paper we consider only the coupling
between first neighbors orbitals. There are thus two types of
coupling (Fig. 1): for an intralayer coupling term between first
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neighboring orbitals A1 and B1 (A2 and B2), ti j = −γ0 =
−2.7 eV; and for an interlayer coupling term between first
neighboring orbitals A1 and A2, ti j = γ1 = 0.34 eV [30].
For this kind of calculation, a more realistic TB model with
coupling terms above first neighbors leads qualitatively to
similar results [30,31]. We have also checked that such a TB
model leading to the results presented here are similar, but
the first neighbors TB model allows us to better analyze and
discuss the physical mechanisms involved as it preserves the
electron-hole symmetry. In the Hamiltonian [Eq. (1)], the on-
site energies are taken equal to zero so that the Dirac energy
ED is therefore equal to zero.

B. Adsorbate simulation

We consider that resonant adsorbates are simple atoms or
molecules—such as H, OH, CH3—that create a covalent bond
with the carbon atom of the BLG. To simulate this covalent
bond, we assume that the pz orbital of carbon, just below the
adsorbate, is removed [42–44]. In our calculations the vacan-
cies are randomly distributed in two of the four sublattices A1,
A2, B1, and B2, with finite concentration c with respect to the
total number of atoms. Here we study all possible cases of the
double type of vacancies:

(1) A1B1-Va: Vacancies randomly distributed on sublat-
tices A1 and B1. An asymmetric distribution, Ax

1B1−x
1 -Va,

where x is the proportion of vacancies in the sublattice A1,
is also considered.

(2) A1A2-Va: Vacancies randomly distributed on sublat-
tices A1 and A2.

(3) A1B2-Va: Vacancies randomly distributed on sublat-
tices A1 and B2.

(4) B1B2-Va: Vacancies randomly distributed on sublat-
tices B1 and B2.

In the following, we call X -midgap states the states created
by a random distribution of vacant atoms on the X sublattice,
with X = A1, A2, B1, B2, A1B1, A1A2, A1B2, or B1B2.

C. Quantum transport calculation

We used the real space Kubo-Greenwood (RSKG) method
[45–49] which has already been used to study quantum trans-
port in disordered graphene, chemically doped graphene and
bilayer (see for instance [15–18,30,31]), functionalized car-
bon nanotubes [50–52], and many other systems (see for
instance the recent review Ref. [53] and references therein).
This numerical method connects the DC conductivity σ , σ =
e2nD, to the density of states n and the diffusion coefficient

D(E , t ) = �X 2(E , t )

t
, (2)

where the average square spreading �X 2 is calculated at ev-
ery energy E and time t by using the polynomial expansion
method [45–49],

�X 2(E , t ) = Tr{[X,U (t )]†δ(E − H )[X,U (t )]}
Tr δ(E − H )

, (3)

where U (t ) is the evolution operator at time t , δ is the Dirac
function, and Tr is the trace. This numerical approach has the
advantage of using efficiently the method in real space. It takes

into account all quantum effects due to a random distribution
of static scatterers in a very large supercell containing more
than 107 orbitals. Here all calculations are done in a supercell
of 1500 × 1500 cells of Bernal bilayer (four atoms), with
periodic boundary conditions. Considering such a huge cell,
it is possible to evaluate the traces Tr A in Eq. (3) by the
average 〈A〉 on a random phase state [49]. Such a calculation
may be done by the recursion method (Lanczos algorithm)
where the Hamiltonian is written as a tridiagonal matrix in
real space [54] of dimension Nr . Here we use Nr = 1500 and
we checked that presented results do not change significantly
when Nr increases. Lanczos method, which has been used
in our previous papers [30,31,55], leads to a convolution of
the DOS by a Lorentzian function which a small width ε.
The DOS is thus obtained by a Lorentzian broadening of the
spectrum and ε is a kind of energy resolution of the calcula-
tion. But for systems with a gap, to avoid the tail expansion
of the Lorentzian function in the gap, it is more efficient to
diagonalize the tridiagonal Hamiltonian of dimension Nr × Nr

and to compute the DOS by Gaussian broadening of the spec-
trum [56]. In the present work, a Gaussian broadening is used
with the Gaussian standard deviation of 5 meV. Note that for
energies that are not close to the gap the two methods give
almost the same results, except for small oscillations that look
like regular beatings. These oscillations are numerical artifacts
depending on convergence parameters that we used (see the
Supplemental Material [57] Sec. S1). They have no effect on
the physics discussed here.

