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Introduction

Supercritical fluid chromatography (SFC) is an important technique in drug discovery related analysis due to its many advantages comparing to the commonly used high-performance liquid chromatography (HPLC) technique. The environmental-friendly CO2 based mobile phase, the increased efficiency together with the short analysis time (due to high flow-rate) and the lower operational costs give SFC benefits over many analysis techniques related to drug development [START_REF] Fekete | Evolution and current trends in liquid and supercritical fluid chromatography[END_REF][START_REF] Desfontaine | Supercritical fluid chromatography in pharmaceutical analysis; a review[END_REF], particularly in chiral separation where preparative scale remains its main application run by industrial actors more than academic ones [START_REF] Arnaud | Supercritical fluid chromatography seeks users[END_REF]. Halogenated polysaccharide based CSPs originally developed by Chankvetadze, et al. for HPLC [START_REF] Chankvetadze | Chloromethylphenylcarbamate derivatives of cellulose as chiral stationary phases for high-performance liquid chromatography[END_REF][START_REF] Chankvetadze | Dimethyl-, dichloro-and chloromethylphenylcarbamates of amylose as chiral stationary phases for high-performance liquid chromatography[END_REF][START_REF] Chankvetadze | 3-Fluoro-, 3-chloro-and 3bromo-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for highperformance liquid chromatographic enantioseparation[END_REF] have reached the market in 2005. The coated chlorinated carbamate phases were deeply characterized [START_REF] Khater | Insights into chiral recognition mechanism in supercritical fluid chromatography IV. Chlorinated polysaccharide stationary phases[END_REF] and have found applications [START_REF] West | Effects of mobile phase composition and temperature on supercritical fluid chromatography enantioseparation of chiral fluoro-oxoindoletype compounds with chlorinated polysaccharide stationary phases[END_REF][START_REF] Zehani | Exploring chiral separation of 3-carboxamido-5aryl isoxazole derivatives in supercritical fluid chromatography on amylose and cellulose tris dimethyl-and chloromethyl phenylcarbamate polysaccharide based stationary phases[END_REF][START_REF] Wu | From analytical methods to large scale chiral SFC using chlorinated chiral stationary phases[END_REF][START_REF] West | Enantioseparation of novel chiral sulfoxides on chlorinated polysaccharide stationary phases in supercritical fluid chromatography[END_REF][START_REF] Albals | Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes[END_REF] as their immobilized versions [START_REF] Klerck | Pharmaceutical enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography[END_REF][START_REF] Dasilva | Evaluation of non-conventional polar modifiers on immobilized chiral stationary phases for improved resolution of enantiomers by supercritical fluid chromatography[END_REF][START_REF] Zhang | Complementary enantiorecognition patterns and specific method optimization aspects on immobilized polysaccharide-derived chiral stationary phases[END_REF][START_REF] Lee | On the method development of immobilized polysaccharide chiral stationary phases in supercritical fluid chromatography using an extended range of modifiers[END_REF]. In 2018, there were only two studies concerning the use of cellulose tris(3-chloro-4-methylphenylcarbamate) chiral column [START_REF] Alvarenga | Enantioselective separation of (±)-β-hydroxy-1,2,3-triazoles by supercritical fluid chromatography and high-performance liquid chromatography[END_REF][START_REF] Zhao | Enantioseparation of napropamide by supercritical fluid chromatography: Effects of the chromatographic conditions and separation mechanism[END_REF] and articles dealing with cellulose tris (3,5-dichlorophenylcarbamate) [START_REF] Lipka | Separation of enantiomers of native amino acids with polysaccharide-based chiral columns in supercritical fluid chromatography[END_REF][START_REF] Hegade | Chiral stationary phase optimized selectivity supercritical fluid chromatography: a strategy for the separation of mixtures of chiral isomers[END_REF][START_REF] Pirrone | Supercritical fluid chromatographyphotodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances[END_REF] in SFC. To get compare the separation ability of these two columns, a pyrrolidin-2-one family, new class of antibacterial compounds under evaluation, was chosen (Fig. 1). In the context of green chemistry, a lot of efforts have been made for the valorification of natural resources and industrial waste. The pyroglutamic acid is a raw material, derived from sugar beet molasses. The pyroglutamic acid (1) and its derivatives, present a chiral center and like a great number of pharmaceutical molecules, each enantiomer has its own pharmacological properties thus underlining the importance of their separation. The pyrrolidin-2-one scaffold is well known as a privileged synthon for a broad range of heterocyclic compounds as well as for high potential to afford small compounds with interesting biological activities. Therefore, simple pyrrolidones are often fundamental parts of the structure of antimicrobial [START_REF] Matviiuk | Synthesis of 3-heteryl substituted pyrrolidine-2,5diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis[END_REF], antiviral [START_REF] Ghosh | Substituent effects on P2cyclopentyltetrahydrofuranyl urethanes: Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors[END_REF] and antitumor compounds [START_REF] Cramer | Synthesis and biological properties of cylindramide derivatives: evidence for calcium-dependent cytotoxicity of tetramic acid lactams[END_REF], as well as products that target the central nervous system [START_REF] Kaminski | Design, synthesis and anticonvulsant properties of new N-Mannich bases derived from 3-phenylpyrrolidine-2,5-diones[END_REF], or other biological systems. Considering the fact that the manufacturer presented baseline separation of thalidomide on the Lux Cellulose-2, and chlortalidone on the Lux i-Cellulose-5, chemical compounds which show structural similarities with the pterolactame derivatives used in this study, we expected similar enantioseparation ability for our analytes. Therefore, the aim of this work was to compare the separation performances of each chiral selector, the influence of the flow-rate and percentage of methanol on retention and resolution.

