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Abstract  

Tumor-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the 

tumor microenvironment (TME) that can account for up to 50% of some solid neoplasms. Most often, 

TAMs support disease progression and resistance to therapy by providing malignant cells with trophic 

and nutritional support. However, TAMs can mediate antineoplastic effects, especially in response to 

pharmacological agents that boost their phagocytic and oxidative functions. Thus, TAMs and their 

impact on the overall metabolic profile of the TME have a major influence on tumor progression and 

resistance to therapy, de facto constituting promising targets for the development of novel anticancer 

agents. Here, we discuss the metabolic circuitries whereby TAMs condition the TME to support tumor 

growth, and how such pathways can be therapeutically targeted.  
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Introduction 

The homeostasis and evolution of the tumor microenvironment (TME) are governed by an intimate 

crosstalk within and across all cellular compartments, including malignant, endothelial, stromal and 

immune cells. Such a complex interaction often involves extracellular metabolites, which not only 

constitute a source of energy supply, but also act as communication signals between different cellular 

compartments. As an example, of this metabolic crosstalk, cancer-associated fibroblasts (CAFs) and 

adipocytes can support malignant cells by providing nutrients such as alanine and lipids into the TME 

(Nieman et al., 2011; Sousa et al., 2016; Vitale et al., 2019; Zhang et al., 2018a). Moreover, cancer 

cells can harness metabolic byproducts to hijack the functions of tumor-infiltrating immune cells to 

their own benefit. This applies to lactate secreted by glycolytic cancer cells, which often favors the 

polarization of immune cells to an immunosuppressive phenotypes (Angelin et al., 2017; Chen et al., 

2017a; Colegio et al., 2014). Finally, all cells of the TME compete with each other for nutrients and 

oxygen, both of which are generally limited (Bantug et al., 2018; Chang et al., 2015). All these 

nutritional constraints shape the metabolism of evolving neoplasms, hence acting as a prominent 

evolutionary force (Buck et al., 2017). 

Tumor-associated macrophages (TAMs) and their precursors account for the largest fraction of the 

myeloid infiltrate in the majority of human solid malignancies, as shown by immunohistochemical 

analyses of TAM markers such as CD68, as well as by CIBERSORT-mediated dissection of gene 

expression profiles (although with reduced specificity) (Cassetta et al., 2019; Chevrier et al., 2017; 

Gentles et al., 2015; Wagner et al., 2019). The TAM compartment is highly dynamic and 

heterogeneous (Box 1), both within and across tumors (Chevrier et al., 2017; Cuccarese et al., 2017; 

Lavin et al., 2017). An elevated degree of TAM heterogeneity has indeed been revealed not only across 

different cancer patients, but also across different malignant lesions of the same patient, as well as 
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within a specific neoplastic lesion. Part of such heterogeneity reflects the ability of TAMs to acquire an 

entire spectrum of phenotypic, metabolic and functional profiles ranging from a pro-inflammatory (so-

called M1-like) to an anti-inflammatory (so-called M2-like) state in response to environmental 

perturbations (Cassetta and Pollard, 2018; Mills et al., 2000). Thus, while specific TAM subsets 

support oncogenesis, vascularization, disease progression in spite of immunosurveillance 

(immunoevasion), and resistance to treatment, ultimately correlating with poor disease outcome 

(Gentles et al., 2015; Mantovani et al., 2017; Wenes et al., 2016), other TAM populations exert 

tumoricidal functions and support (rather than counteract) the efficacy of various anticancer 

(immuno)therapies (Arnold et al., 2014; Mantovani et al., 2017). Thus, TAMs stand out as obstacles – 

and hence promising targets – for the development of novel anticancer immunotherapies (Cassetta and 

Pollard, 2018; Ruffell and Coussens, 2015). Of note, at least in some tumors including glioblastoma 

and pancreatic cancer, TAMs can derive from both tissue-resident macrophages and circulating 

monocytes, and TAM ontogeny appears to influence their functional profile (Bowman et al., 2016; 

Chen et al., 2017b; Loyher et al., 2018; Zhu et al., 2017). Moreover, the precise localization of TAMs 

within the TME directs (at least in part) their ability to support versus restrain tumor progression. 

Specifically, TAM subpopulations TAMs at perivascular or hypoxic areas reportedly display 

proangiogenic and immunosuppressive properties (Coffelt et al., 2010; Laoui et al., 2014), while (at 

least in some settings) TAMs populating the invasive tumor front or cancer cell nests exhibits 

tumoricidal activity (Forssell et al., 2007; Yang et al., 2018). 

Here, we present the major metabolic circuitries that underlie the ability of TAMs to shape the TME of 

developing tumors, discuss the metabolic cues of the TME that influence functional TAM polarization, 

and propose immunometabolic strategies to harness TAMs for tumor prevention and treatment.  
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TAM metabolism in tumor progression 

The TAM compartment evolves over time (i.e., during tumor progression and response to treatment) as 

well as in space (i.e., at different tumor sites) (Box 2) through an extensive remodeling of core energy 

metabolism (Mazzone et al., 2018). M1-like macrophages are often associated with a highly glycolytic 

metabolism (coupled to extensive lactate secretion as well as NADPH, lipid and nucleotide 

biosynthesis), and a robust ability to generate reactive oxygen species (ROS), underlying their 

cytocidal functions (Andrejeva and Rathmell, 2017). Conversely, M2-like macrophages are generally 

considered to employ oxidative metabolism for bioenergetic purposes, which has been associated with 

their ability to support tissue repair (Andrejeva and Rathmell, 2017). However, this oversimplified 

view does not properly reflect the metabolic heterogeneity of macrophages, nor their functional 

plasticity in the preservation of tissue homeostasis and immune regulation (Murray, 2017; Murray et 

al., 2014). Similar considerations apply to TAMs, considerably complicating the delineation of strict 

metabolic patterns and phenotypic/functional boundaries for M1-like versus M2-like TAMs (Cassetta 

and Pollard, 2018). The metabolic profile of TAMs is indeed very dynamic, and its variations in 

response to the nutritional needs of malignant cells and TME perturbations have a profound influence 

not only on TAM survival but also on cancer progression and tumor-targeting immune responses.  