The Hamiltonian H [Eq. (1)], written in a supercell,
takes into account the effects of elastic collisions (static
defects, here vacancies). Therefore, in the framework of
a tight-binding model, all quantum effects—including all
multiple-scattering effects—are taken into account to cal-
culate the average square spreading �X 2 and the diffusive
coefficient [Eq. (2)] without inelastic scattering, i.e., at zero
temperature. At finite temperature T , the inelastic scattering
caused by the electron-phonon interactions are implanted by
using the approximation of relaxation time approximation
(RTA). For details of the implementation of the RTA see the
Appendix of Ref. [18]. The conductivity in the x direction is
thus given by

σ (EF , τi ) = e2n(EF )D(EF , τi ), (4)

D(EF , τi ) = L2
i (EF , τi )

2τi
, (5)

L2
i (EF , τi ) = 1

τi

∫ ∞

0
�X 2(EF , t )e−t/τi dt, (6)

where EF is the Fermi energy, τi is the inelastic scattering
time, n(E ) = Tr δ(E − H ) is the total density of states (total
DOS), D the diffusivity along the x axis, and Li is the inelastic
mean free path. Li(EF , τi ) is the typical distance of propaga-
tion during the time interval τi for electrons at energy E . τi is
the time beyond which the velocity autocorrelation function
goes exponentially to zero [18].

Li is the distance beyond which a wave packet loses its
phase coherence due to inelastic scattering processes, whereas
elastic scattering events do not destroy the phase coherence.
We know that Li decreases when the temperature T increases,
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however, the exact function of Li versus T is unknown. This
is why we consider different cases according to different pos-
sible values of Li. Indeed, three different transport regimes
may exist depending on Li value with respect to the elastic
mean free path Le, which is the average distance between two
elastic scattering events. When Li � Le, multiple scattering
effects (such as weak or strong localization) strongly affect the
transport and the conductivity is “macroscopic” in the sense
that it is established over large sample sizes. This happens at
sufficiently low temperature T , and then σ decreases when
Li increases (i.e., T decreases). For smaller Li values, since
Li > ∼Le, i.e., larger temperature, σ (Li ) reaches a conductiv-
ity plateau close to the maximum σ value σM , as shown in
Sec. V. This regime is called the diffusive regime, where σ (Li )
is almost independent on Li over a large Li range depending
on the energy EF . Examples presented in Sec. V show that the
conductivity plateau corresponds to Li values from few nm to
few 10 nm, which may correspond to high temperature and
room temperature, respectively. In this case, the conductivity
of a sample depends only on the quantum scattering over small
distances which are typically of the order of magnitude of the
distances between static defects (Le); this is the reason why we
call σM the “microscopic” conductivity. The situation Li < Le

is an extreme case that one should not often reach in real
materials. This corresponds to the case of very pure materials
with very few static defects. The conductivity is independent
of static defects, and thus σ (Li ) increases when Li increases.

At each energy, the microscopic diffusivity DM and micro-
scopic conductivity σM are defined as the maximum value of
D(τi ) and σ (τi ), respectively. It is also interesting to have an
estimate of the Le values, and the Li values corresponding
to the diffusive regime, i.e., σ (Li ) � σM . We compute the
elastic mean free path Le along the x axis, from the usual
phenomenological formula [18],

Le(E ) = 1

V0(E )
Maxτi

{
L2

i (E , τi )

τi

}
= 2DM (E )

V0(E )
, (7)

where the velocity V0 is the slope of Li(τi ) at very small
τi. It is important to note that such a definition of Le is not
very accurate, and this calculation can only give an order
of magnitude of the average distance between two elastic
scattering events. Indeed, the formula (7) is not always valid
when the electronic structure is strongly modified by static
defects. Moreover, V0 is overestimated since the numerical
calculations include not only the intraband terms but also the
interband terms. In the case of graphene monolayer, we have
shown [39] that these latter increase V0 by a factor of

