Do children with a high level of eating motivation consume less when foods are partitioned?
 Natalie Rigal, Camille Champel

To cite this version:

Natalie Rigal, Camille Champel. Do children with a high level of eating motivation consume less when foods are partitioned?. Physiology \& behavior, 2019, 211, pp.112636-. 10.1016/j.physbeh.2019.112636 . hal-03487825

HAL Id: hal-03487825

https://hal.science/hal-03487825

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

@(®)

Version of Record: https://www.sciencedirect.com/science/article/pii/S0031938418310540
Manuscript_5a8b2ef8ee3d4c8acffe40c8813f4ca1

Title

Do children with a high level of eating motivation consume less when foods are partitioned?

Authors names and affiliation

Natalie Rigal \& Camille Champel, Department of Psychology, University Paris Nanterre, 200 avenue de la République, 92000 Nanterre, France.

Corresponding author

Natalie Rigal
Postal address: University Paris Nanterre, Department of Psychology, 200 avenue de la République, 92000 Nanterre, France.
E-mail address: rigal@parisnanterre.fr
Tel : +33 (0)608847270

Title

Do children with a high level of eating motivation consume less when foods are partitioned?

Abstract

Eating behaviors, especially the control of intake, are modulated by both internal and external factors. The objective of our study was to examine the effect of the interaction between eating motivation (as an internal factor) and food partition (as an external factor) on chocolate intake in children, with the hypothesis, based on the paradigm of motivated perception, that the effect of partition, i.e. reduced intake, is higher for children with a high level of eating motivation than for other children.

A mixed model design was used in which 80 children aged 8-11 yrs were offered, in their natural setting, two standardized afternoon snacks that included, among other things, 100 grams of chocolate presented once as a whole (one bar) and once segmented (six pieces). The amount of chocolate eaten was weighed and compared between conditions (Bar vs Pieces). Children completed questionnaires in order to assess two of their eating motivational features (appetite arousal, chocolate specific appetite). Results indicated no effect of Partition: children ate the same quantity of chocolate in the two conditions (Bar or Pieces). Only chocolate specific appetite was associated with the amount of chocolate eaten, with children with a higher level eating more than other children $(+13 \mathrm{~g})$. Contrary to adults, children are not influenced by the "many is more effect". Methodological and developmental interpretations were suggested, linked to the size of the portion, the network of attention and the sensibility to the external cues underlying the control of intake.

Key words: eating behavior; motivation; appetite; partition; children; intake

1. Introduction

It is widely accepted that eating behavior is influenced by both internal and external factors. This assertion is particularly true when it comes to the control of food intake which, when poorly regulated, is one of the contributors to the current epidemic of childhood obesity (for a review, see [1]).

With regard to internal factors, we know in particular the effect of individuals' motivational eating characteristics. As noted by Berridge [2], the concept of motivation is essential for understanding, in the perspective of neurobehavioral science, the psychological processes that guide behaviors. The notion of "appetite arousal" is one of the ways of characterizing the motivation to eat. Appetite arousal corresponds to the intensity of the desire to eat foods [3]. This is a trait of temperament, relatively stable over time and independent of contexts and of specific foods. Similar concepts have been used in the literature: "external eating" from the Dutch Eating Behavior Questionnaire for Children (DEBQ-C) [4], "food responsiveness" from the Children's Eating Behavior Questionnaire (CEBQ) [5], and "food addiction" from the Yale Food Addiction Scale for children (YFAS-C) [6]. High scores on these food approach traits have been associated with larger portion sizes, overeating and/or higher BMIs in children [7, 8,9 , and for a review, see 10], leading to the assumption that the higher children's levels of appetite arousal, the more they will eat large quantities of foods.

Another concept relating to the motivation of eating is that of "specific appetite" or the desire to eat particular foods [11, 12]. It differs from the concept of appetite arousal in that it does not concern the desire to eat in general, but is characterized by the specificity of foods, among other things on the sensory level. It also differs from the notion of "craving" which refers to an intense desire to eat a specific food and which, because of this high intensity, is outside the scope of ordinary food intake [11]. Food cravings are widely believed to influence snacking behavior and especially the amount of food eaten, which has been demonstrated especially with chocolate [13]. Because of its proximity to the concept of craving, the concept of specific appetite, while remaining in the area of nonpathological food intake, is likely to make intake of a specific food higher.