Material and methods

Chemicals

The molecules used are 5-methoxy-2-pyrrolidone 2 derivatives (racemic compound 3: 5-anilinopyrrolidin-2-one, racemic compound 4: 5-(benzylamino)pyrrolidin-2-one, racemic compound 5: The used methanol, ethanol, isopropanol or acetonitrile were HPLC grade and was purchased from VWR (Strasbourg, France). Carbon dioxide (CO2) with purity of 99.995% was purchased from Linde (Saint-Priest, France).

Sample solutions

For analytical screening, solutions of samples were prepared in methanol at 1 mg.mL -1 . The solutions were always degassed by an ultrasonic bath and filtered on a 0.45 m PTFE syringe-filter (15 mm diameter) prior to be used. Two chiral analytical columns were used for this study. Lux Cellulose-2 and Lux i-Cellulose-5, purchased from Phenomenex ® (Le Pecq, France) having dimensions 250 mm × 4.6 mm i.d. with 5 µm or 3 µm particle size (Fig. 2). The silica gel of the Lux Cellulose-2 column is coated with cellulose tris(3-chloro-4-methylphenylcarbamate) chiral selector, and the silica gel of the Lux i-Cellulose-5 column is immobilized with cellulose tris(3,5-dichlorophenylcarbamate) chiral selector.

Chromatographic system and conditions

The chromatographic system used was an SFC-PICLAB hybrid 10-20 apparatus (PIC Solution, Avignon, France) equipped with an autosampler comprised a 48-vials plate (model Alias, Emmen, Netherlands), three model 40 P pumps: two for CO2 and a third for the modifier (Knauer, Berlin, Germany), a column oven with a Valco ten-position column selection valve, and a Valco six-position solvent switching valve. The pump head used for pumping the CO2 was cooled to -8 • C by a cryostat (model Minichiller, Huber, Offenburg, Germany. The system was also composed of a Smartline 2600 diode array detector (DAD) (Knauer, Berlin, Germany). After the detector, the outlet pressure was controlled by a back-pressure regulator (BPR). The outlet regulator tube was heated to 55 °C to avoid ice formation during the CO2 depressurization. The system was controlled and the data were acquired with the SFC PicLab Analytic Online v.3.1.2 software and the data were processed with the Analytic Offline v.3.2.0 software (PIC Solution, Avignon, France). During the separation screening, the mobile phase was always CO2-modifier mixtures with 20% of either methanol, ethanol, isopropanol or acetonitrile and during the separation optimization, the mobile phase was always CO2-modifier mixtures with the proportion of methanol ranging from 7.5 to 15%, the flow rate was ranging between 2 and 4 mL/min. All analyses were run in isocratic mode. The column oven temperature was 40 • C and the outlet pressure was 150 bar. The wavelength was 210 nm and the injected volume was 20 µL.

Chromatographic parameters

The resolution factor from our study, was calculated using: Rs = 2(tR2-tR1)/(ω1+ω2), where tR1 and tR2 are the retention times of the peaks of enantiomers and ω1 and ω2 are the peak widths measured at the baseline between tangents drawn to the peak sides. The retention (or capacity) factor (k) is a mean of measuring the retention of an analyte on the chromatographic column for each enantiomer, k1 and k2 are calculated by: k = (tR-t0)/t0 where t0 was measured using 1, 3, 5-tritert-butylbenzene (TTBB).