Glucose metabolism. TAMs mainly support tumor progression by (1) indirectly increasing the 

availability of selected nutrients in the TME; (2) providing trophic signals to malignant cells; and (3) 

mediating robust immunosuppressive functions (Box 3). The major mechanism of nutritional support to 

malignant cells by TAMs is neoangiogenesis, relying on the recruitment or activation of endothelial 

cells by TAM-derived products including vascular endothelial growth factor A (VEGFA), 

adrenomedullin (AMD), C-X-C motif chemokine ligand 8 (CXCL8) and CXCL12 (Biswas et al., 2013; 

Chen et al., 2011; Hughes et al., 2015). Indeed, although the vascular network of developing tumors is 
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phenotypically and functionally impaired, neoangiogenesis is generally required for neoplasms to grow 

(Donnem et al., 2018). In this scenario, the TME often displays at least some degree of hypoxia, which 

promotes the tumor-supporting functions of TAMs via two mechanisms. First, hypoxia favors the 

upregulation of solute carrier family 40 member 1 (SLC40A1, best known as FPN) and lipocalin 2 

(LCN2), as observed both in vitro and in vivo in human and mouse breast cancer models (Mertens et 

al., 2016; Mertens et al., 2018; Oren et al., 2016). This results in the acquisition of an iron donor 

phenotype by TAMs, increased iron availability in the TME, improved iron uptake by malignant cells, 

and consequent proliferative activation (Mertens et al., 2016; Mertens et al., 2018; Oren et al., 2016). 

Second, in distinct in vivo mouse tumor models, hypoxia drove the upregulation of DNA damage 

inducible transcript 4 (DDT4, best known as REDD1), an endogenous inhibitor of mechanistic target of 

rapamycin (MTOR) complex 1 (MTORC1), in TAMs (Wenes et al., 2016). As a result, hypoxic TAMs 

shift towards oxidative metabolism coupled to decreased glucose intake, culminating in endothelial cell 

hyperactivation leading to neoangiogenesis and metastasis as a consequence of increased glucose 

availability in the TME (Wenes et al., 2016). The physiological relevance of such a shift in glucose 

metabolism in the human setting is not yet proved. 

Even in normoxic conditions, human TAMs display lower glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and succinate dehydrogenase (SDH) activity than normal macrophages , supporting their 

ability to operate on relatively low nutritional inputs as found in the TME (Miller et al., 2017). 

Interestingly, GAPDH activity was found to be more pronouncedly decreased in M2-like than in M1-

like macrophages infiltrating human colorectal tumors (Miller et al., 2017). Along similar lines, 

monocyte-derived TAMs from human gliomas exhibited decreased glycolytic metabolism as compared 

to tissue-resident TAMs, which was associated with increased immunosuppression in the TME and 

poor patient survival (Muller et al., 2017). These observations suggest that a reduced glycolytic activity 

in TAMs favors tumor progression via both nutritional and immunological circuitries.  
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While a reduced flux through glycolysis in TAMs appears to support tumor growth in a variety of 

settings, co-culture experiments and tissue section analyses demonstrated that lactate production by 

human medullary thyroid carcinomas cells causes a robust shift from oxidative phosphorylation to 

glycolysis in TAMs, coupled to increased secretion of lactate, tumor necrosis factor (TNF) and 

interleukin 6 (IL6), ultimately supporting (rather than inhibiting) disease progression (Arts et al., 2016). 

Moreover, proteomic analyses revealed that glycolytic enzymes including hexokinase 2 (HXK2) are 

upregulated both in bone marrow-derived macrophages exposed to breast cancer extracts from patients 

and in TAMs from individuals with pancreatic cancer, portending to an enhanced (rather than reduced) 

glycolytic capacity (Liu et al., 2017a; Penny et al., 2016). Such a metabolic reprogramming was linked 

to increased metastatic dissemination in pancreatic cancer patients (Penny et al., 2016). Thus, 

glycolysis in TAMs can support tumor growth despite an increased competition for local glucose 

availability. At least in some murine settings, these observations may reflect the requirement for 

glycolysis in M2 polarization (Zhao et al., 2017).  

Glutamine and fatty acid metabolism. In line with their often poorly glycolytic profile, M2-like 

TAMs also exhibit elevated glutamine and fatty acid consumption. The former reflects relatively high 

expression levels of both glutamine transporters and metabolic enzymes, as observed (both in vitro and 

in vivo) in mouse tumor models and primary human TAMs (Choi et al., 2015; Colegio et al., 2014). 

Accordingly, glutamate-ammonia ligase (GLUL) reportedly supports M2 polarization by catalyzing the 

conversion of glutamate into glutamine, at least in vitro (Palmieri et al., 2017). Thus, GLUL inhibition 

favors the repolarization of M2-like TAMs into their M1-like counterparts accompanied by increased 

glycolytic flux and succinate availability (Palmieri et al., 2017), suggesting the existence of a metabolic 

interplay between glucose and glutamine metabolism in the regulation of TAM functions. Moreover, 

glutamine depletion restrains murine M2 polarization as a consequence of limited α-ketoglutarate 

availability for epigenetic reprogramming (Jha et al., 2015; Liu et al., 2017b). A similar outcome 



9 

 

ensues the inhibition of N-glycosylation, reflecting the limited glucose-, acetyl-CoA- and aspartate-

dependent synthesis of UDP-N-acetyl-glucosamine (UDP-GlcNac) (Jha et al., 2015), which also has 

epigenetic functions (Hardiville and Hart, 2016). The latter results from the interleukin 4 (IL4)-driven 

activation of signal transducer and activator of transcription 6 (STAT6) and PPARG coactivator 1 beta 

(PPARGC1B), culminating with increased mitochondrial biogenesis and epigenetic reprogramming 

toward fatty acid oxidation (FAO) (Vats et al., 2006). Thus, pharmacological FAO inhibition 

reportedly favors M2-to-M1 repolarization, as shown in vivo, in murine models of lung and colorectal 

cancer (Hossain et al., 2015), while fatty acid synthase (FASN) upregulation in specific murine TAM 

subsets as a consequence of colony stimulating factor 1 (CSF1) secretion by cancer cells has been 

shown to support in vivo pulmonary tumorigenesis (Park et al., 2015). In this setting, TAMs appear to 

favor disease progression by releasing the immunosuppressive cytokine interleukin 10 (IL10) 

downstream of peroxisome proliferator activated receptor delta (PPARD) activation (Park et al., 2015). 

The latter observation lends further support to the existence of an intimate crosstalk between 

metabolism and immune functions in the TME. 