With regard to external factors, some visual qualities of foods have been identified in the control of food intake. For example, experimental studies have shown that increases in portion size lead to increases in energy and/or the risk of becoming overweight, especially during childhood (for a review, see [14]). On the other hand, the effect of the shape of the portion remains insufficiently explored, especially with children. In adults, the "many is more effect" or "partition effect" has been demonstrated. This is the process by which high-energy foods offered in a partitioned manner (segmented, in pieces, several small units) are consumed in smaller quantities than the same foods offered non-partitioned (aggregated, as a whole, one large unit). Several experiments with adults have indeed shown that portioning an aggregate quantity of a food into smaller units reduced the consumed quantity of that resource $[15,16,17,18,19,20,21]$. To our knowledge, only one study has been undertaken with children invited to consume high-energy foods. Marchiori, Waroquier, and Klein [22] offered children aged 6 and 11 yrs cookies in their school. Cookies were cut in two for half of the children. Their results indicated that segmenting the cookies led to a 25% decrease in intake.

A question that remains unanswered is whether the effect of partition differs according to the children's level of motivation to eat. The pioneering work of Bruner and Goodman [23] provides some elements of answer to this question. In their study, Bruner and Goodman found that children from disadvantaged backgrounds overestimated the size of coins, presumably because they had a higher desire for money than children from privileged backgrounds. More controlled and recent studies have confirmed that motivation could influence perception: people categorize ambiguous visual information in ways that fit with their desires (for a review, see [24]). Although, the effect has not been re-tested with children. So, in line with the motivated perception paradigm, one can predict that children with a high motivation to eat will perceive pieces of foods as being larger than do other children. Recalling the fact that partition tends to increase perceived size, one can argue that the effect of partition will be stronger for children who are highly motivated by eating than for less motivated children. The "partition effect" and "motivated perception" processes are thought to have an additive effect in the direction of reducing consumption.

This study examined the "partition effect" during childhood in interaction with some children's motivational appetite features, with the hypothesis that the effect of partition, i.e. a reduction of intake, is higher for children with a high motivation to eat (appetite arousal, food specific appetite) than for other children. The effect of the Partition x Motivation paradigm on intake should be studied in children since childhood is the period during which education in portion sizes takes place [25]. It is also necessary to implement a within-subjects protocol due to high inter-individual variability in the traits of appetite and intake patterns.

2. Methods and materiel

2.1 Overall design

A 2×2 mixed design was used with the within-subjects factor of Partition (Bar versus Pieces) and the between-subjects factor of Motivational features (Lower versus Higher level) and Chocolate intake as the main outcome. Two eating motivational features were included in two different analyses: Appetite arousal and Chocolate specific appetite.

Children participated in their natural setting in two afternoon snack sessions contrasting Partition (Bar versus Pieces), but keeping the total amount of food constant, with the two conditions being randomly counterbalanced over all participants. The two sessions were separated by a period of two weeks (± 2 days).

One of the two parents was present in the home. A research assistant was in charge of obtaining their consent, bringing food for the study, giving the child instructions, weighing the food at the end of the snack, administering the questionnaire to the children, then weighing and measuring them. Before each session, the children's hunger state was measured. After each session, Hunger state, Chocolate-liking and Snack-liking were assessed. Eating motivational features (Appetite arousal and Chocolate specific appetite) were evaluated after the second session only, as were children's weight and height. Eating motivational features were assessed afterwards so that the quantities consumed were not influenced by motivational characteristics elicited when children were replying to the questions.

2.2 Participants

Schools in a town in the Paris region (Asnières) whose residents have varied income levels were approached to take part in the study. Out of three schools contacted, two accepted the proposal. The parents of these schools with children between 8 and 11 years old were contacted by letter, and those who indicated that they were interested in the study were then contacted by telephone, so that the protocol and the conditions of eligibility could be explained to them. To be eligible, children had to meet four conditions: i/ Take their snack at home during the week; ii/ Have no food allergies; iii/ Like the foods provided for the snack; iv/ Receive parental consent. Families received monetary compensation for the study ($€ 40$ in vouchers).

