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Abstract

In this paper, we perform a numerical study for the solution of optimal constrained
optimization problems for linear convection-diffusion PDEs by local and global radial
basis function techniques. To the best of our knowledge, these control problems have
not been treated in the literature by RBFs methods. It is well-known that the algebraic
system of RBFs methods presents a larger condition number and a higher numerical
complexity as the number of nodes (or shape parameter), increases. In this work, and
in the context of optimal constrained optimization problems, we explore a possible
answer to both problems. Specifically, we introduce a local RBF method (denoted
as LAM-DQ), based on the combination of an asymmetric RBFs local method (LAM),
inspired in local Hermite interpolation (LHI), combined with the differential quadrature
method (DQ). We also propose a preconditioning technique that in combination with
extended arithmetic precision let us treat the ill-conditioning problem. We numerically
prove that as the number of nodes increases, then for errors of the same order, the
condition number remains tractable, in quad-precision, and the numerical complexity
of the local method remains bounded.

Keywords: Local radial basis functions methods, PDE-constrained optimization
problems, convection-diffusion control.
2010 MSC: 65N35, 49J20, 65K10.

1. Introduction

Several works have appeared in the literature which deals with the analysis and
formulation of numerical methods for the solution of distributed control problems
in two or three dimension (see, for instance, Zhou and Yan [1]). These works have
been formulated within two general frames: the discretized-optimized or the optimize-
discretized approaches. In particular, Galerkin methods have been proposed and ana-
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lyzed within both frames, (see [1] and references therein). On the other hand, Pearson
[2], which up to now seems to be the only reference on this subject, solves Poisson
constrained optimization problems by using global RBFs symmetric and asymmetric
collocation techniques.

It is well known that a major limitation of global RBFs collocation techniques is
that as the number of nodes or the shape parameter increases, the condition number of
the corresponding Gram matrix grows, see [3]. In the case of infinitely differentiable
RBFs, convergence can be exponential, but the corresponding condition number also
increases in an exponential way [4].

The current article is formulated within the context of the optimize-then-discretize
approach and has the following objectives:

1. Perform a comparative numerical study of global and local RBFs meshfree meth-
ods for the solution of convection-diffusion constrained optimization problems.

2. Formulate a local asymmetric method (LAM) inspired in the local Hermite in-
terpolation technique, (LHI), [5].

3. Show that the proposed local method can attain the same accuracy of global
techniques but with the advantage of a considerable reduction of the computing
time, and making it possible to extend its application to a large number of nodes.

4. Introduce a simple but effective preconditioner to improve the condition number
of the local matrices of the LAM method.

We note that in point (3) above, although the number of centers can be very large,
the value of the fill distance should be such that the condition number of the local
matrices, in extended precision, are numerically well posed.

We find that the discretization of the primal and dual Euler Lagrange equations
by the local Hermite interpolation method (LHI) gives rise to a saddle point problem,
which is well known to be difficult to solve due to their indefiniteness and often poor
spectral properties, see [6]. To avoid this problem, we use both the primal and dual
equations to build a Biharmonic system for the state variable. This system is dis-
cretized by a local asymmetric interpolation method (LAM), introduced in this work,
which let us compute the state variable. The resulting state variable is used to com-
pute the control by the differential quadrature (DQ) method. The couple method is
denoted as LAM-DQ. An alternative technique to this method, which we denote as
LAM-LAM, is to discretize the second equation by using LAM technique again in-
stead of DQ. This method, however, is more expensive than LAM-LAM and produces
almost the same quality results. Note that, unlike LHI the LAM technique do not incor-
porates the convection diffusion operator, or in general the linear parabolic or elliptic
operator, in the ansatz although the boundary operators are included. The resulting
matrix is asymmetric but it is able to handle in an easer way the boundary conditions
than the purely asymmetric scheme and the resulting global matrix is coupled using the
same procedure as LHI. Moreover the numerical complexity of these local method is,
consequently, lower than LHI techniques.

It is worth noting that according to Bayona et al. [7], the DQ method introduced
by Shu [8], gave the foundations for the radial basis function-generated finite differ-
ence (RBF-DF) approximations. We also recall that in a different context, namely
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for interpolation of vector fields, both global techniques and LHI methods have been
investigated (see Cervantes et al. [9], [10]).

