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2Institut de Mathématiques de Toulouse; UMR5219. Université de
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Abstract

In this article, the authors built and used a custom transformer-based
model, based on a compact version of RoBERTa, named ASRS-CMFS, to
classify aviation incident reports. The classification is applied to fourteen
distinct sets of specific aviation incident-related anomalies, such as Air-
craft Equipment problems or Altitude Deviation problems. The authors
extracted the incident reports and the associated fourteen sets of cate-
gories from the Aviation Safety Reporting System.
After discussing the choice of evaluation metric, the authors evaluated the
model using the Matthews Correlation Coefficient metric. To measure the
precision of the scores obtained on the different text classification prob-
lems, the authors provided the results with confidence intervals. They also
used statistical hypothesis testing to evaluate the impact of the document
length on the performance of the custom model. The authors provided
a mathematical demonstration for the use of confidence intervals and hy-
potheses testing on MCC values. Finally, the authors discussed whether
the model was fit for use in a professional environment.
The authors found that while the model showed promising results, this
question could only remain unanswered at this stage, but the steps to
take are clear. The authors also proposed that hypothesis testing could
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be valuable in any situation where one wanted to study the impact of a
particular document feature on the performance of a document classifier.

Keywords— ASRS, BERT, MCC, NLP, aviation

1 Introduction

With the growth of global air traffic and the development of “just culture” (Pellegrino,
2019) within the different aviation institutions and actors, an increasing quantity of
incidents is reported. In the framework of aviation safety, this phenomenon spurs the
need for some form of support to process the reports, such as automatic document
classification (Tulechki, 2015; Zhang u. a., 2021; Darveau u. a., 2020; Yang, 2020). In
this article, we work on approximately 40 000 occurrences extracted from the NASA’s
semi-structured ASRS dataset (Aviation Safety Reporting System). Created in 1976,
it contains voluntarily and anonymized reported descriptions of incident occurrences
in an aviation context (ASRS, 2019), as well as metadata. We obtained our version of
the public dataset through a request on the ASRS website and received it on a disk.
For information, an extensive description of the dataset is available in Appendix B.
We aim to classify the reported aviation occurrence narratives on 14 different text
classification (TC) problems. Each of the TC problems is made of categories that
can be found in ASRS aviation incidents under the form of metadata, describing an
anomaly such as aircraft equipment related problems or altitude deviation problems
(for instance “undershoot” or “overshoot”). The class composition of each of these
classification problems are given in Tables 4 and 8. Text mining ASRS incidents has
been done using various natural Language Processing (NLP) text classification or topic
modeling techniques such as SVM (Tanguy u. a., 2016), LDA (Robinson, 2019), RNNs
(Yang, 2020; Howard und Ruder, 2018) among other techniques.
In our case, we decided to use the recent transformer-based technology (Vaswani u. a.,
2017) on which the current state-of-the-art models in the Natural Language Under-
standing landscape (NLU) are based (Wang u. a., 2019, 2020), such as BERT (Devlin
u. a., 2019) or the more recent T5 model (Raffel u. a., 2020).
In particular, we built, pre-trained from scratch, and fine tuned a custom transformer-
based model, based on a compact version of the classical RoBERTa model (Liu u. a.,
2019). Once the model was built, we assessed its performance on the classification
task, using the Matthews correlation coefficient (MCC) score (Chicco und Jurman,
2020). We provided results with confidence intervals and proposed a tool to investi-
gate if a particular document feature impacted the model’s performance. Finally, we
discussed the viability of using the model to support ASRS analysts in the field.
The article is organized as follows: In Section 2, we describe and explain our choices
for the architecture of our custom model, the pre-training strategy, the pre-training,
and fine tuning data and parameters.
In Section 3, we define our evaluation metric and motivate using it in particular. We
also provide the theorems that we constructed to obtain confidence intervals for our
results and show how hypothesis testing can be used to get insightful information on
our model’s performance regarding the input documents’ features.
In Section 4, we show and comment our results.
Finally, in Section 5, we discuss the usefulness of hypothesis testing, as well as the
viability of our model for field use.
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2 Pre-training and fine tuning of the model

2.1 Pre-training

2.1.1 Custom model’s architecture and pre-training parameters

In this section, we describe our model’s architecture. The model we work with is
transformer-based. We provide a general introduction to such models in Appendix C
for information.
Aside from the difference in size, our model functions similarly to the more classical
RoBERTa (Liu u. a., 2019). We chose RoBERTa as our base because it is a well-studied
and sturdy transformer-based model with good performance in the Natural Language
Understanding landscape (Wang u. a., 2019, 2020).
Regarding the size of our model, we know that bigger models tend to be more sample-
efficient than smaller models (Kaplan u. a., 2020), meaning that they outperform
smaller models with fewer training steps. However, we don’t know if these results
remain true in extreme cases of small pre-training data volume such as ours. In gen-
eral, bigger models need more computation steps to attain peak performances, which
in our case would lead to a high number of repetitions of the data. This can negatively
impact our learning (Raffel u. a., 2020).
In contrast, compact models require small pre-training data and time required to at-
tain peak performance (Micheli u. a., 2020). We initially supposed that the gains from
using a smaller model in our context of work out-weighted the potential adverse ef-
fects. Aside from these considerations, the pros of using a compact model include
low latency, less memory consumption, less computing resources requirements. Even
in this context, our model pre-trained for 14 days on the 8 total GPUs available in
our lab (see Appendix A for details on hardware), using Pytorch for parallelization
(Paszke u. a., 2019). All information related to the pre-training including the training
loss curve can be found in Kierszbaum (2021).
Our custom model’s architecture and pre-training parameters are described in Table
1. RoBERTa’s architecture and pre-training parameters are also given for comparison.
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Hyperparam Custom RoBERTa

Layers 12 12
Hidden dimension 256 768
FFN inner hidden size 1024 3072
Attention Head 4 12
Learning rate 5e-4 6e-4
Train batch size 64 8k
Gradient accumulation steps 2 -
Weight Decay 0.01 0.01
# of parameters 18M 125M
pre-training steps 800k 500k
Tokenizer custom general purpose
Vocab size 32005 50265

Table 1: Comparison of architecture and hyperparameters for pre-training

As seen in Table 1, when building the model, we favored maintaining depth (num-
ber of layers) while reducing width (number of elements in a single layer: hidden
dimension size, FFN inner hidden size, number of attention heads) to maintain maxi-
mum efficiency, following the work of Turc u. a. (2020). We used Electra-small (Clark
u. a., 2020) as our reference for our pre-training parameters such as the learning rate,
batch size, and weight decay because the size of the two models is comparable: 18M
for our model, 14M for Electra-small.

2.1.2 Pre-training strategy

In this Section, we explain that there are mostly two pre-training strategies when using
a language model on domain-specific data, and provide justification for our choice of
strategy.
The textual data we are working with has been produced by people in aviation, report-
ing on aviation incidents in English. For this reason, the language used is intrinsically
vastly different than general English. This feature of our data is referred to as “in-
domain” (Aharoni und Goldberg, 2020). Other fields that make use of such data can
be cited for information: the healthcare field (Alsentzer u. a., 2019), the scientific field
(Beltagy u. a., 2019).
Typically, when working on such fields while using a transformer-based model pre-
trained on general English data, there is a drop in performance. This is justified
intuitively by the difference in nature between the pre-training corpus textual data
and the downstream task in-domain textual data. This phenomenon is called “do-
main shift”.
To mitigate this, a recommended strategy is to incorporate in-domain data in the
pre-training step. This can be done in several ways. For instance, we can resume the
pre-training of an already pre-trained model on the in-domain data. This is referred
to as “continual pre-training” or “mixed pre-training” (Gururangan u. a., 2020).
Another way to operate is to pre-train an untrained model on the data that is similar
to the one on which the model will be fine tuned. This strategy is referred to as “pre-
training from scratch”. According to Gu u. a. (2021), when comparing the different
pre-training strategies in a biomedical context which is also characterized by the use
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of specialized language, pre-training from scratch obtains better performances than
continual or mixed pre-training.
This is why in this article, we chose to favor pre-training from scratch.

