On the spectral sequence associated to a multicomplex

Muriel Livernet, Sarah Whitehouse, Stephanie Ziegenhagen

To cite this version:

Muriel Livernet, Sarah Whitehouse, Stephanie Ziegenhagen. On the spectral sequence associated to a multicomplex. Journal of Pure and Applied Algebra, 2020, 224, pp. 528 - 535. 10.1016/j.jpaa.2019.05.019 . hal-03487910

HAL Id: hal-03487910

https://hal.science/hal-03487910

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
(cc) $\$$

ON THE SPECTRAL SEQUENCE ASSOCIATED TO A MULTICOMPLEX

MURIEL LIVERNET, SARAH WHITEHOUSE, AND STEPHANIE ZIEGENHAGEN

Abstract

A multicomplex, also known as a twisted chain complex, has an associated spectral sequence via a filtration of its total complex. We give explicit formulas for all the differentials in this spectral sequence.

1. Introduction

A multicomplex is an algebraic structure generalizing the notion of a (graded) chain complex and that of a bicomplex. The structure involves a family of higher "differentials" indexed by the non-negative integers, and is also known as a twisted chain complex, or a D_{∞}-module. Multicomplexes have arisen in many different places and play an important role in homotopical and homological algebra. These objects were first considered by Wall [Wa61] in his work on resolutions for extensions of groups and they were studied by Gughenheim and May [GM74] in their approach to differential homological algebra.

A multicomplex has an associated total complex, with filtration, and thus an associated spectral sequence. This spectral sequence plays a key role in the homotopy theory of these objects, as studied in [CELW18a]. The spectral sequence was studied by Boardman [Bo99], and by Hurtubise [Hu10], who noted that the differentials of the spectral sequence differ from the maps induced by the higher "differentials" of the multicomplex. The main content of this short note is to give explicit formulas for all the differentials in this spectral sequence. This description generalizes well-known results in the bicomplex case (see for example [CFUG97]).

We give some examples, revisiting those given by Hurtubise and Wall, and we briefly note some applications. In particular, a new application appears in the recent work of Cirici and Wilson [CW18]. They use our description of the E_{2} page of the spectral sequence, in the case of a multicomplex with only four non-zero structure maps, to introduce and study a new invariant for almost complex manifolds, which generalizes the definition of Dolbeault cohomology for complex manifolds.

Acknowledgements. We would like to thank Joana Cirici for helpful conversations. We would like to thank the anonymous referee for helping us to clarify our previous version.

Conventions. Throughout the paper k will be a commutative unital ground ring.

2000 Mathematics Subject Classification. 18G40, 18G35.
Key words and phrases. spectral sequence, multicomplex, twisted chain complex.

2. The spectral sequence associated to a multicomplex

We begin by introducing multicomplexes, including notation and grading conventions.

Definition 2.1. A multicomplex (also called a twisted chain complex) is a (\mathbb{Z}, \mathbb{Z}) graded k-module C equipped with maps $d_{i}: C \rightarrow C$ for $i \geqslant 0$ of bidegree $\left|d_{i}\right|=$ $(-i, i-1)$ such that

$$
\sum_{i+j=n} d_{i} d_{j}=0 \quad \text { for all } n \geqslant 0
$$

A morphism $f:\left(C, d_{i}\right) \rightarrow\left(C^{\prime}, d_{i}^{\prime}\right)$ of multicomplexes is given by maps $f_{i}: C \rightarrow C^{\prime}$ for $i \geqslant 0$ of bidegree $\left|f_{i}\right|=(-i, i)$ satisfying

$$
\sum_{i+j=n} f_{i} d_{j}=\sum_{i+j=n} d_{i}^{\prime} f_{j} \quad \text { for all } n \geqslant 0 .
$$

For C a multicomplex and $(a, b) \in \mathbb{Z} \times \mathbb{Z}$, we write $C_{a, b}$ for the k-module in bidegree (a, b).