In this work, we are interested in comparing the results obtained from local meth-
ods with those obtained by solving the problem with global asymmetric collocation
(AC), techniques by using direct solvers with quad precision. The extended precession
approach is a current alternative to the bad conditioning problem that has been used
and supported as a reliable alternative by Kansa [11] and Sarra [4], among others. We
note that, although here we aim to investigate the control problems using the extended
precision approach, several alternatives to the ill-conditioned problem of RBFs collo-
cation methods have been recently formulated, see for example [12], [13]; Fornberg
and Flyer [14] and references therein for a comprehensive review on this subject.

This paper is organized as follows. In section 2, we briefly state the continuous con-
trol problem and refer the reader to the proper references. In section 3, we formulated
the LAM-DQ and LAM-LAM local methods for solving of the convection-diffusion
constrained optimization problems. Section 4, presents numerical examples to show
the capabilities and performance of the LAM-DQ local method as well as the precon-
ditioning technique. In section 5, conclusions are presented.

2. The convection-diffusion control problem

Throughout this paper, we will be concerned with the solution of the following
distributed control problem

miny,u
1
2‖y − ŷ‖

2
L2(Ω) + β

2 ‖u‖
2
L2(Ω)

s.t. Ey = u in Ω, By = g on ∂Ω

(1)

where, y is the state, u the control, ŷ the objective state, β > 0 a penalty constant, E is
a PDE stationary linear operator with variable coefficients and B a Dirichlet, Neumann
or Robin, boundary operator. These problems were introduced and analyzed by L. J.
Lions in [15].

The distributed control problem (1) can be equivalently formulated using a func-
tional that incorporates the PDE constraints by means of Lagrange multipliers, (see
[16] and [17]), namely as

L(y, u, p1, p2) =
1

2
‖y− ŷ‖2L2(Ω) +

β

2
‖u‖2L2(Ω) +

∫

Ω

(Ey − u) p1 +

∫

∂Ω

(By − g) p2.

(2)
where p1 and p2 are the Lagrange multipliers. Taking the Frechet derivative of func-
tional (2) with respect to y, u and p1 and p2 it is possible to obtain the following
Euler-Lagrange equations in terms of the state y and the control variable u,

Ey = u in Ω
By = g on ∂Ω

∣∣∣∣
βE∗u = ŷ − y in Ω

u = 0 on ∂Ω
(3)

where it is possible to show that p1 = p2 = p and that p can be eliminated by using the
equation p = βu. The variables y and u satisfying (3) are the optimal state and optimal
control, respectively.

3



3. Numerical schemes

The following schemes will be discretized by using multiquadric RBFs i.e. Φ(x) =√
c+ ‖x‖2, where c is the shape parameter. We first describe the global asymmetric

collocation and local methods to solve the minimization problem.

3.1. Asymmetric collocation

In order to formulate the global asymmetric collocation scheme for the former cou-
pled pair of equations (3) we first define the following ansatz

y(x) = H(x)λ, u(x) = H(x)µ,

where H is known as the reconstruction vector, taken here as usual as

H(x) =

[
Φ (x− xi)

1≤i≤n

∣∣∣∣∣ p`(x)
1≤`≤np

]
∈ Rn+np ,

with n the number of nodes and np the number of polynomial terms. Taking the first
nb < n nodes to be the boundary nodes, the resulting system of linear equations is
given by [

GB βE∗
−E G

] [
λ
µ

]
=

[
d
0

]
,

where

E =




0 0
EΦΩ EPΩ

0 0


 , E∗ =




0 0
E∗ΦΩ E∗PΩ

0 0


 , GB =



BΦ∂Ω BP∂Ω

ΦΩ PΩ

P t 0


 ,

are square matrices of size (n + np) × (n + np), and (BΦ∂Ω)j,i = BΦ(xj − xi),
(BP∂Ω)j,` = Bp`(xj), (QΦΩ)k,i = QΦ(xk − xi), (QPΩ)k,i = Qp`(xk), for Q =
E∗, E , I , with I the identity operator, G := GB is the standard Gram matrix for B = I ,
P t =

[
P t∂Ω P tΩ

]
and

d =

[
g(xj)

1≤j≤nb

∣∣∣∣∣ ŷ(xk)
nb+1≤k≤n

∣∣∣∣∣ 0
1≤`≤np

]t
.