Results and discussion

Selection of stationary and mobile phases

Two columns packed with two types of chiral selectors Lux Cellulose-2 and Lux i-Cellulose-5, were examined for their separative performances towards six antibacterial compounds. In SFC and in HPLC as well, polysaccharide stationary phases play a crucial role in chiral separation.

Thus the two columns were firstly tested at 4 mL/min with 10% of either acetonitrile, isopropanol, ethanol and methanol. As previously reported, aprotic solvent as acetonitrile leads to the highest retention times, followed by isopropanol and then ethanol for which almost all compounds were not separated. In terms of resolution and analysis times, best results were observed with methanol and are summarized for the six derivatives in Tables 1 and2.

From these results it can be seen that compounds 7 and 8 are not separated on Lux cellulose-5 CSP. In addition, on this column, three derivatives i.e 3, 4 and 5 were only partially separated (R<1.5). This behavior is also observed on Lux cellulose-2 for compounds 3, 5, 7 and 8. The effect of a decrease of the flow-rate on the resolution was further explored.

Flow-rate selection

Six different flow-rates were tested between 2 and 4 mL/min with step of 0.5 mL/min, on the two columns. All the results are summarized in Tables 1 and2. On Lux cellulose-2 CSP, all the compounds benefited from this decrease of flow-rate leading to higher resolution values. For example, for pyrrolidone derivative 3, the resolution value goes from 1.15 to 1.47 at 4 and 2 mL/min respectively. Following the Purnell's equation resolution mainly depends on the efficiency value and for all the compounds, on the two CSPs, this parameter increases with a decreasing flow-rate (Tables 1 and2). However this improvement was not sufficient for compounds 7 and 8 for which resolution values were equal to 1.19 and 1.00 respectively at this lower flow-rate. It must be noticed that except for pyrrolidone derivative 6, the resolution values obtained on Lux cellulose-2 are higher than on Lux cellulose-5. In addition, one can notice the unusual high values of retention factors for derivative 6 in comparison to other compounds, whatever the CSP was. This behavior can be explained by the presence of a supplementary carbonyl moiety on this structure inducing supplementary dipole-dipole interactions and hydrogen bonding with the CSP.

It is noteworthy to say that lower flow-rates (i.e 1.0 and 1.5 mL/min) were also tested but led to large peaks and long retention times (data not shown). In order to improve further the resolution, particularly for derivatives 7 and 8, the influence of the percentage of methanol with a flow-rate conserved at 2 mL/min was explored on the Lux cellulose-2.

Percentage of methanol in the mobile phase

In a general manner, in SFC the modifier plays a key role and its effects are numerous: i) the organic solvent changes the polarity of the mobile phase, ii) it changes the density of the mobile phase, particularly when pressure and temperature conditions are such that fluid compressibility is high that is to say close to the critical point and when the fluid is more gas-like, iii) the solvent changes the polarity and possibly the three dimensional structure of the CSP through its extensive adsorption on the CSP surface [START_REF] West | Enantioselective separation with supercritical fluids[END_REF]. In SFC, the percentage of co-solvent affects very strongly the retention time and then the resolution. The percentage of methanol was varied between 7.5 and 15% by step of 2.5%. All results are summarized in Table 3. An increase in co-solvent proportion generally leads to a decrease of the retention factors. This behavior is observed in Table 3. In addition one can see that the decrease in retention factor is more and more diminished when the co-solvent percentage is increased: large variation in retention is observed at small percentages of modifier, for instance k1 is going from 34.38 to 15.54 when the percentage ranging from 7.5 to 10%, whereas further increase in modifier proportions causes less modification (k1 varying from 8.42 to 5.49 when the percentage ranging from 12.5 to 15%) for compound 4, this being a classical behavior in SFC. Best Rs/tR2 ratio depends on each compound. For derivatives 3, 4 and 6, the best resolutions in shorter analysis time were achieved with 15% of methanol and for 5 and 8 under 7.5% of co-solvent. All the five optimized chromatograms are represented on the Figure 3. Considering the separation of compound 7 on the Lux cellulose-2 packed with the 5 µm particles this latter is not fully baseline resolved.

