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Abstract 

Immunotherapy is radically changing the clinical management of patients affected by an 

increasingly wide array of tumors. However, a limited percentage of patients achieve long-term 

clinical benefits from immunotherapy employed as a standalone treatment, calling for the 

development of combinatorial regimens. Radiation therapy (RT) stands out as a particularly 

promising candidate in this setting, reflecting not only its established safety profile, but also the 

potential ability of RT to mediate robust immunostimulatory effects that may synergize with 

immunotherapy in systemic tumor control. However, optimal radioimmunotherapy regimens 

may call for the redefinition of conventional RT doses and fractionation schedules. Here, we 

discuss current approaches to improve the efficacy and reduce the toxicity of 

radioimmunotherapy for the management of cancer. 
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Introduction 

More than half of cancer patients are treated with radiation therapy (RT), which has become a 

mainstay for the management of several, locally advanced solid tumors. Over the past few 

decades, significant technical improvements fostered the widespread dissemination of multiple 

variants of RT, including intensity modulated RT (IMRT), image-guided RT, as well as intra- 

or extracranial stereotactic RT.1 These developments rapidly translated into the possibility of 

local dose escalation, resulting in increased cure rates in patients affected with some tumors 

like prostate and cervical cancer.2 Moreover, it has become possible to deliver high doses of 

RT with unprecedented anatomical precision, allowing for partial breast irradiation and long-

term local control of brain and lung metastases.3,4 Alongside, the decreased collateral damage 

to radiosensitive organs enabled by IMRT has reduced the risk of long-term sequelae, including 

xerostomia for patients with head and neck squamous cell carcinoma (HNSCC), bowel toxicity 

for subjects with gynecological tumors, and poor cosmetic outcome for women with breast 

cancers, just to mention a few examples.5,6 

While these technical ameliorations have spread rapidly over the recent years, the development 

of therapies to complement RT has somehow stagnated since the 1990s, when several clinical 

trials demonstrated that chemoradiation – i.e., the association of RT and cytotoxic 

chemotherapy – can result in improved local tumor control, organ preservation and patient 

survival in some oncological settings.7 Since the dissemination of these results, no major trial 

has successfully challenged the idea that cisplatin, 5-fluoruracil, mitomycin C and 

temozolomide should be used to improve the therapeutic efficacy of RT. Indeed, contrasting 

with the expectations nourished by preclinical studies, combinatorial regimens involving 

targeted anticancer agents and RT failed to provide superior clinical benefits as compared to 

conventional chemoradiation.8-10 There are multiple possible causes for these deceptive clinical 
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results including, on a case-by-case basis, the validity of preclinical proofs of concepts, the 

impact of combinatorial therapies on normal tissues, the absence of reliable biomarkers for 

patient selection, and technical aspects linked to radiation delivery. These shortcomings are 

likely to be overcome by an improved communication among radiation oncologists, medical 

oncologists, statisticians, pharmacologists, and experts in imaging and translational research.  

The realization that the immune system can provide a major contribution to therapeutic 

responses to RT11 provided a strong rationale in support of clinical trials combining (multiple 

variants of) immunotherapy with (various forms of) RT. Such an intensive wave of 

investigation on radioimmunotherapy has recently culminated in the approval of 

chemoradiation plus the immune checkpoint blocker (ICB) durvalumab for the treatment of 

unresectable stage III non-small cell lung carcinoma (NSCLC),12 which turned out to be 

effective and well tolerated despite a previous report alerting about potential lung toxicity.13 

Currently, more than 150 clinical trials are open to explore the combination of standard, full-

dose (chemo)radiation plus immunotherapy,14 mostly in the form of ICBs targeting CD274 

(best known as PD-L1), like durvalumab itself, avelumab and atezolizumab, programmed cell 

death 1 (PDCD1, best known as PD-1), like pembrolizumab, nivolumab and cemiplimab, or 

cytotoxic T lymphocyte-associated protein 4 (CTLA4), like ipilimumab (source 

https://clinicaltrials.gov/). It can be anticipated that many of these combinatorial regimens will 

enable superior therapeutic responses as they subside toxicities, hopefully both in the short and 

long term, ultimately resulting in the cure of patients with previously untreatable tumors, 

especially in the setting of oligometastatic disease (Figure 1).  

Classical radiation biology has investigated the efficacy of RT mostly in vitro and in xenograft 

models, i.e., in immunodeficient mice bearing human cancer cell lines, two models that 

completely neglect potential contribution of the immune system to therapeutic effects.15 This 

has imposed a largely cancer cell-autonomous view of the biology of RT, positing that the 
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response to RT (and hence the likelihood of complete disease eradication) are directly 

proportion to the radiation dose and the consequent degree of DNA damage overcoming the 

repair capability of the cell16. This model has fostered a large number of dose-escalation studies, 

which were successful in some indications, such as prostate and cervical cancer,2 but failed to 

meet expectation in many others, such as NSCLC, esophageal tumors and brain cancers.17 The 

modern conceptual paradigm rather postulates that RT is particularly efficient when its elicits 

tumor-targeting immune responses.18 The major corollary of this shift in perspective is that RT 

should be administered in doses and schedules that are optimally suitable for eliciting anticancer 

immunity. As the maximum tolerated dose (MTD) often inhibits or kills immune cells involved 

in tumor control alongside malignant cells, RT delivered at the MTD generally fails to induce 

efficient immune responses against cancer, implying a non-linear dose-effect relationship.19 

Thus, the implementation of modern radioimmunotherapy regimens calls for novel strategies 

to improve efficacy and limit toxicity, which we discuss in this review.  