2.3 Snack sessions: Foods and Partition

At each of the two sessions (Bar and Pieces), a snack consisting of 100 g of milk chocolate (developed for the purpose of the study, $548 \mathrm{kcal} / 100 \mathrm{~g}$), two slices of brioche bread (Harry's inc. 42 $\mathrm{g}, 151 \mathrm{kcal} / 100 \mathrm{~g}$) and an apple juice (RikRok, $20 \mathrm{cl}, 43 \mathrm{kcal} /$ juice box) was offered to children in the middle of the afternoon at their home (4:00 PM $\pm 30 \mathrm{~min})$. This snack was a French standard snack for children aged 8 to 11 , except for the amount of chocolate, which can be considered high as children are not supposed to eat 100 g of chocolate on a single occasion. A large amount of chocolate was offered for two reasons: i / to ensure that food intake would not be limited by the amount proposed; ii/ in France, the market is practically exclusively made up of 100 g bars: it is therefore a market norm which children are visually accustomed to. The recommendations for French children 811 years old are to take a snack of 400 kcal , which corresponds in our protocol to two pieces of chocolate, the two slices of brioche bread and the apple juice. Children's intake before the midafternoon snack was not standardized, but children were seen immediately on their return from school, between 3 and 4 hours after lunch taken in the canteen, having consumed no food since lunchtime. In fact, French children do not eat between lunch at school and snack time at home.

The chocolate was offered on the basis of a 100 g bar made up of 6 pieces ($16.66 \mathrm{~g} /$ piece $)$, each one consisting of 4 squares, that is to say the presentation that French children are used to. Depending on the session, the chocolate was presented either in the form of a whole bar, not cut up (Bar condition), or cut into 6 pieces of equivalent size (Pieces condition). In the Bar condition, visual
cues about the six pieces were present. For the children, the chocolate was easy to break into pieces themselves. The solid foods (chocolate, brioche bread) were served unpackaged on a tray, accompanied by the juice box.

The children had to eat the snack in the usual conditions (in the kitchen or in the living room, depending on the children). The instruction was to consume food according to their desire, "as much as they wanted". The children were left alone during the snack, with no access to a screen (television, mobile phone or tablet). During this time, the parents were in the next room with the research assistant.

2.4 Food intake

All the foods were weighed at the end of the session on a digital scale to the nearest gram by the research assistant with their own equipment. The quantities consumed were calculated by subtracting the remaining weight from the initial weight. They were expressed in grams and translated into calories when the analyses required it.

2.5 Motivational eating features

2.5.1 Appetite arousal (AA)

Appetite arousal was measured through the six items of one subscale of the Adolescent Eating Temperament Questionnaire which has been validated with French participants aged 10 to 14 yrs [3] (e.g., "As soon as I think about food, I feel like eating"). Children's answers were recorded using a 4point frequency scale from 1 (never) to 4 (always). The reliability of the subscale was acceptable for the present data $(\alpha=.68)$.

We dichotomized the variable at the median $(\operatorname{Med}=2.00)$ in order to create a group of children with a lower level of AA ($n=41, m_{\text {Lower-AA }}=1.75 \pm 0.22$), and a group with a higher level of AA ($n=$ $\left.39, m_{\text {Higher-AA }}=2.60 \pm 0.41\right)$. The two group means were significantly different, $t(78)=11.69, p<$. 001 .

2.5.2 Chocolate specific appetite (CSA)

Chocolate specific appetite was assessed on the basis of a food image extracted from the photographic document used for the SU.VI.MAX study [26]. Chocolate was presented in seven increasing portion sizes, quoted from size $1(8 \mathrm{~g})$ to size $7(32 \mathrm{~g})$. In accordance with the Ramaekers et
al.'s [12] formulation, children were asked: "How big is your appetite for chocolate in general?" "Show me the picture that corresponds to it."

CSA was dichotomized at the median $($ Med $=5.00)$. The children with the lower level of CSA ($n=32$) had a mean level of CSA of $3.66(\pm 1.10)$, and children with the higher level $(n=48)$ of 5.98 (± 0.67), with the two group means being significantly different, $t(78)=11.78, p<.001$.

2.6 Other measures

A number of measures were taken to verify the comparability between the two conditions. The Hunger state was assessed before and after each snack session. Children were asked to respond to the question "How hungry are you at this moment?" on a 10-point scale with responses ranging from "not at all" to "very much".

Liking for the chocolate and for the snack offered was evaluated after the two sessions with the same 10-point scale in response to the question "How much did you like the chocolate / the whole snack?".

2.7 Children's weight status

Children were asked to remove shoes and excess clothing prior to being weighed and their height measured. Weight was measured using an electronic scale calibrated to the nearest 100 grams. Height was assessed using a physical height calibrated to within $1 / 2$ centimeter. The children's BMI-for-age and sex was calculated according to WHO guidelines [27]. The children were measured in the bathroom or the lounge by the research assistant, with the assistant's measuring equipment.