Reduction of the particle size effect on resolution

Since 2010, there were some studies concerning the use of chiral columns packed with smaller particles [START_REF] Hamman | A high throughput approach to purifying chiral molecules using 3 μm analytical chiral stationary phases via supercritical fluid chromatography[END_REF][START_REF] Hegstad | Enantiomeric separation and quantification of citalopram in serum by ultrahigh performance supercritical fluid chromatography-tandem mass spectrometry[END_REF][START_REF] Regalado | Chromatographic resolution of closely related species: separation of warfarin and hydroxylated isomers[END_REF][START_REF] Regalado | Chromatographic separation and assignment of absolute configuration of hydroxywarfarin isomers[END_REF][START_REF] Yang | Development and validation of an enantioselective SFC-MS/MS method for simultaneous separation and quantification of oxcarbazepine and its chiral metabolites in beagle dog plasma[END_REF][START_REF] Vera | Comparing the selectivity and chiral separation of d-and l-fluorenylmethyloxycarbonyl chloride protected amino acids in analytical high performance liquid chromatography and supercritical fluid chromatography; evaluating throughput, economic and environmental impact[END_REF][START_REF] Regalado | Pushing the speed limit in enantioselective supercritical fluid chromatography[END_REF]. The mean diameter or particle size (dp), of the spherical supports used for the stationary phase of a column, is a physical dimension that has a significant impact on the performance of the column. Cellulose tris(3-chloro-4-methylphenylcarbamate) columns with 3µm particle are now commercially available from different suppliers. Thus this particle size was tested to improve the separation of derivative 7. It can be seen from Figure 3 that the 3µm stationary phase provides slightly faster analyses times and improved resolution equal to 1.90.

Conclusive remarks

The performance of Lux i-Cellulose-5 (5µm) and Lux Cellulose-2 (3 and 5 µm), 250 × 4.6 mm columns with respectively an immobilized and a coated chlorinated polysaccharide stationary phases were evaluated towards six pyrrolidone derivatives, with respect to flow-rate and methanol concentration using supercritical fluid chromatography. The optimum linear velocity corresponded to a low flow-rate equal to 2 mL/min. The Lux cellulose-2 (5µm) CSP was found to separate the enantiomers of five derivatives out of six thanks to various percentages of methanol as a co-solvent. Concerning the last derivative 7, the benefit of small particle (3 µm) leading to improved efficiency resulting in better chiral separation, was highlighted in this experimental study. This study result is of practical significance for future separation of similar analytes. 
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 2 phenylhydrazino)pyrrolidin-2-one, racemic compound 6: N'-(5-oxopyrrolidin-2yl)benzohydrazide, racemic compound 7: 5-(benzyloxy)pyrrolidin-2-one, racemic compound 8: 5-(1-phenylethoxy)pyrrolidin-2-one), synthesized in the frame of this project. Unlike compounds 1 to 7 bearing a single asymmetric center, compound 8 has two asymmetrical carbons and the complete separation of the four expected stereoisomers was also attempted on CSPs.
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Table 1 .

 1 Chromatographic parameters obtained for all compounds under different flow-rates with 10% of MeOH on Lux Cellulose-2, 5 µm

	Compound	Flow-rate (mL/min)	tr1 (min) tr2 (min)	k1	k2	α	Rs	N
		2	28.42	31.5	17.90	19.94	1.11	1.47
		2.5	24.25	28.41	20.29	23.94	1.18	1.97
	3	3	19.93	23.44	19.76	23.42	1.19	1.88
		3.5	16.85	19.79	19.06	22.57	1.18	1.67
		4	15.32	17.22	19.27	21.79	1.13	1.15
		2	24.88	29.79	15.54	18.81	1.21	2.83
		2.5	19.36	23.26	16.00	19.42	1.21	2.72
	4	3	16.05 19.329 15.72	19.13	1.22	2.44
		3.5	13.58	16.35	15.17	18.47	1.22	2.16
		4	11.80	14.19	14.62	17.78	1.22	1.87
		2	11.04	12.53	6.34	7.33	1.16	1.71
		2.5	8.69	9.84	6.63	7.64	1.15	1.51
	5	3	7.21	8.19	6.51	7.53	1.16	1.42
		3.5	6.03	6.89	6.19	7.20	1.16	1.34
		4	5.39	6.09	6.14	7.07	1.15	1.15
		2	50.31	68.64	32.46	44.64	1.38	3.59
		2.5	38.42	52.24	32.73	44.86	1.37	3.47
	6	3	31.50	43.22	31.82	44.02	1.38	3.32
		3.5	26.53	36.31	30.58	42.23	1.38	3.05
		4	22.73	31.34	29.08	40.46	1.39	2.88
		2	8.15	8.92	4.42	4.93	1.12	1.19
		2.5	6.39	7.01	4.61	5.15	1.12	1.16
	7	3	5.33	5.84	4.55	5.08	1.12	1.04
		3.5	4.54	4.97	4.40	4.91	1.12	0.89
		4	3.93	4.29	4.20	4.68	1.11	0.79
		2	11.36	12.5	6.55	7.31	1.12	1.00
		2.5	8.92	9.92	6.84	7.71	1.13	0.95
	8	3	7.44	8.26	6.75	7.60	1.13	1.01
		3.5	6.31	6.99	6.52	7.33	1.12	1.08
		4	5.49	6.05	6.26	7.01	1.12	0.97

Table 2 .