  



 7

Immunological parameters affecting acute and late RT effects 

The side effects of RT generally manifest in a biphasic manner, reflecting both the intensity of 

the treatment and the organs exposed to direct or scattered irradiation.20 The acute phase, which 

is characterized by local atrophy and inflammation, originates from a wave of cell death driven 

by RT in tissues with a high mitotic index, such as the epithelium of the oral cavity and the 

gastrointestinal trait or the hematopoietic system, and hence tends to resolve a few weeks after 

treatment.21 The chronic phase typically starts around 3 months post-RT and involves vascular 

alterations, persistent oxidative stress, chronic hypoxia, fibroblasts activation potentially 

leading to fibrosis, and permanent loss of tissue function.22 Numerous preclinical studies 

suggest that the immune system not only participates in the therapeutic effects of RT, but also 

contributes to both acute and chronic RT toxicities.23 Consistent with this notion, deletion of 

intercellular adhesion molecule 1 (Icam1), which codes for an endothelial cell surface molecule 

involved in leukocyte extravasation, inhibits both acute inflammatory responses and chronic 

fibrotic changes in the lungs of mice subjected to thorax irradiation.24 A similar anti-fibrotic 

response can be achieved upon depletion of interstitial macrophages with a monoclonal 

antibody specific for colony stimulating factor 1 receptor (CSF1R).25 Moreover, radiation-

induced pneumonitis occurring in mice after total body irradiation (TBI) can be suppressed by 

thymectomy and further restored by the adoptive transfer of splenocytes.26 Thus, multiple 

immune effector cells can contribute to the toxicity of RT. Of note, macrophage depletion with 

CSF1- or CSF1R-targeting agents has also been shown to improve anticancer immune 

responses driven by RT (especially in the context of PD-L1 blockade), which the tendency of 

RT (especially at low doses) to favor the polarization of macrophages towards an 

immunosuppressive phenotype.27,28 Taken together, these observations suggest that targeting 

macrophages may provide a dual benefit to patients receiving RT: an improved therapeutic 

response couple to limited toxicity.  
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The recruitment of immunosuppressive cells to irradiated organs and their activation is 

orchestrated by several immunomodulatory molecules released in response to RT. 

Transforming growth factor beta 1 (TGFB1, best known as TGF-β1), a cytokine with 

pleiotropic effects, is pivotal in this context.29 TGF-β1 signaling increases consistently in 

irradiated tissues, reflecting not only an increased secretion of the latent form of the protein, 

but also an increased availability of bioactive TGF-β1.29 On binding to its cognate receptor, 

which is expressed by a variety of cell types including immune cells and fibroblasts, TGF-β1 

mediates robust immunosuppressive effects and favors the secretion of collagen, hence favoring 

fibrosis.29 In line with this notion, strategies aimed at inhibiting TGF-β1 synergize with ICBs30 

and RT31 in the control of experimental tumors in mice, at least in part by improving the access 

of lymphocytes to malignant lesions. Along similar lines, chemical inhibitors of TGF-β1 

signaling attenuate lung fibrosis in mice receiving RT to the thorax.32 Thus, although efficacy 

in early clinical trial testing this paradigm was rather deceptive,33 perhaps reflecting the ability 

of TGF-β1 to inhibit epithelial cell proliferation,34 it may be interesting to introduce TGF-β1 

inhibitors into multimodal treatments including radioimmunotherapy.  

Irradiated tissues also expose or secrete large amounts of damage-associated molecular patterns 

(DAMPs), a heterogeneous group of endogenous molecules that are normally invisible to the 

immune system owing to their intracellular localization.35 On release into the extracellular 

microenvironment, however, DAMPs can bind to a variety pattern recognition receptors (PRRs) 

involved in the innate immune response to invading pathogens, including Toll-like receptor 

(TLRs), hence favoring the establishment of local inflammation.36 DAMPs such as the non-

histone chromatin-binding protein high mobility group B1 (HMGB1) and mitochondrial DNA 

(mtDNA) have been attributed an etiological role in inflammatory conditions including some 

cardiomyopathies and systemic inflammatory response syndrome (SIRS), largely reflecting 

their ability to recruit and activate granulocytes.37 Consistent with this notion, extracellular 
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mtDNA is increased in patient with idiopathic pulmonary fibrosis,38 and chemical antagonists 

of C-X-C motif chemokine receptor 1 (CXCR1) and CXCR2 (which prevent the accumulation 

of neutrophils in irradiated lung) limit RT-induced fibrosis in mice.
39 Further corroborating a 

role for DAMP signaling in the acute and late toxicity of RT, multiple TLR5 agonists have been 

shown to inhibit RT-driven mucositis, dermatitis, pneumonitis and fibrosis in mice40. The 

precise mechanisms whereby TLR5 agonism (rather than antagonism) mediates radioprotective 

effects remain elusive. 