Remark 2.2. Multicomplexes form a category, $\mathrm{tCh}_{\mathrm{k}}$, with objects and morphisms as in Definition 2.1. Sometimes different sign conventions are adopted. A common alternative is to require the structure maps to satisfy the relations

$$
\sum_{i+j=n}(-1)^{i} d_{i} d_{j}=0 \quad \text { for all } n \geqslant 0
$$

with a similar sign change for the morphisms. It may be checked that the resulting category is isomorphic to $\mathrm{tCh}_{\mathrm{k}}$.

Various other grading conventions may be found, too, such as a single \mathbb{N} or \mathbb{Z} grading, or an (\mathbb{N}, \mathbb{Z})-grading. We will discuss where our choice of (\mathbb{Z}, \mathbb{Z})-grading is significant below.

Remark 2.3. It is shown in [LV12, 10.3.17] (singly graded version) and in [LRW13] (bigraded version) that multicomplexes can be viewed as D_{∞}-algebras, where D is the operad of dual numbers. This point of view is also related to the work of Lapin [La01].

Example 2.4. If the structure maps of a multicomplex satisfy $d_{i}=0$ for $i \geqslant 1$, we retrieve the notion of a chain complex with an additional grading, sometimes referred to as a vertical bicomplex. If $d_{i}=0$ for $i \geqslant 2$, we retrieve the notion of a bicomplex.

A multicomplex gives rise to a chain complex via totalization. Since we consider (\mathbb{Z}, \mathbb{Z})-gradings it is a priori not clear which is the right notion of total complex in this setting. See [Me78] for a discussion of this. One could for example associate to a multicomplex C the direct sum total complex with $\bigoplus_{a+b=n} C_{a, b}$ in degree n. It will turn out that the associated spectral sequence has better convergence properties for the following version of the total complex.

Definition 2.5. For a multicomplex C, the associated total complex $\operatorname{Tot} C$ is the chain complex with

$$
(\operatorname{Tot} C)_{n}=\prod_{\substack{a+b=n \\ a \leqslant 0}} C_{a, b} \oplus \bigoplus_{\substack{a+b=n \\ a>0}} C_{a, b}=\bigoplus_{\substack{a+b=n \\ b \leqslant 0}} C_{a, b} \oplus \prod_{\substack{a+b=n \\ b>0}} C_{a, b}
$$

The differential on $\operatorname{Tot} C$ is given, for $c \in(\operatorname{Tot} C)_{n}$, by

$$
(d c)_{a}=\sum_{i \geqslant 0} d_{i}(c)_{a+i}
$$

where $(c)_{a}$ denotes the projection of c to $C_{a, *}=\prod_{b} C_{a, b}$.
Since $(c)_{j}=0$ for j sufficiently large, the sum above is finite and also $(d c)_{a}=0$ for sufficiently large a, so this formula determines a well-defined map on Tot C.

Note that it is not possible in general to consider a direct product total complex with $\prod_{a+b=n} C_{a, b}$ in degree n, since in this case the formula above can involve infinite sums.

Given a multicomplex C, we consider the filtered complex D, where $D:=\operatorname{Tot} C$ filtered by the subcomplexes

$$
\left(F_{p} D\right)_{n}=\prod_{\substack{a+b=n \\ a \leqslant p}} C_{a, b}
$$