If GB = G, i.e. taking B = I , we solve this system through block LU factorization
as follows: [

G βE∗
−E G

]
=

[
In+np

0
−EG−1 In+np

] [
G βE∗
0 R

]
,

where R = G+ βEG−1E∗, the Schur complement of G and In is the identity matrix
of size n.
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3.2. A local asymmetric scheme
The system of equations (3) can be easily shown to be equivalent to the following

boundary value elliptic problem, assuming y is smooth enough

My = ŷ in Ω
Ey = 0 on ∂Ω
By = g on ∂Ω

(4)

where the differential operatorM is given byM = I + βE∗E . Although system (3)
can be directly discretized, it involves the solution of a saddle point problem, which
is well known to be singular unless special conditions, e. g. inf-sup conditions, in the
case of finite elements, are imposed. We thus find it more convenient to use system (4)
to compute the numerical solution.

To formulate the LAM scheme of the system (4) we consider the following nota-
tion: Let X ⊂ Ω̄ be a set of n scattered nodes and let Xc be a subset of nc nodes.
Consider neighborhoods Dk (e.g. a disc of fixed radius) around the k-th point of Xc

and label the nodes of Dk ∩X so that:

• There are n(k) nodes in Dk i.e. n(k) = #(X ∩Dk).

• The first node, x
(k)
1 is the center of Dk.

• The first n(k)
c nodes are centers of other discs, i.e. n(k)

c = #(Xc ∩Dk).

• The following n(k)
b nodes lie on ∂Ω, n(k)

b = #(∂Ω ∩ (DkKXc)).

• The remaining n
(k)
ι nodes belong to the interior of Ω (and none of them are

centers of any disc), so that n(k) = n
(k)
c + n

(k)
b + n

(k)
ι .

For each disk, the method forms a local system whose solutions are used to build a
global sparse matrix. The solution of this global system gives the approximated values
of the PDE system (4) at the centers Xc ⊂ Ω.

Choosing a conditionally positive definite radial basis function Φ of order m and
let np be the dimension of the corresponding polynomial space, we define the recon-
struction vector

H(k)(x) =


Φ

(
x− x

(k)
j

)

1≤j≤n(k)

∣∣∣∣∣∣
p`(x)

1≤`≤np


 ∈ Rn

(k)+np .

Defining the following ansatz

y(k)(x) = H(k)(x)λ(k),

we obtain the local linear system

A(k)λ(k) =




Φ P
BΦ BP
EΦ EP
MΦ MP
P t 0



λ(k) = d(k) (5)
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with the data vector

d(k) =

y (x(k)
j

)
1≤j≤n

(k)
c

∣∣∣∣∣∣∣ g
(
x
(k)
j

)
n
(k)
c <j≤n

(k)
c +n

(k)
b1

∣∣∣∣∣∣∣ 0
n
(k)
c +n

(k)
b1

<j≤n
(k)
c +n

(k)
b

∣∣∣∣∣∣∣ ŷ
(
x
(k)
j

)
n
(k)
c +n

(k)
b

<j≤n(k)

∣∣∣∣∣∣∣ 0
1≤`≤np


t

where n(k)
b1 and n

(k)
b2 are the number of boundary points for each of the boundary

conditions, so that n(k)
b = n

(k)
b1 + n

(k)
b2 . Solving for λ(k) we obtain the local solution

y(k)(x) = H(k)(x)
(
A(k)

)−1

d(k) = W k(x)d(k), (6)

where W(k) is known as the vector of weights. Using this last expression it is possible
to compute Qu(k) for any differential operator Q through Qu(k)(x) =

(
QW(k)

)
(x)d(k).

Denote by yc =
[
y
(

x
(k)
1

)]nc

k=1
∈ Rnc the vector of the values of y at each of the

centers. Then for each k, the unknown elements of d(k) belong to yc.
Consider now the following system of equations

ŷ
(

x
(k)
1

)
=My

(
x

(k)
1

)
=MH(k)(x

(k)
1 )

(
A(k)

)−1

d(k) = W
(k)
M

(
x

(k)
1

)
d(k) (7)

for k = 1, . . . , nc and W
(k)
M =MW(k).

This is a linear system in yc, whose elements are the approximated solution of the
PDE system (4), at the centers, and which can be written as Syc = b. Note that since
in each d(k) there are only a few number of centers, i.e. n(k)

c is relatively small, the
matrix S is sparse and thus standard preconditioning techniques can be used.

