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Coupling between adsorption and mechanics (and vice versa)

Adsorption can deform porous solids, and mechanical stresses or strains can impact the adsorption process: this mini-review is dedicated to this coupling. After introducing some frameworks used to predict adsorption-induced strains, the question of how important it is to take into account the impact of mechanics on the adsorption process is addressed. Finally, some specific complexities (e.g., of the microstructure, or of the mechanical behavior of the adsorbent) that the community aims at integrating into the prediction of adsorption-induced strains are addressed.

Introduction

The fact that adsorption can deform solids has been known for centuries, but has been the subject of renewed interest in the last decade or so, since the discovery that some metal-organic frameworks (MOFs) can exhibit large deformations upon adsorption. As I will try to address in this mini-review, not only does adsorption impact the mechanical response of the adsorbent, also does the mechanical response of the adsorbent impact the adsorption process: the coupling between adsorption and mechanics is a two-way coupling.

Depending on the size of their pores, porous bodies are referred to as microporous (i.e., with a pore size below 2nm), mesoporous (i.e., with a pore size between 2nm and 50nm), or macroporous (i.e., with a pore size greater than 50nm). The physics through which in-pore fluid can deform a porous body depends on this pore size: capillary effects (i.e., effects due to the presence of menisci between various phases of the in-pore fluid) and Gibbs-Bangham-like effects (i.e., deformations induced by adsorption on solid surfaces) in mesoporous materials, or pore filling (rather than surface covering) in microporous solids. Note that, even in macroporous solids (in which fluid is not adsorbed but behaves like a bulk phase), in-pore fluids can deform the body, through their pressure variations (see, e.g., [1]).

One can already find in the recent literature an extensive review of adsorption-induced deformations in porous solids [START_REF] Gor | Adsorption-induced deformation of nanoporous materials[END_REF], which I will partly complement with some most recent works. I also want to mention a recent review on the computational chemistry of soft porous crystals [START_REF] Fraux | Recent advances in the computational chemistry of soft porous crystals[END_REF].

In this mini-review, I will first introduce some frameworks used to estimate adsorptioninduced strains, before tackling the notion of the two-way coupling between adsorption and mechanics, and moving to specific complexities incorporated in the modeling of adsorption-induced deformations.

Some frameworks to predict adsorption-induced strains

The discussion in this section is quite generic and disregards specific complexities of the material, which will be addressed later in the manuscript.

A first pore-scale approach to predict adsorption-induced strains is a thermodynamic one, which consists in identifying the energy to minimize in the so-called osmotic ensemble, which is the 2 right thermodynamic ensemble to address adsorption-induced deformations [START_REF] Escobedo | Novel pseudoensembles for simulation of multicomponent phase equilibria[END_REF]. Through this approach, Ravikovitch and Neimark [START_REF] Ravikovitch | Density functional theory model of adsorption deformation[END_REF] first showed that adsorption induces a mechanical stress (sometimes called 'adsorption stress') whose magnitude is equal to the solvation pressure and can be obtained from the grand potential of the adsorbed fluid. For mesoporous materials, an alternative pore-scale approach, more mechanistic, consists in considering the concept of surface stress, which is being successfully used in electro-chemistry in particular (see, e.g., [START_REF] Kramer | Surface-stress induced macroscopic bending of nanoporous gold cantilevers[END_REF]).

To estimate the adsorption-induced deformations of an anisotropic mesoporous silica body made of parallel cylindrical channels, both the thermodynamic approach [START_REF] Balzer | Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy[END_REF] and the surface stress approach [START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF] were used recently. The two approaches are compared in [START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF]: above capillary condensation, they yield identical results, while, below capillary condensation (i.e., in the film regime), they provide qualitatively similar but quantitatively different responses. To me, this difference might at least partly be due to the fact that the input parameters for the two works are different: for instance, the relation between thickness of adsorbed film and relative pressure is given by the BET model in [START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF], while it is given by the DBdB theory in [START_REF] Balzer | Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy[END_REF].

