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Abstract 

This work aims to develop a driving risk warning system to enhance the road 

safety. Different from the existing lane departure warning system, speed limit warning 

system or collision warning system, the warning system proposed in this work focuses 

on the safety regarding vehicle's dynamics states. Many road accidents are caused by 

losing control of vehicle dynamics, such as the rollover, car drift and brake failure. First 

of all, the importance of monitoring vehicle dynamics states, especially the tire forces, 

is explained. Then the driving risk assessment criteria based on tire forces are developed 

in this work. The main contribution of this paper is the development of vehicle 

dynamics models and observers to estimate and predict individual tire forces using only 

low-cost sensors and ADAS (Advanced Driver Assistance Systems) map. The major 

new techniques developed in this study can be summarized in three aspects: 1) 

development of new vehicle dynamics models to estimate vertical, longitudinal, and 

lateral tire forces, 2) development of new nonlinear observers to minimize the 

estimation errors caused by sensor noises and model uncertainty, and 3) development 

of the tire forces prediction algorithm by taking advantage of digital map. The proposed 

warning system is validated by real vehicle experiments. 
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1 Introduction 

The potential ability to eliminate all road accidents is the most attractive point of 

developing intelligent connected vehicles. The large-scale use of fully autonomous 

driving vehicles in a smart city is a beautiful and exciting target proposed by many 

automotive companies and research institutes. The achievement of this target still needs 

lots of efforts in the next decades. However, improving the road safety is quite a critical 

and urgent task that should be accomplished as soon as possible. Many ADAS 

(Advanced Driver Assistance Systems) have already been introduced to the market and 

are saving people's lives. According to the report of the US Department of 

Transportation (NHTSA, 2013), of the vehicles equipped with both ABS(antilock brake 

system) and ESC(Electronic Stability Controller), 7.5% ran off the road, while of those 

equipped with neither ABS nor ESC, 14.6% ran off the road. ACC (adaptive cruise 

control) and AEB (autonomous emergency brake) are also proved to be effective in 

improving road safety, and mandatory installation of such ADAS systems is expected 

be legislated in many countries.  

The role of ADAS is to help drivers avoid road accidents. One of the key 

difficulties in developing ADAS is the diagnosis of possible road accidents in the 

current instant, or even in the future instant. The earlier the ADAS could detect the 

possible accidents, the more time the driver could have to prepare and take reactions. 

The comparison of different ADAS is illustrated in Figure 1. In order to diagnose the 

possible accidents while it has not happened, the ADAS system needs to fulfill three 

tasks: 1, defining driving risk assessment criteria; 2, monitoring the current values of 

the parameters needed by the assessment; 3, predicting the future values of the 

parameters needed by the assessment. Furthermore, to cover the requirement of 

automated and connected vehicles, the range of vehicle dynamic state estimation need 

to extend (Guo et al. 2018). 

 

Figure 1. Comparison of different ADAS regarding its perception area, reaction time and 

function mechanism 



For the driving risk assessment, various methods are developed from different 

view points. In this paper, the evaluation of driving risk mainly refers to the assessment 

of rollover safety, longitudinal safety and lateral safety. In the literature (Bouton et al., 

2007), the vehicle rollover phenomenon of light all-terrain vehicles is predicted with a 

rollover indicator. Rollover prediction method for heavy vehicles can be found in the 

literature (Imine et al., 2007). Different assessment methods of vehicle's longitudinal 

and lateral safety can be found in the literature (Rajamani, 2012; Reza, 2007; Pacejka, 

2006). In the ABS system, the longitudinal safety is evaluated by the tire slip ratio. In 

the ESP system, the lateral safety is usually evaluated by the sideslip angle. They are 

designed to handle the situation that a dangerous tire slip has already happened, but not 

able to predict the potential dangers in a future instant. In some particular situation, 

such as high speed driving, even the ABS or ESP is not able to control the vehicle back 

to safe state, as it is too late to correct the driver’s errors when the safety system is 

triggered. In the ACC and AEB system, the longitudinal safety is modeled with the 

position, speed and acceleration of the front vehicles or obstacles. Generally, it is 

reasonable to use the distance to obstacle to assess driving risk. Nevertheless, it is very 

difficult to define a threshold value that could ensure vehicle's safety in different 

situation. In fact, the safety distance varies with the driving situation. For example, the 

safety distance between vehicles is much larger for a heavy truck in a rainy day, 

compared with a small car in a sunny day. In order to provide a better assessment of 

vehicle safety, the relationships between vehicle dynamics states and vehicle safety 

have been discusses analyzed in (Ouahi et al., 2013; Dahmani et al, 2013; Wang et al., 

2013, Kissai et al. 2018). 

A remarkable point of this paper is that we propose to use tire forces to evaluate 

vehicle's safety. The motion of a car is usually considered by default to be controlled 

by steering wheel, brake, pedal or engine. Unfortunately, in some situation, for example 

on a slippery road, the steering wheel cannot effectively change the direction of vehicle 

and this usually leads to accidents. In addition, when the vehicle is driven on the 

inclined road, the vehicle dynamics is easier to enter the dangerous region leading to 

the instability of vehicle. Taking a further analysis of these cases, we can find that the 

vehicle motion is actually controlled by the tire-road contact forces. In Section 2, we 

will discuss how to use tire-road contact forces to evaluate vehicle's safety, including 

vertical safety, longitudinal safety and lateral safety.  