In order to build the matrix S, we compute the weights by solving the following
equation, (see equation (7)),

W
(k)
M

(
x

(k)
1

)
=MH(k)(x

(k)
1 )

(
A(k)

)−1

(8)

Once the state y has been computed, we can obtain the control u, through one of
the following two algorithms:

1. Local asymmetric method (LAM). Solve the problem for u by means of,

βE∗u = ŷ − y in Ω
u = 0 on ∂Ω

(9)

using the computed values of y.
2. Differential quadrature (DQ). Where we evaluate

u = Ey

by discretizing the operator using the differential quadrature technique.
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We shall denote the first scheme by LAM-LAM and by LAM-DQ to the second
one. We omit the description of the LAM-LAM algorithm, since the second part of the
algorithm, system (9), has been essential already described. Also, we omit numerical
results for LAM-LAM since LAM-DQ presents the best performance between the two
algorithms. We thus briefly recall the differential quadrature method for this problem.

The main point of the RBF differential quadrature method, see Shu [8], is to build
a discrete operator Ẽ which approximates the continuous linear differential operator E .
Its construction can be summarized as follows. First, we solve the following system

EΦ(x)
∣∣∣
x=xk

=

nk∑

j=1

wEk,jΦ(xk,j), k = 1, 2, . . . , N (10)

where the nodes {xk,j}nk
j=1 ⊂ Ω are the nk nearest points to xk ∈ X ⊂ Ω. For

simplicity, we have taken Φ to be a strictly positive definite radial basis function, (the
formulation also holds for conditional positive radial basis functions). It is well known,
see [18], that the system (10) is invertible. Once the coefficientswEk,j are computed, the
approximated discretization of the operator E of a smooth enough function u is given
by

Eu(x)
∣∣∣
x=xk

≈ Ẽu(xk) =

nk∑

j=1

wEk,ju(xk,j), k = 1, 2, . . . , N.

Note that unlike LAM approach, see equation (8), the differential quadrature tech-
nique does not include the boundary operator B in the computation of the weights,
equation (10), see [8].

4. Numerical examples

In this section, we will discuss different examples to illustrate our main contribu-
tion. Specifically, that the proposed local algorithm can attain errors which are compa-
rable to the global asymmetric collocation technique but a much lower computational
cost. The analysis of the numerical experiments for these techniques is not trivial due
to the existence of three parameters that simultaneously controls the quality of the re-
sults. These parameters are the fill distance, the penalty constant, β, and the shape
parameter, c.

The experiments were set up in the following way: given a total number of nodes n,
we vary the values of β and/or c, showing that we obtain completely different results. In
fact, although the error can be good the condition number can be close to the machine
precision, which means that we have problems that are numerically ill-posed and the
result may not be reliable. On the other hand, we can have a good condition number,
which means that the scheme is stable, but the error can be very poor. The goal then
is to find the appropriate parameters that guarantee both stability and good numerical
errors. To do this, we look for values of β and c for which the error is minimal and
the condition number of the Gram matrix lower than the used precision. The reason
for this criterion is that the condition number tells us, approximately, how many digits
of the error are reliable. In other words, for a condition number of 10k, up to k digits
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of accuracy may be lost within the floating-point arithmetic used. We remark that the
computed condition number is only an approximation that serves as a bound for the
exact value of the maximum inaccuracy that may occur in the algorithms. In the case
of the LAM-DQ method, the restriction of the condition number is imposed on the
local Gram matrices.

The numerical results obtained by each method are computed for different values of
β, note that the values of c do not necessarily have to coincide for both techniques since
one method is global and the other local. The results are presented using multiquadric
RBFs and quadruple precision to further investigate the performance of the methods as
well as the effect of the condition number. Finally, independently of the values for β
and c, there are problems that require a greater number of local nodes to obtain good
numerical errors.

4.1. Problem 1

The first problem that we would like to analyze is a Poisson control problem given
by:

−4 y = u, −β 4 u = ŷ − y in Ω
y = g, u = 0 on ∂Ω

ŷ = sinπx1 sinπx2

g = 0

with exact solution given by

yβ(x1, x2) =
1

1 + 4β(π)4
sinπx1 sinπx2

uβ(x1, x2) =
2π2

1 + 4β(π)4
sinπx1 sinπx2.