There exist other approaches, at a macroscopic scale, aiming at predicting adsorption-induced strains through adaptation of the poromechanical framework. Here again, one can divide those approaches into more thermodynamic ones (e.g., [START_REF] Brochard | Poromechanics of microporous media[END_REF][START_REF] Kulasinski | Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations[END_REF][START_REF] Zhang | Mechanics of adsorption-deformation coupling in porous media[END_REF] ) or more mechanistic ones (e.g., [START_REF] Vermorel | Enhanced continuum poromechanics to account for adsorption induced swelling of saturated isotropic microporous materials[END_REF], in the sense that it introduces an apparent porosity). For this type of approaches again, as explained in [START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF], with different approaches, similar predictions can be obtained.

a. Notion of pore-load modulus

With most pore-scale approaches, the effect of adsorption is translated into a stress, which then needs to be translated into a strain, for which purpose an elastic modulus is needed. To this effect, there exists the notion of pore-load modulus , which relates a strain to a pressure of fluid in the pore through: = / . A pore-load modulus is only valid for a specific direction and a specific loading [START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF]. For transverse isotropic membranes of porous silicon exhibiting a random honeycomb structure, by using n-heptane above capillary condensation, Rolley et al. [START_REF] Rolley | Using capillary forces to determine the elastic properties of mesoporous materials[END_REF] measured pore-load moduli and showed that their magnitudes are consistent with elastic properties measured by direct stretching of the membrane: pore-load moduli can be used to measure elastic properties of the porous material.

With finite-element modeling (FEM), Rolley et al. [START_REF] Rolley | Using capillary forces to determine the elastic properties of mesoporous materials[END_REF] showed that, to retrieve the correct elastic properties of those same membranes, the elastic modulus of the solid walls must be about 2 to 6 times smaller than the bulk modulus of bulk silicon, depending on the direction considered: they attributed this discrepancy to finite-size effects and defects of the solid walls. In contrast, based on adsorption measurements with argon and n-hexane on Vycor (i.e., an amorphous mesoporous silica glass with worm-like channels), Gor et Gurevich [START_REF] Gor | Gassmann theory applies to nanoporous media[END_REF] succeeded in calculating the response of their porous material by considering that the bulk modulus of the solid skeleton is close to the bulk modulus of a solid Vycor matrix, as back-calculated from the dry moduli of Vycor using an elastic effective medium theory. How to translate elastic properties of the solid skeleton into pore-load modulus or elastic properties of the porous material in presence of fluid, although well established for macroporous materials, appears, for nanoporous materials (i.e., for materials with a pore size below 100nm [START_REF] Thommes | Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution[END_REF]), to be system-dependent [START_REF] Rolley | Using capillary forces to determine the elastic properties of mesoporous materials[END_REF].

Recently, Puibasset [START_REF] Puibasset | Adsorption-induced deformation of a nanoporous material: Influence of the fluid-adsorbent interaction and surface freezing on the pore-load modulus measurement[END_REF] found out that, in presence of fluid, the apparent pore-load modulus can differ from the one expected by considering the properties of the solid wall to be those of the bulk non-porous solid, even though, on the dry material, a correct value is retrieved. The difference is attenuated if the fluid-wall interaction is attenuated. He attributes the discrepancy to a surface effect, namely a variation of the surface stress in presence of fluid, which he correlates to surface ordering. Therefore, I would not rule out that relating pore-load modulus to properties of the solid skeleton in the generic case could be improved through a better understanding of the solid-fluid interactions at the solid surfaces.

Impact of mechanics on the adsorption process

If adsorption can deform a solid, deformations can also impact the sorption process, as already observed experimentally with porous membranes [START_REF] Grosman | Influence of elastic strains on the adsorption process in porous materials: An experimental approach[END_REF]. Consequently, in the generic case, the adsorbed amount of adsorbate should be considered to depend not only on the chemical potential of the adsorbate and the temperature , but also on mechanical stresses or strains. Whether considering this dependence is important is the topic of the next two sections (for what concerns estimations of adsorption-induced strains or of adsorbed amounts) before moving to other topics relevant to this coupling.

a. Importance of considering how adsorption depends on strains to estimate adsorption-induced strains

When adsorption occurs on surfaces, the surface stress , which deforms the solid surface, is related to the excess adsorbed amount Γ through Shuttleworth's equation [START_REF] Shuttleworth | The surface tension of solids[END_REF]:

= Γ
where is the surface strain of the solid surface. In a generic case (i.e., valid for micropores, mesopores, or macropores), the volumetric stress induced by the presence of the fluid is related to the amount of fluid in the body through [START_REF] Brochard | Poromechanics of microporous media[END_REF]: = where is the volume strain of the body. Those (Lagrangian) equations clearly show that, if the fluid induces a stress and deforms the porous body, this is because the adsorbed amount depends on the volume/surface strain. Consequently, how adsorption depends on strains is of prime interest to correctly estimate adsorption-induced strains.