RT also increases the amounts of MHC Class I and II molecules exposed on the plasma 

membrane, hence rendering irradiated cells more susceptible to immune recognition.41 

Supporting a role for this mechanism in the side effects of RT, patients receiving TBI can 

develop auto-immune disorders accompanied by autoreactive lymphocyte infiltration of the 

irradiated tissue.42 Importantly such immune reactions cannot originate from overt tissue 

damage and abundant DAMP release, as the RT doses employed are too low to cause cell 

death.42 That said, both TBI and thoracic RT have also been shown to promote the expansion 

of immunosuppressive CD4+CD25+FOXP3+ regulatory T (TREG) cells that potentially attenuate 

autoimmune reactions driven by CD4+ helper T cells43,44, a mechanism that may depend (at 

least partially) on epidermal Langerhans cells.45 Intriguingly, an immunosuppressive effect that 

could not be linked to the extent of lymphopenia was documented in mice receiving total 

lymphoid irradiation (TLI) plus TBI (as compared to TLI alone as early as in 1984, when little 

was known about the immunobiology of TREG and Langerhans cells.46 The possibility to harness 

the immunosuppressive activity of TREG cells to limit the inflammatory side effects of RT has 

attracted considerable attention in the past,44,47 but is progressively being abandoned. 

Conversely, efforts remain focused on conventional radioprotectors, including reactive oxygen 

species scavenger (e.g., amifostine), molecules that favor epithelial reconstitution (e.g., 

palifermin), and systemic anti-inflammatory drugs (e.g., aspirin, celecoxib).48 



 10

Importantly, most (if not all) the molecular and cellular mechanisms that underlie the toxicity 

of RT are also responsible for its therapeutic activity. Thus, cancer cells exposed to cytotoxic 

doses of RT undergo a potently immunostimulatory cell death variant that has been named 

immunogenic cell death (ICD).49 ICD is characterized by the activation of multiple adaptive 

stress responses in dying cells that culminate with the exposure or release of DAMPs imping 

on the regulation of local and systemic homeostasis.41 Such stress responses encompass (but 

may not be limited to): (1) the unfolded protein response at the endoplasmic reticulum (ER), 

culminating with the exposure of several ER chaperones on the surface of dying cells; (2) 

autophagy, enabling the release of high levels of ATP from dying cells; and (3) a pathogen-like 

response involving the detection of ectopic RNA and DNA molecules, culminating with the 

secretion of type I interferon.50 The spatiotemporally coordinated release of these and other 

DAMPs from cancer cells succumbing to RT enables the recruitment and activation of BATF3-

dependent dendritic cells (DCs), ultimately resulting in the cross-priming of tumor-specific 

cytotoxic T lymphocytes (CTLs).35 Such a robust response, which involves freshly recruited 

CTLs as well as tumor-resident CTLs, and is under tonic inhibition by PD-1 and TGF-β 

signaling,51-53 can drive not only the eradication of radioresistant cancer cells in the irradiated 

lesions, but potentially attack non-irradiated metastases (at least in mice and in a limited fraction 

of patients), a phenomenon commonly referred to as abscopal response.54 Further supporting 

the immunological nature of this process, abscopal responses can be abolished in mice lacking 

CD8+ T cells as well as in mice in which type I IFN signaling is inhibited11,55 and have been 

observed at increased frequency in patients concomitantly treated with immunotherapy.56,57 Of 

note, DAMPs are not the only commonality between the toxicity and therapeutic activity of RT. 

Rather, the ability of RT to alter vascular permeability in support of local inflammation,58,59 and 

to increase MHC Class I and II exposure are also involved in disease control.41 
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What are therefore the determinants of RT efficacy versus toxicity? Accumulating preclinical 

and clinical data suggest that there at least 3 major parameters at play in this setting: (1) dose 

and fractionation; (2) irradiated volume; and (3) sequence of administration (in the context of 

combinatorial regimens).18 Finally, since both the efficacy and toxicity of RT rely (at least in 

part) on the immune system, the overall immunological competence of the host and the factors 

that determine it should not be underestimated. Such factors encompass not only purely 

endogenous parameters such as sex, age and polymorphisms in immunity-relevant genes, but 

also elements at the interface between the individual and the microenvironment, such as the 

composition of the gut microbiome and the presence of an ongoing infection, and purely 

exogenous influences, such as the concomitant or recent exposure to immunosuppressive 

drugs.14 

Optimal radioimmunotherapy regimens should be designed based on all these factors, as 

delineated below, while critically comparing the effects of radiommunotherapy to 

immunotherapy alone (as exemplified in the IMPORTANCE trial (NCT03386357) for the 

treatment of recurrent or metastatic HNSCC.   
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Refining radiotherapy modalities to maximize the therapeutic window of 

radioimmunotherapy. 