Note that $F_{p} D=\bigoplus_{i=0}^{r-1} C_{p-i, *} \oplus F_{p-r} D$. Consequently, an element $x \in F_{p} D$ can be written

$$
\begin{equation*}
x=(x)_{p}+(x)_{p-1}+\ldots+(x)_{p-(r-1)}+u \tag{1}
\end{equation*}
$$

with $u \in F_{p-r} D$, where $(x)_{p-i}$ is the projection of x to $C_{p-i, *}$.
We consider the spectral sequence associated to this filtered complex, as presented in [De71, 1.3]. For $r \geqslant 0$, the r-stage $E_{r}(D)$ is an r-bigraded complex - that is, a bigraded module endowed with a square zero map δ_{r} of bidegree $(-r, r-1)$ - and may be written as the quotient

$$
E_{r}^{p, *}(D) \cong \mathcal{Z}_{r}^{p, *}(D) / \mathcal{B}_{r}^{p, *}(D)
$$

where the r-cycles are given by

$$
\mathcal{Z}_{r}^{p, *}(D):=F_{p} D \cap d^{-1}\left(F_{p-r} D\right)
$$

and the r-boundaries are given by $\mathcal{B}_{0}^{p, *}(D)=\mathcal{Z}_{0}^{p-1, *}(D)$ and

$$
\mathcal{B}_{r}^{p, *}(D):=\mathcal{Z}_{r-1}^{p-1, *}(D)+d \mathcal{Z}_{r-1}^{p+r-1, *}(D) \text { for } r \geqslant 1
$$

Given an element $x \in \mathcal{Z}_{r}^{p, *}(D)$, we will denote by $[x]_{r}$ its image in $E_{r}^{p, *}(D)$. For $[x]_{r} \in E_{r}^{p, *}(D)$, we have

$$
\begin{equation*}
\delta_{r}\left([x]_{r}\right)=[d x]_{r} . \tag{2}
\end{equation*}
$$

Expanding the expressions $d x \in F_{p-r} D$ and $d c=x$ for some $c \in F_{p+r-1} D$ using the decomposition (1) above leads to the following definition.

Definition 2.6. Let $x \in C_{p, *}$ and let $r \geqslant 1$. We define subgraded modules $Z_{r}^{p, *}$ and $B_{r}^{p, *}$ of $C_{p, *}$ as follows.
$x \in Z_{r}^{p, *} \Longleftrightarrow$ for $1 \leqslant j \leqslant r-1$, there exists $z_{p-j} \in C_{p-j, *}$ such that

$$
\begin{equation*}
d_{0} x=0 \text { and } d_{n} x=\sum_{i=0}^{n-1} d_{i} z_{p-n+i}, \text { for all } 1 \leqslant n \leqslant r-1 \tag{1}
\end{equation*}
$$

$x \in B_{r}^{p, *} \Longleftrightarrow$ for $0 \leqslant k \leqslant r-1$, there exists $c_{p+k} \in C_{p+k, *}$ such that

$$
\begin{cases}x=\sum_{k=0}^{r-1} d_{k} c_{p+k} & \text { and } \\ 0=\sum_{k=l}^{r-1} d_{k-l} c_{p+k} & \text { for } 1 \leqslant l \leqslant r-1\end{cases}
$$

Proposition 2.7. For $r \geqslant 1$ and all p, we have $B_{r}^{p, *} \subseteq Z_{r}^{p, *}$.
Proof. Let $x \in B_{r}^{p, *}$, with $c_{p+k} \in C_{p+k, *}$ for $0 \leqslant k \leqslant r-1$ satisfying equations $\left(\star_{2}\right)$. Define

$$
z_{p-j}=-\sum_{i=0}^{r-1} d_{j+i} c_{p+i} \in C_{p-j, *}
$$

for $1 \leqslant j \leqslant r-1$. Direct calculation shows that these elements satisfy $\left(\star_{1}\right)$ and thus $x \in Z_{r}^{p, *}$.