Apparently at odds with increased FAO utilization, some TAMs (but not cancer cells) accumulate 

intracellular lipids, supporting not only their metabolic fitness but also their immunomodulatory 

functions (Xiang et al., 2018). This reflects the deregulation of multiple factors involved in intracellular 

lipid metabolism, including the enzymes abhydrolase domain containing 5 (ABHD5), monoglyceride 

lipase (MGLL), and acyl-CoA dehydrogenase medium chain (ACADM, best known as MCAD) (Miao 

et al., 2016; Niu et al., 2017; Xiang et al., 2018), as well as the chaperones fatty acid binding protein 4 

(FABP4) and FABP5 (Hao et al., 2018; Rao et al., 2015). In particular, while TAMs infiltrating early 

human breast cancers preferentially express FABP5, which is associated with lipid droplet 

accumulation and secretion of immunostimulatory cytokines including type I interferon (IFN), the 

macrophage compartment of late-stage tumors exhibits preferential FABP4 expression, which supports 
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tumor progression by favoring IL6 � STAT3 signaling (Hao et al., 2018). Intriguingly, MCAD 

inhibition results from the caspase 1 (CASP1)-dependent cleavage of PPARG, at least in some in vitro 

and in vivo settings (Niu et al., 2017). As CASP1 is generally activated by immunostimulatory cues 

(Galluzzi et al., 2016), this latter observation points to the existence of a circuitry whereby 

immunostimulation in the TME may favor compensatory immunosuppression via a metabolic effect. 

That said, it remains to be formally established whether TAMs resemble adipocytes in their ability to 

fuel tumor growth by directly providing lipids to cancer cells (Nieman et al., 2011; Zhang et al., 

2018a).  

Taken together, these observations delineate the major impact of TAM metabolism on their ability to 

influence tumor growth, often as a consequence of altered immunomodulation. 
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Metabolic interactions between TAMs and cancer cells 

Cancer cells and TAMs co-exist in the context of a complex, bidirectional metabolic relationship that 

not only is dictated by, but also impinges on, the immunology of the TME (Cassetta and Pollard, 2018; 

Coussens et al., 2013; Mantovani et al., 2017; Mazzone et al., 2018) 

Signals from cancer cells to TAMs. One of the major cytokines whereby cancer cells condition TAMs 

to exert immunosuppressive functions is CSF1 (DeNardo et al., 2011). Upon binding to its cognate 

receptor, CSF1 favors the recruitment of monocyte-derived macrophages to the tumor bed and their 

polarization toward an M2-like phenotype coupled to (1) FAO upregulation (Park et al., 2015), and (2) 

secretion of a variety of pro-tumorigenic and immunosuppressive factors, including epidermal growth 

factor (EGF) (Wyckoff et al., 2004) and IL10 (Ruffell et al., 2014). Accordingly, colony stimulating 

factor 1 receptor (CSF1R) inhibition with small chemicals or monoclonal antibodies favors the 

accumulation of M1-like TAMs at the expenses of their M2-like counterparts via multiple mechanisms 

including direct M2-to-M1 conversion and selective cytotoxicity for M2-like TAMs (although the 

sensitivity of distinct M2-like subsets is heterogeneous) (Pradel et al., 2018; Pyonteck et al., 2013; Yan 

et al., 2017). This is accompanied by the restoration of glycolysis, mediates therapeutic effects in a 

variety of tumor models, and is currently under clinical development for the therapy of solid tumors 

(DeNardo et al., 2011; Papadopoulos et al., 2017; Ries et al., 2014; Ruffell and Coussens, 2015; Shiao 

et al., 2015; Strachan et al., 2013). To which extent the beneficial effects of CSF1R inhibitors depend 

on the metabolic rewiring of TAMs, however, remains to be determined. 

The release of CSF1, IL34 and VEGFA (which also condition TAMs to support tumor growth) is 

particularly sensitive to environmental cues, including chemotherapeutic stress, as well as nutritional 

metabolic variables, such as nutrient availability, oxygen tension, and local pH (which are largely 

influenced by vascular dysfunction and lactate secretion) (Colegio et al., 2014; DeNardo et al., 2011; 
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Henze and Mazzone, 2016). Thus, lactate metabolism is particularly relevant not only for the metabolic 

symbiosis between hypoxic (lactate generating) and normoxic (lactate importing) cancer cells (Allen et 

al., 2016), but also for the ability of hypoxic cancer cells to reeducate TAMs toward a poorly glycolytic 

M2-like profile, exhibiting FAO upregulation, decreased capacity for antigen presentation (Chen et al., 

2017a; Colegio et al., 2014; Laoui et al., 2014; Liu et al., 2019) and, at least in glioblastoma, increased 

expression of immunosuppressive molecules (Kren et al., 2010). Of note, M2 polarization of 

melanoma-associated TAMs seems to be promoted by a mechanism involving a G protein–coupled 

receptor (GPCR) that senses TME acidification induced by enhanced cancer cell glycolysis (Bohn et 

al., 2018). In this content, in vivo experiments coupled with mathematical modeling revealed that the 

ability of TAMs to support neo-angiogenesis largely depends on their distance from existing vessels 

(Carmona-Fontaine et al., 2017), as this determines their exposure to blood-borne oxygen – which 

limits VEGFA secretion – versus cancer cell-derived factors such as lactate and angiopoietin 2 

(ANGPT2) – which promote VEGFA production (Coffelt et al., 2010; Laoui et al., 2014). This spatio-

metabolic arrangement has also immunological consequences, as VEGFA favors the expression of 

immunosuppressive receptors on immune effector cells (see below) (Voron et al., 2015). 

Increased lactate availability in the TME (which generally parallels a hypoxic state) also favors the 

catabolism of arginine by arginase 1 (ARG1) and ARG2 over nitric oxide synthase 2 (NOS2), resulting 

in increased secretion of tumor-supporting factors (i.e., ornithine, polyamines) by TAMs at the expense 

of potential anticancer mediators (i.e., nitric oxide, citrulline) (Carmona-Fontaine et al., 2017; Colegio 

et al., 2014). ARG1 can also be upregulated in M2-like TAMs by danger signals released by apoptotic 

cancer cells (Galluzzi et al., 2018b), such as sphingosine-1-phosphate (S1P) (Brune et al., 2015), as 

well as by a FASN-dependent pathway driven by CSF1 (Park et al., 2015). Of note, lactate also favors 

M2 polarization in mouse breast cancer models by initiating G protein-coupled receptor 132 (GPR132) 

signaling at the plasma membrane, i.e., operating as a signaling molecule (Chen et al., 2017a). 
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Accordingly, high levels of GPR132 promote breast cancer infiltration by monocyte-derived 

macrophages that acquire tumor-supporting functions (Cheng et al., 2016). Yet another lactate receptor, 

hydroxycarboxylic acid receptor 1 (HCAR1), appears to be upregulated on the surface of highly 

glycolytic M1-like TAMs (Arts et al., 2016). However, the functional implications of this finding 

remain obscure.  