 2 Chromatographic parameters obtained for all compounds under different flow-rates with 10% of MeOH on i-Lux Cellulose-5, 5 µm

	Compound	Flow-rate (mL/min)	tr1 (min) tr2 (min)	k1	k2	α	Rs	N
		2	29.06	32.19	18.76	20.90	1.11	1.50	
	3	2.5 3	22.62 18.49	25.23 20.56	17.85 17.07	20.03 19.09	1.12 1.12	1.30 1.14	
		3.5	15.57	17.15	16.49	18.27	1.11	0.97	
		4	13.34	14.80	20.52	22.87	1.11	0.96	
		2	24.34	27.89	15.61	18.04	1.16	1.80	
		2.5	19.15	21.92	14.96	17.27	1.15	1.46	
	4	3	15.61	17.98	14.26	16.58	1.16	1.31	
		3.5	13.04	14.86	13.66	15.70	1.15	1.10	
		4	11.21	12.83	17.08	19.69	1.15	1.05	
		2	11.93	13.81	7.14	8.42	1.18	1.84	
		2.5	9.38	10.82	6.81	8.02	1.18	1.68	
	5	3	7.65	8.85	6.48	7.65	1.18	1.59	
		3.5	6.56	7.56	6.37	7.49	1.18	1.41	
		4	5.64	6.49	8.09	9.46	1.17	1.24	
		2	59.53	84.85	39.63	56.92	1.44	4.79	
		2.5	45.82	67.78	37.18	55.48	1.49	4.68	
	6	3	37.06	54.68	35.22	52.45	1.49	4.12	
		3.5	30.53	45.21	33.29	49.80	1.50	3.76	
		4	26.28	39.15	41.38	62.14	1.50	3.43	
		2	7.42	-	4.07	-	-	-	-
		2.5	5.93	-	3.94	-	-	-	-
	7	3 3.5	4.88 4.09	--	3.76 3.59	--	--	--	--
		4	3.56	-	4.74	-	-	-	-
		2	11.15	-	6.61	-	-	-	-
		2.5	8.79	-	6.32	-	-	-	-
	8	3	7.21	-	6.04	-	-	-	-
		3.5	6.05	-	5.79	-	-	-	-
		4	5.28	-	7.51	-	-	-	-

Table 3 .

 3 Chromatographic parameters obtained for all compounds at 2 mL/min under different modifier percentages on Lux Cellulose-2, 5 µm

	Compound	% MeOH	tr1 (min)	tr2 (min)	k1	k2	α	Rs
		7.5%	50.44	59.51	34.77	41.21	1.18	1.89
	3	10%	28.421	31.5	19.30	21.50	1.11	1.47
		12.5%	21.67	25.42	14.70	17.42	1.18	1.91
		15%	16.26	18.81	10.87	12.73	1.17	2.83
		7.5%	41.75	50.77	28.61	35.01	1.22	1.87
	4	10%	24.88	29.79	16.77	20.28	1.21	2.83
		12.5%	17.53	20.96	11.70	14.19	1.21	1.90
		15%	13.30	15.684	8.71	10.45	1.20	1.69
		7.5%	16.03	18.7	10.37	12.26	1.18	1.72
	5	10%	11.04	12.53	6.89	7.95	1.15	1.61
		12.5%	8.26	9.36	4.99	5.78	1.16	1.10
		15%	6.67	7.54	3.87	4.50	1.16	1.09
		7.5%	-	-	-	-	-	-
	6	10%	50.317	68.64	34.94	48.03	1.37	3.59
		12.5%	31.44	42.71	21.78	29.95	1.37	2.97
		15%	21.42	28.81	14.64	20.03	1.37	2.50
		7.5%	17.01	19.12	11.06	12.56	1.14	1.02
	7	10%	11.36	12.5	7.11	7.93	1.11	1.00
		12.5%	8.66	9.48	5.28	5.87	1.11	0.98
		15%	6.96	7.55	4.08	4.51	1.11	1.06
		7.5%	11.74	13.2	7.33	8.36	1.14	1.79
	8	10%	8.20	8.96	4.86	5.40	1.11	1.17
		12.5%	6.38	7.03	3.62	4.09	1.13	1.10
		15%	5.20	5.64	2.80	1.75	0.63	0.90
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