Proposition 2.8. The map

$$
\psi: \mathcal{Z}_{r}^{p, *}(D) / \mathcal{B}_{r}^{p, *}(D) \rightarrow Z_{r}^{p, *} / B_{r}^{p, *}
$$

sending $[x]_{r}$ to the class $\left[(x)_{p}\right]$, is well defined and an isomorphism.
Proof. Define

$$
\hat{\psi}: \mathcal{Z}_{r}^{p, *}(D) \rightarrow Z_{r}^{p, *} / B_{r}^{p, *}
$$

by $\hat{\psi}(x)=\left[(x)_{p}\right]$. To see that $(x)_{p} \in Z_{r}^{p, *}$, note that $d x \in F_{p-r} D$ implies that $(d x)_{p-n}=0$ for all $0 \leqslant n \leqslant r-1$. Therefore $d_{0}(x)_{p}=0$ and

$$
d_{n}(x)_{p}+\sum_{i=0}^{n-1} d_{i}(x)_{p-n+i}=(d x)_{p-n}=0
$$

for all $1 \leqslant n \leqslant r-1$. So, taking $z_{p-n+i}=-x_{p-n+i}$ in Definition 2.6, we see $(x)_{p} \in Z_{r}^{p, *}$ and a similar argument proves that $\hat{\psi}$ is surjective.

Let us compute its kernel. Let $x=(x)_{p}+w \in \operatorname{Ker} \hat{\psi}$, with $w \in F_{p-1} D$. By assumption $(x)_{p} \in B_{r}^{p, *}$, and hence for $0 \leqslant k \leqslant r-1$ there exists $c_{p+k} \in C_{p+k, *}$ such that

$$
\begin{cases}(x)_{p}=\sum_{k=0}^{r-1} d_{k} c_{p+k} & \text { and } \\ 0=\sum_{k=l}^{r-1} d_{k-l} c_{p+k}, & \text { for } 1 \leqslant l \leqslant r-1\end{cases}
$$

Let $c=\sum_{k=0}^{r-1} c_{p+k} \in F_{p+r-1} D$. The above relations imply that $(d c)_{p+l}=0$ for all $1 \leqslant l \leqslant r-1$, and $(d c)_{p}=(x)_{p}$. Therefore, $d c \in F_{p} D$ and $c \in \mathcal{Z}_{r-1}^{p+r-1, *}(D)$. In addition, $(x)_{p}-d c \in F_{p-1} D$, and $x=d c+\rho$, where $\rho=(x)_{p}-d c+w \in F_{p-1} D$. Then $d^{2} c=0$ implies that $d x=d \rho \in F_{p-r} D$, and hence $\rho \in \mathcal{Z}_{r-1}^{p-1, *}(D)$. Thus $\operatorname{Ker} \hat{\psi} \subseteq \mathcal{B}_{r}^{p, *}(D)$.

Conversely if $x \in \mathcal{B}_{r}^{p, *}(D)$, then $x=\rho+d c$ for some $\rho \in \mathcal{Z}_{r-1}^{p-1, *}(D)$ and some $c \in \mathcal{Z}_{r-1}^{p+r-1, *}(D)$. So, $\rho \in F_{p-1} D$ and $d c \in F_{p} D$. Thus, $(x)_{p}=(d c)_{p}$ and $(d c)_{s}=0$ for all $s>p$. This implies that $(x)_{p} \in B_{r}^{p, *}$ and $\mathcal{B}_{r}^{p, *}(D) \subseteq \operatorname{Ker} \hat{\psi}$.

Remark 2.9. In the language of witnesses adopted in [CELW18b], the difference between the $\mathcal{Z}_{r}(D)$-cycles and the Z_{r}-cycles is essentially the difference between specifying witnesses and just requiring the existence of them. More precisely, $\mathcal{Z}_{r}^{p, *}(D) / F_{p-r}(D)$ corresponds to the witness r-cycles for split filtered complexes.