For what concerns adsorption on solid surfaces, the celebrated Bangham model [START_REF] Bangham | The swelling of charcoal. Part V. The saturation and immersion expansions and the heat of wetting[END_REF], which is valid for a wide variety of cases, states that:

∝ ∆ such that strains should be proportional to variations ∆ of surface energy. However, theoretically, strains should be proportional to variations of surface stress. Recently, this discrepancy was explained, and is in fact rooted in how adsorption depends on strains: in the framework of the BET model, Gor and Bernstein [START_REF] Gor | Revisiting Bangham's law of adsorption-induced deformation: changes of surface energy and surface stress[END_REF] showed that, if the energy of adsorption of first layer does not depend on the stretch of the surface, then variations of surface energy and of surface stress are equal, thus making it possible to retrieve Bangham's law. Their results suggest that Bangham's law should be verified for small strains and small molecules with non-specific interactions. In contrast, if this energy of adsorption of the first layer depends on the stretch of the surface, the authors show that you can predict contractions at low gas pressures, which are indeed observed experimentally.

To capture non-trivial dependency of the adsorbed amount on strain and its consequences on strains, Kolesnikov et al. [START_REF] Kolesnikov | Effects of enhanced flexibility and pore size distribution on adsorption-induced deformation of mesoporous materials[END_REF], who calculate adsorption and deformation of a mesoporous film with cylindrical pores from a direct minimization of the appropriate thermodynamic potential in the osmotic ensemble, consider that the interaction between solid and fluid can depend on the pore radius. Like Gor and Bernstein [START_REF] Gor | Revisiting Bangham's law of adsorption-induced deformation: changes of surface energy and surface stress[END_REF], they conclude that taking into account this dependence is necessary to capture non-monotonic strain isotherms.

b. Importance of taking into account how adsorption depends on strains to estimate adsorption

Reversely, taking into account the dependence of adsorption on strains/stresses can be important to correctly estimate adsorbed amounts, with qualitatively significant impacts: deformations are shown to be the reason for observed negative adsorptions [START_REF] Evans | Origins of negative gas adsorption[END_REF][START_REF] Krause | A pressure-amplifying framework material with negative gas adsorption transitions[END_REF], and in presence of fluid mixtures the deformability of the adsorbent can impact the selectivity (e.g., [START_REF] Mahynski | Tuning flexibility to control selectivity in soft porous crystals[END_REF]). Quantitatively, Kolesnikov et al. [START_REF] Kolesnikov | Effects of enhanced flexibility and pore size distribution on adsorption-induced deformation of mesoporous materials[END_REF] showed that, in a mesoporous material, taking into account the flexibility of the adsorbent is necessary to explain why, above capillary condensation, increasing the relative pressure still makes it possible to increase the adsorbed amounts: adsorbed amounts increase not only by pore filling, but also by deformation of already-filled pores. Experimentally, on microporous carbons, micropores were shown to contribute to the adsorption isotherm on the full range of vapor pressures, even when micropores are already filled [START_REF] Balzer | Deformation of microporous carbons during N2, Ar, and CO2 adsorption: Insight from the density functional theory[END_REF].

In a converse manner, stresses applied to the adsorbent can also impact adsorbed amounts: experiments show that, on compacted coal powders [START_REF] Hol | Applied stress reduces the CO2 sorption capacity of coal[END_REF], applying effective stresses up to 35MPa can expel from 5% to 50% of the CO2 initially present in the sample. Even if most of the fluid was expelled from in-between the coal grains, subsequent analysis confirmed that the stresses indeed expelled some fluid that was adsorbed in the coal matrix [START_REF] Espinoza | Adsorptivemechanical properties of reconstituted granular coal: Experimental characterization and poromechanical modeling[END_REF].