Since we want to restrict the values of the condition numbers κ, corresponding to
the local scheme, we shall use the value of κ = maxk κ(A(k)) to measure the numerical
ill-posedness, meanwhile for the global method we use κ = κ(G).

Table 1 contains the values ‖y− ŷ‖L2(Ω) for the state y; ‖u‖L2(Ω) for control u and
the relative errors,REy = ‖y−yβ‖L2(Ω)/‖yβ‖L2(Ω),REu = ‖u−uβ‖L2(Ω)/‖uβ‖L2(Ω),
for the state and the control respectively; the Cost = (‖y − ŷ‖2L2(Ω) + β‖u‖2L2(Ω))/2,

where ‖f‖2L2(Ω) =
n∑
k=1

|f(xk)|2.

From table 1 we can observe that for small values of β the errors obtained by global
collocation and LAM-DQ techniques are comparable. Moreover, for large values of β,
it is possible to change the number of nodes in the local systems to improve the LAM-
DQ error. It is important to note that for small values of β and small number of nodes
for the local systems it is possible to obtain similar errors for both methods, which is
property that has a considerable impact on the computing time. Even when more nodes
are used in local systems for large values of β, the computing time is still lower than
the one used for AC. In addition, as β → 0, we have κ(S) → 1, suggesting that the
method is highly stable for these cases.
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LAM-DQ AC

β 10−4∗ 10−6 10−10 10−4 10−6 10−10

c 6.00×10−1 1.00 1.00 3.00×10−1 4.00×10−1 4.00×10−1

REy 4.30×10−6 2.94×10−7 2.59×10−11 7.15×10−9 3.23×10−9 4.28×10−12

REu 3.04×10−4 8.65×10−5 8.31×10−7 6.33×10−9 1.98×10−7 6.59×10−8

‖y − ŷ‖ 3.32×10−1 3.45×10−3 3.45×10−7 4.22×10−1 4.39×10−3 4.39×10−7

‖u‖ 1.68×102 1.75×102 1.75×102 2.14×102 2.22×102 2.23×102

Cost 1.47 1.53×10−2 1.53×10−6 2.38 2.47×10−2 2.48×10−6

κ 4.87×1026 1.51×1024 1.42×1024 2.03×1024 9.05×1026 9.05×1026

κ(S) 4.68×107 3.81×104 1.39

Time 46sec 9sec 9sec 1min 51sec 1min 51sec 1min 51sec

Table 1: Results from problem 1. For LAM-DQ n(k) = 50, except for * where n(k) = 100 and κ =
maxk κ(A

(k)). For AC κ = κ(G). In both cases n = 622.

Figure 1 shows in detail the variation of β and c on the error and the condition
number. We can see that as β tends to zero and the value of c increases the error
decreases, so for both methods the results can be improved with respect to the error but
they may be unreliable because of the conditioning when c is increased. The results
that are reported in the table 1 are far from the values of κ for which the solutions are
affected by rounding errors with respect to the precision used, still we obtain errors
below 10−5. It is important to mention that as in our case, in [19] the authors observe
that as the value of β decreases so does ‖y− ŷ‖L2(Ω). In their case, it was only possible
to explore this for values up to β = 10−6, due to the limitation of their iterative methods
designed for the finite element method.

Table 2, shows that when the condition number of the local systems is bounded,
the shape parameter decreases as n(k) increases. On the other hand, we performed nu-
merical experiments, not reported here because the results are similar to those obtained
in table 2, where we do not bound the size of the condition number. These computa-
tions show that the shape parameter slightly changes when the number of local nodes
increases. Finally, we observe that the variation of the shape parameter is independent
of the value of the penalty constant β.

We also analyzed the use of a preconditioner for LAM-DQ, figure 2 shows a com-
parison of the methods for β = 10−6. The point we want to emphasize here is that
it is possible to reduce the conditioning of the local matrices A(k) in such a way that
the results obtained for large values of c are reliable. In this particular example, when
using the preconditioner P (k)A(k), with P (k) = (A

(k)
∗ )−1, where A(k)