Theorem 2.10. Under the isomorphism ψ of Proposition 2.8, the r-th differential of the spectral sequence corresponds to the map $\Delta_{r}: Z_{r}^{p, *} / B_{r}^{p, *} \rightarrow Z_{r}^{p-r, *} / B_{r}^{p-r, *}$ given by

$$
\Delta_{r}([x])=\left[d_{r} x-\sum_{i=1}^{r-1} d_{i} z_{p-r+i}\right]
$$

where $x \in Z_{r}^{p, *}$, and the family $\left\{z_{p-j}\right\}_{1 \leqslant j \leqslant r-1}$ satisfies $\left(\star_{1}\right)$.
Proof. Since $\left\{z_{p-j}\right\}_{1 \leqslant j \leqslant r-1}$ satisfies $\left(\star_{1}\right),\left[x-z_{p-1}-\ldots-z_{p-r+1}\right]_{r} \in \mathcal{Z}_{r}^{p, *}(D) / \mathcal{B}_{r}^{p, *}(D)$ and

$$
\psi\left[x-z_{p-1}-\ldots-z_{p-r+1}\right]_{r}=[x]
$$

where ψ is the isomorphism from Proposition 2.8. Hence

$$
\begin{aligned}
\Delta_{r}([x]) & =\psi \delta_{r}\left(\left[x-z_{p-1}-\ldots-z_{p-r+1}\right]_{r}\right) \\
& \stackrel{(2)}{=} \psi\left[d\left(x-z_{p-1}-\ldots-z_{p-r+1}\right)\right]_{r} \\
& =\left[\left(d\left(x-z_{p-1}-\ldots-z_{p-r+1}\right)\right)_{p-r}\right] \\
& =\left[d_{r} x-\sum_{i=1}^{r-1} d_{i} z_{p-r+i}\right]
\end{aligned}
$$

3. Examples

We revisit the examples given by Hurtubise [Hu10] in the light of the explicit description of the differentials. Hurtubise has the same sign and bidegree conventions as ours, but works with ground ring \mathbb{Z}.

The first two examples relate to the bicomplex case, that is multicomplexes with $d_{i}=0$ for $i \geqslant 2$. The first, [Hu10, Example 1], is a "short staircase" bicomplex, giving a minimal example of non-trivial δ_{2} in the spectral sequence in the bicomplex case. This may be schematically represented as

where each bullet represents a copy of \mathbb{Z} and each arrow represents the identity map, the vertical one being a d_{0} and the horizontal ones being $d_{1} \mathrm{~s}$. This bicomplex is (up to minor changes of convention) the bicomplex $\mathcal{Z W}_{2}$ of [CELW18b], a representing object for the witness 2-cycles. The second example, [Hu10, Example 2], generalizes
this to a "long staircase" bicomplex, giving a minimal example of non-trivial δ_{r} in the spectral sequence in the bicomplex case. It can be pictured as follows.

This corresponds to the bicomplex $\mathcal{Z W}_{r}$ of [CELW18b], a representing object for the witness r-cycles.

In [Hu10, Example 3], the first example is modified by putting in a non-trivial d_{2}, as indicated, with the effect that the δ_{2} of the spectral sequence is then zero.

Finally, [Hu10, Example 4] is indicated below.

Here the diagonal arrow is d_{2} given by $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$. Both x and y give rise to elements of Z_{2}, "witnessed" by z for x and by 0 for y, and our formula for Δ_{2} gives

$$
\Delta_{2}([x])=\left[-d_{1} z\right], \quad \Delta_{2}([y])=\left[d_{2} y\right] .
$$

It is easy to see that $d_{1} z \notin B_{2}$, so $\left[-d_{1} z\right] \neq 0$. So we see that the map induced by d_{2} and the second differential in the spectral sequence are both non-zero and they are different from each other.

We also revisit the original example given by Wall [Wa61]. Let the group G be an extension of a normal subgroup K by its quotient group H. Wall shows how to construct (inductively) a free resolution of G from free resolutions of K and H, via what he calls a "twisted tensor product". This resolution has the form of $\operatorname{Tot} C$ for C a multicomplex.