Signals from TAMs to cancer cells. Importantly, the metabolic influence of cancer cells on TAMs is 

not unidirectional. Thus, TAMs exposed to hypoxia or lactate secrete multiple cytokines with 

metabolic functions, including IL6, TNF, C-C motif chemokine ligand 5 (CCL5) and CCL18 (Jeong et 

al., 2019; Lin et al., 2017; Ye et al., 2018; Zhang et al., 2018c). In particular, while IL6 favors 

glycolysis by promoting the ability of 3-phosphoinositide dependent protein kinase 1 (PDPK1) to 

phosphorylate phosphoglycerate kinase 1 (PGK) (Zhang et al., 2018c), TNF, CCL5 and CCL18 boost 

the synthesis of multiple pro-glycolytic factors including HXK2, PGK1, lactate dehydrogenase A 

(LDHA), glucose-6-phosphate dehydrogenase (G6PD), pyruvate kinase M1/2 (PKM), pyruvate 

dehydrogenase kinase 1 (PDK1), pyruvate dehydrogenase (PDH), solute carrier family 2 member 1 

(SLC2A1, best known as GLUT1) and vascular cell adhesion molecule 1 (VCAM1) (Jeong et al., 2019; 

Lin et al., 2017; Ye et al., 2018). Along similar lines, aerobic glycolysis is enhanced, both in vitro and 

in vivo, by a mechanism involving transfer of hypoxia inducible factor 1 subunit alpha (HIF1A)-

stabilizing long noncoding RNA from lactate-exposed TAMs to neoplastic cells (Chen et al., 2019). 

Intriguingly, HIF1A appears also to underlie, directly or indirectly, the ability of TAM-derived factors 

to exacerbate glycolysis in malignant cells (Jeong et al., 2019) as well as the capacity of cancer cell-

derived lactate to favor M2 polarization (Colegio et al., 2014). Moreover, M2-like TAMs reportedly 

contribute to hypoxia in an active manner, reflecting (at least in part) the activation of 5' AMP-

activated protein kinase (AMPK) and PPARGC1A and the consequent shift towards a poorly 
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glycolytic, highly oxidative profile characterized by increased mitochondrial mass and elevated oxygen 

consumption, as demonstrated in both preclinical and clinical settings (Jeong et al., 2019). 

Taken together, these observations delineate an intricate scenario wherein nutritional cues, cancer cells 

and TAMs mutually influence each other to determine the local organization of the TME (Figure 1). 
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Impact of TAM metabolism on immune responses 

The metabolic, functional and immunological landscape of the TME is heterogeneous and evolves over 

time under the selective pressure of both cell intrinsic and extrinsic factors (Andrejeva and Rathmell, 

2017; Biswas, 2015). Two major cell-intrinsic determinants of such a landscape are (1) the precise 

mutational signature of malignant cells, as specific mutations are known to determine the metabolic 

profile (Galluzzi et al., 2013); and (2) the activation status of immune cells, as functional changes in 

multiple immune compartment are associated with (and rely on) major metabolic shifts (Bantug et al., 

2018). As discussed above, the impact of TAMs in this scenario is at least dual. Thus, TAMs not only 

influence the metabolism of cancer cells (both directly and via indirect circuitries), but also impinge on 

the metabolite pool of the TME for survival.  

Immunosuppressive roles of TAMs. Importantly, the metabolic circuitries established between TAMs 

and cancer cells are instrumental for the maintenance of immunosuppression in the TME (Andrejeva 

and Rathmell, 2017; O'Neill et al., 2016). Some of the main effectors of anticancer immunity – i.e., 

helper CD4+ T cells, cytotoxic CD8+ T cells and natural killer (NK) cells – display a highly glycolytic 

metabolism on activation, supporting not only energy demands but also the anabolic needs underlying 

rapid proliferation (Bantug et al., 2018; O'Neill et al., 2016). Conversely, immunosuppressive 

regulatory T (TREG) cells predominantly rely on oxidative phosphorylation for bioenergetic purposes 

(Bantug et al., 2018). In this context, cancer cells and immune effector cells compete for limited 

glucose availability, and M2-like TAMs not only avoid engaging in such competition by preferentially 

employing oxidative phosphorylation (see above), but also limit glycolytic flux in effector cells by 

expressing the immunosuppressive molecule CD274 (best known as PD-L1) (Chang et al., 2015; 

Hartley et al., 2018; Lin et al., 2018; Wagner et al., 2019). PD-L1 is upregulated in TAMs, endothelial 

cells and malignant cells in response to interferon gamma (IFNG) from effector cells (Chang et al., 



16 

 

2015; Lane et al., 2018). Moreover, in vitro and in vivo studies revealed that TAMs can promote PD-L1 

expression in mouse and human cancer cells by secreting EGF (Zhang et al., 2017). Interestingly, the 

interaction of PD-L1 with programmed cell death 1 (PDCD1, best known as PD-1), the co-inhibitory 

receptor that underlies PD-L1 dependent immunosuppression in T cells, reportedly induces a 

“retrosignal” that has pro-glycolytic effects on PD-L1+ malignant cells (Chang et al., 2015), and limits 

glycolysis and proliferation in PD-L1+ TAMs (Hartley et al., 2018). This delineates a circuitry in which 

both TAMs and cancer cells react to immune effector functions by tipping the balance of the metabolic 

competition toward tumor progression. TAMs also express PD-1, and this appears to contribute to the 

preservation of a tumor-permissive state (Gordon et al., 2017). 

PD-L1 expression in TAMs is controlled at the transcriptional level by PKM2 (Palsson-McDermott et 

al., 2017) and HIF1A (Noman et al., 2014; Palsson-McDermott et al., 2017), as well as by a signal 

transduction cascade initiated by prostaglandin E2 (PGE2) (Prima et al., 2017). PGE2
 is released in the 

TME as a consequence of increased arachidonic acid metabolism in specific TAM subsets (Daurkin et 

al., 2011), as well upon the activation of apoptotic mechanisms in cancer cells responding to treatment 

(Huang et al., 2011). Besides favoring the recruitment of monocyte-derived macrophages to the TME 

and their polarization toward an M2-like phenotype (at least in some settings) (Heusinkveld et al., 

2011; Wen et al., 2015), PGE2 exerts pro-tumorigenic functions by boosting cancer cell proliferation 

(Huang et al., 2011; Pennock et al., 2018).  