√
2

which leads to an underestimation of the Le. However, roughly
speaking, Le is the Li value above which conductivity curve
σ (Li ) reaches the plateau of a diffusive regime due to elastic
scattering. To better define the Li values corresponding to the
diffusive regime, we define the lengths Li1 and Li2 such as:
∀Li ∈ [Li1; Li2], σ (Li ) > 0.9σM . We also determine the value
Lim such as σ is maximum, i.e., σ (Lim) = σM . The values of
Le, Li1, Lim, and Li2 are shown in Fig. S4 in the Supplemental
Material [57] for different concentrations of the four types
of vacancies studied. The results show that Le � Li1 with the
same order of magnitude, and the ratio Li2/Li1 varies from

5–10 to very large values, depending on the type of defects
and their concentrations.

Microscopic conductivity, which corresponds to the sit-
uation where σ (Li ) � σM , i.e., large (or room) temperature
limit, is analyzed in Secs. III and IV. The Li � Le limit, i.e.,
σ (Li ) < σM , which corresponds to the localization regime at
low temperature, is analyzed in Sec. V.

III. VACANCIES IN ONE LAYER ONLY

In this section we are focusing on the impact of the va-
cancies distributed on one layer (layer 1) of BLG. It should
simulate adsorbates or defects that come from the preparation
process [19] or induced by the substrate [58]. For example,
in epitaxial graphene on Pt(111) [58], the authors have shown
the appearance of covalent bonds between the carbon atoms
of graphene and the atoms of Pt. Since the B1 atoms of layer
1 do not have a first neighbor in layer 2, it is likely that their
functionalization is favored, but the experimental results [32]
do not show functionalization only on B atoms. It is thus
important to study an asymmetric functionalization of B1 or
A1 sublattice. We first consider a majority functionalization of
the B1 atoms (A1 atoms), and we analyze the effect of defect
concentrations on a symmetric distribution of vacancies.

A. A1B1-Va asymmetrically distributed

We consider an asymmetric distribution of vacancies:
Ax

1B1−x
1 -Va, where x (1 − x) is the proportion of vacancies on

sublattice A1 (B1). Considering the cases with a total number
of vacancies corresponding to a concentration c = 3% with
respect to the total number of atoms, the density of states
n(E ) and the microscopic conductivity σM (E ) are shown in
Fig. 2 for different x values. As presented in Fig. S5 of the
Supplemental Material [57], the results for c = 0.5% show
very similar behaviors.

The different disorder distributions, i.e., value of x between
x = 0 (B1 vacancies only) and x = 1 (A1 vacancies only), af-
fect strongly the regime around the Dirac energy ED. Midgap
states at ED always appeared in both layers. Indeed, each A1

missing orbital of layer 1 produces a A1-midgap state at Dirac
energy ED that spread on B1 sublattice (layer 1) only, and B1

missing orbital produces a B2-midgap state that spread on A1

(layer 1) and B2 (layer 2) sublattices [31]. A1-midgap states
and B1-midgap states are coupled by the Hamiltonian and
form a band of midgap states with specific transport proper-
ties. In the extreme cases of vacancies distributed over a single
sublattice B1 (x = 0), we have shown [31] that a gap around
the Dirac energy ED is created. This gap is a consequence of
the reduction of the average number of neighbors of atoms
in a sublattice. For intermediate x values, the gap disappears
under the effect of the interactions between midgap states.
Depending on x values, two scenarios emerge:

(i) For x ∈ [0; 0.3] and x ∈ [0.7; 1], the number of A1-
midgap states and B1-midgap states are rather different, and
many of those states are not coupled to each other and re-
main isolated with energy ED. The small number of mixed
midgap states leads to a small DOS at intermediates energies
[Fig. 2(a)].
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FIG. 2. BLG with Ax
1B1−x

1 -Va for different distributions x of vacancies between A1 and B1 sites: (a) and (b) x ∈ [0; 0.5] (mainly B1-Va) and
(c) and (d) x ∈ [0.5; 1] (mainly A1-Va). (a)–(c) Density of states n(E ), the integrated density of states is represented in the left inset while the
density of states around the Dirac energy ED is in the right inset. (b)–(d) Microscopic conductivity σM (E ) for the same disorder configurations.
The total concentration of vacancies is 3%. G0 = 2e2/h.