The explicit example given by Wall is for G a split extension of $K=\mathbb{Z} / r$ by $H=\mathbb{Z} / s$, with generators x, y, subject to relations

$$
x^{r}=y^{s}=1, \quad y^{-1} x y=x^{t}, \quad \text { with } t^{s} \equiv 1 \bmod r .
$$

Applying his construction to the standard resolutions of the cyclic groups, he describes a (first quadrant) multicomplex whose Tot gives a free resolution for G.

Tensoring this over $\mathbb{Z} G$ with \mathbb{Z} one obtains the following multicomplex, with homology of its total complex the group homology of G with integer coefficients. (Note that we switch over the order of Wall's bigradings, so that conventions match the rest of this paper.)

For $a \geqslant 0, b \geqslant 0, C_{a, b}$ is a free abelian group on generator $c_{a, b}$ and otherwise $C_{a, b}=0$.

Then, for all a, b, writing $T_{b}=\sum_{j=0}^{s-1} t^{j b}$,

$$
\begin{aligned}
d_{0} c_{a, 2 b-1} & =0, & d_{1} c_{2 a, 2 b} & =T_{b} c_{2 a-1,2 b} \\
d_{0} c_{a, 2 b} & =r c_{a, 2 b-1}, & d_{1} c_{2 a, 2 b-1} & =-T_{b} c_{2 a-1,2 b-1}, \\
d_{1} c_{2 a+1,2 b} & =\left(t^{b}-1\right) c_{2 a, 2 b}, & d_{2} c_{a, 2 b} & =0 \\
d_{1} c_{2 a+1,2 b-1} & =-\left(t^{b}-1\right) c_{2 a, 2 b-1}, & d_{2} c_{a, 2 b-1} & =-\frac{t^{b s}-1}{r} c_{a-2,2 b},
\end{aligned}
$$

and $d_{r}=0$ for $r>2$.
As Wall notes, the associated spectral sequence degenerates at the E_{2} term and he computes the group homology explicitly. From our point of view, we see that, in any bidegree where $Z_{2} \neq 0$, the formula for d_{2} is precisely what it has to be in order for Δ_{2} to be zero.

In more detail, for $x \in Z_{2}$, we have $\Delta_{2}([x])=\left[d_{2} x-d_{1} z\right]$, where $d_{0} x=0$ and z is such that $d_{1} x=d_{0} z$. If $b>0$ is even, then $Z_{2}^{a, b}=0$ since d_{0} from this bidegree is multiplication by r which is injective, so we consider the other cases.

Suppose $x=\alpha c_{2 a-1,2 b-1} \in Z_{2}^{2 a-1,2 b-1}$. Then $d_{0} x=0$ and there is some $z=$ $\beta c_{2 a-2,2 b}$ such that $d_{1} x=d_{0} z$. Now,

$$
d_{1} x=d_{0} z \quad \Longleftrightarrow \quad-\left(t^{b}-1\right) \alpha c_{2 a-2,2 b-1}=r \beta c_{2 a-2,2 b-1}
$$

so we see that such a z exists if and only if r divides $\left(t^{b}-1\right) \alpha$ and then $\beta=-\frac{\left(t^{b}-1\right) \alpha}{r}$. Then

$$
d_{1} z=T_{b} \beta c_{2 a-3,2 b}=-\frac{t^{b s}-1}{t^{b}-1} \frac{\left(t^{b}-1\right) \alpha}{r} c_{2 a-3,2 b}=-\frac{t^{b s}-1}{r} \alpha c_{2 a-3,2 b}=d_{2} x
$$

so that $\Delta_{2}([x])=0$.
Now suppose $x=\alpha c_{2 a, 2 b-1} \in Z_{2}^{2 a, 2 b-1}$. Then $d_{0} x=0$ and there is some $z=$ $\beta c_{2 a-1,2 b}$ such that $d_{1} x=d_{0} z$. This time,

$$
d_{1} x=d_{0} z \quad \Longleftrightarrow \quad-T_{b} \alpha c_{2 a-1,2 b-1}=r \beta c_{2 a-1,2 b-1},
$$

