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A multicomplex, also known as a twisted chain complex, has an associated spectral sequence via a filtration of its total complex. We give explicit formulas for all the differentials in this spectral sequence.

Introduction

A multicomplex is an algebraic structure generalizing the notion of a (graded) chain complex and that of a bicomplex. The structure involves a family of higher "differentials" indexed by the non-negative integers, and is also known as a twisted chain complex, or a D ∞ -module. Multicomplexes have arisen in many different places and play an important role in homotopical and homological algebra. These objects were first considered by Wall [START_REF] Wall | Resolutions for extensions of groups[END_REF] in his work on resolutions for extensions of groups and they were studied by Gughenheim and May [START_REF] Gugenheim | On the theory and applications of differential torsion products[END_REF] in their approach to differential homological algebra.

A multicomplex has an associated total complex, with filtration, and thus an associated spectral sequence. This spectral sequence plays a key role in the homotopy theory of these objects, as studied in [START_REF] Cirici | Derived A-infinity algebras and their homotopies[END_REF]. The spectral sequence was studied by Boardman [START_REF] Boardman | Conditionally convergent spectral sequences[END_REF], and by Hurtubise [START_REF] Hurtubise | Multicomplexes and spectral sequences[END_REF], who noted that the differentials of the spectral sequence differ from the maps induced by the higher "differentials" of the multicomplex. The main content of this short note is to give explicit formulas for all the differentials in this spectral sequence. This description generalizes well-known results in the bicomplex case (see for example [START_REF] Cordero | A general description of the terms in the Frölicher spectral sequence[END_REF]).

We give some examples, revisiting those given by Hurtubise and Wall, and we briefly note some applications. In particular, a new application appears in the recent work of Cirici and Wilson [START_REF] Cirici | Dolbeault cohomology for almost complex manifolds[END_REF]. They use our description of the E 2 page of the spectral sequence, in the case of a multicomplex with only four non-zero structure maps, to introduce and study a new invariant for almost complex manifolds, which generalizes the definition of Dolbeault cohomology for complex manifolds.

The spectral sequence associated to a multicomplex

We begin by introducing multicomplexes, including notation and grading conventions.

Definition 2.1. A multicomplex (also called a twisted chain complex ) is a (Z, Z)graded k-module C equipped with maps Remark 2.2. Multicomplexes form a category, tCh k , with objects and morphisms as in Definition 2.1. Sometimes different sign conventions are adopted. A common alternative is to require the structure maps to satisfy the relations i+j=n (-1) i d i d j = 0 for all n 0, with a similar sign change for the morphisms. It may be checked that the resulting category is isomorphic to tCh k .

d i : C → C for i 0 of bidegree |d i | = (-i, i -1) such that i+j=n d i d j = 0 for all n 0. A morphism f : (C, d i ) → (C , d i ) of multicomplexes is given by maps f i : C → C for i 0 of bidegree |f i | = (-i, i) satisfying i+j=n f i d j = i+j=n d i f j for all n 0.
Various other grading conventions may be found, too, such as a single N or Z grading, or an (N, Z)-grading. We will discuss where our choice of (Z, Z)-grading is significant below.

Remark 2.3. It is shown in [START_REF] Loday | Algebraic operads, Grundlehren der mathematischen Wissenschaften[END_REF]10.3.17] (singly graded version) and in [START_REF] Livernet | Derived A∞-algebras in an operadic context[END_REF] (bigraded version) that multicomplexes can be viewed as D ∞ -algebras, where D is the operad of dual numbers. This point of view is also related to the work of Lapin [START_REF] Lapin | Differential perturbations and D∞-differential modules[END_REF].

Example 2.4. If the structure maps of a multicomplex satisfy d i = 0 for i 1, we retrieve the notion of a chain complex with an additional grading, sometimes referred to as a vertical bicomplex. If d i = 0 for i 2, we retrieve the notion of a bicomplex.