M2-like TAMs also deplete the TME of amino acids for which effector cells are auxotroph, including 

arginine and tryptophan (Murray, 2016; O'Neill et al., 2016). This reflects the elevated expression of 

ARG1, ARG2, and the tryptophan-consuming enzyme indoleamine 2,3-dioxygenase 1 (IDO1) by 

TAMs, and can culminate (at least in some settings) in a robust functional impairment of T and NK 

cells (Geiger et al., 2016; Labadie et al., 2019). Importantly, the immunomodulatory activity of IDO1 
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involves not only tryptophan depletion, but also the accumulation of immunosuppressive kynurenine as 

well as cellular circuitries specifically initiated by IDO1+ cells that favor the accumulation of TREG cells 

(Labadie et al., 2019; Wainwright et al., 2012). TAMs derived from resected human glioblastoma, as 

well as murine TAMs and immature myeloid cell populations of the TME are also particularly avid of 

non-essential amino acids such as glutamate, glutamine, serine and cysteine (Choi et al., 2015; 

Srivastava et al., 2010). These amino acids are required for the optimal effector function of T 

lymphocytes, meaning that their depletion from the TME subverts immunosurveillance (Choi et al., 

2015; Ma et al., 2017; Srivastava et al., 2010; Swamy et al., 2016; Tyrakis et al., 2016).  

Lactate secretion also contributes to the establishment of an immunosuppressive TME via a variety of 

mechanisms including (1) extracellular acidification, resulting in functional anergy and potential 

demise of T and NK cells (Brand et al., 2016; Harmon et al., 2018); (2) reduced T cell motility as a 

consequence of impaired glycolytic responses to chemokine receptor signaling (Haas et al., 2015); and 

(3) polarization of T cells toward immunosuppressive CD4+CD25+FOXP3+ TREG cells, whose 

prominently oxidative metabolism favors survival in the TME (Angelin et al., 2017; Gerriets et al., 

2016). Similar considerations apply to extracellular adenosine. Indeed, M2-like TAMs and other 

immunosuppressive myeloid and lymphoid cells express high levels of ectonucleoside triphosphate 

diphosphohydrolase 1 (ENTPD1, best known as CD39) and 5'-nucleotidase ecto (NT5E, best known as 

CD73), which cooperate to hydrolyze extracellular ATP into adenosine, as well as CD38, which 

initiates extracellular adenosine synthesis from NAD+ (Chevrier et al., 2017; d'Almeida et al., 2016; 

Karakasheva et al., 2015; Montalban Del Barrio et al., 2016). Adenosinergic signaling mediates a 

variety of suppressive functions on immune effector cells, hence constituting a promising target for the 

development of novel therapeutic interventions (Kepp et al., 2017; Vijayan et al., 2017). 
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An emerging notion is that TAMs also influence non-malignant components of the TME, including 

CAFs (Hashimoto et al., 2016) and vice versa (Takahashi et al., 2017). Although there is a paucity of 

data on the metabolic and functional interrelationships between TAMs and stromal cells in the TME, 

we surmise that such links may impact on disease progression and resistance to therapy. Finally, 

multiple oncogenes including MYC and KRAS appear to support tumor progression by driving the 

recruitment of monocyte-derived macrophages and their polarization toward an M2-like phenotype, as 

shown in a mouse model of lung tumorigenesis (Kortlever et al., 2017).  

Altogether, these observations further corroborate the notion that TAMs and cancer cells co-evolve as 

they metabolically and immunologically influence each other and various other compartments of the 

TME (Figure 2). 
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TAM metabolism as a target for cancer immunotherapy 

Considerable efforts have been dedicated over the past decade at the development of anticancer 

immunotherapies based on the depletion/neutralization of M2-like TAMs and/or their repolarization 

toward an M1-like phenotype (Cassetta and Pollard, 2018; DeNardo and Ruffell, 2019). Such an 

approach holds great promise, and multiple CSF1R inhibitors are currently under clinical development 

(Table 1). Although these agents were conceived to interrupt CSF1R signaling and the consequent 

activation of a transcriptional program that support immunosuppression by M2-like TAMs (Coussens 

et al., 2013; Palucka and Coussens, 2016; Ruffell and Coussens, 2015), inhibition of CSF1R also 

promotes an extensive metabolic rewiring that culminates with the restoration of glycolysis (Park et al., 

2015). Along similar lines, TAM-driven immunosuppression can be relieved, at least partially, by 

interventions aimed at reducing glycolysis (and hence lactate availability) in the TME, such as the 

deletion of LDHA (Seth et al., 2017) as well as the administration of 2-deoxyglycose (Zhao et al., 

2017), MTORC1-targeting agents (Kaneda et al., 2016b) phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit gamma (PIK3CG, best known as PI3Kγ) plus PIK3CD (best known as PI3Kδ) 

inhibitors (which jointly cause PKM2 downregulation) (Locatelli et al., 2018). Additional strategies to 

shift the balance from M2-like to M1-like TAMs include blockade of VEGFA (alone or in combination 

with ANGPT2), which not only suppresses glycolysis but also inhibits neoangiogenesis in the TME 

(Kloepper et al., 2016; Peterson et al., 2016; Voron et al., 2015); selective redirection of TAM 

metabolism toward glycolysis and arginine catabolism via NOS2 (Colegio et al., 2014; Palmieri et al., 

2017; Steggerda et al., 2017); pharmacological inhibition of hypoxia (with the hypoxia-activated 

prodrug TH-302) (Jayaprakash et al., 2018; Popovic et al., 2018); and modulation of iron metabolism 

(Muliaditan et al., 2018; Zanganeh et al., 2016). Moreover, stimulation of autophagy, which constitutes 

a valid strategy for stimulating anticancer immune responses (Galluzzi et al., 2017b; Pietrocola et al., 
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2017), may favor the differentiation of M1-like TAMs (Esteban-Martinez et al., 2017). That said, the 

impact of TAM-targeting therapies on the metabolic and immunological profiles of TAMs has not yet 

fully elucidated. Nonetheless, these examples reinforce the notion that precisely targeted metabolic 

interventions can reinstate TAM-dependent immunosurveillance. 

In this context, targeting is a particularly important issue, for at least two reasons. First, the overall 

metabolic profile of the TME is dictated by the interplay of malignant cells and multiple non-malignant 

components (Rybstein et al., 2018), implying that non-targeted agents specific for shared metabolic 

circuitries, such as glycolysis or FAO, may have net effects that stem from multiple cell compartments 

(and hence are difficult to anticipate) (Galluzzi et al., 2017c). In line with this notion, MTORC1 

inhibitors have been found to paradoxically favor tumor progression as a consequence of glycolysis 

inhibition in hypoxic TAMs coupled to the activation of a neo-angiogenic program (Wenes et al., 

2016). Along similar lines, although the reactivation of glycolysis in M2-like TAMs appears to underlie 

their repolarization toward an M1-like phenotype, it is tempting to speculate that – given the abundance 

of TAMs in the TME of most solid tumors – sustained glycolysis activation in this compartment may 

deprive immune effector cells of glucose, de facto mediating immunosuppressive effects (Chang et al., 

2015). Second, bioenergetic metabolism displays a high degree of heterogeneity, not only across 

different, but also within similar TAM subpopulations (Chevrier et al., 2017; Lavin et al., 2017). At 

least in part, these observations explain the suboptimal efficacy of current TAM-targeting approaches 

(Cassetta and Pollard, 2018; Quail and Joyce, 2017). Moreover, both innate and acquired resistance 

mechanisms have been reported, some of which involve compensatory mechanisms connecting to 

stromal compartments of the TME (Kumar et al., 2017; Quail et al., 2016). 