2.8 Ethics

Two independent scientific experts consulted by the Ethics Committee of Paris Nanterre University approved the study. The parents were informed of the aim of the study and parental consent was required for participation. In addition to parental consent, the children gave their verbal agreement to participate.

2.9 Data analysis

Preliminary analyzes were carried out to evaluate: i/ Differences in Chocolate intake according to sex (2), age (2) and weight status (2) (independent t -test); ii/ The equivalence between the two sessions of levels of hunger, appreciation of chocolate and snack, and quantities consumed throughout
the snack (paired t-test); iii/ The existence of a link between these variables and Chocolate intake (correlations). As Hunger state before the snack session was positively correlated with Chocolate intake in the Bar condition ($r(40)=.29, p=.01$), the Hunger state before the snack session in the two conditions was entered as covariates in the two analyses of variance.

To test the hypothesis, two mixed ANCOVA were performed on Chocolate intake with Partition (2: Bar vs Pieces, Within-subject variable) and one of the two eating motivation features (2: Lower vs Higher level, Between-subject variable) as independent variables, with the two Hunger states (assessed in the Bar and in the Pieces conditions) entered as covariates. Appetite arousal (AA) was the eating motivation feature for the first ANCOVA, and Chocolate specific appetite (CSA) for the second ANCOVA.

Whatever the motivational variables considered, a simple effect of the two independent variables (Partition, AA or CSA) and an interaction effect were expected, with the hypothesis that the effect of partition, i.e. reduction in intake, would be higher for children with a high motivation to eat (Higher AA or Higher CSA) than for other children.

Data were analyzed using the SPSS 25.0 statistical package (SPSS Inc., Chicago, IL, USA). An alpha level of .05 was used for all tests.

3. Results

3. 1 Participants

The characteristics of the 80 children who completed the task and filled in the questionnaires are presented in Table 1. The mean age of the children was $9.29(\pm 1.09)$ yrs. No difference with Age, Gender or Weight status was observed on any variables (Chocolate intake, Hunger state, Appetite arousal, Chocolate specific appetite).

Table 1. Participants' characteristics and chocolate intake (g)

		Chocolate intake m (SD)	
	$\mathrm{n}(\%)$	Bar	Pieces
Age (yrs.)			
$8-9$	$44(55)$	$46.50(31.80)$	$47.36(29.74)$
$10-11$	$36(45)$	$44.47(25.30)$	$43.08(24.57)$

Gender			
\quad Girls	$47(58.8)$	$45.23(27.54)$	$43.32(26.50)$
Boys	$33(41.3)$	$48.76(31.27)$	$48.45(28.89)$
Weight status			
\quad Normal weight	$71(88.7)$	$46.32(28.53)$	$44.15(27.16)$
\quad Overweight	$9(11.3)$	$49.55(33.78)$	$55.55(29.23)$

3.2 Comparability between conditions

Over the entire snack (including chocolate, brioche bread and juice), the children consumed $519(\pm 174) \mathrm{kcal}$ in the Bar condition and $503(\pm 168) \mathrm{kcal}$ in the Pieces condition, with no difference between the two conditions, $t(79)=0.96, p=.34$.

More precisely, with regard to brioche, the children consumed 131 (± 19.41) kcal in the Bar condition and $129(\pm 13.99)$ kcal in the Pieces condition, with no difference between the two conditions, $t(79)=0.83, p=.41$. With regard to juice, they consumed $32(\pm 2.78) \mathrm{kcal}$ in the Bar condition and $31(\pm 2.71) \mathrm{kcal}$ in the Pieces condition, and no difference was observed between the two conditions, $t(79)=1.75, p=.08$.

All of the brioche was consumed by 2.50% of the children in the Bar condition, and 1.25% in the Pieces condition. All of the juice was drunk by 56.25% of the children in the Bar condition, and 60% in the Pieces condition.

No differences between conditions were observed for Hunger state before the snacks ($p=.95$), Hunger state after the snacks ($p=.55$), Chocolate liking ($p=.31$), and Snack liking ($p=.21$). The mean score between the two snacks for these variables was respectively $7.29(\pm 2.44), 1.09(\pm 1.76)$, $8.34(\pm 2.64)$ and $8.53(\pm 2.11)$.