2.1.3 Pre-training data

Our pre-training corpus consists of all the textual data available after 2009 because
the current reports use the writing style that started from that era, as mentioned in
Appendix B. As indicated in Table 2, our pre-training corpus is roughly 2000 times
smaller than the one used by RoBERTa.

Model Custom RoBERTa
Data ASRS 2009-2019 Web Crawl
Size 74.5MB 160 GB
Type Aviation-related

language
Standard English

Table 2: Comparison of amount of textual data used for pre-training

2.2 Fine tuning

2.2.1 Fine tuning hyperparameters

For fine tuning, our custom pre-trained model was trained separately on 14 different
TC downstream tasks, as detailled in Section 2.2.3. For each fine tuned version of
the model, we used the same hyperparameters as Electra-Small for Glue (Wang u. a.,
2019) because the size of the two models is comparable. A comparison with the
hyperparameters used in the RoBERTa article for Glue is in Table 3.

Hyperparam Custom RoBERTa

Learning rate 3e-4 {1e-5,2e-5,3e-5}
Weight Decay 0 0.1
Batch size 32 {16,32}
Max Train Epoch 3 10
Warmup ratio 0.1 0.06

Table 3: Comparison of hyperparameters for fine tuning

2.2.2 Sliding window

The input of our model is limited to 512 tokens, but some of the documents are
four times longer than that. To mitigate that, we used the “sliding window” feature
of SimpleTransformers (Rajapakse, 2019). When training a model with the sliding
window enabled, a document exceeding the limit of input of the classification model
will be split into sub-sequences. Each sub-sequence will then be assigned the label from
the original sequence and the model will be trained on the full set of sub-sequences.

During evaluation and prediction, the model predicts a label for each window or
sub-sequence of an example. The final prediction for a given long document was
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originally the mode of the sub-sequences predictions. The authors chose to change
the code so that the final prediction was the means of the prediction for each window.
This was done to prevent having a default value proposed in the case of a tie.

2.2.3 Fine tuning data

2.2.3.1 The 14 Text Classification datasets

In this Section, we characterize the training and testing datasets used as our text
classification (TC) downstream tasks. A TC problem can be defined as the task of
choosing for a given text an element from a set of classes or labels. In our case, because
we have 14 different TC problems, we must find the correct label for each document
from 14 different sets of labels.
Our TC problems are made of one of the 14 subcategories of the “Anomaly” attribute,
which belongs to the “Event” entity, following the entity-based corpus structure de-
scribed in Appendix B. One can see that in most TC problems (see Tables 4 and 8),
the proportion of documents per class is very unevenly distributed. Data sparsity is
further characterized in the two Tables with the Shanon equitability index. The metric
is explained further in Section 4.1.
Some of these TC problems are multi-classification problems, meaning that there are
at least 3 classes (see Table 8), others are binary classification problems (see Table 4).
For instance, the subcategory Aircraft Equipment Problem can be seen as a multi-
classification problem with 3 classes: Critical, Less Severe, and No (meaning “No
anomaly of this kind”). The binary classification problems, such as ATC Issue, only
has 2 classes: All Types and No.
For each anomaly subcategory, there is a training and testing dataset. In these
datasets, the narratives are the inputs, the corresponding subcategory’s classes are
the expected output.
One of our purposes is to assess the ability of our algorithm to do TC with mini-
mal human-expert intervention. The underlying goal is to make an algorithm that
is suitable for use before the incident report has been coded by analysts (this step
is seen in the report processing flow from Figure 4). This is why we don’t use any
analyst-produced metadata or textual data related to the events such as the synopses
or callbacks as supplementary input, as it embeds human-expert intervention. This
stands in contrast with previous work on the topic of TC on ASRS documents such
as Zhang und Mahadevan (2019).
Similar to the pre-training step, we only work on events from after 2009, to avoid
having two different styles of writing in our documents. Additionally, we also only use
reports produced by reporters from the Flight Crew job category, as done in Darveau
u. a. (2020), where the author classifies human factors involved in ASRS narratives.
We did that because the Flight Crew job category constitutes 74.2% of the reports
and because we work under the assumption that the data would be too heterogeneous
if we included other job categories, as shown by the use of different reporting forms.
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Name Composition Shannon equitability index

ATC Issue No (86.51%), All
Types (13.49%)

0.571

Airspace Violation No (97.44%), All
Types (2.56%)

0.172

Deviation - Speed No (96.89%), All
Types (3.11%)

0.2

Deviation - Track /
Heading

No (92.14%), All
Types (7.86%)

0.397

No Specific
Anomaly Oc-
curred

No (98.77%), All
Types (1.23%)

0.096

Table 4: Anomaly subcategories that are binary classification problems

2.2.3.2 Use of ASRS analytical metadata for classification datasets
in the literature

When characterizing analyst-produced metadata, one can distinguish between factual
and analytical metadata. In Tulechki (2015), the author defined analytical data as
metadata that needs “expert inference or reasoning to be produced”. In the case of
ASRS, the author states that: “Analytical metadata is present both in the form of the
Assessment entity and in some of the attributes, such as the Human Factors attributes
of the Person entities. ”.
In this Section, we contrast and compare our choice of metadata for our TC problems
with two other TC problems derived from the analytical part of the ASRS dataset,
that were tackled in Darveau u. a. (2020) and Yang (2020).
In Darveau u. a. (2020), the author asks different safety analysts to classify ASRS in-
cidents on the Human Factor (HF) attribute. He also uses an NLP algorithm on that
same task. The author finds that both the analysts and the algorithm perform poorly.
He finds a high rate of disagreement between analysts. He suggests that the narra-
tives tend to be inconsistently annotated because depending on the human expert’s
experience, there are differences in how the data is classified. Annotators introducing
biases in the datasets (Landis und Koch, 1977), particularly in the case of datasets
used by the NLP model for training, have been reported to happen across a wide range
of NLP tasks (Geva u. a., 2019; Evert u. a., 2016; Artstein und Poesio, 2008). As a
consequence, in Darveau u. a. (2020)’s case, the TC algorithm performance is heavily
hindered by the inconsistency of the training data.
In Yang (2020), the author tries to use an NLP algorithm to classify the Primary
Problem and Contributing Factors in ASRS incidents, both of which are analytical
metadata that belong to the ‘Assessment’ entity. However, in doing so, the author
makes heavy simplifying assumptions: he considers that each incident has always two
contributing factors when there can be more or less than two. The author’s simplifying
assumptions transformed the problem faced by analysts into a simpler one that can
be tackled as a TC problem, but there seems to be a trade-off with how practical the
model will be for use in the field. Deciding how many contributing factors there is
in an incident, seems to be a skill in itself that participates in making the concerned
metadata analytical.
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Hence, the expert inference needed for coding analytical metadata seems to spur in-
consistencies in annotations one one side (Darveau u. a., 2020), and might require to
make simplifying assumptions that are seemingly not practical for use in the field on
the other side (Yang, 2020).
In contrast, there is no a priori need for simplification of our classification problems.
Also, we assume that analysts converge more easily on the identification of the anoma-
lies than on the identification of the HF issue (due to similar training/background). As
such, the prediction of the Anomaly attribute of the metadata seems mostly factual.
The only noticeable exceptions are for the following anomalies: Equipment Problem
and Conflict, where a class comes in two flavors: Critical and Less Severe. We suppose
that sorting the anomaly between the two alternatives requires some expert inference,
similarly to how the primary problem is chosen among the possible contributing factors
for the article (Yang, 2020). However, this seems to be marginal when compared with
the expert knowledge needed for predicting human factors or contributing factors.
The reasons above motivated us to work on the “Anomaly” attribute subcategories as
opposed to other more complicated analytical metadata.