Monoclonal antibodies targeting PD-L1 or PD-1, which are commonly known as immune checkpoint 

blockers (ICBs), mediate robust immunostimulatory activity and are approved by the US Food and 
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Drug Administration for use in a variety of oncological indications (Vitale et al., 2019). Although these 

agents were designed to reverse dysfunction of tumor-infiltrating T cells (Galluzzi et al., 2018a), 

preclinical and clinical studies indicate that at least some TAM subsets rely on PD-L1 and/or PD-1 

(Gordon et al., 2017; Su et al., 2018), and PD-L1 signaling in cancer cells has been reported to 

stimulate glycolysis (Chang et al., 2015). In this context, the efficacy of PD-L1- and PD-1-targeting 

ICBs appears to involve not only the reinvigoration of T cell functions, but also (1) the inhibition of 

glycolysis in malignant cells, resulting in increased glucose availability of TAMs and immune effector 

cells (Chang et al., 2015), and (2) the inhibition of PD-1 and/or PD-L1 signaling in TAMs, culminating 

with partial restoration of M1-like functions (Gordon et al., 2017; Hartley et al., 2018). Corroborating 

the translational relevance of these preclinical findings, the expression levels of PD-L1 on TAMs have 

been found to influence disease progression in both melanoma and ovarian cancer patients (Lin et al., 

2018). Of note, T cells (re)activated by PD-1 targeting ICBs can secrete CSF1 or, at least in the 

melanoma setting, promote its secretion by malignant cells (Eissler et al., 2016; Neubert et al., 2018), 

which favors expansion of the M2-like TAM compartment as a determinant to resistance. Alongside, 

TAM populations expressing high levels of the Fcγ receptor can sequester ICBs to prevent interaction 

with their pharmacological target, also resulting in resistance (Arlauckas et al., 2017). Taken together, 

these observations provide a strong rationale for the combined inhibition of CSF1R and PD-1 

(DeNardo et al., 2011; Neubert et al., 2018; Strachan et al., 2013; Zhu et al., 2014). 

Intriguingly, some human TAM populations appear to have defects in vitamin D metabolism that 

compromise their ability to mediate oncolytic effects, a deficit that can be compensated for (at least in 

part) by vitamin D supplementation or administration of the immunomodulatory agent lenalidomide 

(Bruns et al., 2015; Busch et al., 2018). Finally, a panel of promising therapeutic approaches is being 

developed to interrupt the immunometabolic crosstalk between malignant cells and TAMs. Such 

strategies include (but may not be limited to): (1) the concomitant blockage of CCL9 and IL23 
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(Kortlever et al., 2017) or IL4 and IL13 (DeNardo et al., 2009); (2) the neutralization of TAM-derived 

CCL5 (Lin et al., 2017); (3) IL6 antagonism (Wang et al., 2018; Zhang et al., 2018c); (4) the 

downregulation of VCAM1 in malignant cells (Ye et al., 2018); and (5) the abrogation of NF-κB-

dependent immunomodulatory programs in TAMs (Lawrence, 2011). Although in an early stage of 

development, all these approaches have been shown to support M2-to-M1 macrophage repolarization 

and hence mediate therapeutic anticancer effects in rodent tumor models.  

In summary, TAM metabolism and the immunometabolic circuitries linking TAMs to cancer cells and 

non-malignant components of the TME stand out as promising therapeutic targets for the development 

of novel anticancer agents. Based on the observations above, we surmise that the most efficient 

approaches in this context will simultaneously target several facets of TAM metabolism and 

immunobiology.  
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Concluding remarks 

It is now clear that metabolic fluctuations in immune cells are intimately connected to their phenotype 

and function (Bantug et al., 2018; Buck et al., 2017). TAMs are no exception to this rule: they can 

acquire a broad spectrum of activation states linked to their metabolic profile and exhibit extraordinary 

plasticity, hence constituting promising targets for the development of novel anticancer therapies 

(Mantovani et al., 2017; Mazzone et al., 2018; Ruffell et al., 2012).  

Current approaches mainly aim at depleting M2-like TAMs and/or favoring their repolarization toward 

an M1-like phenotype, either as a consequence of direct M2-to-M1 transdifferentiation, or upon the 

recolonization of the TME by M1-like TAMs in the context of M2-like TAM depletion (Cassetta and 

Pollard, 2018; Mantovani et al., 2017; Pradel et al., 2018). The efficacy of this approach is limited by 

the existence of innate and acquired resistance mechanisms, alternative immunosuppressive cells that 

can compensate for TAMs, and the potential for robust immunosuppression at treatment 

discontinuation (Bonapace et al., 2014; Quail and Joyce, 2017). As an additional layer of complexity, 

distinct cell populations of the TME share common metabolic profiles (Bantug et al., 2018; Buck et al., 

2017), implying that the sustained modulation of core metabolic pathways may have net 

immunological effects that are difficult to predict. We surmise that the most effective approaches will 

have to simultaneously target multiple mechanisms of immunosuppression and - at the same time - 

provide immunostimulatory cues. 

In this context, several metabolic interventions may be harnessed in combination with 

immunotherapeutic agents to mediate anticancer effects that involve, at least partially, changes in TAM 

subsets. Promising preclinical results have been obtained with the respiratory complex I inhibitor 

metformin (Chiang et al., 2017; Ding et al., 2015; Scharping et al., 2017), as well as with modulators of 

arginine and tryptophan catabolism (Caldwell et al., 2018; Geiger et al., 2016; Ye et al., 2016), vitamin 
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D and arachidonic acid metabolism (Bruns et al., 2015; Busch et al., 2018), extracellular adenosine and 

lactate accumulation (d'Almeida et al., 2016; Montalban Del Barrio et al., 2016), and FAO (Niu et al., 

2017; Zhang et al., 2018b). Moreover, it appears that M2-like TAMs express high levels of the 

vacuolar ATPase, a regulator of lysosomal pH that holds promise as a novel drug target (Katara et al., 

2014; Kuchuk et al., 2018; Liu et al., 2019).  