Revisiting doses and fractionation. For decades, RT doses and fractionations have been 

empirically set by clinicians with sole scope to achieve local tumor control. For multiple 

indications, such a conventional schedule corresponded to the delivery of 1.8-2 Gy per day, in 

5 days per week, during 5-8 weeks. Clinical trials provided rationale for recommending 

different standard doses for specific tumors, including a total of 70 Gy for HNSCC, 66 Gy for 

NSCLC and 74-80 Gy for prostate cancer.17 More recently, the classical dose prescription 

paradigm has shifted toward higher doses per session and a protracted number of sessions, 

especially in cases in which RT is delivered to relatively small target volumes. Moreover, 

precision RT guided by 3D imaging has enabled the delivery of up to 20 Gy in one single dose, 

a regimen that can be routinely used to eradicate isolated brain metastases with minimal side 

effects.60 

Based on these advances, attempts have been made to increase the RT dose up to a threshold 

dictated by toxicity on normal tissues, resembling prior attempts of ‘dose intensification’ for 

cytotoxic chemotherapies.61 However, such an approach, which is supported by a merely cancer 

cell-autonomous view of tumor biology, collides with the ever more accepted idea that any 

form of cancer therapy (conventional chemotherapy, targeted therapy, RT) must induce an 

anticancer immune response to yield a long-term response beyond treatment discontinuation.62 

Supporting the notion that high RT doses not always enable systemic disease control, 

hypofractionated radiation (3 doses of 8 Gy each delivered in 3 consecutive days), but not a 

single dose of 20 Gy, enables efficient abscopal responses in immunocompetent mice bearing 

syngeneic mammary carcinoma or colorectal carcinoma cells, when mice are simultaneously 

treated with a CTLA4-targeting ICB or with a monoclonal antibody neutralizing multiple TGF-
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β isoforms.52,55,63 Abscopal responses driven by RT in the context of TGF-β inhibition can be 

further boosted by the concomitant administration of a PD-1-targeting antibody, ultimately 

resulting in the generation of an in situ anticancer vaccine that enable long-term disease 

eradication coupled with protective immunological memory.52 

Abscopal responses also rely on the dynamic recruitment and activation of immune cells into 

irradiated tumors.64,65 These include BATF3-dependent dendritic cells, whose recruitment 

requires the local secretion of type I IFN downstream of transmembrane protein 173 

(TMEM173, best known as STING) activation.55,66 Hypofractionated RT favors the 

accumulation of endogenous DNA in the cytosol of irradiated cells, and hence efficiently drives 

STING signaling, a process that is inhibited when RT doses higher than a 10-12 Gy threshold 

(depending on cell type) are used as a consequence of the upregulation of the cytosolic nuclease 

three prime repair exonuclease 1 (TREX1).55 Importantly, cytosolic DNA accumulating in 

cancer cells responding to hypofractionated RT can be efficiently shuttled to dendritic cells via 

exosomes, and this further contributes to type I IFN production67. Clinical evidence in support 

of the notion that hypofractionated RT (5 fractions of 6 Gy each) in combination with ICBs 

targeting CTLA4 can generate robust abscopal responses is emerging.57  

Along similar lines, it has recently been shown that low RT doses (a single dose of 2 Gy) 

efficiently boost the ability of CAR T cells to eliminate cancer cells that escaped conventional 

recognition by losing expression of the CAR target antigen.68 In this setting, low-dose RT 

appears to sensitize antigen-negative cancer cells to the lethal effects of TNF superfamily 

member 10 (TNFSF10; best known as TRAIL), which is produced by CAR T cells upon CAR-

dependent activation but mediates TCR-independent effector functions.68 Supporting the 

clinical relevance of these findings, a patient with diffuse large-cell lymphoma receiving CD19-

targeting CAR T-cell therapy despite a large proportion of CD19- malignant cells exhibited 

systemic disease clearance 1 month after treatment, yet relapsed massively starting 2 months 
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after treatment, with the only exception of the left thigh, which had received low-dose palliative 

RT (4 fractions of 5 Gy each) before CAR T-cell infusion and persisted disease-free up to 6 

months after treatment.68 

These findings comfort the idea that the optimal radiation dose required for 

radioimmunotherapy may be lower than the MTD, at least in some oncological indications. 

This insight offers the opportunity to define new therapeutic windows in which RT is 

administered at lower doses to minimize its toxicity and to maximize its efficacy due to 

synergistic combination with immunotherapy. These observations are also important for the 

response of normal tissue to RT. Indeed, even the most sophisticated irradiation plan inevitably 

involves the exposure of large volumes of normal tissues to low RT doses, causing 

immunomodulatory effects that are yet poorly defined. 

 

 

Irradiation of smaller volumes. In addition to the total radiation dose, the volume of irradiated 

tissue has a major impact on the side effects of RT. Thus, even when high-dose RT is 

administered in a few sessions to a small volume, as typically achieved by brachytherapy and 

stereotactic RT, side effects remain relatively mild. These irradiation techniques offer indeed 

the advantage that the volume to which RT is delivered is sharply delimited, reducing collateral 

damage to adjacent organs including lymph nodes.69 

Abscopal responses to RT (especially in the context of radioimmunotherapy) illustrate the 

possibility that anticancer immune responses elicited by RT can propagate outside of the 

radiation field. This raises the intriguing possibility that RT may elicit robust clinical responses 

also when parts of the (rather than the entire) tumor is irradiated. Preclinical and clinical 