3 Statistical study of MCC

In this section, we evaluate our model using an empirical score, for which we provide
confidence intervals. We also use statistical hypothesis testing to study our model’s
performance.
Choosing an evaluation metric for a classification procedure is not trivial. Each metrics
has its pros and cons (Chicco und Jurman, 2020; Powers, 2020; Yang und Liu, 1999;
Sokolova und Lapalme, 2009), and its choice reflects an intent. In our case, we chose
the Matthews correlation coefficient (MCC) as opposed to other popular metrics used
in our field, such as precision, recall, accuracy, or F1 score.

3.1 General framework

Let Ĉ = (ĉi,j)0≤i,j≤N−1 be the empirical confusion square matrix of size K defined
by:
Let T = (Tn)0≤n≤N−1 be a corpus of N texts we want to classify into K classes. We
have at our disposal a classifier that associate to each text its predicted class kn where
as ln denotes the true class of the text Tn.
Let Ĉ = (ĉi,j)0≤i,j≤N−1 be the empirical confusion square matrix of size K defined by

ĉi,j =

N−1∑
n=0

Xn(i, j) (1)

with
Xn(i, j) = 1kn=i1ln=j , (2)

and let P̂ = ( ˆpi,j) be the proportion matrix defined by P̂ = 1
N
Ĉ.
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Assumption 1

For all (i, j) ∈ {1, ...,K}2, the elements of the sequence (Xn(i, j))0≤n≤N−1 are i.i.d
random variables of the same law as X(i, j) with:

P(Xn(i, j) = 1) = 1− P(Xn(i, j) = 0) = pi,j . (3)

Remark 1. pi,j represents the probability that a text categorized in the i-class belongs
to the j-class. By the strong law of large number we obviously have

p̂i,j
a.s.−−−−→

N→∞
pi,j (4)

3.2 Quantifying the efficiency of the classifying procedure

Definition 1. The empirical Matthews Correlation Coefficient (MCC) metric is de-
fined by:

ˆMCC =
N ×

∑K−1
k=0 ĉk,k −

∑K−1
k=0 (

∑K−1
i=0 ĉi,k ×

∑K−1
j=0 ĉk,j)√

N2 −
∑K−1

k=0 (
∑K−1

i=0 ĉi,k)2 ×
√

N2 −
∑K−1

k=0 (
∑K−1

j=0 ĉk,j)2
. (5)

and the true MCC is defined by

MCCtrue =

∑K−1
k=0 pk,k −

∑K−1
k=0 (

∑K−1
i=0 pi,k ×

∑K−1
j=0 pk,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 pi,k)2 ×
√

1−
∑K−1

k=0 (
∑K−1

j=0 pk,j)2
. (6)

Remark 2. Note that by multiplying the numerator and denominator of (5) by 1
N2 :

ˆMCC =

∑K−1
k=0 p̂k,k −

∑K−1
k=0 (

∑K−1
i=0 p̂i,k ×

∑K−1
j=0 p̂k,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 p̂i,k)2 ×
√

1−
∑K−1

k=0 (
∑K−1

j=0 p̂k,j)2
. (7)

Hence, by Equation (4)
ˆMCC

a.s.−−−−→
N→∞

MCCtrue. (8)

The MCC computes the correlation coefficient between the observed categories
and the predicted classifications. When the classifier is perfect, we obtain 1. When its
output is random, we obtain 0.
MCC is symmetric: in a binary setting, when swapping positive and negative classes,
the score will remain the same. That stands in contrast with precision, recall, or F1
score, which ignore performance in handling negative examples. Besides, its score is
not biased towards classes with a larger size, as the accuracy metric. To obtain a good
MCC score, the classifier must be good on every class that constitutes a classification
problem, regardless of the dataset class imbalances. We aimed to evaluate our model’s
overall performance on classification problems, as opposed to its performance on a
single class. This is our strongest argument for using MCC.
In practice, we only have access to the empirical value ˆMCC, it is then natural to
quantify how far ˆMCC is from MCCtrue. One classical way to answer this question is
to provide a confidence interval for MCCtrue. Moreover, if one wants to compare two
different classification procedures, one can compute for each procedure the associated

ˆMCC1 and ˆMCC2, and investigate whether there is statistical evidence that:

ˆMCC1 ≤ ˆMCC2(resp. ≥) =⇒ MCCtrue1 ≤ MCCtrue2(resp. ≥).
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This can be done thanks to a confidence interval for ˆMCC1 − ˆMCC2 which is
classically derived from a joint Central Limit Theorem for ( ˆMCC1, ˆMCC2). To the
best of the authors’ knowledge at the time of writing, we have not seen articles using
confidence intervals for MCC scores, to provide a sense of what the precision of the
results is.

For each classification problem, we also investigated whether there is statistical
evidence that our MCC differs strongly depending on the usage of the sliding window
feature (which depends on the document’s length), using hypothesis testing.

3.2.1 Vectorial central limit theorem for ˆMCC and application to
confidence interval

Let Pn be the square matrix of size K, where the variable at the column j and line i
is Xn(i, j). We obtain that

P̂ =
1

N

N−1∑
n=0

Pn. (9)

Let MK be the space of all the square real matrices of size K, and g be the
application defined by:

g : MK → R
(xi,j) 7→ g((xi,j)),

where

g((xi,j)) =

∑K−1
k=0 xk,k −

∑K−1
k=0 (

∑K−1
i=0 xi,k ×

∑K−1
j=0 xk,j)√

1−
∑K−1

k=0 (
∑K−1

i=0 xi,k)2 ×
√

1−
∑K−1

k=0 (
∑K−1

j=0 xk,j)2
. (10)

Theorem 3.1. If Assumption 1 holds, then

1. √
N(( ˆMCC −MCCtrue)

L−−−−→
N→∞

N1(0 , σ1), (11)

where σ1 =
√
DgtΣDg, and Σ is the covariance matrix of size K2

Σ =

 Cov(X(0, 0), X(0, 0)) ... Cov(X(0, 0), X(K − 1,K − 1))
... ... ...

Cov(X(K − 1,K − 1), X(0, 0)) ... Cov(X(K − 1,K − 1), X(K − 1,K − 1))

 ,

and Dg = ( ∂g
∂xi,j

)(i,j)∈{0,K−1}2 is the gradient at the coordinates P̂ of the appli-

cation g.

2. Let 0 ≤ α ≤ 1 and σ̂1 a consistent estimator of σ1, then

lim
N→∞

P

(
ˆMCC − qα × σ̂1√

N
≤ MCCtrue ≤ ˆMCC +

qα × σ̂1√
N

)
= 1− α (12)

where qα is such that P (−qα ≤ N (0, 1) ≤ qα) = 1− α.