Concerning the conductivity, two different behaviors are
obtained according to the dominant concentration of B1 va-
cancies (x ∈ [0; 0.3]) or A1 vacancies (x ∈ [0.7; 1]). The
behavior of σM (E ) around Dirac energy for x ∈ [0; 0.3] is
determined mainly by the effects of the B1 vacancies. For
energies E in the intermediate regime with E � γ1 = 0.34 eV,
σM increases when the coupling between midgap states in-
creases, i.e., when A1 and B1 vacancy concentrations are close
to each other. For x ∈ [0.7; 1], results are very sensitive to the
concentration of A1 vacancies. σM increases when x increases.
This effect of A1 vacancies affects the microscopic conduc-
tivity on a range of energy that does not exceed 1 eV as it is
shown in Fig. 2(b). In the extreme case x = 1, a gap appears
in the average DOS for the layer with defects (layer 1) [31]. It
is proportional to the concentration c of vacancies and layer 2
behaves more and more like a pristine MLG which gives the
ballistic behavior. When x is close to 1, x � 1, the gap in layer
1 disappears, and thus the microscopic conductivity increases
when x (close to 1) increases.

(ii) The interactions between midgap states are important
for x ∈ [0.4; 0.6], and it is maximum for x = 0.5. Therefore
n(E ) is larger for energy E �= ED [right inset of Fig. 2(a)].

The conductivity behavior is similar to that found in the fol-
lowing section for x = 0.5.

B. A1B1-Va symmetrically distributed

We now study a random distribution of defects equally dis-
tributed in sublattices A1 and B1, labeled A1B1-Va. Total DOS
n(E ), LDOS, and microscopic conductivity σM (E ) are shown
in Fig. 3 for several values of vacancy concentrations c with
respect to the total number of atoms. Since the electron trans-
port through the BLG is mainly determined by the electrons
which have energy close to the Dirac point, the conductivity
is displayed within a small energy region around the charge
neutrality energy ED = 0. By inspecting Figs. 3(a)–3(c), one
can identify several important features. (i) For all concen-
trations c and energy around ED, 0.02 < |E − ED| < 0.1 eV,
σM presents a minimum plateau at conductivity σM � 1.2 G0,
with G0 = 2e2/h. Thus σM � 2σ mono

M , where σ mono
M � 0.6 G0

is the monolayer graphene (MLG) microscopic conductivity
[18,30,59,60]. This shows that the defects affect both planes
similarly, although one of the two planes is defect-free. More-
over, the presence of a plateau, almost independently of the
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FIG. 3. Electronic properties in BLG with A1B1 vacant atoms
(A1B1-Va), with equal distribution of vacancies between A1 and B1

sublattices: (a) total DOS (dashed line is the total DOS without
vacancies), (b) average local DOS on A1, B1, A2, B2 atoms for
c = 0.25% (dashed line and dot line are LDOS on A and B atom
without vacancies), and (c) microscopic conductivity σM (E ). c is the
concentration of vacancies with respect to the total number of atoms
in BLG. G0 = 2e2/h.

concentration, shows that the microscopic quantities in the
BLG are not affected directly by interlayer coupling terms,
which gives them a behavior similar to MLG. This behavior
is understandable since the elastic mean free path Le (see the
Supplemental Material [57] Figs. S3 and S4) is smaller than
the traveling distance l1 in a layer between two interlayer
hoppings, l1 � 1–2 nm [30]. (ii) For energies far from ED,
|E − ED| > 0.1 eV, two behaviors of the conductivity is ob-

served: for c � 2%, σM � σB, where σB is calculated with the
Bloch-Boltzmann approach [22,61], and then conductivity is
proportional to 1/c. While for c � 2%, σM seems to depend
less on c, and even slightly increases when c increases, such
as for A1 vacancies alone or B1 vacancies alone [31].