A multicomplex gives rise to a chain complex via totalization. Since we consider (Z, Z)-gradings it is a priori not clear which is the right notion of total complex in this setting. See [START_REF] Meyer | Acyclic models for multicomplexes[END_REF] for a discussion of this. One could for example associate to a multicomplex C the direct sum total complex with a+b=n C a,b in degree n. It will turn out that the associated spectral sequence has better convergence properties for the following version of the total complex. Definition 2.5. For a multicomplex C, the associated total complex TotC is the chain complex with

(TotC) n = a+b=n a 0 C a,b ⊕ a+b=n a>0 C a,b = a+b=n b 0 C a,b ⊕ a+b=n b>0 C a,b .
The differential on TotC is given, for c ∈ (TotC) n , by

(dc) a = i 0 d i (c) a+i , where (c) a denotes the projection of c to C a, * = b C a,b .
Since (c) j = 0 for j sufficiently large, the sum above is finite and also (dc) a = 0 for sufficiently large a, so this formula determines a well-defined map on TotC. Note that it is not possible in general to consider a direct product total complex with a+b=n C a,b in degree n, since in this case the formula above can involve infinite sums.

Given a multicomplex C, we consider the filtered complex D, where D := TotC filtered by the subcomplexes

(F p D) n = a+b=n a p C a,b . Note that F p D = r-1 i=0 C p-i, * ⊕ F p-r D. Consequently, an element x ∈ F p D can be written (1) x = (x) p + (x) p-1 + . . . + (x) p-(r-1) + u
with u ∈ F p-r D, where (x) p-i is the projection of x to C p-i, * .

We consider the spectral sequence associated to this filtered complex, as presented in [De71, 1.3]. For r 0, the r-stage E r (D) is an r-bigraded complex -that is, a bigraded module endowed with a square zero map δ r of bidegree (-r, r -1) -and may be written as the quotient 

E p, * r (D) ∼ = Z p, * r ( 
B p, * r (D) := Z p-1, * r-1 (D) + dZ p+r-1, * r-1 (D) for r 1.
Given an element x ∈ Z p, * r (D), we will denote by

[x] r its image in E p, * r (D). For [x] r ∈ E p, * r (D), we have (2) δ r ([x] r ) = [dx] r .
Expanding the expressions dx ∈ F p-r D and dc = x for some c ∈ F p+r-1 D using the decomposition (1) above leads to the following definition.

Definition 2.6. Let x ∈ C p, * and let r 1. We define subgraded modules Z p, * r and B p, * r of C p, * as follows.

x ∈ Z p, * r ⇐⇒ for 1 j r -1, there exists z p-j ∈ C p-j, * such that

d 0 x = 0 and d n x = n-1 i=0 d i z p-n+i , for all 1 n r -1. ( 1 )
x ∈ B p, * r ⇐⇒ for 0 k r -1, there exists c p+k ∈ C p+k, * such that

x = r-1 k=0 d k c p+k and 0 = r-1 k=l d k-l c p+k for 1 l r -1.
(

) 2 
Proposition 2.7. For r 1 and all p, we have B p, * r ⊆ Z p, * r .

Proof. Let x ∈ B p, * r , with c p+k ∈ C p+k, * for 0 k r -1 satisfying equations ( 2 ). Define

z p-j = - r-1 i=0 d j+i c p+i ∈ C p-j, * ,
for 1 j r -1. Direct calculation shows that these elements satisfy ( 1 ) and thus x ∈ Z p, * r .

Proposition 2.8. The map

ψ : Z p, * r (D)/B p, * r (D) → Z p, * r /B p, * r , sending [x] r to the class [(x) p ],
is well defined and an isomorphism. To see that (x) p ∈ Z p, * r , note that dx ∈ F p-r D implies that (dx) p-n = 0 for all 0 n r -1. Therefore d 0 (x) p = 0 and

d n (x) p + n-1 i=0 d i (x) p-n+i = (dx) p-n = 0,
for all 1 n r -1. So, taking z p-n+i = -x p-n+i in Definition 2.6, we see (x) p ∈ Z p, * r and a similar argument proves that ψ is surjective. Let us compute its kernel. Let x = (x) p + w ∈ Ker ψ, with w ∈ F p-1 D. By assumption (x) p ∈ B p, * r , and hence for 0 k r -1 there exists

c p+k ∈ C p+k, * such that (x) p = r-1 k=0 d k c p+k and 0 = r-1 k=l d k-l c p+k , for 1 l r -1. Let c = r-1 k=0 c p+k ∈ F p+r-1 D.
The above relations imply that (dc) p+l = 0 for all 1 l r -1, and (dc) p = (x) p . Therefore, dc ∈ F p D and c ∈ Z p+r-1, * r-1 (D). In addition, (x) p -dc ∈ F p-1 D, and x = dc + ρ, where ρ = (x) p -dc + w ∈ F p-1 D. Then d 2 c = 0 implies that dx = dρ ∈ F p-r D, and hence ρ ∈ Z p-1, * r-1 (D). Thus Ker ψ ⊆ B p, * r (D).