Remark 3. In particular, the confidence interval with a 95% confidence level is given
by

] ˆMCC − 1, 96× σ̂1√
N

, ˆMCC +
1, 96× σ̂1√

N
[. (13)

Remark 4. Proof of theorem and closed formula for Dg and Σ̂ are given in Appendix
H.
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3.2.2 Application to statistical test

In this Section, we aim to decide whether there is statistical evidence that the model’s
performance represented by MCC, is affected by characteristics of our input such
as document length. To do so, we test H0 : H0 : MCCtrue1 = MCCtrue2 against
H1 : H1 : MCCtrue1 ̸= MCCtrue2, where MCCtrue1 is the true MCC value for a
part of the corpus, and MCCtrue2 is the MCC value for the other distinct part of the
corpus. The distinction is based on the characteristic that is being evaluated. For a
given characteristic, let δn be the variable associated to the characteristic, such that
for each text Tn, δn = 1 if and only if the text shares that characteristic. This is used
to formalize MCC values calculated on a subset of the corpus based on a characteristic.
Let

X1n(i, j) = Xn(i, j)(1− 1δn=1) (14)

X2n(i, j) = Xn(i, j)1δn=1 (15)

Let Q1n (resp. Q2n)be the square matrix of size K, where the variable at the column
j and line i is X1n(i, j) (resp. X2n(i, j)).

Q1n = (1− 1δn=1)× Pn, (16)

Q2n = 1δn=1 × Pn. (17)

Let Un be the vector of such that Un is the juxtaposition of Q1n, Q2n and 1δn=1.
Let UN be defined by:

UN =
1

N

N−1∑
n=0

Un. (18)

We define the functions J and f by

J : MK ×MK × R −→ R2

(x, y, z) 7−→ (g( x
1−z

), g( y
z
)).

f : R2 −→ R
(x, y) 7−→ x− y.

(19)

Theorem 3.2. Under H0,

√
N( ˆMCC1 − ˆMCC2)

L−−−−→
N→∞

N (0 , σ2
2). (20)

where
σ2 =

√
Df tΣbDf, (21)

Df is the gradient of the application f, and Σb = DJtΣaDJ with DJ the gradient of
the application J, and Σa = Cov(Un) is a covariance matrix of size 2K2 + 1.

Remark 5. Hence, we will reject H0 as soon as | ˆMCC1− ˆMCC2| > qα. The threshold
qα is qualified thanks to Theorem 3.2 and the slutsky Lemma. For example the threshold
for a test of level α = 5% is given by 1.96σ̂2√

N
.

Remark 6. Note that the framewrok developped in Section 3 can be applied on any
of the classical metrics such as precision, recall, or f1 score.

Remark 7. Proof of theorem and closed formula for DJ and Σa are in Appendix H.
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4 Results

4.1 Model performance with confidence interval

In Table 5, we give the measures of MCC with a 95% confidence interval for our
algorithm, as obtained on the testing dataset for the different classification problems.

anomaly MCC with confidence interval

ATC Issue 0.63 +/- 0.051
Aircraft Equipment Problem 0.577 +/- 0.041
Airspace Violation 0.552 +/- 0.14
Conflict 0.704 +/- 0.044
Deviation - Altitude 0.418 +/- 0.057
Deviation - Procedural 0.39 +/- 0.04
Deviation - Speed 0.609 +/- 0.118
Deviation - Track / Heading 0.681 +/- 0.066
Flight Deck / Cabin / Aircraft Event 0.585 +/- 0.059
Ground Event / Encounter 0.586 +/- 0.062
Ground Excursion 0.809 +/- 0.08
Ground Incursion 0.505 +/- 0.111
Inflight Event / Encounter 0.513 +/- 0.041
No Specific Anomaly Occurred 0.0 +/- nan

size sample 1154

Table 5: MCC of the custom model on the different testing datasets

Because the MCC score can be defined as a special case of Pearson Correlation
Coefficient (Powers, 2020), it can be interpreted in the same way.

We notice that for the anomaly “Ground excursion”, there is a very strong cor-
relation between the predicted classes and the labels (> 0.7), even when taking into
account the confidence interval.
For all the other anomalies except “Deviation - Procedural”, we notice a strong cor-
relation between the predicted classes and the labels (> 0.4). This remains true even
when taking into account the confidence interval, except for the anomaly attribute
subcategories “Ground Incursion” and “Deviation - Altitude”, for which the confi-
dence interval lower bound is lower than 0.4.
In the specific case of the anomaly “No Specific Anomaly Occurred”, the model’s pre-
dictions are no better than random, with an MCC score of 0. Our intuition is that
this is the result of an extremely unbalanced dataset, as can be seen in the confusion
matrix Figure 1 (all the confusion matrices are in fig 5 in Appendix F).
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Figure 1: Confusion matrix for “No Specific Anomaly Occurred”

Overall, the model performs relatively well.
We can observe that the confidence interval for our MCC scores varies a lot. There
seems to be a negative correlation between the data sparsity of the different classi-
fication problems and the confidence interval values. To visualize this, we use the
“Shannon equitability index” (Fath, 2018):

EH =
H

log(K)
, (2)

with:

H = −
K∑
i=1

ci
n
log(

ci
n
), (3)

and where K is the number of classes, and ci is the number of elements in class i.
The result is a number between 0 and 1. The higher the score, the more balanced is
the dataset. The scores obtained for each of the datasets are given in Tables 4 and 8.

We observe a non-linear monotonic negative correlation between the Shannon eq-
uitability index and ci, which is the range of the confidence interval divided by 2, in
the scatter-plot of Figure 2:
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Figure 2: ci against Shanon equitability index of the classification problems

We obtain a strong Spearman correlation score of −0.82. This result has to be
nuanced by the small size of our sample, however, it would seem that the more unbal-
anced a dataset is, the larger the confidence interval will be for the MCC score.

4.2 Impact of the sliding window

In Table 6, we give for each anomaly the MCC score for the sub-corpora where the
documents are of size windows=1 ( ˆMCC1), and the MCC score for the sub-corpora
where the documents are of size windows>1 ( ˆMCC2). In the latter case, the doc-
uments are long enough to prompt the model to use the mechanism of the sliding
window described in Section 2.2.2, to make a prediction. We also give in the Table
the associated threshold and result for the following statistical test:

H0 : ˆMCC1 = ˆMCC2

H1 : ˆMCC1 ̸= ˆMCC2

When threshold < | ˆMCC1 − ˆMCC2|, we decide H1 with a significance level of
0.05 (meaning that we have a 5% risk of concluding that a difference exists when there
is no actual difference). If this not the case, we cannot conclude if either hypothesis is
true. We notice that in most cases, we do not find strong statistical evidence that our
model performs differently depending on the usage of the sliding windows mechanism
or the lack thereof.
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anomaly windows=1 windows>1 threshold decision

ATC Issue 0.618 0.685 0.126 -
Aircraft Equipment Problem 0.62 0.519 0.076 H1
Airspace Violation 0.522 0.701 0.293 -
Conflict 0.726 0.63 0.117 -
Deviation - Altitude 0.438 0.348 0.157 -
Deviation - Procedural 0.402 0.307 0.104 -
Deviation - Speed 0.607 0.651 0.25 -
Deviation - Track / Heading 0.703 0.619 0.164 -
Flight Deck / Cabin / Aircraft
Event

0.599 0.614 0.156 -

Ground Event / Encounter 0.628 0.376 0.177 H1
Ground Excursion 0.827 0.668 0.313 -
Ground Incursion 0.493 0.581 0.274 -
Inflight Event / Encounter 0.543 0.408 0.101 H1
No Specific Anomaly Occurred 0.0 0.0 - -

size sample 926 228 - -

Table 6: Results of hypothesis testing

Similar to the case of the confidence interval, we observe in Figure 3 a negative
correlation between the different classification problem testing datasets’ imbalances
and the threshold values:

Figure 3: Threshold values against Shanon equitability index of the classification
problems

We obtain a strong Spearman correlation score of −0.91. This result has to be nu-
anced by the small size of our sample however, it would seem that the more unbalanced
a dataset is, the bigger the threshold will be for the hypothesis testing.
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5 Discussion

5.1 Hypothesis testing

Hypothesis testing could be further used to evaluate the impact of any distinctive
feature of an incident report on the classification model performance. This can be
especially useful for documents that have metadata.
As an example, one could investigate if the model performs significantly differently on
incidents depending on the value of reporter-based metadata, such as the flight phase.
This provides a simple tool to add understanding on what aspect of an incident impacts
the model performance.