∗ is obtained in
the same way as A(k) just by using the shape parameter ĉ 6= c, where ĉ = c + δ with
δ small. For example, for the case of the figure 2, given c = m × 10α it was taken
δ = 0.001 × 10α, such so that ĉ = (m + 0.001) × 10α, obtaining an error of the
same size as in the case of LAM-DQ, but with a lower condition number, even reach-
ing a difference up to 14 orders of magnitude for c = 9 where the condition number is
around 1035 and in the case of AC up to 16 orders of magnitude for c = 8 where the
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LAM-DQ, n(k) = 50 AC
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Figure 1: Comparison between the values of the relative error (REy) and the condition number (κ), by
varying the shape parameter c. These calculations were obtained using quadruple precision, and different
values of the penalty constant β.
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Figure 2: Comparison of different methods for β = 10−6
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β n(k) c REy κmax(A(k)) κ(S)

10−2

25 2 7.73×10−2 1.17×1020 9.42×108

50 1 1.24×10−4 1.14×1024 6.72×107

75 7×10−1 1.24×10−4 6.92×1024 1.71×109

100 6×10−1 2.68×10−5 4.63×1026 1.61×108

10−4

25 7 4.26×10−4 6.26×1023 4.04×108

50 1 4.55×10−5 1.18×1024 9.45×106

75 7×10−1 7.91×10−6 7.17×1024 1.97×108

100 6×10−1 4.30×10−6 4.87×1026 4.68×107

10−6

25 9 1.23×10−5 1.63×1026 1.78×106

50 1 2.94×10−7 1.51×1024 3.81×104

75 9×10−1 2.35×10−7 6.66×1026 1.20×107

100 7×10−1 5.77×10−8 7.59×1026 4.55×106

10−10

25 9 5.06×10−10 6.29×1025 1.16

50 1 2.59×10−11 1.42×1024 1.39

75 7×10−1 7.65×10−12 1.07×1026 2.65

100 7×10−1 5.43×10−12 9.26×1027 6.45

Table 2: Behavior of shape parameter against the number of local nodes (n(k)) for different values of β.
Here we used n = 622 and test problem 1.

condition number reaches 1037, while the condition number for LAM-DQ Precond is
around 1021 for both values of c.

Table 3 displays the performance of LAM-DQ with and without preconditioning.
Computations were performed for β = 10−6 and the best values reported in table 1.
In particular, for c = 5 and ĉ = 5.001, the values of REy and REu for the local
methods have nearly the same order of magnitude than the values corresponding to
the global method, (AC), but with lower condition number. Moreover, the computing
time for local methods is clearly much lower than the CPU time obtained for the global
technique. There is clearly more room to improve this part, especially in the process of
finding the optimal value of δ and thus looking for more efficient preconditioners.

4.2. Problem 2

The following problem was used by Pearson in [2] in a finite element context. It is
an optimal control formulation of the double-glazing problem discussed in [20]. This is
essentially a convection-diffusion control problem with variable coefficients for which
there is no exact solution and is defined as follows.
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LAM-DQ LAM-DQ Precond AC

c 1.00 5.00 4.00×10−1

REy 2.94×10−7 5.63×10−9 3.23×10−9

REu 8.65×10−5 6.09×10−6 1.98×10−7

‖y − ŷ‖ 3.45×10−3 3.45×10−3 4.39×10−3

‖u‖ 1.75×102 1.75×102 2.22×102

Cost 1.53×10−2 1.53×10−2 2.47×10−2

κ 1.51×1024 1.25×1020 9.05×1026

κ(S) 3.81×104 1.91×106

Time 9sec 20sec 1min 51sec

Table 3: Comparison of the methods LAM-DQ; LAM-DQ-Precond and AC for β = 10−6; n(k) = 50.
Here κ = maxk κ(A

(k)) is the condition number for local methods and κ = κ(G) the condition number
for the global AC technique. In all cases n = 622.

(−ε4+ω · ∇)y = u, β(−ε4−ω · ∇)u = y − ŷ in Ω = [−1, 1]2

y = g, u = 0 on ∂Ω

ŷ = 0

g =

{
1 {1} × [−1, 1]

0 elsewhere
ω = [2x2(1− x2

1),−2x1(1− x2
2)]t

ε =
1

200

This example corresponds to a boundary layer problem, which is of interest due
to the sharp gradient attained at the boundary layer. Table 4 contains the values ‖y −
ŷ‖L2(Ω) for the state y and ‖u‖L2(Ω) for the control u.

From the results reported in table 4 it can be seen that for any method it is possible
to find c in such a way that the minimum value of ‖y− ŷ‖L2(Ω) is of the same order in
magnitude. The difference is in ‖u‖L2(Ω) since the norm obtained for the local scheme
case is much smaller than for AC, which seems to affect in the same way the value of
the cost functional.