IV. VACANCIES IN BOTH LAYERS

In this section we study the combined effect of vacan-
cies distributed in two sublattices that do not belong to the
same layer. The case B1B2-Va, which seems to be the most
favored case for functionalization, is considered first. These
midgap states are coupled to each other and form a midgap
band characterized by a very unusual quantum diffusion of
charge carriers. After, we study the cases of A1A2-Va and
A1B2-Va that both produce uncoupled midgap states at energy
E = ED = 0.

A. B1B2-Va cases

B1- and B2-midgap states are distributed over all the struc-
ture with different weights on the atoms A1, A2, B1, and B2

[Fig. 4(b)]. They form a band since B1-Va midgap states and
B2-Va midgap states are coupled by the Hamiltonian. Their
electronic properties are thus very different from those of B1

vacancies in BLG for which a gap proportional to c is formed
around ED [31]; while with B1B2-Va, the B1- and B2-midgap
states are coupled, and thus the gap is filled or partially filled
by a midgap states band. Several regimes are present depend-
ing on both energy E and vacancy concentration c.

For small concentrations c, typically c � 1%, there is no
gap in the DOS [Fig. 4(a)] and states around ED form a
narrow midgap states band. The corresponding microscopic
conductivity σM presents a plateau [see the inset Fig. 4(c)] at
a value independent on c, σM � 2σ mono

M .
For high concentrations c, the density of states [Fig. 4(a)]

around ED increases significantly, and as a direct conse-
quence, the plateau of conductivity increases σM > 2σ mono

M .
As explained above (Sec. IV B), in each layer the gap due
to B-Va increases when c increases, therefore for large c the
midgap states bandwidth becomes smaller than the gap, and
the midgap states band becomes isolated from other states
by small gaps at |E | � γ1 [Fig. 4(a)]. The width of this
isolated band is �w � 2γ1, i.e., E ∈ [−γ1, γ1]. For large con-
centrations c, the edge states (E � ±γ1) have a very exotic
conductivity σM which strongly increases when c increases,
whereas DOS does not change too much. Roughly speaking
this spectacular behavior can be explained by considering the
coupling between the B1-Va monolayer midgap states and the
B2-Va monolayer midgap states. In monolayer, B-Va midgap
states are located on the A sublattice around the B vacancy.
B-Va midgap states of each layer are not coupled to each other.
But, since each A orbital are coupled with an A orbital of
the other layer, a B1-Va midgap state is coupled with a B2-Va
midgap state, with a hopping term γB1-B2 . γB1-B2 � γ1, for the
smallest dB1-B2 distance between the B1-Va and the B2-Va
(typically first neighbor B1-B2), and γB1-B2 decreases when
dB1-B2 increases. When c increases, the average dB1-B2 distance
decreases and thus the average γB1-B2 value increases. As a
result, by a kind of percolation between monolayer B-midgap
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FIG. 4. Electronic properties in BLG with B1B2 vacant atoms:
(a) Total DOS (dashed line is the total DOS without vacancies),
and (b) average local DOS on A1, B1, A2, B2 atoms for c = 0.25%
(dashed line and dot line are LDOS on A and B atom without
vacancies). The average local DOS on A2, B2 atoms is obtained by a
symmetry with relative atoms A1, B1, respectively. (c) Microscopic
conductivity σM (E ). c is the concentration of vacancies with respect
to the total number of atoms in BLG. G0 = 2e2/h.

states of the two layers, the conductivity through the BLG
increases strongly when c increases.

Finally, the presence of the conductivity plateau for all
concentrations [inset Fig. 4(c)] can be understood considering
the elastic mean free path Le shown in the Supplemental
Material [57] (Figs. S3 and S4). Around ED energy (E ∈
[−0.2; 0.2] eV), Le < l1, where l1 � 1–2 nm is the traveling
distance between two interlayer hopping events [30]. Thus,
the diffusion of the charge carriers is not affected by the

interlayer coupling. The diffusive regime is reached in each
layer independently, and it takes the MLG minimum value
in each layer. Note that like for other types of vacancies, for
energy away from Dirac energy, |E − ED| � γ1, Boltzmann
behavior is always found.