Conversely if x ∈ B p, * r (D), then x = ρ + dc for some ρ ∈ Z p-1, * r-1 (D) and some c ∈ Z p+r-1, * r-1 (D). So, ρ ∈ F p-1 D and dc ∈ F p D. Thus, (x) p = (dc) p and (dc) s = 0 for all s > p. This implies that (x) p ∈ B p, * r and B p, * r (D) ⊆ Ker ψ.

Remark 2.9. In the language of witnesses adopted in [START_REF] Cirici | Model category structures and spectral sequences[END_REF], the difference between the Z r (D)-cycles and the Z r -cycles is essentially the difference between specifying witnesses and just requiring the existence of them. More precisely, Z p, * r (D)/F p-r (D) corresponds to the witness r-cycles for split filtered complexes.

Theorem 2.10. Under the isomorphism ψ of Proposition 2.8, the r-th differential of the spectral sequence corresponds to the map ∆ r :

Z p, * r /B p, * r → Z p-r, * r /B p-r, * r given by ∆ r ([x]) = d r x - r-1 i=1 d i z p-r+i ,
where x ∈ Z p, * r , and the family {z p-j } 1 j r-1 satisfies ( 1 ).

Proof. Since {z p-j } 1 j r-1 satisfies ( 1 ), [x-z p-1 -. . .-z p-r+1 ] r ∈ Z p, * r (D)/B p, * r (D) and ψ[x -z p-1 -. . . -z p-r+1 ] r = [x],
where ψ is the isomorphism from Proposition 2.8. Hence

∆ r ([x]) = ψδ r ([x -z p-1 -. . . -z p-r+1 ] r ) (2) = ψ[d(x -z p-1 -. . . -z p-r+1 )] r = [(d(x -z p-1 -. . . -z p-r+1 )) p-r ] = [d r x - r-1 i=1 d i z p-r+i ].

Examples

We revisit the examples given by Hurtubise [START_REF] Hurtubise | Multicomplexes and spectral sequences[END_REF] in the light of the explicit description of the differentials. Hurtubise has the same sign and bidegree conventions as ours, but works with ground ring Z.

The first two examples relate to the bicomplex case, that is multicomplexes with

d i = 0 for i 2.
The first, [Hu10, Example 1], is a "short staircase" bicomplex, giving a minimal example of non-trivial δ 2 in the spectral sequence in the bicomplex case. This may be schematically represented as

• • o o • • o o
where each bullet represents a copy of Z and each arrow represents the identity map, the vertical one being a d 0 and the horizontal ones being d 1 s. This bicomplex is (up to minor changes of convention) the bicomplex ZW 2 of [CELW18b], a representing object for the witness 2-cycles. The second example, [Hu10, Example 2], generalizes this to a "long staircase" bicomplex, giving a minimal example of non-trivial δ r in the spectral sequence in the bicomplex case. It can be pictured as follows.

• • o o • • o o • • • o o • • o o
This corresponds to the bicomplex ZW r of [START_REF] Cirici | Model category structures and spectral sequences[END_REF], a representing object for the witness r-cycles.

In [Hu10, Example 3], the first example is modified by putting in a non-trivial d 2 , as indicated, with the effect that the δ 2 of the spectral sequence is then zero.

• • o o • • o o g g
Finally, [Hu10, Example 4] is indicated below.

• d 1 z • d 2 y • z 1 0 o o 1 • d 0 z = d 1 x • x • y (1,0) o o k k
Here the diagonal arrow is d 2 given by 0 0 0 1 . Both x and y give rise to elements of Z 2 , "witnessed" by z for x and by 0 for y, and our formula for ∆ 2 gives

∆ 2 ([x]) = [-d 1 z], ∆ 2 ([y]) = [d 2 y].
It is easy to see that d 1 z ∈ B 2 , so [-d 1 z] = 0. So we see that the map induced by d 2 and the second differential in the spectral sequence are both non-zero and they are different from each other.

We also revisit the original example given by Wall [START_REF] Wall | Resolutions for extensions of groups[END_REF]. Let the group G be an extension of a normal subgroup K by its quotient group H. Wall shows how to construct (inductively) a free resolution of G from free resolutions of K and H, via what he calls a "twisted tensor product". This resolution has the form of TotC for C a multicomplex.