Whether taking into account this effect is required to properly estimate the adsorbed amounts depends on the magnitude of the applied stresses or of the adsorption-induced strains. Just to provide an order of magnitude, typically for a microporous solid such as coal, the relative variation of adsorbed amount is estimated to be equal to about 10 times the strain [START_REF] Espinoza | Measurement and modeling of adsorptive-poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability[END_REF].

c. Impact of adsorption on mechanical properties

Adsorption can modify the apparent elastic properties of the adsorbent and lead to either an apparent stiffening or an apparent softening of the adsorbent [START_REF] Mouhat | Softening upon adsorption in microporous materials: A counterintuitive mechanical response[END_REF][START_REF] Kulasinski | Impact of moisture adsorption on structure and physical properties of amorphous biopolymers[END_REF]. The apparent stiffness of the adsorbent is a function of the stiffness of the dry adsorbent and of how the adsorption isotherm depends on both the strain of the adsorbent and the chemical potential of the adsorbate [START_REF] Brochard | Poromechanics of microporous media[END_REF]. Confinement also modifies the mechanical properties of the fluid, as observed experimentally [START_REF] Schappert | Influence of the Laplace pressure on the elasticity of argon in nanopores[END_REF] or theoretically [START_REF] Gor | Adsorption stress changes the elasticity of liquid argon confined in a nanopore[END_REF].

A way through which adsorption can modify the mechanical properties of the adsorbent is through its impact on the microstructure: Perrier et al. [START_REF] Perrier | Poromechanics of adsorption-induced swelling in microporous materials: a new poromechanical model taking into account strain effects on adsorption[END_REF] showed that, in microporous materials, the apparent porosity can vary significantly upon the adsorption, and hence impact the poroelastic properties of the material. For a sandstone, whose dry mechanical behavior is nonlinear, variations of the elastic moduli with relative humidity could be explained by the impact of the variation of relative humidity on solvation pressure and hence effective stress [START_REF] Yurikov | Sorption-induced deformation and elastic weakening of Bentheim sandstone[END_REF]. Note however that, even in absence of nonlinearity or rearrangement of the microstructure, adsorption can impact the drained moduli of the porous material [START_REF] Mouhat | Softening upon adsorption in microporous materials: A counterintuitive mechanical response[END_REF].

d. Modeling the coupling between adsorption and mechanics

Since adsorption induces strains, and since strains impact adsorption, one should take into account this two-way coupling into the modeling. Such coupling can be particularly significant in microporous solids, in which the adsorption stress depends strongly on the pore size [START_REF] Ustinov | Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions[END_REF]. One way to capture this coupling, when employing a thermodynamic approach, is to minimize the appropriate thermodynamic potential ensemble with respect to both parameters characterizing the adsorption process and parameters characterizing the deformation process. Such approach was adopted for a mesoporous material made of cylindrical pores [START_REF] Kolesnikov | Effects of enhanced flexibility and pore size distribution on adsorption-induced deformation of mesoporous materials[END_REF], for MOFs [START_REF] Bakhshian | Theoretical model and numerical simulation of adsorption and deformation in flexible metal-organic frameworks[END_REF] or for cellular solids [START_REF] Guyer | Theoretical model for fluid-solid coupling in porous materials[END_REF]. This last work, formulated at a mesoscopic scale, shows that the solid-fluid interaction can lead to a hysteresis of the adsorption strain isotherm. For nanoporous crystalline materials with rotatable ligands shared between neighboring cages, a statistical mechanical model that captures the coupling was developed [START_REF] Simon | Statistical mechanical model of gas adsorption in porous crystals with dynamic moieties[END_REF], which includes energy penalization for the rotation of a ligand and an energy of an adsorbed molecule that depends on the rotation of the ligands: the model captures inflections, steps, and hysteresis.