B. A1A2-Va and A1B2-Va cases

The double-type vacancies: A1A2-Va (vacancies randomly
distributed on A1 and A2 sublattices) and A1B2-Va (vacancies
randomly distributed on A1 and B2 sublattices) are character-
ized by the absence of coupling between midgap states and
thus all midgap states remain at energy ED = 0. Indeed, in the
case of A1A2-Va, N vacancies on atoms A1 (A2) sublattice
produce a set of N uncoupled midgap states at Dirac energy
ED = 0 that are located on the orbitals B1 (B2) of the same
layer [31]. As B1 orbitals and B2 orbitals are not directly
coupled by the Hamiltonian, midgap states located on B1 and
B2 sublattices are not coupled together. In the case A1B2-Va,
vacancies are vacant atoms of the same sublattice α of the
BLG lattice. Corresponding midgap states are thus uncoupled
states at ED, located on the β sublattice with a greater weight
on the B1 atoms. For clarity these isolated states at ED = 0
are not shown in the DOSs drawn Figs. 5 and 6 (see the
Supplemental Material [57] Sec. S1).

In the A1A2-Va case, A1 vacancies and A2 vacancies act
on both layers symmetrically and independently because the
midgap states of a layer are not coupled with midgap states
of the other layer. Thus, the result is simply the sum of two
independent MLG. In MLG, vacancies in sublattice A (B)
produce midgap states at ED that are located in sublattice B
(A). As shown in our previous paper [31] by an analysis of
the spectrum of bipartite Hamiltonian, when the concentration
c of vacancies increases, a gap increases around the Dirac
energy. This gap is a consequence of the reduction of the aver-
age number of neighboring atoms of sublattice’s atoms which
do not contain vacancies. Thus, A1 vacancies (A2 vacancies)
create a gap in layer 1 (layer 2) as it is clearly shown on the
local DOS of atoms A1 and B1 [Fig. 5(b)]. The total DOS has
a gap proportional to the concentration of vacancies c around
the Dirac energy ED [Fig. 5(a)].

A1B2-Va create also a gap because they are distributed
randomly on the same sublattice α {A1B2} of BLG. Total and
local DOSs [Figs. 6(a) and 6(b)] confirm the presence of a gap
around Dirac energy ED.

The microscopic conductivity σM (E ) for both types of
vacancies A1A2-Va and A1B2-Va are shown in Figs. 5(c) and
6(c), respectively. The midgap states at energies E = ED do
not contribute to the conductivity σM since they are isolated
localized states around each vacancy. Beyond the gap, σM

decreases when c increases, following a typical Boltzmann
behavior [61].

V. CONDUCTIVITY VERSUS INELASTIC SCATTERING

In the two previous sections we have studied the mi-
croscopy conductivity σM which is equal to the maximum
value of σM (τi ) (Sec. II C). We now consider σ versus the
inelastic scattering time τi or the inelastic scattering length
Li. Indeed, the inelastic scattering events, which depend on
the temperature, can lead to new behaviors at low temperature
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FIG. 5. Electronic properties in BLG with A1A2 vacant atoms:
(a) Total DOS (dashed line is the total DOS without vacancy),
(b) average local DOS on A1, B1 atoms for c = 0.25% (dashed line
and dotted line are LDOS on A and B atom without vacancy). The
average local DOS on A2, B2 atoms is obtained by a symmetry with
relative atoms A1, B1, respectively. (c) Microscopic conductivity
σM (E ). c is the concentration of vacancies with respect to the total
number of atoms in BLG. For clarity the midgap states at ED = 0 are
not shown (see text). G0 = 2e2/h.

due to the multiple scattering, i.e., when Le � Li. This reveals
new quantum effects such as the Anderson localization and the
universal conductivity of the midgap states.

A. Anderson localization

In the framework of the relaxation time approximation
(RTA) (Sec. II C), we compute the inelastic mean free path
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FIG. 6. Electronic properties in BLG with A1B2 vacant atoms:
(a) Total DOS (dashed line is the total DOS without vacancy), (b) av-
erage local DOS on A1, B1, A2, B2 atoms for c = 0.25% (dashed line
and dotted line are LDOS on A and B atom without vacancy), and
(c) microscopic conductivity σM (E ). c is the concentration of vacan-
cies with respect to the total number of atoms in BLG. For clarity the
midgap states at ED = 0 are not shown (see text). G0 = 2e2/h.