3.3 Chocolate intake according to conditions: Partition effect

No difference was observed for the order in which the modalities were presented: Chocolate intake was equivalent when Bar or Pieces was offered in the first session, $F(1,79)=0.21, p=.65$.

Chocolate intake was $46.69(\pm 28.95) \mathrm{g}$ in the Bar condition and $45.44(\pm 27.45) \mathrm{g}$ in the Pieces condition, with no difference between conditions, $t(79)=0.46, p=.64$.

All of the chocolate was consumed by 12.5% of the children in the Bar condition, and 11.3% in the Pieces condition. Supplementary analyses were carried out without the data for the
children who had consumed all the chocolate (14 children throughout both conditions). Indeed, for these children, the portion of chocolate served may have been too small. Without this data, the difference between the two conditions remained non-significant $(t(65)=0.13, p=.89)$: Chocolate intake was $36.95(\pm 20.78) \mathrm{g}$ in the Bar condition and $37.31(\pm 20.27) \mathrm{g}$ in the Pieces condition.

The children's two chocolate intake values were in fact highly and positively correlated between conditions, $r(80)=.64, p<.001$.

3.4 Chocolate intake and motivational variables

The results of the mixed ANCOVA with Appetite arousal (AA) as the motivational variable indicated that the two main effects (Partition and AA) were non-significant, $F(1,79)=0.82, p=.77$ and $F(1,79)=1.14, p=.70$ respectively, as was the interactive effect, $F(1,79)=0.05, p=.82$. AA was not associated with Chocolate intake, $r_{\text {bar condition }}(80)=.04, p=.72$ and $r_{\text {pieces condition }}(80)=-.05, p=$. 67.

When Chocolate specific appetite (CSA) was considered as the motivational feature, only the simple effect of CSA was significant, $F(1,79)=27.77, p=.038$ (Figure 1). The mean Chocolate intake was $38.24(\pm 3.45) \mathrm{g}$ for children with the lower CSA, and $51.26(\pm 2.82) \mathrm{g}$ for those with the higher CSA. The difference between the two conditions was 13.02 g , corresponding to 71 kcal . CSA was positively correlated with Chocolate intake, $r_{\text {bar condition }}(80)=.38, p=.001$ and $r_{\text {pieces condition }}(80)=$ $.33, p=.003$.

Figure 1- Mean amount of Chocolate intake (g) as a function of Partition conditions (Bar versus Pieces) and Level of chocolate specific appetite (Lower versus Higher). Error bars represent standard errors.

4. Discussion

This study examined the hypothesis that the effect of partition on food intake is higher for children with higher eating motivation than for children with lower eating motivation. Because the Partition effect failed to be confirmed, this interactive hypothesis could not be tested. However our results showed that a motivational eating feature, i.e. Chocolate specific appetite, was positively associated with chocolate intake. This was not the case for the motivational variable "Appetite arousal".

The lack of a partition effect is contrary to the majority of previous experiments with adults and the one undertaken with children [22]. How can this discrepancy between our study and other studies be explained? We suggest three explanations related to different potential mechanisms underlying the effect of partition.

The first explanation is linked to methodological features and relies on the concept of unit bias to explain the partition effect. According to Geier et al. [15], unit bias is a sense that a single entity is the appropriate amount to consume and that, as a result, the consumption of one unit will inhibit further consumption of the same unit. In the study of Marchiori et al. [22], partition contrasted two reasonable sizes of unit, i.e. a cookie and a half-cookie. Children ate 9 units of the whole cookies and 14 units of the half cookies. The higher number of units, in the second case, made food intake decrease. In our study, on the other hand, a whole chocolate bar corresponds to one unit in terms of packaging (as it is available on the market), but not in terms of consumption; this size was probably beyond the proper size of how much chocolate can be eaten. As a result, children were not confronted with two situations eliciting the unit bias.

The two other explanations are related to some developmental considerations. The first one relies on the network of attention. Cheema and Soman [28] claimed that partition draws attention to the consumption decision and, thus, provides more decision-making opportunities so that eaters can more easily control their intake. Konrad et al. [29] demonstrated with functional magnetic resonance imaging that children aged 8-12 yrs, compared to adults, showed reduced brain activity in the prefrontal cortex during executive control of attention. Their result was in line with some developmental studies [30,31]. So, children, whose level of attention in general is lower than adults, and by extension in consumption situations, would be less sensitive to partition.