5.2 Extrinsic vs intrinsic evaluation

When evaluating an NLP system or model, there are two distinct approaches. An
intrinsic evaluation focuses on evaluating the model within the context of the formal
task it is given. This stands in contrast with extrinsic evaluation, which aims at evalu-
ating the model within the global context of its usage environment (Jones und Galliers,
1995; Tanguy u. a., 2016; Ittoo u. a., 2016).
In the case of TC adapted from semi-structured aviation safety database such as ASRS,
Tulechki (2015) says that there is a strong overlap between extrinsic and intrinsic con-
siderations when evaluating the models used to tackle the task. Intuitively, this is
because an intrinsically good TC model has better chances to help analysts do their
work. For instance, in the hypothetical case of a model that scores MCC scores of 1 on
each TC problem, the analyst is no longer needed to code documents and can devote
his time to other tasks. In the case of our work, however, the way we evaluated our
model lacks a few elements to be considered fully extrinsic.
First, as stated in Section 3.1, the choice of metric reflects an intent on the side of the
assessor. In real-world case scenarios, from the detection of diabetes in patients to the
classifying of emails as spam, the cost associated with a wrong prediction often differs
depending on the class. For instance, wrongly predicting that a patient has diabetes
is less consequential than wrongly predicting that a patient does not have diabetes.
This is where metrics like precision or recall are useful (Yang und Liu, 1999; Sokolova
und Lapalme, 2009), because they give information on our model’s performance on a
class basis, as opposed to the performance on every class at the same time.
For a given class, precision is the ratio between the number of times the class was cor-
rectly predicted and the number of times the class was predicted. In contrast, recall
is the ratio between the number of times the class was correctly predicted and the
number of times the class should have been predicted if the model was perfect. For
a given class, a high recall means that our model will correctly classify most of the
documents that have the corresponding label, whereas a high precision means that our
model has a high chance to be accurate when it predicts the concerned label.
There is usually a trade-off between the two, and which one to use to assess our model
depends on the problem. For instance, a high recall is more important than a high
precision in the case where experts prefer to run the risk of a model predicting wrongly
there was an anomaly, rather than to run the risk of missing the anomaly altogether.
Once a metric or a set of metrics has been chosen to characterize the model’s perfor-
mance, threshold values can help determine a level of trust in our prediction during
inference, or field use. For instance, in Tulechki (2015), the author requires a threshold
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of 95% of precision for accepting a prediction of a model. It means that for a given
class, if the model has a precision that is estimated to be above 95% during the eval-
uation phase, the model is trusted when it predicts the class. However, if the model
predicts a class for which the precision is estimated below 95% during the evaluation
phase, then human intervention is needed and the model can be used as a suggestion
system instead or simply ignored.
As an example, we provide in Table 7 the results for the discussed metrics on the label
“no anomaly of this kind” for each of the text classification problems. Hypothetically,
if we used the same standards as Tulechki (2015) of having a threshold of 95% of
precision, then we would trust our model when it predicts that there is “no anomaly
of this kind” on every TC problem except for “Deviation - Procedural” and “Aircraft
Equipment Problem”, because the related precision scores fall under the threshold. In
this last case, a human safety expert would be solicited to categorize the text by hand.
Arguably, precision might not be the best indicator, because we do not account for
the risk of missing an event. Hypothetically, if we applied the same threshold of 95%
to recall, there would be 50% fewer cases where our model could be trusted with
predicting the “no anomaly of this kind” label: 6 instead of 12 (Airspace Violation,
Deviation - Speed, Ground Event / Encounter, Ground Excursion, Ground Incursion,
No Specific Anomaly Occurred). This shows how the choice of metric can impact the
validity of our model.

anomaly precision recall f1

ATC Issue 0.976 0.869 0.919
Aircraft Equipment Problem 0.924 0.899 0.911
Airspace Violation 0.993 0.98 0.986
Conflict 0.987 0.929 0.957
Deviation - Altitude 0.988 0.898 0.94
Deviation - Procedural 0.713 0.703 0.708
Deviation - Speed 0.991 0.978 0.984
Deviation - Track / Heading 0.988 0.942 0.965
Flight Deck / Cabin / Aircraft Event 0.981 0.902 0.94
Ground Event / Encounter 0.958 0.962 0.96
Ground Excursion 0.995 0.987 0.991
Ground Incursion 0.994 0.977 0.985
Inflight Event / Encounter 0.938 0.757 0.838
No Specific Anomaly Occurred 0.997 1.0 0.998

Table 7: Precision, recall and F1 score for category “no anomaly of this kind”

We intentionally chose to use the MCC metric, because we did not have access
to ASRS safety analysts to conjointly determine a metric or set of metrics of evalua-
tion that were adapted to the “business” problem at hand. In this case, we assumed
the next best thing to do was to evaluate our model overall performance, for which
precision and recall are bad indicators, similarly to the F1 score which is simply the
harmonic mean of precision and recall, for the reasons that were explained in Section
3.1.
To conclude, our intrinsic evaluation provides a good indication of our model overall
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performance, which is made even more precise by the use of confidence intervals, but
does not provide a good extrinsic indication of our model’s usefulness or reliability
(8016712, 2017) in the field, as we lack a clear idea of what are the requirements for
such models.
We suggest for future work, that a choice of metric and a corresponding per-class basis
value for performance threshold, should be discussed directly with the ASRS analysts
that code the reports, as well as their perceptions of the results and usefulness of the
technology.

6 Conclusion

In this article, we did not challenge the inherent value of the written event reports,
as well as the associated metadata, but instead, we focused on using TC techniques
to support their categorization. Specifically, we have used a custom language model,
trained from scratch on domain-specific data, to classify event reports on 14 classifi-
cation problems. A summary of the NLP pipeline can be found in Appendix I.
We have provided arguments for choosing the MCC score as our evaluation metric for
our model performance, as well as shown how to get a confidence interval. We have
proposed a way to use hypothesis testing to evaluate if our model performed differently
on two distinct sub-corpora. In our case, the distinction was based on the length of
the documents, which prompted the use of the mechanism of the sliding window to
produce a prediction for long documents.
Finally, we have discussed what it would require for the model to be potentially used
in the industry. Our model is freely available for use on Huggingface (Wolf u. a., 2020),
under the name ASRS-CMFS (Aviation Safety Reporting System - Compact Model
trained From Scratch). We leave for future work the comparison of our model’s per-
formance with other models.
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Authors used a servor hosting 8 GeForce RTX 2080 Ti GPUs for computing power.
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APPENDIX B: Extensive description of the ASRS
dataset

Since its creation, ASRS has received 1,625,738 incident reports up to July 2019
(ASRS, 2019). In 2019, the average number of reports received per week was 2 248,
however, not all the received reports are available in the public database.
The full report processing flow is described in Figure 4, and more information can be
found in ASRS (2019).
ASRS is a semi-structured dataset with both textual data as well as metadata. Infor-
mation can be broken down into the following: narratives, synopses, and callbacks for
the textual data, reporter-generated, and analyst-generated for the metadata.
The narratives are descriptions of an incident occurrence by a reporter. The synopses
are a summary of that description and are written by analysts. Callbacks are supple-
mentary information given by reporters on the occurrence, upon being called back by
analysts seeking further details.
The reporter-produced metadata consists of structured information on the incident
context (for instance, information on the weather or the pilot experience). It is pro-
vided upon completion of the reporting form.
There are four different types of forms, based on the job of the reporter: the Air Traffic
Control (ATC) reporting form, the cabin reporting form, the maintenance form, and
the general form (ASRS, 2021).
The analysts also produce metadata after receiving the reports. This step referred to
as “coding”, provides a structured assessment of the occurrences from a safety point
of view. This analyst-produced metadata is used to query the dataset, as well as to
produce statistics on aviation incidents (Tulechki, 2015).