The explicit example given by Wall is for G a split extension of K = Z/r by H = Z/s, with generators x, y, subject to relations x r = y s = 1, y -1 xy = x t , with t s ≡ 1 mod r.

Applying his construction to the standard resolutions of the cyclic groups, he describes a (first quadrant) multicomplex whose Tot gives a free resolution for G.

Tensoring this over ZG with Z one obtains the following multicomplex, with homology of its total complex the group homology of G with integer coefficients. (Note that we switch over the order of Wall's bigradings, so that conventions match the rest of this paper.)

For a 0, b 0, C a,b is a free abelian group on generator c a,b and otherwise C a,b = 0.

Then, for all a, b, writing

T b = s-1 j=0 t jb , d 0 c a,2b-1 = 0, d 1 c 2a,2b = T b c 2a-1,2b , d 0 c a,2b = rc a,2b-1 , d 1 c 2a,2b-1 = -T b c 2a-1,2b-1 , d 1 c 2a+1,2b = (t b -1)c 2a,2b , d 2 c a,2b = 0, d 1 c 2a+1,2b-1 = -(t b -1)c 2a,2b-1 , d 2 c a,2b-1 = - t bs -1 r c a-2,2b ,
and d r = 0 for r > 2.

As Wall notes, the associated spectral sequence degenerates at the E 2 term and he computes the group homology explicitly. From our point of view, we see that, in any bidegree where Z 2 = 0, the formula for d 2 is precisely what it has to be in order for ∆ 2 to be zero.

In more detail, for x ∈ Z 2 , we have ∆

2 ([x]) = [d 2 x -d 1 z], where d 0 x = 0 and z is such that d 1 x = d 0 z. If b > 0 is even, then Z a,b
2 = 0 since d 0 from this bidegree is multiplication by r which is injective, so we consider the other cases.

Suppose x = αc 2a-1,2b-1 ∈ Z 2a-1,2b-1 2 . Then d 0 x = 0 and there is some z = βc 2a-2,2b such that d 1 x = d 0 z. Now, Thus we see that ∆ 2 ([x]) = [0], for every x ∈ Z 2 .

For

  C a multicomplex and (a, b) ∈ Z × Z, we write C a,b for the k-module in bidegree (a, b).

  D)/B p, * r (D), where the r-cycles are given by Z p, * r (D) := F p D ∩ d -1 (F p-r D) and the r-boundaries are given by B p, * 0 (D) = Z p-1, * 0 (D) and

  Proof. Define ψ : Z p, * r (D) → Z p, * r /B p, * r by ψ(x) = [(x) p ].

d. 2 .

 2 1 x = d 0 z ⇐⇒ -(t b -1)αc 2a-2,2b-1 = rβc 2a-2,2b-1 , so we see that such a z exists if and only if r divides (t b -1)α and then β = -(t b -1)α r . Thend 1 z = T b βc 2a-3,2b = -t bs -1 t b -1 (t b -1)α r c 2a-3,2b = -t bs -1 r αc 2a-3,2b = d 2 x, so that ∆ 2 ([x]) = 0. Now suppose x = αc 2a,2b-1 ∈ Z 2a,2b-12 Then d 0 x = 0 and there is some z = βc 2a-1,2b such that d 1 x = d 0 z. This time,d 1 x = d 0 z ⇐⇒ -T b αc 2a-1,2b-1 = rβc 2a-1,2b-1 ,so we see that such a z exists if and only if r divides T b α, and then β = -T b α r . Thend 1 z = (t b -1)βc 2a-2,2b = -(t b -1) T b α r c 2a-2,2b = -t bs -1 r αc 2a-2,2b = d 2 x, so again ∆ 2 ([x]) = 0.Finally, we consider x ∈ Z a,0 2 . We have Z 2a,0 2 = 0 : if x = αc 2a,0 ∈ Z 2a,0 2 there must be a z ∈ C 2a-1,1 such that d 1 x = sαc 2a-1,0 = d 0 z = 0 and so x = 0.So let x ∈ Z 2a-1,0 Then d 0 x = 0 and picking z = 0, we have d 0 z = d 1 x = 0. Then d 1 z = 0 = d 2 x.
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Conventions. Throughout the paper k will be a commutative unital ground ring.