The second developmental explanation addresses the question of sensibility to external cues, versus internal cues, when eating. A number of studies have shown that, as people grow older, they are more likely to eat without hunger (for a review, see [32]). This evolution is interpreted as an increase in sensitivity to external signals of consumption (such as the shape or size of the portion) at the expense of sensitivity to internal signals (hunger and satiety). In other words, the accuracy of sensitivity to external cues seems to increase as a function of age: children adjust more to their hunger and satiety (internal cues), and less to visual cues (external cues) to monitor their intake. Insofar as partition affects the visual and not the energetic cues of food, it would be more effective in adults than in children.

The two developmental interpretations are not contradictory. They both refer to children's low receptiveness to the visual aspects of food due to: i) their lower attentional involvement according to the first interpretation ; ii) their lack of sensitivity to external signals according to the second interpretation. It is noteworthy that these two developmental interpretations can reinforce each other and might explain why our result is inconsistent with those obtained with adults, whereas the methodological one might highlight the discrepancy with the study of Marchiori et al. [22] undertaken with children.

Our second result concerned the notion of eating motivation and indicated that a specific appetite for chocolate was positively correlated with the amount of chocolate intake. This result is not surprising. The amount of food eaten is associated with the degree to which children desire to eat the targeted food. It actually consists of two similar measurements, one collected through a questionnaire and the other through a food task. On the other hand, chocolate intake was not related to appetite arousal in our study, which is contrary to our hypothesis. Here again, one can suggest a developmental interpretation. Children's food choices are mainly explained by some specific nutritional [33] and sensorial [34] characteristics. As a result, it seems that children's intake is more specifically predicted by specific measures, connected to particular foods (e.g. chocolate appetite), than by general measures (e.g., appetite arousal). However, the absence of any connection between food intake and appetite arousal in our study is not consistent with the results of previous studies carried out with children. Here, the explanation could be methodological. In fact, previous studies linked appetite arousal to quantities consumed which corresponded to mean consumption of different foods whereas our study focused on a particular food. This implies that the motivational and consumption measures must remain consistent with children: either based on particular foods or on food in general.

5. Strengths and limitations

To our knowledge, our study was the first to rely on a within-subject design to test the partition effect. Moreover, it was undertaken with children in their natural setting (home), without distractions (screens or peer group), and with hunger state and food pleasantness being controlled. In these
conditions, the effect of partition on food intake has not been replicated. This result has been interpreted at two levels: a methodological one (size of the units) and a developmental one (children's capacities of attention and sensitivity to external food cues).

However, some methodological limitations should be noted. With regard to the intervention, the absence of standardization of the location (kitchen versus living room) and the potential availability of other sweet-tasting foods may have impacted children's chocolate intake. Another issue could be the absence of standardization of children's intake before the mid-afternoon snack (children were served the same menu at school, yet their intake was not evaluated), but French children don't consume any food between lunch in the canteen and snack time, and their hunger levels before snack time was measured and incorporated them into the analyses.

With regards to the selection of participants, the sample size can be considered as large given the ecological nature of the intervention and the paired nature of the protocol, but it would be worth increasing it. Moreover, as our sample was rather unbalanced with regard to the BMI variable (normal weight versus overweight), with only 11.3% of children being overweight, the difference of the partition effect in relation to ponderal status could consequently not be effectively tested. Finally, with regard to the protocol, the choice of the product could be reconsidered in order to test the effect of partition with foods that are not highly appreciated. Indeed, the effect of partition depending on the level of liking of the product should be tested, with the hypothesis that the effect is greater when products are less liked.

Further studies should then be carried out with a larger sample of children, including a substantial number of overweight children, invited to consume a moderately liked food in a natural and standardized context, without the presence of other foods. The two versions (partitioned and not partitioned) of the target food should be presented in reasonable forms. Finally, more varied age brackets, in particular including younger children, should be considered in order to test the developmental interpretations proposed in line with the children's attention capacities and their sensibility to the external cues underlying the control of intake.

6. Conclusion

Contrary to the study by Marchiori, Waroquier, and Klein [22], our study failed to validate the hypothesis of the effect of partition on food intake in children. Consequently, at our stage of knowledge, the effect of partition in children, and the underlying mechanisms, cannot be supported by any definitive conclusion. Further studies with other products, other unit sizes and different participants' characteristics must be performed in order to confirm or not confirm the existence of the partition effect and the nature of the underlying processes. It is only through carrying out this work that the interaction effect between partition and children's eating motivational characteristics can be tested. A measure of the desire to eat, specific to the food included in the protocol and not a general measure of the desire to eat, should be therefore chosen.