evidence in support of this notion has begun to emerge.70,71 However, caution should be used 
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when these findings are interpreted, as the areas of the tumor outside of the irradiation field also 

receive RT, albeit at lower doses, which may be responsible for, or at least contribute to, 

therapeutic efficacy.72 Moreover, in the case of radioimmunotherapy, responses outside of the 

irradiation field can simply originate from immunotherapy, especially in immunosensitive 

tumors.72 Adjuvant RT after breast conservation surgery constitutes a welcome alternative to 

mutilating mastectomy for breast cancer patients, because it not only decreases local relapse 

rates (as radical surgery does) but also diminishes the risk of distant relapse,73 pointing to the 

elicitation of an abscopal response targeting micrometastases. In this setting, accelerated partial 

breast irradiation (APBI) using multicatheter brachytherapy stands out as a morbidity-reducing 

alternative to whole breast irradiation for the treatment of low-risk mammary carcinoma,74 

lending further support that larger irradiation volumes do not necessarily translate in improved 

disease control. 

 

Sparing draining lymph nodes and the gut. Conventional RT regimens are generally 

conceived to deliver a full dose (50-70Gy) to the tumor and prophylactic coverage to tumor-

draining lymph nodes (TDLNs) (45-50 Gy), as established by multiple clinical trials in various 

indications (e.g., HNSCC, cervical cancer, NSCLC). This approach may not be particularly 

appropriate when RT is delivered in doses and fractionations that support the activation of 

anticancer immunity, and even less so in the context of radioimmunotherapy. Although TDLNs 

may not be the only sites of T-cell cross-priming by dendritic cells (which can also occur in 

intratumoral tertiary lymphoid structures)75 they constitute major platforms for the initiation of 

local and systemic antitumor immune responses. Accordingly, TDLNs increase in volume as a 

consequent of robust CD8+ CTL infiltration when transplantable mouse melanomas and breast 

carcinomas are exposed to hypofractionated RT in the context of PD-1 blockage.76 Thus, it may 

be detrimental to perturb TDLNs with RT. In support of this notion, nasopharyngeal carcinoma 
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patients with tumor-free TDLNs and treated with TDLN-sparing IMRT exhibited rare 

locoregional relapse.77 Similarly, recent clinical data with partial tumor irradiation (which 

spares TDLNs) combined with pembrolizumab compare positively with previous results 

involving TDLN irradiation.71 However, these findings should be interpreted with caution, as 

multiple patients involved in the trial had tumors that are potentially sensitive to pembrolizumab 

alone.72 Clinical trials comparatively evaluating TLDN irradiation versus TDLN sparing in the 

context of radioimmunotherapy are urgently awaited. Of note, optimal therapeutic responses to 

RT and radioimmunotherapy may also be compromised, at least to some extent, by the 

irradiation of the small and large intestines. Indeed, bowel irradiation has been shown to alter 

the composition of the gut microbiota,78 which in turn impacts on the efficacy of multiple 

therapeutic regimens including immunotherapy.79 

 

Optimizing radioimmunotherapy: sequencing.  The recent demonstration that the adjuvant 

administration of PD-L1-targeting ICBs after chemoradiation postpones the onset of metastasis 

and improves the survival of patients with stage III NSCLC12 may transform the field of 

oncology. One fundamental question that arises from these results concerns the order in which 

different therapies should be administered, and if a concurrent administration of RT and 

immunotherapy would have yielded better results. Unlocking immunological checkpoints 

before or after, rather than concomitant to, radiotherapy may offer the potential to avoid 

potentially cumulative toxicities. This becomes even more relevant in light of the probable 

surge in dual or triple immunotherapies that, especially if combined with radiotherapy or 

chemoradiation,80 may demand sequential rather than simultaneous interventions to manage 

side effects. Unfortunately, clinical data robustly comparing different treatment sequencing are 

largely missing in the setting of radioimmunotherapy (Table 1). It can be speculated though 

that the increasing use of first-line immunotherapy will result in a situation where radiotherapy 
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will often be performed after immunotherapy. That said, both existing data plead in favor of the 

administration of hypofractionated radiotherapy before PD-L1 blockade,12,81 perhaps because 

it stimulates tumor infiltration by T lymphocytes.64 One clinical trial is currently open to define 

the optimal scheduling of PD-1 and CTLA4 blockade with respect to RT in patients with 

metastatic cancers (NCT03453892). In this setting, quantitative systems pharmacology models, 

which include key elements of immuno-oncology and dose-exposure-target modulation 

features,82 may assist the understanding of immune cell dynamics within irradiated tumors. 