Figure 3 we only display the solution for LAM-DQ using n = 50000, this is due
to the fact that AC takes to much time, in fact, although we did not complete the
experiment, we estimate that it will take around two days to obtain the results. The
high number of total nodes were used to show the capabilities of LAM-DQ to handle
big problems and to show in detail the solution obtained for the state for this problem.
We can see how the solution is very close to 0 in all the domain except very near of the
boundary layer.
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LAM-DQ AC

β 10−2 10−6 10−10 10−2 10−6 10−10

c 8.00×10−6 6.00×10−4 6.00×10−4 4.00×10−6 1.00×10−5 1.00×10−5

‖y − ŷ‖ 3.97 2.74×10−3 2.74×10−7 1.71 4.17×10−4 4.17×10−8

‖u‖ 1.48×101 3.73×10−2 3.74×10−6 2.47×101 4.26×101 4.26×101

Cost 8.99 3.75×10−6 3.76×10−14 4.52 9.09×10−4 9.09×10−8

κ 4.73×104 1.04×105 1.09×105 9.53×104 1.08×105 1.08×105

κ(S) 2.58×103 1.03 1.00

Time 10sec 10sec 10sec 1min 52sec 1min 52sec 1min 52sec

Table 4: Results from problem 2. For LAM-DQ n(k) = 50 and κ = maxk κ(A
(k)). For AC κ = κ(G).

In both cases n = 622.
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Figure 3: Solution for problem 2, n = 50000, β = 10−6

4.3. Problem 3
The last problem is also a convection-diffusion control problem for which there is

no exact solution, given by

(−ε4+ω · ∇)y = u, β(−ε4−ω · ∇)u = y − ŷ in Ω
y = g, u = 0 on ∂Ω

ŷ =

{
(2x1 − 1)2(2x2 − 1)2 in

[
0, 1

2

]2 ∩ Ω

0 elsewhere

g =

{
(2x1 − 1)2(2x2 − 1)2 in

[
0, 1

2

]2 ∩ ∂Ω

0 elsewhere
ω = (cos θ, sin θ), with θ = 2.4

ε =
1

200
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LAM-DQ AC

β 10−2 10−6 10−10 10−2 10−6 10−10

c 4.00×10−4 7.00×10−3 7.00×10−3 4.00×10−5 6.00×10−4 6.00×10−4

‖y − ŷ‖ 3.57×10−1 1.49×10−4 1.49×10−8 1.47×10−1 1.65×10−4 1.66×10−8

‖u‖ 5.62 3.00 3.00 1.35 3.20 3.20

Cost 2.22×10−1 4.51×10−6 4.50×10−10 2.00×10−2 5.12×10−6 5.11×10−10

κ 6.52×105 1.25×109 6.52×108 2.63×105 2.41×106 2.41×106

κ(S) 5.25×102 2.27 1.00

Time 10sec 10sec 10sec 1min 52sec 1min 52sec 1min 52sec

Table 5: Results from problem 3. For LAM-DQ n(k) = 50 and κ = maxk κ(A
(k)). For AC κ = κ(G).

In both cases n = 622
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Figure 4: Solution for problem 3, n = 3021, β = 10−10

Table 5 contains the same values as the previous example: ‖y − ŷ‖L2(Ω) for the
state y and ‖u‖L2(Ω) for control u.

The results reported in the table 5 show again, that as in the previous example, for
any method it is possible to find c in such a way that the minimum value of ‖y−ŷ‖L2(Ω)
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No. Nodos AC LAM-DQ LAM-DQ Precond

500 58sec 7sec 15sec

1000 7min 34sec 18sec 34sec

1500 24min 59sec 36sec 1min 1sec

2000 59min 9sec 1min 5sec 1min 38sec

2500 114min 44sec 1min 49sec 2min 29sec

3000 197min 50sec 2min 51sec 3min 40sec

3500 316min 33sec 4min 15sec 5min 19sec

4000 467min 52sec 6min 6sec 7min 12sec
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Figure 5: Calculation time employed by the methods. For LAM-DQ, n(k) = 50.

is of the same order in magnitude. Here, for the number of total nodes considered, there
is no difference in the magnitude of ‖u‖L2(Ω), and therefore also for the value of the
cost functional.