References

[1] C. Llewellyn, J. Wardle, Behavioral susceptibility to obesity: Gene-environment interplay in the development of weight, Physiology \& Behavior. 152 (2015) 494-501.
doi:10.1016/j.physbeh.2015.07.006.
[2] K.C. Berridge, Motivation concepts in behavioral neuroscience, Physiology \& Behavior. 81 (2004) 179-209. doi:10.1016/j.physbeh.2004.02.004.
[3] V. Godefroy, L. Trinchera, L. Romo, N. Rigal, Modelling the effect of temperament on BMI through appetite reactivity and self-regulation in eating: a Structural Equation Modelling approach in young adolescents, International Journal of Obesity. 40 (2016) 573. doi:doi:10.1038/ijo.2016.6.
[4] T. van Strien, P. Oosterveld, The children's DEBQ for assessment of restrained, emotional, and external eating in 7- to 12-year-old children, International Journal of Eating Disorders. 41 (2018) 7281. doi:10.1002/eat. 20424.
[5] J. Wardle, C.A. Guthrie, S. Sanderson, L. Rapoport, Development of the children's eating behaviour questionnaire, The Journal of Child Psychology and Psychiatry and Allied Disciplines. 42 (2001) 963-970.
[6] A.N. Gearhardt, C.A. Roberto, M.J. Seamans, W.R. Corbin, K.D. Brownell, Preliminary validation of the Yale Food Addiction Scale for children, Eating Behaviors. 14 (2013) 508-512. doi:10.1016/j.eatbeh.2013.07.002. [7] S. Carnell, J. Wardle, Appetite and adiposity in children: evidence for a behavioral susceptibility theory of obesity, Am J Clin Nutr. 88 (2008) 22-29. doi:10.1093/ajcn/88.1.22.
[8] S.E. Domoff, A.L. Miller, N. Kaciroti, J.C. Lumeng, Validation of the Children's Eating Behaviour Questionnaire in a low-income preschool-aged sample in the United States, Appetite. 95 (2015) 415-420. doi:10.1016/j.appet.2015.08.002.
[9] V. Godefroy, L. Trinchera, N. Darcel, N. Rigal, Behavioural measures of child's eating temperament and their link with BMI, Appetite. 110 (2017) 6-14.
[10] S. Carnell, L. Benson, K. Pryor, E. Driggin, Appetitive traits from infancy to adolescence: Using behavioral and neural measures to investigate obesity risk, Physiology \& Behavior. 121 (2013)
[11] M.L. Pelchat, Of human bondage: Food craving, obsession, compulsion, and addiction, Physiology \& Behavior. 76 (2002) 347-352. doi:10.1016/S0031-9384(02)00757-6.
[12] M.G. Ramaekers, S. Boesveldt, G. Gort, C.M.M. Lakemond, M.A.J.S. van Boekel, P.A. Luning, Sensory-Specific Appetite Is Affected by Actively Smelled Food Odors and Remains Stable Over Time in Normal-Weight Women, J Nutr. 144 (2014) 1314-1319. doi:10.3945/jn.114.192567. [13] A. Meule, J.M. Hormes, Chocolate versions of the Food Cravings Questionnaires. Associations with chocolate exposure-induced salivary flow and ad libitum chocolate consumption, Appetite. 91 (2015) 256-265. doi:10.1016/j.appet.2015.04.054.
[14] L.L. Birch, J.S. Savage, J.O. Fisher, Right sizing prevention. Food portion size effects on children's eating and weight, Appetite. 88 (2015) 11-16. doi:10.1016/j.appet.2014.11.021. 79-88. doi:10.1016/j.physbeh.2013.02.015.
[15] A.B. Geier, P. Rozin, G. Doros, Unit Bias: A New Heuristic That Helps Explain the Effect of Portion Size on Food Intake, Psychol Sci. 17 (2006) 521-525. doi:10.1111/j.1467-9280.2006.01738.x. [16] K. Kerameas, L.R. Vartanian, C.P. Herman, J. Polivy, The effect of portion size and unit size on food intake: Unit bias or segmentation effect?, Health Psychology. 34 (2015) 670-676. doi:10.1037/hea0000160.
[17] D. Marchiori, L. Waroquier, O. Klein, Smaller Food Item Sizes of Snack Foods Influence Reduced Portions and Caloric Intake in Young Adults, Journal of the American Dietetic Association. 111 (2011) 727-731. doi:10.1016/j.jada.2011.02.008.