 

Optimizing radioimmunotherapy: biomarkers. A large panel of immunotherapies beyond 

ICBs have been developed, and will soon enter (or have already entered) clinical practice. These 

include oncolytic virotherapy, CAR T-cell therapy and a wide array of small molecules to 

functionally alter the tumor microenvironment toward a immunostimulatory configuration.14 In 

this setting, great efforts have been dedicated to the identification of reliable predictive 

biomarkers of response, reflecting not only safety issues, but also economic considerations.83 It 

appears plausible that such biomarkers –be they based on the measurement of immunological 

parameters in the blood or in the tumor - will guide optimal radioimmunotherapy in the future, 

not only with respect to the choice of the best immunotherapeutic agent for combinatorial 

regimens, but also with regard to RT doses and schedule. The local upregulation of PD-L1 in 

response neoadjuvant chemoradiotherapy of rectal cancers is associated with favorable 

prognosis84 and might speculatively predict responsiveness to immunotherapy. Moreover, 

computational imaging (radiomics) stands out as a promising strategy to non-invasively 

quantify tumor infiltration by CD8+ T cells,85 which is an important positive prognostic factor 

for patients affected by multiple tumors.86 In particular, the ability of radiomics to provide a 

longitudinal, non-invasive monitoring of the tumor microenvironment may support the 

implementation of a personalized radioimmunotherapy, with the ultimate goal that each patient 
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receives a treatment modality that triggers an effective anticancer immune response. High-

dimensional single-cell analyses using genomics, transcriptomics, proteomics and 

metabolomics approaches are also on the verge of revolutionizing biomarker discovery and 

clinical practice.87 This technology might be used as an inclusion/exclusion criterion for clinical 

trials beyond the mere presence of CD8+ T cells (as in NCT03453892). 

Current refinements in radioimmunotherapy trials offer the advantage to collect tumor biopsies  

after treatment. Such trials constitute a valuable source of samples for characterizing responses 

and resistance to radioimmunotherapy way beyond murine models. Indeed, standard treatment 

might per se affect the expression of immune-related biomarkers, which may prevent a careful 

prognostic assessment and/or misguide therapeutic decisions. For instance, rectal tumors 

exposed to pre-operative chemoradiation alone exhibit increased PD-L1 expression,84 which 

offers a strong rationale to combine treatment with adjuvant PD-1/PD-L1 blockage. Similar 

observations have been made in both the melanoma88 and HNSCC setting.89 Alterations in the 

peripheral blood compartment, including shifts in major T cell populations, may also offer a 

convenient, non-invasive gateway to monitor responses to RT and radioimmunotherapy in 

cancer patients.90  
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Chemoradioimmunotherapy or radioimmunotherapy? Combination of cytotoxic 

chemotherapy with RT has demonstrated superiority over RT employed as a standalone 

intervention at enabling local disease control and sometimes improved organ preservation and 

survival in patients with multiple tumor types.91 However, such a therapeutic success often 

came with an excess in complications and side effects.92 An in-depth understanding of the tumor 

microenvironment and its influence on resistance to immunotherapy will be instrumental for 

defining potent radioimmunotherapy regimens that do not require the addition of cytotoxic 

chemotherapy for optimal efficacy. Preliminary clinical data from ongoing studies underscore 

the fact that PD-L1/PD-1 blockade combines safely with concurrent RT and cetuximab alone 

in HNSCC patients93,94, as well as with RT plus platinum-based chemotherapy in NSCLC 

patients 95. However, robust demonstration of clinical benefits is still awaited. Similarly, while 

recent evidence suggests that adjuvant PD-L1 blockade improves disease outcome after 

chemoradiation in NSCLC patients,12 the vast majority of preclinical evidence supporting the 

implementation of concurrent radioimmunotherapy in the clinics do not involve cytotoxic 

chemotherapy,11,51,53,55,63 suggesting that immunotherapy might per se combine favorably with 

RT. Thus, conventional chemotherapeutics may no longer be required to achieve robust clinical 

responses in the context of radioimmunotherapy, which may also translate in decreased 

incidence and severity of side effects. Clinical trials should specifically be designed to 

investigate this possibility. For instance, it might be investigated whether the superior efficacy 

of PD-1 blockade plus chemoradiotherapy against NSCLC (Ref. 12). truly requires 

chemotherapy to be included in the therapeutic protocol.  

Numerous ongoing trials are designed to induce abscopal responses. Although data are not 

mature yet, preliminary findings are promising. Combining PD-1/PD-L1 blockade with RT has 

been associated with durable out-of-field responses in 3/9 (33%) evaluable patients with 

metastatic triple negative breast cancer unselected for PD-L1 expression.96 PD-1 blockade 
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preceded by SBRT resulted in a 2-fold increase in ORR without accrued toxicity in NSCLC 

patients.97 In sharp contrast, addition of SBRT to PD-1 blockade in patients with metastatic 

HNSCC was safe but failed to improve outcome in a randomized evaluation of abscopal 

responses.98 A randomized Phase II trial testing PD-1 blockade plus RT in patients HNSCC 

(IMPORTANCE, Keynote-717) comparatively evaluates standalone PD-1 targeting 

immunotherapy to radioimmunotherapy. The results of this study will provide useful insights 

into the relative contribution of radiotherapy to clinical responses to immunotherapy. 