However, for the particular case for β = 10−10 shown in figure 4 with n = 3021,
we have values for y of the same magnitude but the control norm is lower for LAM-
DQ. In addition, the control calculated through LAM-DQ visually resembles the results
calculated by finite element method in [16] and [19], which shows the consistency of
the LAM-DQ solutions with respect to the finite element method.

Finally, we compare the computing time for both methods. The tests were carried
out using our own routines programmed in C++ on a machine with an Intel Core i5
M540 processor (2.53GHz). The execution time of the algorithms seems only to be
dependent on the total number of nodes, that is, no matter which value of c and β are
taken or if it is a convection-diffusion or Poisson control. Table 5a shows the different
calculation times by varying the total number of nodes, showing that for all cases LAM-
DQ has a smaller execution time in all cases. Figure 5b shows in a more clear way the
difference between the computing time of both methods, showing the advantage of
LHI-DQ to solve massive problems.

It is worth to make some remarks on the computational complexity of these meth-
ods. There are two parts involved in the algorithm: the first consists of solving the
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biharmonic problem through LAM technique to calculate the state. The second uses
DQ to compute the control.

For the LAM algorithm, we first need to build the nc × nc global matrix S. Each
row of S is composed of the weights obtained by solving a local system, so a total of
nc local systems need to be solved in order to build S. For each local system, we need
to determine the n(k) nearest neighbors nodes to build it. This is done by a k-d tree
technique which takes O(n(k) log nc) = O(log nc) operations, since n(k) is constant
with respect to nc. Then, each local system is solved by LU factorization which is well
known to be of cubic order. A(k) is a (n(k) +np)× (n(k) +np) matrix, so solving this
system is of constant order with respect to nc. This implies that the overall process of
building S is O(n).

The global sparse system Syc = b is efficiently solved by the LU factorization
with partial pivoting cusolverSp of CUDA, so the complexity can be estimated as
follows. As we pointed out earlier, each row of S has n(k)

c nonzero entries, which is
a constant equal to the number of centers in the local supports. It is well known (see
[21]), that the computational complexity of LU for a band matrix with bandwidth k
is k2n. Therefore, for S the bandwidth should be k = max(n

(k)
c ) < n(k) which is

constant with respect to n. Thus we have that the complexity of LAM technique is of
order O(n2) when k2 ≤ n, namely it is quadratic.

Analogously for DQ we have that it has quadratic complexity since each row of the
weight matrix has n(k) nonzero entries. Then, LAM-DQ has a complexity of O(n2).
Importantly, this can be verified numerically from figure 5b, where the behavior of
number of nodes against time can easily be seen to be cubic for AC whereas it is
quadratic for LAM-DQ, which verifies the analytical reasoning.

5. Conclusions

In this article, we solve control distributed problems for convection-diffusion linear
PDEs problems by global and local radial basis functions methods. Inspired by the lo-
cal Hermite interpolation method proposed by [5], we formulated two local techniques,
LAM-DQ and LAM-LAM.

A saddle point problem is obtained if we discretize the primal and adjoint equations
by using LHI. We proposed a solution to this problem by discretizing instead, a well-
posed biharmonic problem for the state variable and then obtaining the control by a
second decoupled equation.

An important contribution of this paper is that these local methods, in comparison
to global collocation techniques, can attain similar precision errors for the same number
of nodes, but with a considerable reduction of the computing, CPU, time.

While the condition number of the sparse global matrices in all our experiments,
remains within an acceptable value, below the machine precision, the maximum condi-
tion number of the local matrices can grow up to the point where they are numerically
singular as the fill distance tends to zero.

In this article, we deal with this problem by using quad precision and by proposing
a simple but effective preconditioner. By doing this, we manage to solve problems
having 50000 nodes and reduce the condition number of the local matrices up to 10
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orders of magnitude. The ill-conditioning of the Gram local and global matrices is
currently an active research area in the field of radial basis function theory.

As we mentioned at the introduction, although here we performed our research us-
ing the extended precision approach, several alternatives to the ill-conditioned problem
of RBFs collocation methods have been recently formulated, for example [12], [13],
[14]. These techniques, which are currently an important active field of research, are
of interest and will be considered in further works related to this problem.

Despite that these approaches are of interest and will be considered in further
works, we believe that the methods based on extended precision and the analysis pro-
posed in this article present a significant contribution which shows a way to solve large
distributed control problems.
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