Several questions on the development of TAM-targeting strategies remain unanswered. First, what are 

the molecular mechanisms underlying the ability of TAM to rapidly switch their metabolic and 

functional profile? Second, what is the precise ontogeny of each TAM subpopulation? Third, how does 

the TAM landscape evolve during disease progression and in response to (immuno)therapy? Finally, 

what is the best approach to target the metabolic and functional interplays between TAM, immune and 

stromal cell compartments that support tumor progression? 

Future exploration of the temporal and spatial evolution the TAM compartment of tumors that respond 

to, or progress on, therapy will provide profound insights into the immunometabolism of these cells, 

potentially elucidating these unknowns and opening hitherto unexplored therapeutic avenues.  
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Box 1. Phenotypic and functional plasticity of TAM. 

Macrophages exposed to cytokines like IL12, TNF and interferon gamma (IFNG), microbe-associated 

molecular patterns (MAMPs) such as bacterial lipopolysaccharide (LPS), or other Toll-like receptor 

(TLR) agonists, acquire a pro-inflammatory (M1) state. Conversely, IL4, IL5, IL10, IL13, CSF1, 

transforming growth factor beta 1 (TFGB1) and PGE2 all promote macrophage polarization toward an 

anti-inflammatory (M2) state. M1 macrophages play a major role in the host defense against infection 

in the context of TH1 immunity, while M2 macrophages mainly support TH2-related tissue repair and 

remodeling (Murray et al., 2014). Using similar criteria, TAMs can be classified in M1-like (pro-

inflammatory and usually anti-tumor) and M2-like (anti-inflammatory and pro-tumor). Emerging 

evidence indicates that TAMs resemble normal macrophages in their ability to adopt a wide spectrum 

of intermediate activation states, reflecting the variety of microenvironmental conditions they can be 

exposed to in the TME (Cassetta and Pollard, 2018; Xue et al., 2014). Moreover, phenotypically and 

functionally distinct TAM subsets co-existing in the TME often co-express well established M1 and 

M2 markers (Chevrier et al., 2017; Lavin et al., 2017; Muller et al., 2017). TAMs display a high degree 

of functional plasticity and can rapidly adapt to microenvironment perturbations as those occurring in 

the course of tumor progression and (immuno)therapeutic challenges (Andrejeva and Rathmell, 2017; 

Gubin et al., 2018; Mazzone et al., 2018). Alongside, TAMs can acquire specialized functional states 

depending on the specific region of the TME they occupy. Thus, while hypoxic and necrotic areas of 

the TME are enriched for M2-like TAMs with limited capacity for antigen presentation, decreased 

mobility, and abundant secretion of tumor-supporting factors (Movahedi et al., 2010; Wenes et al., 

2016), perivascular areas are characterized by subpopulations of TAMs with robust proangiogenic 

functions, reflecting high expression levels of TEK receptor tyrosine kinase (TEK, best known as 

TIE2) (Chen et al., 2017b; Harney et al., 2015; Lewis et al., 2016). Thus, TAMs are characterized by an 
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extraordinary degree of plasticity that enables them to finely orchestrate their functions in response to 

microenvironmental cues. 
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Box 2. Principles of tumor-TAM co-evolution. 

The establishment and functional evolution of the TAM compartment are key events for tumor 

progression. Pro-inflammatory cytokines released in the very early phases of oncogenesis favor the 

recruitment and polarization of M1-like TAMs, which mediate multipronged anticancer effects (Crusz 

and Balkwill, 2015; Mantovani and Allavena, 2015). In particular, M1-like TAMs accumulating at sites 

of early oncogenesis can: (1) produce cytotoxic factors that limit the viability of malignant cells, such 

as nitric oxide and reactive oxygen species; (2) engulf neoplastic cells and destroy them; and (3) release 

pro-inflammatory cytokines that further stimulate anticancer immunity (Crusz and Balkwill, 2015; 

Mantovani and Allavena, 2015). However, a prolonged M1-like TAM activity can foster chronic 

inflammation, hence promoting genomic instability in malignant cells as a drive to tumor progression 

(Canli et al., 2017; Elinav et al., 2013; Qian and Pollard, 2010). In this context, cancer cells often 

acquire the ability to repolarize TAMs toward an M2-like state. Such a “re-education” of the TAM 

compartment is mediated by mechanisms including (but not limited to): (1) the release of lactate and 

CSF1 by cancer cells; (2) changes in the T cell contexture; and (3) microenvironmental perturbations 

(e.g., nutrient deprivation, hypoxia) (Henze and Mazzone, 2016; Mantovani et al., 2017). M2-like 

TAMs in turn favor tumor progression by secreting growth factors (e.g., EGF), pro-angiogenic 

molecules (e.g., VEGFA), immunosuppressive factors (e.g., IL10) and proteases that remodel the 

extracellular microenvironment (e.g., matrix metallopeptidases) (Cassetta and Pollard, 2018; Coussens 

et al., 2013; Mantovani et al., 2017). High levels of TAMs in the TME are generally associated with 

high adverse prognosis and/or poor sensitivity to treatment in a variety of solid tumors (Cassetta and 

Pollard, 2018; DeNardo et al., 2011; Fridman et al., 2017; Mantovani et al., 2017; Ruffell and 

Coussens, 2015). In specific settings, however, tumor infiltration by M1-like TAMs constitutes a good 

prognostic factor (Forssell et al., 2007; Quatromoni and Eruslanov, 2012). Similarly, specific TAM 
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subsets appear to support (or even be required for) the optimal efficacy of various (immuno)therapies 

(Affara et al., 2014; Asano et al., 2011; Gul et al., 2014; Gunderson et al., 2016; Krieg et al., 2018). 

Thus, the abundance and functionality of unique TAM subtypes have a major impact on disease 

outcome in patients affected by a variety of solid neoplasms. 
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Box 3. Regulators and executors of TAM-dependent immunosuppression. 

Regulators. CSF1R is tyrosine kinase receptor found on surface of TAMs and other myeloid cell 

populations (Cannarile et al., 2017). Upon engagement by CSF1, CSF1R promotes the recruitment of 

circulating monocytes, their survival in the TME and their polarization toward an M2-like state 

(Mantovani et al., 2017). IL34 is an alternative ligand for CSF1R that resembles CSF1 in its biological 

functions. IL4 and IL13 are TH2 cytokines abundantly secreted in the TME of established tumors, 

where they favor the accumulation and maintenance of M2-like TAMs. PI3Kγ is the prominent 

isoform of PI3K in leukocytes, and it has been etiologically linked to the transcriptional 

reprogramming whereby TAMs acquire an immunosuppressive, M2-like state. Such a reprogramming 

involves the MTORC1-dependent activation of CCAAT enhancer binding protein beta (CEBPB) and 

integrin subunit alpha 4 (ITGA4) coupled to the inhibition of NF-κB signaling (De Henau et al., 2016; 

Foubert et al., 2017; Kaneda et al., 2016a; Kaneda et al., 2016b). LC3-associated phagocytosis (LAP) 

is a specific type of phagocytosis involved in the digestion of unwanted extracellular material (Galluzzi 

et al., 2017a). The uptake of dying tumor cells by TAMs via LAP contributes to immune evasion by 

supporting the acquisition of an M2-like state along with the suppression of type I IFN signaling 

(Cunha et al., 2018).  