  

Radioimmunotherapy beyond conventional X-rays. Data have been generated in support of 

the notion that very low irradiation doses – in the range of conventional full body CT scans – 

can mediate robust immunostimulatory effects that may combine favorably with 

immunotherapy.99 Densely ionizing particles (protons, carbon ions), which are characterized by 

a dose deposit in a narrow depth range (leading to minimal exit dose), are being used in an 

increasing number of indications, with the highest benefit probably being for pediatric patients 

linked to reductions in both dose-dependent complications and risk for secondary tumors.100 

Protons and carbon ions are generally considered superior to photons (conventional X-rays) for 

distribution ballistics.101 Moreover, carbon ions may provide increased biological and clinical 

effectiveness, at least in specific indications that are generally refractory to conventional RT, 

such as bone and soft tissue sarcomas of the skull base.102 Preliminary data suggest that protons 

resemble photons in their immunological effects.103 Taken together, these observations suggest 

that the superior dose distribution offered by protons, which spare a considerably higher amount 

of normal tissues than photons, provides a good opportunity for radioimmunotherapy 

combinations. However, whether protons and carbon ions can be favorably combined with 

immunotherapy remains to be demonstrated.   
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Concluding remarks 

RT has been used for more than a century for the clinical management of virtually all cancers 

with often positive results, both in terms of side effects and efficacy. Such a favorable 

therapeutic window places RT in a privileged position for the development of combinatorial 

treatment regimens. In line with this notion, the delivery of RT along with cytotoxic 

chemotherapy has enables improved local disease control in multiple oncological indications, 

in some cases accompanied by superior organ preservation and patient survival.104 However, 

chemoradiation protocols are often associated with increased incidence and severity of side 

effects, reflecting the fact that both RT and chemotherapy are often used at (or near to) their 

MTD.105 It can be anticipated that low-dose molecular targeted radiotherapy using radiolabeled 

molecules will overcome the problem of toxicity.106,107 Over the past decade, immunotherapy 

has largely transformed the management of multiple solid tumors.14 However, response rates to 

immunotherapy employed as single therapeutic interventions often are low (with the exception 

of CAR T-cell therapy, which is associated with response rates >80% for selected indications), 

calling for the development of combinatorial regimens. In this context, RT stands out as an 

optimal partner for immunotherapy. However, conventional RT regimens will have to be 

redesigned for radioimmunotherapy to mediate superior efficacy in the presence of limited side 

effects (Figure 2). Revisiting doses and fractionation schedules, reducing delivery volumes, 

sparing both TDLNs and the intestine, limiting the concomitant administration of cytotoxic 

chemotherapeutics, employing radiomics to longitudinally monitor responses, and elucidating 

the actual therapeutic value of protons and carbon ions are some of the directions that will foster 

the development of safe and efficient radioimmunotherapy regimens to treat cancer. 
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Legends to Figures 

Figure 1. Radioimmunotherapy strategies to tackle oligometastatic disease, impact on 

therapeutic benefits. The therapeutic effects expected from integrating radiotherapy and 

systemic immunotherapy may vary according to radiotherapy modalities (dose, fractionation, 

irradiated volume), as well as study design. As it stands, combining focal radiotherapy to one 

or a few sites with systemic immunomodulation (a) stands out as a promising approach as 

compared to debulking strategies based on radiotherapy alone (b), or to combinatorial 

approaches involving the systematic irradiation of all disease sites (c). *In the PACIFIC trial, 

immunotherapy improved the outcome of non-metastatic patients who had all their macroscopic 

tumor sites previously irradiated.20  

Figure 2. From conventional chemoradiation to radioimmunotherapy. Improving 

therapeutic index in the era of radioimmunotherapy requires the redefinition of multiple 

approaches established in the context of conventional chemoradiation, including (but not 

limited to) doses, fractionation schedules, as well as irradiation volumes and targets. Clinical 

trials designed to investigate novel radioimmunotherapy approach should be specifically 

designed to simultaneously achieve limited toxicity to normal tissues and superior systemic 

disease control.
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Table 1. Prospective clinical studies assessing radiotherapy in combination with immunomodulatory regimens. 

Indication and selection criteria 

 

Phase N° of 

patients 

Treatment 

modality 

Toxicity Efficacy Ref. 

Solid tumors with ≥5% PD-L1 

expression amongst malignant cells 

I/II 10 Durvalumab 10 mg/kg Q2W + RT (median 

dose 20 Gy in median 5 fractions), given a 

median of 8.5 d after last durvalumab. 

50% of RT-related grade 2 AEs. In-field: ORR 60% (2/10 CRs, 4/10 PRs); 

out-of-field: 10/14 SD, no objective 

responses; no abscopal responses. 

108 

Stage III, locally advanced, 

unresectable non-small cell lung 

carcinoma 

III 709 Conformal RT (54-66 Gy) with 2 concurrent 

platinum cycles + sequential durvalumab 

10 mg/kg Q2W, initiated within 6 w after RT 

and continued for up to 1 y (or placebo if no 

PD during RT). 

Serious AEs in 29.1% and 23.1% of 

patients in the durvalumab and 

placebo groups, respectively. 

Median PFS: 16.8 mo vs 5.6 mo 

(p<0.001); median TTD or distant 

metastasis: 23.2 mo vs 14.6 mo 

(p < 0.001) 

12 

Advanced solid tumors I 79 SBRT to 2-4 metastases in doses ranging 

from 30 to 50 Gy in 3 to 5 fractions (partial 

irradiation of metastases > 65mL) + 

pembrolizumab initiated within 7 d after 

SBRT completion. 

Six patients experienced DLT with 

no RT dose reductions. 