Figure 4: Report Processing Flow, extracted from (ASRS, 2019), p16

The metadata follows a taxonomy, which is built around an entity-based structure
(Tulechki, 2015). An example of a report with its metadata is available in Appendix
D. At the top level of the taxonomy are entities (Time, Place, Environment, Aircraft,
Component, Person, Events, and Assessments). At the lowest branch of the taxonomy
are metadata and their values. In between those two, there are entities’ attributes and
in some cases, attributes’ subcategories.
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For instance, the insightful“Events” entity has an attribute called “Anomaly”, this
anomaly has 14 sub-categories, and one of the subcategories “ATC anomaly”, can
take two possible values: “No”, or “All types” .
These 14 subcategories will constitute our classification problems on which we will fine
tune our model, as described further in Section 2.2.3.
The textual data-style from 1987 to 2008 included is vastly different from the style used
after. Documents from this era are characterized by upper-case letters, fragmented
sentences (missing words), and heavy use of abbreviations. Documents after this era
have both upper and lower-case letters, sentences are not fragmented, and the use of
abbreviations is standardized. A sample of both kinds is provided in appendices D
and E.
For information, the dataset received has data ranging from 1987 to 2019. The size of
the data is 287 MB, with a total of 385 492 documents and 50 204 970 space-delimited
words. In our experiments, we only used data from after 2009. The resulting dataset
is composed of roughly 40 000 documents.

APPENDIX C: Introduction to transformer-based
algorithms

In 2017, the article “Attention is all you need” describes a neural network architecture
that leverages an attention mechanism on translation tasks, the transformer (Vaswani
u. a., 2017). Soon, many more architectures adapted from the transformer emerge, each
time obtaining better results on Natural Language Understanding (NLU) benchmarks
(Wang u. a., 2019), to the point that they even beat the human baseline (Wang u. a.,
2020).
Among them is BERT (Devlin u. a., 2019), which obtains state-of-the-art results in
many NLU tasks when published. After BERT, another model, RoBERTa (Liu u. a.,
2019) emerges, which re-uses the architecture of BERT but changes how the model
is trained, once again obtaining state-of-the-art results when published. In Section
2.1.1, we give details on how we implemented our transformer-based model based on
the RoBERTa model.
Transformer-based models all have a common characteristic, aside from the use of an
attention mechanism. Their training typically involves two steps: pre-training and
fine tuning:

• pre-training: Pre-training is a step where the algorithm is trained on a massive
amount of unlabelled textual data (Peters u. a., 2018). This task is unsupervised,
meaning that there is no need for human annotation. It is typically done by
initially corrupting text, for instance by randomly removing words. Then, the
algorithm is tasked with restoring the data to its original state. The underlying
idea is that the algorithm will learn to model the language through this task.
Algorithms that use this kind of training are referred to as language models. In
Section 2.1.2, we show that there are different pre-training strategies in cases
where the language is domain-specific, such as in aviation, and justify our choice
of pre-training strategy for our model.

• fine tuning: Once we have a fully pre-trained model, we can re-train it on
other tasks such as document classification (Howard und Ruder, 2018). These
tasks are referred to as downstream tasks and are typically supervised and use
dramatically fewer data. This retraining procedure is called fine tuning.
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The underlying idea behind using these two steps is that the algorithm will leverage
what he learned during the pre-training step to obtain better performances on the
downstream task during the fine tuning step. This idea is referred to as transfer
learning.
A drawback of such methods is that the models used are heavy in size and need a lot of
data and computation resources during pre-training. In Table 1, we give information
on RoBERTa model size, and in Table 2, we give information on the RoBERTa model
pre-training dataset size.

APPENDIX D: Example of data

Other examples can be found at: https://asrs.arc.nasa.gov/search/dbol.html.

Narrative (written by the reporter):

Approximately 8 hours into our flight, my ears started to block. I swallowed to
clear them, but it came back repeatedly. I spoke with 3 other flight attendants and
they said they had the same symptoms. I called the cockpit and talked with the
flight crew about the situation. They informed me that everything checked out all
right. We were informed about a “PAC” being “out” during the Captain to crew,
pre-flight briefing. I questioned flight crew if this had anything to do with our ears
being blocked. Captain told me that the PAC that was out was like having a “spare
tire.” I questioned him because he informed the crew that the temperature in the
cabin might be a problem. I asked him if the PAC situation had anything to do with
air circulation or filtration, due to COVID transmittal. He said it was not going to
affect the pressurization, air circulation or filtration. The ear blockage lasted for 15-20
minutes and didn’t return the rest of the flight. Captain asked if we needed MedLink
and we declined.

Synopsis (written by analysts)

Flight Attendant reported having ear blockage problems during flight and ques-
tioned if it had to do with one Pack being “out.”

Aircraft related
Aircraft Operator : Air Carrier
Make Model Name : Commercial Fixed Wing
Crew Size.Number Of Crew : 2
Operating Under FAR Part : Part 121
Flight Plan : IFR
Mission : Passenger
Flight Phase : Cruise

Person related
Reference : 1
Location Of Person.Aircraft : X
Location In Aircraft : General Seating Area
Reporter Organization : Air Carrier
Function.Flight Attendant : Flight Attendant (On Duty)
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Qualification.Flight Attendant : Current
ASRS Report Number.Accession Number : 1772104
Human Factors : Distraction
Human Factors : Physiological - Other

Events related
Anomaly.Aircraft Equipment Problem : Less Severe
Anomaly.Flight Deck / Cabin / Aircraft Event : Illness
Detector.Person : Flight Attendant
When Detected : In-flight
Result.General : None Reported / Taken

Assessments related
Contributing Factors / Situations : Aircraft
Primary Problem : Aircraft

APPENDIX E: Example of incident report from
the 1987 to 2008 era

Narrative (written by the reporter):

APCH CTL ISSUED ILS RWY 28R AND VECTORED US TO FINAL APCH
CTLR. HE DSNDED US TO 3000 FT AND GAVE US AN INTERCEPT HDG AND
ISSUED APCH CLRNC. I INTERCEPTED LOC AND TURNED INBOUND. THE
CTLR SAID IT APPEARED WE WERE INTERCEPTING ILS RWY 28R WHICH
WE WERE. HE INDICATED WE SHOULD BE ON APCH FOR ILS RWY 28L.
HE THEY ISSUED US THE ILS FREQ 111.7 FOR ILS RWY 28R. WE ASKED
HIM IF WE SHOULD BREAK OFF THE APCH AND HE ISSUED US A CLRNC
FOR ILS RWY 28R THEN. WE WERE BEING VECTORED FOR R DOWNWIND
WHICH IS USUAL FOR ILS RWY 28R, WHICH GAVE US MORE VERIFICATION
FOR THE ILS RWY 28R. THE FINAL CTLR MAY HAVE THOUGHT WE WERE
ISSUED AND EXPECTED RWY 28L, WHICH I DO NOT BELIEVE WE WERE.
THERE WERE NO CONFLICTS. THERE WERE SNOW SQUALLS OVER THE
AREA. I THINK MAYBE A MISUNDERSTANDING BTWN THE 2 APCH CTLRS
DEVELOPED AS THERE WAS A HEARBACK AND READBACK FROM THEM
EVERY TIME. THIS THING HAPPENS AND IN A HIGH TFC AREA WITH RE-
DUCED VISIBILITY IT IS VERY IMPORTANT FOR THE CTLR AND PLT TO
GET GOOD COMS ON IDENT OF THE RWY TO LAND ON. MAYBE A PROC
FOR THE FINAL CTLR TO RENAME THE ILS AND GET A FINAL READBACK
CLRNC FROM THE PLT PRIOR TO THE FINAL INTERCEPT HDG IS GIVEN,
AND THE FINAL ILS CLRNC IS ISSUED. THE PLT WOULD THEN BE GIVEN
A SECOND CHANCE TO CORRECT ANY ERROR THAT MIGHT EXIST.