so we see that such a z exists if and only if r divides $T_{b} \alpha$, and then $\beta=-\frac{T_{b} \alpha}{r}$. Then

$$
d_{1} z=\left(t^{b}-1\right) \beta c_{2 a-2,2 b}=-\left(t^{b}-1\right) \frac{T_{b} \alpha}{r} c_{2 a-2,2 b}=-\frac{t^{b s}-1}{r} \alpha c_{2 a-2,2 b}=d_{2} x
$$

so again $\Delta_{2}([x])=0$.
Finally, we consider $x \in Z_{2}^{a, 0}$. We have $Z_{2}^{2 a, 0}=0$: if $x=\alpha c_{2 a, 0} \in Z_{2}^{2 a, 0}$ there must be a $z \in C_{2 a-1,1}$ such that $d_{1} x=s \alpha c_{2 a-1,0}=d_{0} z=0$ and so $x=0$.

So let $x \in Z_{2}^{2 a-1,0}$. Then $d_{0} x=0$ and picking $z=0$, we have $d_{0} z=d_{1} x=0$. Then $d_{1} z=0=d_{2} x$.

Thus we see that $\Delta_{2}([x])=[0]$, for every $x \in Z_{2}$.

References

[Bo99] J.M. Boardman, Conditionally convergent spectral sequences, in Homotopy invariant algebraic structures (Baltimore, MD, 1998), Contemp. Math., 239, 49-84, Amer. Math. Soc., Providence, RI, (1999).
[CELW18a] J. Cirici, D. Egas Santander, M. Livernet and S. Whitehouse, Derived A-infinity algebras and their homotopies, Topology and its applications, 235, (2018), 214-268.
[CELW18b] J. Cirici, D. Egas Santander, M. Livernet and S. Whitehouse, Model category structures and spectral sequences, 26 pages, arXiv:1805.00374.
[CFUG97] L.A. Cordero, M. Fernández, L. Ugarte and A. Gray, A general description of the terms in the Frölicher spectral sequence, Differential Geom. Appl., 7 (1), (1997), 75-84.
[CW18] J. Cirici and S.O. Wilson, Dolbeault cohomology for almost complex manifolds, preprint 2018.
[De71] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math., 40, (1971), 5-57.
[GM74] V.K.A.M. Gugenheim and J.P. May, On the theory and applications of differential torsion products, Memoirs of the AMS 142, American Mathematical Society, Providence, R.I., (1974).
[Hu10] D.E. Hurtubise, Multicomplexes and spectral sequences, J. Algebra Appl. 9 (2010), no. 4, 519-530.
[La01] S.V. Lapin, Differential perturbations and D_{∞}-differential modules, Sb. Math. 192 (2001), no. 11-12, 1639-1659.
[LRW13] M. Livernet, C. Roitzheim and S. Whitehouse, Derived A_{∞}-algebras in an operadic context, Algebr. Geom. Topol. 13, (2013), 409-440.
[LV12] J-L. Loday and B. Vallette, Algebraic operads, Grundlehren der mathematischen Wissenschaften 346, Springer-Verlag, (2012).
[Me78] J-P. Meyer, Acyclic models for multicomplexes, Duke Math. J. 45 (1), (1978), 67-85.
[Wa61] C.T.C. Wall, Resolutions for extensions of groups, Proc. Cambridge Philos. Soc., 57, (1961), 251-255.
(M. Livernet) Univ Paris Diderot, Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS, Sorbonne Université, 8 place Aurélie Nemours, F-75013, Paris, France E-mail address: livernet@math.univ-paris-diderot.fr
(S. Whitehouse) School of Mathematics and Statistics, University of Sheffield, S3 7RH, England

E-mail address: s.whitehouse@sheffield.ac.uk
E-mail address: stephanie.ziegenhagen@web.de