ORR: 13.2%; median PFS: 3.1 mo 

(95%CI, 2.9-3.4 mo). 

71 

Metastatic solid tumors with ≥1 lesion 

in the liver or lung amenable to SBRT 

and ≥1 non-contiguous lesion for 

monitoring 

I 35 Ipilimumab (3 mg/kg Q3W for 4 doses) in 5 

RT groups: concurrent (1 d after 1st dose) or 

sequential (1 w after the 2nd dose) RT (50 Gy 

in 4 fractions) to lung or liver, or sequential 

60 Gy (in 10 fractions) to lung or liver. 

Two patients experienced DLT and 

12 (34%) grade 3 AEs. 

Out-of-field responses amongst 

assessable patients: 3/31 (10%) PR; 7/31 

(23%) clinical benefit (PR or SD ≥6 

months). 

109 

Brain metastases from melanoma  I 16 WBRT or SRS + ipilimumab dose escalated 

from 3 mg/kg to 10 mg/kg Q3W starting at 

D3 of WBRT or 2 d after SRS. 

Twenty-one gr 1-2 neurotoxic 

effects, with no DLT; 10 additional 

grade 3 AEs (5 gastrointestinal 

toxicities); no grade 4-5 toxicity. 

Median PFS: 2.5 mo after WBRT, 2.1 mo 

after SRS. 

110 

Metastatic castration-resistant prostate 

cancer with ≥1 bone metastasis 

progressing after docetaxel  

III 799 Bone-directed RT (8 Gy in 1 fraction) + 

ipilimumab 10 mg/kg or placebo Q3W for up 

to 4 doses, starting after RT. 

Most common grade 3-4 AEs were 

immune-related (26% of the 

ipilimumab group, including 4 toxic 

deaths). 

Median OS: 11.2 mo vs 10.0 mo 

(p=0·053); median PFS: 4.0 mo vs 3.1 

mo (p<0·0001). 

111 



 2

Stage IV melanoma with ≥1 non-

irradiated metastasis measuring ≥1.5  

cm available for response assessment 

I 22 RT to 1-2 disease sites (BED10: 23.3 Gy to 

72.9 Gy), initiated within 5 d of ipilimumab 

initiation (for 4 cycles). 

No unexpected toxicity; 3 grade 3 

AEs. 

 

Three patients (27.3%) achieved systemic 

CR, and 3 (27.3%) an initial PR. 

112 

Metastatic castration-resistant prostate 

cancer 

I/II 33/50 Ipilimumab Q3W for 4 cycles at 3, 5, or 10 

mg/kg, or at 3 or 10 mg/kg + RT (8 Gy per 

lesion). 

Common grade 3 immune-related 

AEs in patients receiving RT were 

colitis (16%) and hepatitis (10%); 1 

treatment-related death was recorded 

(in 5 mg/kg group). 

Eight PSA declines ≥50% (duration: 3-

13+ mo), 1 CR (duration: 11.3+ mo), and 

6 SD (duration: 2.8-6.1 mo), amongst 

patients treated with RT + ipilimumab 10 

mg/kg. 

113 

Metastatic solid tumors with ≥3 

distinct measurable sites of disease 

II 41 Concurrent RT (35 Gy in 10 fractions over 2 

w) to 1 metastatic site and GM-CSF (125 

μg/m2 s.c. daily for 2 weeks, starting during 

the 2nd week of RT). Course repeated to 

target a 2nd metastatic site. 

Most common grade 3-4 AEs were 

fatigue (6 patients) and 

hematological (10 patients); 1 patient 

experienced grade 4 pulmonary 

embolism. 

Abscopal responses in 11 (26.8%, 95% 

CI 14.2-42.9) of patients. 

56 

Metastatic melanoma I 22 Escalating doses of SBRT (2-3 fractions) to 

index lesion, followed 3-5 d later by 

ipilimumab Q3W for 4 cycles. 

No DLTs; 15 grade 3 AEs. Evaluation non-irradiated targets: 18% 

PR, and 18% SD. 

80 

Metastatic melanoma or renal cell 

carcinoma 

I 12 1-3 doses of SBRT (20 Gy per fraction), last 

dose administered 3 d before initiation of 

high-dose interleukin-2. 

No DLT attributable to SBRT. Evaluation of non-irradiated targets: 

1 CR and 7 PR. 

114 

Glioblastoma II 46 Surgical resection followed by standard 

conformal RT + autologous vaccine 

generated from resected tumors and 

delivered weekly after RT completion. 

AEs attributable to the vaccine in 34 

pts (74%); but no grade 3-4 AEs 

related to vaccination. 

Median OS: 23.8 mo (18.0 mo for 

patients with high PD-L1 expression on 

myeloid cells vs. 44.7 mo for patients 

with low PD-L1 expression; p=0.007). 

115 

 
Abbreviations. AE, adverse event; BED10, biologically effective dose (estimated for the tumor); CR, complete response; DLT, dose-limiting toxicity; ORR, objective response 

rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RT, radiation therapy; SBRT, stereotactic body radiation therapy; SD, 

stable disease; SRS, stereotactic radiosurgery; TTD, time to death; WBRT, whole-brain RT. 