Specific complexities for prediction of adsorption-induced strains

In this section I address recent complexities that the community aims at integrating into models to predict adsorption-induced strains.

a. Complexity of the pore space: size, morphology Porous materials are characterized by a pore size distribution (PSD). Since the solvation pressure (and hence the adsorption-induced strains) depends on the pore size, using strain isotherms as an additional input to adsorption isotherms to back-calculate PSDs was proposed [START_REF] Ustinov | Effect of adsorption deformation on thermodynamic characteristics of a fluid in slit pores at sub-critical conditions[END_REF][START_REF] Kowalczyk | Using in-situ adsorption dilatometry for assessment of micropore size distribution in monolithic carbons[END_REF]. Another question relevant to the adsorption-induced deformation of generic materials is that of the shape of the pores, which can be more complex than slit, spherical, cylindrical, or hexagonal pores. To this respect, adsorption-induced deformations were recently studied in wedge-shaped graphitic pores [START_REF] Zeng | A Monte Carlo study of adsorption-induced deformation in wedge-shaped graphitic micropores[END_REF].

The PSD can evolve in a complex manner upon adsorption, due to the inhomogeneity of the microscopic deformations, as was shown numerically for a microporous carbon in presence of methane [START_REF] Obliger | Poroelasticity of methane-loaded mature and immature kerogen from molecular simulations[END_REF]. The PSD being in fact stress-dependent, Siderius et al. [START_REF] Siderius | Relationship between pore-size distribution and flexibility of adsorbent materials: statistical mechanics and future material characterization techniques[END_REF] showed that how the PSD evolves over the adsorption process theoretically contains information related to the flexibility and deformation characteristics of the adsorbent. One question that arises when adsorption occurs in a material in which pores are sufficient close to each other is whether the deformation of (or adsorption in) one pore occurs independently of what happens in the neighboring pores: indeed, some adsorption superlattice formation of the adsorbate in a metal-organic framework was observed [START_REF] Cho | Extra adsorption and adsorbate superlattice formation in metal-organic frameworks[END_REF].

b. Anisotropy

The stress induced by adsorption can be anisotropic (e.g., in a cylindrical pore, adsorptioninduced stresses are not identical in the axial and in the radial directions [START_REF] Balzer | Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy[END_REF][START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF]). Also, pores can be organized in an anisotropic manner, or the mechanical behavior of the material can also be anisotropic. Consequently, there exist various potential sources of anisotropy because of which adsorption at the microscopic scale can lead to a macroscopically anisotropic deformation. In coal for instance, the anisotropy of the adsorption-induced strains was shown to be mostly due to the anisotropy of the mechanical behavior, while the adsorption stress itself is mostly isotropic [START_REF] Espinoza | A transverse isotropic model for microporous solids: Application to coal matrix adsorption and swelling[END_REF]. Anisotropic effects can also add or counterbalance each other: in silica struts containing parallel cylindrical mesopores [START_REF] Balzer | Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy[END_REF], the cylindrical pore geometry makes the axial adsorption-induced stress about 3 times larger than the radial one but, as consequence of the anisotropy of the mechanical properties of the porous struts, deformations at the scale of a strut are roughly isotropic.

c. Beyond the linearity of the mechanical behavior of the solid

The simplest elastic behavior of a solid material is a linear one: stresses and strains are linearly related, following Hooke's law. But many materials do not follow Hooke's law, as is the case for instance for cracked media (upon compression, cracks close so that the stiffness of the material increases), or for polymeric solids. For wood for instance, whose elastic behavior is also nonlinear, adsorption-induced strains were modeled by taking explicitly into account the complexity of the free energy of the dry porous solid [START_REF] Kulasinski | Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations[END_REF]. Molecular simulations can help explore the complexity of the free energy landscape: for another mechanism inducing flexibility in a MOF, namely the swing effect in ZIF-8, Coudert [START_REF] Coudert | Molecular mechanism of swing effect in zeolitic imidazolate framework ZIF-8: Continuous deformation upon adsorption[END_REF] showed with the help of quantum chemistry calculations and first-principles molecular dynamics that the flexibility is not a bistable system, but that the deformation evolves continuously with the pore loading.