Synopsis (written by analysts)

FLC OF A DC9-30 LINED UP WITH THE WRONG PARALLEL RWY RE-
SULTING IN APCH CTLR INTERVENTION TO PROVIDE THEM WITH THE
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LOC FREQ FOR THE ASSIGNED PARALLEL RWY TO WHICH THEY BE-
LIEVED THAT THEY WERE HEADED.

APPENDIX F: Confusion matrices
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Figure 5: All the confusion matrices
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APPENDIX G: Class composition of the multi-
classification problems

Name Composition Shannon equitability index

Aircraft Equipment
Problem

No (54.66%), Critical (24.39%), Less Severe
(20.95%)

0.912

Conflict No (85.32%), NMAC (6.2%), Airborne
Conflict (4.5%), Ground Conflict, Critical
(2.39%), Ground Conflict, Less Severe (1.59%)

0.374

Deviation - Alti-
tude

No (91.2%), Excursion From Assigned Al-
titude (4.35%), Overshoot (2.37%), Cross-
ing Restriction Not Met (1.62%), Undershoot
(0.46%)

0.249

Deviation - Proce-
dural

No (51.16%), Published Material / Policy
(27.76%), Clearance (12.09%), FAR (4.01%),
Maintenance (1.45%), Other / Unknown
(1.29%), MEL (0.79%), Weight And Bal-
ance (0.63%), Hazardous Material Violation
(0.34%), Landing Without Clearance (0.28%),
Security (0.19%)

0.55

Flight Deck /
Cabin / Aircraft
Event

No (92.32%), Smoke / Fire / Fumes / Odor
(3.51%), Other / Unknown (2.63%), Illness
(1.25%), Passenger Misconduct (0.24%), Pas-
senger Electronic Device (0.05%)

0.201

Ground Event /
Encounter

No (91.03%), Other / Unknown (3.1%), Loss
Of Aircraft Control (1.94%), Ground Strike
- Aircraft (1.6%), Object (0.98%), Gear Up
Landing (0.4%), Vehicle (0.4%), Person / An-
imal / Bird (0.23%), Aircraft (0.2%), FOD
(0.12%)

0.2

Ground Excursion No (96.89%), Runway (2.58%), Taxiway
(0.47%), Ramp (0.06%)

0.112

Ground Incursion No (96.38%), Runway (2.26%), Taxiway
(1.35%)

0.163

Inflight Event / En-
counter

No (76.97%), Weather / Turbulence (7.3%),
CFTT / CFIT (3.07%), Fuel Issue (2.93%),
Loss Of Aircraft Control (2.48%), Wake Vor-
tex Encounter (2.17%), Other / Unknown
(1.85%), Unstabilized Approach (1.83%), Bird
/ Animal (0.49%), Object (0.48%), VFR In
IMC (0.43%)

0.417

Table 8: Anomaly subcategories that are multi-classification problems
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APPENDIX H

Proof theorem 1 and closed formulas for Σ̂ and Dg

Proof 1. 1. According to the vectorial central limit theorem, we have

√
N(

1

N

N−1∑
n=0

(Pn − E[Pn])
L−−−−→

N→∞
NK2(0 ,Σ)

Now setting σ1 =
√
DgtΣDg, the Delta method ensures

√
N((g(P̂ )− g(

1

N

N−1∑
n=0

E[Pn]))
L−−−−→

N→∞
N1(0 , σ

2
1)

2. According to the Slutsky Lemma

√
N((g(P̂ )− g( 1

N

∑N−1
n=0 E[Pn]))

σ̂1

L−−−−→
N→∞

N1(0 , 1)

where,

σ̂1 =

√
DgtΣ̂Dg, (13)

and Σ̂ any consistant estimator of Σ.

Calculating Σ̂

For elements in the diagonal of Σ, we have:

Cov(Xl1,m1 , Xl1,m1) = E(X2
l1,m1

)− E(Xl1,m1)
2

= pl1,m1 × (1− pl1,m1).
(14)

We obtain that a consistent estimation for Σ̂ is: p̂l1,m1 × (1− p̂l1,m1).

For elements outside the diagonal, we obtain that:

Cov(Xl1,m1 ,l2,m2 ) = E(Xl1,m1 ×Xl2,m2)− E(Xl1,m1)× E(Xl2,m2)

= −pl1,m1 ∗ pl2,m2 .
(15)

We obtain that a consistent estimation for Σ̂ is: −p̂l1,m1 ∗ p̂l2,m2 .

Calculating Dg

We introduce the following notation for the purpose of clarity in our calculations: Let
p̂i,. designates the sum of the elements of row i of P̂ .
Let p̂.,j designates the sum of the elements of column j of P̂ .
Let p̂i,−[j0,...jA] with A ∈ [0,K − 1] designates p̂i,. −

∑A
a=0 p̂i,ja

Let p̂−[i0,...iA],j with A ∈ [0,K − 1] designates p̂.,j −
∑A

a=0 p̂ia,j

Let Tr(p̂) designates the sum of the elements in the diagonal of P̂ .

35



We must obtain ∂g
∂p̂i,j

. We distinguish between the case where i = j and i ̸= j.

When i = j, we have:

g(xl,l) =
xl,l + a− (b+ x2

l,l + xl,l × c)√
1− d− (xl,l + e)2 ×

√
1− f − (xl,l + g)2

. (16)

Then we have:

∂g

∂xl,l
=

(1− 2× xl,l − c)×A×B + ((xl,l + e)× B
A
+ (xl,l + g)× A

B
)× (xl,l + a− (b+ x2

l,l + xl,l × c))

A2 ×B2

with:

A =
√

1− d− (xl,l + e)2 and B =
√

1− f − (xl,l + g)2.

When the input for g is our matrix P̂ , we have:

a = Tr(p̂)− p̂l,l, b =

K−1∑
k ̸=l

(p̂.,j ∗ p̂i,.) + p̂−[l],l × p̂l,−[l], c = p̂−[l],l + p̂l,−[l]

d =

K−1∑
k ̸=l

p̂2.,k, e = p̂−[l],l, f =

K−1∑
k ̸=l

p̂2k,.

g = p̂l,−[l] and xl,l = p̂l,l.

When i ̸= j, we have:

g(xl,m) =
a1 − (b1 + (xl,m + ĉ1)× d1 + (xl,m + e1)× f1)√
1− g1 − (xl,m + h1)2 ×

√
1− i1 − (xl,m + j1)2

, (17)

then we have:
∂g

∂xl,m
=

−(d1 + f1)A1B1 + ((xl,m + h1)B1/A1 + (xl,m + j1)A1/B1)(a1 − (b1 + (xl,m + ĉ1)d1 + (xl,m + e1)f1)

A2
1B

2
1

with:

A1 =
√

1− g1 − (xl,m + h1)2 and B1 =
√

1− i1 − (xl,m + j1)2.