Li(E , τi ) at every energy E and inelastic scattering times τi

(Sec. II C). Figure 7 shows the conductivity σ drawn versus
Li for different types of vacancies and different energies close
to ED. The microscopic conductivity σM (E ) discussed in pre-
vious sections (Secs. III and IV) is the maximum value of
the curves σ (Li ) at the corresponding energy E . Each curve
σ (Li ) has three parts. (1) For small Li, typically Li � Le, the
static defects have no direct effect and σ ∝ Li. This regime
is possible at finite temperature only when the defect concen-
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FIG. 7. Conductivity σ as a function of inelastic scattering length Li for c = 1%. (a) Vacancies randomly distributed on atoms A1 and
B1, (b) vacancies randomly distributed on atoms B1 and B2, (c) vacancies randomly distributed on atoms A1 and A2, and (d) vacancies
randomly distributed on atoms A1 and B2. G0 = 2e2/h. The vertical dashed lines show the value of Le calculated by Eq. (7) for each energy
value. In (a) and (b), the black dashed lines are the extrapolation of σ (Li ) curves, using Eq. (8), to find the localization length ξ at the limit:
σ (Li = ξ ) = 0.

tration is extremely low. (2) For Li > ∼Le, σ (Li ) reaches a
plateau at ∼σM . For small defect concentrations c, this regime
can be found for a wide range of Li values. (3) For large
Li values, Li � Le, localization regime is reached and σ (Li )
decreases when Li increases. In this regime, the so-called
quantum corrections �σ (Li ) = σ (Li ) − σM govern the trans-
port properties.

Inelastic scattering collisions are mainly due to electron-
phonon interactions, and thus Li decreases when the temper-
ature T increases. Realistic Li values are difficult to known,
but it is reasonable to consider that at room temperature
and higher temperature Li is such as σ (Li ) � σM (plateau
regime) and thus the quantum corrections are negligible. At
low temperatures, i.e., Li � Le, quantum interferences domi-
nate transport properties.

In 2D materials, Anderson localization due to quantum
interferences leads to a conductivity varying linearly with ln Li

[62], and can be written [18,63],

σ (E , Li ) = σ0(E ) − αG0 ln

(
Li

Le(E )

)
, (8)

where G0 = 2e2/h, and σ0 values are on the range of σM val-
ues. The second term of the right side of Eq. (8) is the quantum
correction of the conductivity. The linear behavior of σ (Li )
is clearly seen for cases A1B1-Va and B1B2-Va [Figs. 7(a)

and 7(b)]. The fit of the σ (Li ) curve for large Li gives the
α value α � 0.34. This value is close to the result found in
MLG [18], BLG with random vacancies [30], twisted bilayer
graphene [55], and close to the prediction of perturbation
theory of 2D Anderson localization [62], for which α = 1/π .
The localization length ξ can be extracted from the expression
(8) by extrapolation of σ (Li ) curves [Figs. 7(a) and 7(b)] when
σ (Li = ξ ) = 0, giving the following expression:

ξ (E ) = Le(E ) exp

(
σ0(E )

αG0

)
. (9)

Since α is a constant, this leads to a simple relationship be-
tween ξ and Le, ξ � 50Le, which is between the monolayer
graphene value with random vacancy distributions (13Le) [18]
and that of BLG in the same case (132Le) [30].

For A1A2-Va and A1B2-Va cases, at energies around the
edge of the gap [Figs. 7(c) and 7(d)], the decrease of σ (Li )
does not follow Eq. (8). This behavior is more similar to what
is generally expected for the conduction by midgap states of
graphene [18], which are very localized states with abnormal
diffusion behavior.