For some MOFs like MIL-53, depending on the environmental conditions (temperature, stress, partial pressure of the adsorbate), two configurations of the adsorbent with very distinct strains can be observed (sometimes called 'large pore' and 'narrow pore' configurations), around which the material behaves in a linear elastic manner. The osmotic framework was adapted to such cases [START_REF] Coudert | Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks[END_REF], under the assumption that each configuration is rigid. For the same family of materials, by considering a free energy of the dry porous material which exhibits two wells, the features of the energy landscape (i.e., the depth of the two wells) were shown to impact the transitions between the two configurations and the phase transitions of the pore fluid [START_REF] Shen | Molecular simulation of capillary phase transitions in flexible porous materials[END_REF].

d. Upscaling

Upon adsorption, the porous adsorbent deforms at several scales: for instance, in a monolithic silica sample with hierarchical porosity, strains at the scale of the pore lattice and at the macroscopic scale of the sample can both be measured [START_REF] Morak | Quantifying adsorption-induced deformation of nanoporous materials on different length scales[END_REF] and differ from each other. In a material containing pores with a variety of sizes, deformations should vary from pore to pore. Since many models to predict adsorption-induced strains are formulated at the pore scale, the question arises of how to translate strains at this scale into strains at the macroscopic scale of the sample.

Even though the variations of the volume of the sample are sometimes assumed to be equal to the variation of volume of the pores (e.g., in [START_REF] Kolesnikov | Effects of enhanced flexibility and pore size distribution on adsorption-induced deformation of mesoporous materials[END_REF]), note that it is generally not the case, as the volume of the solid skeleton can vary as well. When the geometry of the pores is well defined, one can find out how stresses/strains at the pore scale translate into strains at a larger scale by using the finite element method (FEM), as was done for an anisotropic mesoporous silica body made of parallel cylindrical channels [START_REF] Balzer | Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy[END_REF][START_REF] Gor | Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress[END_REF]. For the nanoporous crystalline MIL-53, to upscale information on the breathing transition from the scale of the individual cage to the scale of a whole crystal, a Hamiltonian-based model was proposed [START_REF] Triguero | Understanding adsorptioninduced structural transitions in metal-organic frameworks: From the unit cell to the crystal[END_REF]. When some information is known about the microstructure, one can try to inject this information in the prediction of the adsorption-induced strains: such was done for instance for a synthetic activated carbon with a bi-modal distribution of pore sizes, for which models of adsorption-induced deformations were derived, that take explicitly into account the fact that the sample contains both nanopores that adsorb fluids and macropores that contain bulk fluid [START_REF] Perrier | Extended poromechanics for adsorption-induced swelling prediction in double porosity media: Modeling and experimental validation on activated carbon[END_REF].

In practice, many materials are composite or heterogeneous. As a consequence of this heterogeneity, an additional complexity in the upscaling process is that adsorption-induced deformations can be heterogeneous, as was observed for coal in presence of methane, through 3D digital image correlation of X-ray microtomography images [START_REF] Nie | Quantitative investigation of anisotropic characteristics of methaneinduced strain in coal based on coal particle tracking method with X-ray computer tomography[END_REF]. On composite materials with a coreshell microstructure, in which an adsorbing core is surrounded by an elastic binder, the presence of the binder was shown to decrease the magnitude of the adsorption-induced stresses and strains [START_REF] Coudert | Adsorption deformation of microporous composites[END_REF]. Also, if the adsorbing core can be subjected to adsorption-induced structural transitions, the presence of the binder impacts the pressures at which those transitions occur [START_REF] Coudert | Adsorption deformation of microporous composites[END_REF]. One way to decipher how adsorption-induced strains at the scale of the microscopic phases translate macroscopically into a strain of the macroscopic composite sample is to use FEM, as shown in [START_REF] Evans | Macroscopic simulation of deformation in soft microporous composites[END_REF] on composite microporous materials.

Concluding comments

In this mini-review, I covered not only how adsorption impacts the mechanical behavior of the adsorbent and deforms it, but also how mechanics (i.e., strains or stresses) impacts the adsorption process and the importance of taking into account this coupling. There exist several well-established frameworks to model adsorption-induced strains, and a trend in the modeling of adsorption-induced deformations is to take into account as much as possible of the complexity of actual materials, in terms for instance of microstructure (pore size distribution, pore morphology, heterogeneity,…) or of mechanical behavior of the adsorbent (anisotropy, non-linearity,…).