When the input for g is our matrix P̂ , we have:

a1 = Tr(p̂), b1 =

K−1∑
k ̸=(l,m)

(p̂.,k ∗ p̂k,.), c1 = p̂l,−[m]

d1 = p̂.,l, e1 = p̂−[l],m, f1 = p̂m,.

g1 =

K−1∑
k ̸=m

p̂2.,k, h1 = p̂−[l],m, i1 =

K−1∑
k ̸=l

p̂2k,.

j1 = p̂l,−[m] and xl,m = p̂l,m.
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Proof theorem 2 and closed formulas for Σa and DJ

Proof 2. According to the vectorial central limit theorem

√
N(

1

N

N−1∑
n=0

(Un − E[Un])
L−−−−→

N→∞
N2K2+1(0 ,Σa),

where Σa = Cov(Un) is a covariance matrix of size 2K2+1. According to the delta
method

√
N((J(UN )− J(

1

N

N−1∑
n=0

E[Un]))
L−−−−→

N→∞
N2(0 ,Σb).

where Σb = DJtΣaDJ . Now since J(UN ) = ( ˆMCC1, ˆMCC2) we have

√
N(

[
ˆMCC1

ˆMCC2

]
−

[
MCC1true

MCC2true

]
)

L−−−−→
N→∞

N2(0 ,Σb).

Applying again the µDelta method we get

√
N(( ˆMCC1 − ˆMCC2)− (MCC1true −MCC2true)

L−−−−→
N→∞

N (0 , σ2
2).

where σ2 =
√
Df tΣbDf, with Df the gradient of the application f

Under H0, we have

√
N( ˆMCC1 − ˆMCC2)

L−−−−→
N→∞

N (0 , σ2
2).

calculating Σ̂a

We have 9 cases:

• Cov(X1l1,m1 , X1l2,m2)

• Cov(X1l1,m1 , X1l1,m1)

• Cov(X2l1,m1 , X2l2,m2)

• Cov(X2l1,m1 , X2l1,m1)

• Cov(X1l1,m1 , X2l1,m1)

• Cov(X1l1,m1 , X2l2,m2)

• Cov(X1l1,m1 ,1δn=1)

• Cov(X2l1,m1 ,1δn=1)

• Cov(1δn=1, 1δn=1)

with (l1,m1) ̸= (l2,m2).

The four first cases are already covered by our previous work on confidence inter-
vals.
For the two next cases, we obtain that:

Cov(X1l1,m1 , X2l2,m2) = E(X1l1,m1 ×X2l2,m2)− E(X1l1,m1)× E(X2l2,m2)

= −q1l1,m1 ∗ q2l2,m2 .
(18)
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We obtain that a consistent estimation for Σ̂a is: −q̂1l1,m1
∗ q̂2l2,m2

.

Cov(X1l1,m1 , X2l1,m1) = E(X1l1,m1 ×X2l1,m1)− E(X1l1,m1)× E(X2l1,m1)

= −q1l1,m1q2l1,m1 .
(19)

We obtain that a consistent estimation for Σ̂a is: −q̂1l1,m1
q̂2l1,m1

.
For the last three cases, because we have:

E(X1l1,m1 × 1δn=1) = E(Xl1,m1 × (1− 1δn=1)× 1δn=1) = 0,

E(X2l1,m1 × 1δn=1) = E(Xl1,m1 × 1δn=1 × 1δn=1) = q2l1,m1 ,

E(1δn=1) = λ,

we can deduce that:

Cov(X1l1,m1 , 1δn=1) = −λ× q1l1,m1 , (20)

We obtain that a consistent estimation for Σ̂a is: −λ̂× q̂1l1,m1
.

Cov(X2l1,m1 , 1δn=1) = q2l1,m1(1− λ), (21)

We obtain that a consistent estimation for Σ̂a is: q̂2l1,m1
(1− λ̂).

Cov(1δn=1, 1δn=1) = λ(1− λ). (22)

We obtain that a consistent estimation for Σ̂a is: λ̂(1− λ̂).

Calculating DJ

We obtain:

∂DJ1(x, y, z)

∂y
=

∂g( x
1−z

))

∂y
= 0,

∂DJ2(x, y, z)

∂x
=

∂g( y
z
)

∂x
= 0

Conversely, we have that:

∂DJ1(x, y, z)

∂x
=

1

1− z

∂g( x
1−z

)

∂x
,

∂DJ2(x, y, z)

∂y
=

1

z

∂g( y
z
)

∂y

To calculate ∂DJ1(x,y,z)
∂z

and ∂DJ2(x,y,z)
∂z

, we introduce the following:

λ̂ =
1

N

N−1∑
n=0

1δn=1, (23)

q̂1i,j =
1

N

N−1∑
n=0

X1n(i, j), (24)

q̂2i,j =
1

N

N−1∑
n=0

X2n(i, j). (25)

We have:

ˆMCC1 =
( 1

1−λ̂
)a2 − ( 1

1−λ̂
)2b2√

1− ( 1

1−λ̂
)2c2 ×

√
1− ( 1

1−λ̂
)2d2

(26)
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with:

a2 = Tr((q̂1i,j)), b2 =

K−1∑
k

(q̂1.,k ∗ q̂1k,.), c2 =

K−1∑
k

q̂1
2

.,k and d2 =

K−1∑
k

q̂1
2

k,.

We note:

C2(z) =

√
1− (

1

1− z
)2c2 and D2(z) =

√
1− (

1

1− z
)2d2.

Then we have:

∂DJ1((q̂1i,j), (q̂2i,j), λ̂)

∂z
= (

1

1− λ̂
)2(

a2 − 2( 1

1−λ̂
)b2

C2(λ̂)D2(λ̂)
+
( 1

1−λ̂
)(C2(λ̂)2d2 +D2(λ̂)2c2)((

1

1−λ̂
)a2 − ( 1

1−λ̂
)2b2)

(C2(λ̂)D2(λ̂))3
)

Respectively, we have:

ˆMCC2 =
( 1

λ̂
)a3 − ( 1

λ̂
)2b3√

1− ( 1

λ̂
)2c3 ×

√
1− ( 1

λ̂
)2d3

(27)

with:

a3 = Tr((q̂2i,j)), b3 =

K−1∑
k

(q̂2.,k ∗ q̂2k,.), c3 =

K−1∑
k

q̂2
2

.,k and d3 =

K−1∑
k

q̂2
2

k,.

We note:

C3(z) =

√
1− (

1

z
)2c3 and D3(z) =

√
1− (

1

z
)2d3.

Then we have:

∂DJ2((q̂1i,j), (q̂2i,j), λ̂)

∂z
= −(

1

λ̂
)2(

a3 − 2( 1

λ̂
)b3

C3(λ̂)D3(λ̂)
+
( 1

λ̂
)(C3(λ̂)2d3 +D3(λ̂)2c3)((

1

λ̂
)a3 − ( 1

λ̂
)2b3)

(C3(λ̂)D3(λ̂))3
)
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APPENDIX I: Summary of the NLP pipeline

Figure 6: NLP pipeline

We created and pre-trained from scratch a custom transformer-based model on the
language modeling task, using part of the ASRS corpus for that purpose, as detailed
in the Sections 2.1.2 and 2.1.3. This pre-trained custom model was then trained
separately on 14 different text classification training datasets that were also extracted
from the ASRS corpus, with each classification problem corresponding to a subcategory
of the Anomaly attribute. For each subcategories, the labels can be seen in Tables 8
and 4. The choice of fine tuning data is detailed in Section 2.2.3.
Once the pre-trained model was trained on our fine tuning data, we evaluated it on
the testing datasets, as well as gauged the impact of sliding windows on our model’s
performance. Details on the metric used for evaluations can be found in Section
3, which is dedicated to the theoretical and statistical study of the efficiency of the
classification procedure.
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