B. Universal conductivity of the midgap states

It is also interesting to focus on the conduction by flat band
midgap state themselves, i.e., here midgap states at energy
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ED = 0 that are not coupled to each other by the Hamiltonian
(A1A2-Va and A1B2-Va cases). In these midgap states, the
average velocity is zero but conduction is possible due to
the inherent quantum fluctuations of the velocity which are
due to the interband contributions of the velocity correlation
function [37,39–41]. Indeed, in the presence of inelastic scat-
tering these fluctuations are modified [41] and do not cancel
completely at large times which allows electronic diffusion.
It results in non-Boltzmann conductivity, similar to the one
found in quasicrystals [37,38], twisted bilayer graphene at
the magic angle [39], and graphene with particular defects
inducing flat bands [40,41]. In A1A2-Va and A1B2-Va, micro-
scopic conductivity, i.e., small inelastic mean free time τi, at
midgap-states energy is negligible. But at large τi (large Li),
the Kubo-Greenwood conductivity of midgap states is [41]

σ (E , τi ) = e2ni(E , τi )D(E , τi ), (10)

where ni and D are the DOS and the diffusivity [Eq. (5)] in
the presence of inelastic scattering. Since midgap states are
nondispersive states at E = 0, isolated by gaps (cases A1A2-
Va and A1B2-Va), ni is the broadening of the Delta function
cδ(E ) by a Lorentzian with a width at half-maximum η, η =
h̄/τi. Thus at Dirac energy ED = 0,

σ (E = 0, τi ) = 16

S
G0cτiD(E = 0, τi ), (11)

where S is the surface of the unit cell. As shown in Fig. 8,
for large τi, σ (E = 0, τi ) reaches a constant universal value,
independent of the defect concentration c, which is twice that
of graphene [41]: σ (E = 0) � 1.3 G0. As shown in Sec. S5 of
the Supplemental Material [57], similar behavior is also seen
for the midgap states of A1-Va only and B1-Va only (Fig. S6).

VI. CONCLUSION

We have studied numerically the effects on the electronic
properties of selective functionalization distributed over dif-
ferent sublattices of the Bernal bilayer graphene (BLG). We
consider the covalent adsorptions of atoms or molecules.
For Fermi energy EF far from Dirac energy, typically cor-
responding to a charge carrier concentration greater than the
defect concentration c, the adsorbates act as weak scatterers,
and the usual semiclassical transport calculations are possi-
ble. But for smaller doping, typically when the doping is
smaller than c, EF is close to Dirac energy the quantum
effects—such as midgap states or midgap-band gap, unusual
localization—dominate transport properties. Our numerical
approach includes all these quantum effects.

We prove theoretically that controlled functionalization
can be an excellent way to tune BLG conductivity. This is
in agreement with recent experimental results [32,34] show-
ing that it is possible to control the functionalization with
an adsorbate rate of the order of 1% of the total number
of atoms and to fabricate single and double side adsorbed
bilayer graphene. We find a wide variety of original behav-
iors and have classified them according to the functionalized
sublattices, the adsorbate concentration c, and the energy.
For example, we give the conditions for opening a mobility
gap of several 100 meV. Experimentally, and according to
Ref. [32], the hydrogen adsorption on the B atoms in one
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FIG. 8. Conductivity σ (E = ED = 0) as a function of inelastic
scattering time τi. (a) Vacancies randomly distributed on atoms A1

and A2. (b) Vacancies randomly distributed on atoms A1 and B2. In
both cases midgap states are uncoupled states at ED = 0 isolated by
gaps. G0 = 2e2/h.

layer is energetically favored. For this reason, the study of
the specific cases of B1B2 adsorbates is very interesting. An
isolated midgap states band is predicted. Spectacularly, for
c > ∼1%, its edge states have a high electrical conductivity
due to the large diffusivity of charge carriers, which deserves
further investigation. As the functionalization of atoms can
be performed experimentally, one can imagine that those of
the B1B2 adsorbates can also be carried out, which makes it
possible to control the conductivity.

The present study contributes to the understanding the
electronic properties of localized states—flat bands—due to
the combined effect of quantum interferences and geomet-
rical properties (here bipartite lattice). This physics of flat
bands is currently a major one in condensed matter, either
for field topological insulators or for remarkable electronics
(correlation effect, superconductivity) of the moiré flat bands
in twisted bilayer graphene at magic angle [64,65].
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