[18] N. Stroebele, L.G. Ogden, J.O. Hill, Do calorie-controlled portion sizes of snacks reduce energy intake?, Appetite. 52 (2009) 793-796. doi:10.1016/j.appet.2009.02.015.
[19] E. Van Kleef, C. Kavvouris, H.C. van Trijp, The unit size effect of indulgent food: How eating smaller sized items signals impulsivity and makes consumers eat less, Psychology \& Health. 29 (2014) 1081-1103.
[20] B. Wansink, C.R. Payne, M. Shimizu, The 100-calorie semi-solution: Sub-packaging most reduces intake among the heaviest, Obesity. 19 (2011) 1098-1100.
[21] P.L. Weijzen, D.G. Liem, E.H. Zandstra, C. De Graaf, Sensory specific satiety and intake: The difference between nibble-and bar-size snacks, Appetite. 50 (2008) 435-442.
[22] D. Marchiori, L. Waroquier, O. Klein, "Split Them!" Smaller Item Sizes of Cookies Lead to a Decrease in Energy Intake in Children, Journal of Nutrition Education and Behavior. 44 (2012) 251255. doi:10.1016/j.jneb.2011.07.007.
[23] J.S. Bruner, C.C. Goodman, Value and need as organizing factors in perception., The Journal of Abnormal and Social Psychology. 42 (1947) 33-44. doi:10.1037/h0058484.
[24] D. Dunning, E. Balcetis, Wishful Seeing: How Preferences Shape Visual Perception, Curr Dir Psychol Sci. 22 (2013) 33-37. doi:10.1177/0963721412463693.
[25] M. Spence, M.B.E. Livingstone, L.E. Hollywood, E.R. Gibney, S.A. O’Brien, L.K. Pourshahidi, M. Dean, A qualitative study of psychological, social and behavioral barriers to appropriate food portion size control, International Journal of Behavioral Nutrition and Physical Activity. 10 (2013) 92100. doi:10.1186/1479-5868-10-92.
[26] N. Le Moullec, M. Deheeger, P. Preziosi, Monteiro P., P. Valeix, Validation du manuel photos utilisé pour l'enquête alimentaire de l'étude SUVIMAX., Cahiers de Nutrition et de Diététique. 31 (1996) 158-164.
[27] M. de Onis, A.W. Onyango, E. Borghi, A. Siyam, C. Nishida, J. Siekmann, Development of a WHO growth reference for school-aged children and adolescents, Bull World Health Organ. 85 (2007) 660-667. doi:10.1590/S0042-96862007000900010.
[28] A. Cheema, D. Soman, The effect of partitions on controlling consumption, Journal of Marketing Research. 45 (2008) 665-675.
[29] K. Konrad, S. Neufang, C.M. Thiel, K. Specht, C. Hanisch, J. Fan, B. Herpertz-Dahlmann, G.R. Fink, Development of attentional networks: An fMRI study with children and adults, NeuroImage. 28 (2005) 429-439. doi:10.1016/j.neuroimage.2005.06.065.
[30] A. Abundis-Gutiérrez, P. Checa, C. Castellanos, M. Rosario Rueda, Electrophysiological correlates of attention networks in childhood and early adulthood, Neuropsychologia. 57 (2014) 7892. doi:10.1016/j.neuropsychologia.2014.02.013.
[31] M.R. Rueda, J. Fan, B.D. McCandliss, J.D. Halparin, D.B. Gruber, L.P. Lercari, M.I. Posner, Development of attentional networks in childhood, Neuropsychologia. 42 (2004) 1029-1040. doi:10.1016/j.neuropsychologia.2003.12.012.
[32] R.K. Lansigan, J.A. Emond, D. Gilbert-Diamond, Understanding eating in the absence of hunger among young children: A systematic review of existing studies, Appetite. 85 (2015) 36-47. doi:10.1016/j.appet.2014.10.032.
[33] S. Nicklaus, V. Boggio, S. Issanchou, Food choices at lunch during the third year of life: high selection of animal and starchy foods but avoidance of vegetables, Acta Paediatrica. 94 (2005) 943951.
[34] L.L. Birch, Dimensions of preschool children's food preferences, Journal of Nutrition Education. 11 (1979) 77-80. doi:10.1016/S0022-3182(79)80089-8.