Executors. M2-polarized TAMs release a variety of anti-inflammatory cytokines (e.g., IL10 and 

TGFB1) and chemokines (e.g., CCL17, CCL18 and CCL22) that inhibit dendritic cell maturation, 

hence limiting antigen presentation (Ruffell et al., 2014), and favor the recruitment of 

immunosuppressive TREG cells (Cassetta and Pollard, 2018). M2-like TAMs also limit immune effector 

responses through the expression of membrane-bound immunosuppressive molecules such as PD-L1, 

phagocytosis inhibitors such as signal regulatory protein alpha (SIRPA), amino acid-catabolizing 

enzymes (e.g., ARG1 and IDO1), and ecto-enzymes that favor extracellular adenosine accumulation 
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(e.g., CD38, CD39 and CD73). Finally, M2-like TAMs avoid tumor infiltration by cytotoxic T cells (T 

cell exclusion) by mechanisms involving extensive remodeling of the extracellular matrix (often 

mediated by matrix metallopeptidases) or CD8+ T cell trapping (Calderon et al., 2015; Peranzoni et al., 

2018; Zhu et al., 2017).  
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Legends to Figures 

Figure 1. Immunometabolic interconnections between cancer cells and tumor-associated 

macrophages. As they begin to proliferate uncontrollably, cancer cells consume elevated amounts of 

glucose for bioenergetic, biosynthetic and antioxidant purposes, which is generally associated with an 

intense release of lactate in the tumor microenvironment (TME), and acquire the ability to secrete high 

levels of cancer cell-derived colony stimulating factor 1 (CSF1). CSF1 and lactate favor the 

repolarization of M1-like tumor-associated macrophages (TAMs) toward an immunosuppressive M2-

like state, which is characterized by the release of trophic factors, metabolic modulators and 

immunosuppressive molecules that foster disease progression, including (but not limited to), epithelial 

growth factor (EGF), vascular endothelial growth factor A (VEGFA), prostaglandin E2 (PGE2), tumor 

necrosis factor (TNF), C-C motif chemokine ligand 5 (CCL5), CCL18, interleukin 6 (IL6), IL10. 

Moreover, lactate and glucose deprivation exerts immunosuppressive effects on effector T (TEFF) cells. 

Alongside, M2-like macrophages upregulate oxidative phosphorylation (OXPHOS) and fatty acid 

oxidation (FAO) at the expenses of glycolysis, and synthesize abundant levels of arginase 1 (ARG1), 

ARG2 and indoleamine 2,3-dioxygenase 1 (IDO1). The metabolic shift that accompanies M2 

polarization increases glucose availability for cancer cells and aggravates hypoxia, which vice versa 

supports M2 polarization. Ado, adenosine; GZMB, granzyme B; IFNG, interferon gamma; Kyn, 

kynurenine; NO, nitric oxide; TREG, regulatory T; TNF, tumor necrosis factor. 

Figure 2. Immunometabolic co-evolution of cancer cells and tumor-associated macrophages. 

Early neoplastic lesions exhibit limited degree of hypoxia, abundant infiltration by effector T cells and 

a tumor-associated macrophage (TAM) compartment largely polarized toward an immunostimulatory 

M1-like state. As disease progresses, cancer cells avidly deplete the tumor microenvironment (TME) of 

glucose as they produce increased amounts of lactate and secrete cytokines that favor the recruitment of 
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blood-borne monocytes and their polarization toward an immunosuppressive M2-like state. M2-like 

TAMs exhibit limited phagocytic activity, secrete cytokines and chemokines that support the 

recruitment of immunosuppressive regulatory T (TREG) cells and neoangiogenesis, deplete the TME of 

amino acids that are crucial for effector T cells at the same time as they release immunosuppressive 

molecules such as kynurenine (Kyn) and adenosine (Ado), and favor a remodeling of the extracellular 

matrix (EMC) that restrains tumor infiltration by effector T cells. Alongside, both cancer cells and M2-

like TAMs acquire the ability to express PD-L1, which not only favors T cell exhaustion but also 

exacerbate metabolic competition in the TME. Ultimately, malignant lesions contain high amounts of 

M2-like TAMs and immunosuppressive or exhausted T cells, resulting in unrestrained disease 

progression. 
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Table 1. CSF1R- and CSF1-targeting agents under clinical development* 

Mode of action Agent Alias(es) Number of studies Progress Developer 

Chemical CSF1R 

inhibitors 

ARRY-382 N/A Open: 1 

Completed: 1 

Closed: 0 

Phase I/II Array Biopharma 

 BLZ945 N/A Open: 1 

Completed: 0 

Closed: 0 

Phase I/II Novartis 

 DCC-3014 N/A Open: 1 

Completed: 0 

Closed: 0 

Phase I Deciphera 

Pharmaceuticals 

 JNJ-40346527 PRV-6527 Open: 2 

Completed: 0 

Closed: 0 

Phase II Janssen 

 OSI-930 N/A Open: 0 

Completed: 2 

Closed: 0 

Phase II Astellas Pharma 

 Pexidartinib PLX3397 

PLX108-01 

Open: 13 

Completed: 6 

Closed: 2 

Phase III Plexxikon 

CSF1R-targeting 

antibodies 

AMG820 N/A Open: 1 

Completed: 1 

Closed: 0 

Phase I/II Amgen 

 Cabiralizumab FPA008 Open: 10 

Completed: 0 

Closed: 0 

Phase II FivePrime 

 Emactuzumab RO-5509554 

RG-7155 

Open: 4 

Completed: 2 

Closed: 1 

Phase I/II Roche 

 LY3022855 IMC-CS4 Open: 2 

Completed: 3 

Closed: 0 

Phase I/II Lilly 

 SNDX-6352 UCB 6352 Open: 1 

Completed: 0 

Closed: 0 

Phase I Syndax 

CSF1-targeting 

antibodies 

Lacnotuzumab MCS110 Open: 7 

Completed: 0 

Closed: 2 

Phase II Novartis 

 PD 0360324 PD-360,324 Open: 2 

Completed: 0 

Closed: 0 

Phase II Pfizer 

 
Abbreviations. N/A, not applicable. *as of January 31st, 2019, for oncological indications; source 

http://www.clinicaltrials.gov.  

 