A recent and very complete review of adsorption-induced deformations in microporous and mesoporous materials. Covers both experimental and theoretical achievements, and applications of adsorption-induced deformations. * C. Balzer, A.M. Waag, S. Gehret, G. Reichenauer, F. Putz, N. H?sing, O. Paris, N. Bernstein, G.Y. Gor, A.V. Neimark, Adsorption-induced deformation of hierarchically structured mesoporous silica Effect of Pore-Level Anisotropy, Langmuir. 33 (2017) 5592-5602. doi:10.1021/acs.langmuir.7b00468. A manuscript that presents data on deformation of hierarchical Si system made of anisotropic struts containing parallel cylindrical mesopores in presence of N2 at 77K and aims at explaining those data through modeling based on the thermodynamic concept of adsorption stress. Modeling original because captures anisotropy of adsorption stress by minimizing appropriate potential with respect to both radial and axial dimensions of cylindrical pores. Model upscaled from scale of strut to scale of sample by superposition. * G.Y. Gor, P. Huber, J. Weissmüller, Elastocapillarity in nanopores: Sorption strain from the actions of surface tension and surface stress, Physical Review Materials. 2 (2018). doi:10.1103/PhysRevMaterials.2.086002. Manuscript devoted to the modeling of adsorption-induced deformations in anisotropic material made of parallel cylindrical mesopores. Modeling based on concept of surface stress, developed for both specific and non-specific adsorptions. Includes a comparison between modeling approaches based on thermodynamic concept of adsorption stress and concept of surface stress. * J. Puibasset, Adsorption-Induced Deformation of a Nanoporous Material: Influence of the Fluid-Adsorbent Interaction and Surface Freezing on the Pore-Load Modulus Measurement, The Journal of Physical Chemistry C. 121 (2017) 18779-18788. doi:10.1021/acs.jpcc.7b06888 Manuscript dedicated to the notion of pore-load modulus, studied by molecular simulations of thin solid layers. Shows that, on dry system, apparent stiffness of solid layer is consistent with what is expected from bulk properties of solid. In contrast, in contact with liquid, apparent stiffness of solid layer significantly larger than expected from bulk properties of solid. Relates this increase to a surface effect. ** G.Y. Gor, N. Bernstein, Revisiting Bangham's law of adsorption-induced deformation: changes of surface energy and surface stress, Phys. Chem. Chem. Phys. 18 (2016) 9788-9798. doi:10.1039/C6CP00051G. Manuscript that shows that, in framework of BET model, if energy of adsorption of first layer does not depend on the stretch of the surface, variations of surface stress are equal to variations of surface energy, which explains Bangham's law. * A.L. Kolesnikov, N. Georgi, Y.A. Budkov, J. Möllmer, J. Hofmann, J. Adolphs, R. Gläser, Effects of Enhanced Flexibility and Pore Size Distribution on Adsorption-Induced Deformation of Mesoporous Materials, Langmuir. 34 (2018) 7575-7584. doi:10.1021/acs.langmuir.8b00591. Manuscript dedicated to modeling of adsorption-induced deformations of mesoporous solids, in the spirit of the thermodynamic approach based on adsorption stress. Interest and originality of model in fact that captures the full coupling between adsorption and strain: below capillary condensation, equilibrium found by minimizing the correct energy, for each pore size, in terms of pore radius and in terms of thickness of adsorbed film. * F.-X. Coudert, A.H. Fuchs, A.V. Neimark, Adsorption deformation of microporous composites, Dalton Transactions. 45 (2016) 4136-4140. doi:10.1039/C5DT03978A. Manuscript dedicated to modeling of adsorption-induced strains in composite materials made of soft adsorbing cores surrounded by non-adsorbing elastic matrix. Shows that presence of elastic binder attenuates adsorption stress at scale of sample and shifts partial pressures at which adsorptioninduced structural transitions occur (if soft adsorbing core prone to adsorption-induced structural transitions). * E. Rolley, N. Garroum, A. Grosman, Using capillary forces to determine the elastic properties of mesoporous materials, Physical Review B. 95 (2017) 1-7. doi:10.1103/PhysRevB.95.064106. Experimental work which focuses on deformation of anisotropic mesoporous silicon membranes with a random honeycomb structure, above capillary condensation. Shows that elastic properties obtained from pore-load measurements are consistent with direct measurement of elastic properties, but cannot be simply retrieved from geometry of solid walls by considering that those walls behave like bulk material. Discrepancy attributed to finite-size effects and to defects in the walls.
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