After the definition of driving risk assessment criteria, the monitoring of tire forces 

is the next critical task that should be solved in this work. In order to assess vertical , 

longitudinal and lateral safety, the tire-road force in three directions of each wheel are 

required. Currently in the passenger cars, there is no available system for the monitoring 

of individual tire forces in three directions. However, lots of related research works can 

be found in the literature. We would like to conclude the current tire force monitoring 

methods as four types: direct measurement (Wang et al., 2013), estimation based on 

kinematics model (Ryu et al., 2004), estimation based on dynamics model (Milliken et 

al., 2003) and estimation based on state observers (Dahmani, 2013). In this work, we 

developed non-linear state observers to provide real-time estimation of tire forces with 



higher accuracy and efficiency. The details about the real-time estimation will be 

presented in Section 3. 

In order to gain more time for the driver to take reactions to avoid accidents or 

reduce damages, it is necessary to assess the driving risk in both the current road and 

the upcoming road. In the literature (Ghandour et al., 2011; Wang et al., 2013), the 

authors proposed to use the infrastructure on the road to communicate the environment 

information to the vehicle. Then the communication data is utilized to decide whether 

the current speed is safe to pass through the upcoming corner. The infrastructure-based 

method relies on the quality of V2I communication system and is expensive to cover a 

large area. It is not employed in this work. In this paper, we propose to retrieve road 

information from a digital map. The digital map has the advantage of being cost 

effective and being able to describe the static environment with high precision. It could 

provide a variety of useful information for the vehicle to make correct decisions to 

prevent accidents. The using of digital map to enable the prediction of tire forces can 

be divided into four steps: definition of ADAS map data structure, vehicle localization, 

map matching and map reading, which will be explained in Section 4.  

Experimental tests have been implemented to validate our tire forces monitoring 

system. The driving risk assessment system is also tested to detect possible dangerous 

situation. The experimental results are presented in Section 5. Then conclusion and 

perspectives are given in Section 6. 

2 Driving Risk Assessment 

2.1 Tire fundamentals 

Tires are the only vehicle components generating external forces that can be 

effectively manipulated to control vehicle motions. This important role of tires makes 

tire force modeling a crucial topic for vehicle control. In order to guarantee the optimal 

driving maneuvers in different road condition including slippery roads, it is important 

to be aware of the actual tire forces and the maximum attainable tire forces. In this way, 

we can decide whether the tire is at the imminence of losing control and whether the 

protection process should be activated. The tire-road contact can generate longitudinal 

force, lateral force and vertical force (��, �� , ��), and moments along three direction  (��, ��, ��) allowing the car to accelerate/brake and to turn, as illustrated in the 

Figure 2. 



 

Figure 2. Illustration of terminology in tire models 

The importance of tire to vehicle's safety is clearly recognized by the automotive 

industry. The lateral tire slip will result in car drift. The longitudinal tire slip will result 

in brake failure. The ABS and ESP systems are developed to detect and handle these 

dangerous situations. According to the mechanism of ABS and ESP introduced in 

(Rajamani, 2012; Reza, 2007; Pacejka, 2006), the tire state in these systems is assessed 

by the tire slip ratio and sideslip angle. The advantage of this assessment method is that 

it can detect the car drift and brake failure quickly and efficiently. However, its 

limitation is also obvious, it is designed for detect a dangerous situation that has already 

happened, which means the sideslip angle and tire slip ratio become significant. It is 

because the value of sideslip angle and slip ratio is very small and very hard to detect 

during normal driving situation. 

Compared with tire slip ratio and tire sideslip angle, the tire forces can reflect the 

tire state more directly. Investigation has shown the influence of lateral tire force on 

vehicle lateral reliability and ride comfort (Li and He, 2016). Furthermore, by using tire 

forces, it is easier to detect potential tire slip. Nevertheless, there is no available sensors 

in ordinary passenger cars to directly measure tire forces for technical and economical 

reasons. The solution to this problem will be addressed in section 3. Assuming that the 

tire forces are available, the next subsection will introduce how to assess vehicle safety 

by using tire forces. 

2.2 Risk assessment using tire forces 

In order to evaluate vehicle's safety, we employ three risk assessment indexes: 

load transfer ratio (LTR), lateral skid ratio (LSR) and the brake failure ratio (BFR) 

(Imine et al., 2007). These risk assessments are based on the awareness of tire forces. 

The lateral load transfer ratio LTR is defined by using four wheel vertical forces as in 

Equation (1).  	
� � ��

 � ��
� � ���
 � ������

 � ��
� � ���
 � ���� 	 	 	 	 	 	 (1) 



The lateral skid ratio LSR represents the loss of adhesion resulting in the lateral 

drift. The lateral skid ratio is defined by road friction coefficient and tire forces, as in 

Equation (2).  	���� � 1 � ����� � ���,������� �
���,��� � | �������� | 	 	 	 	 	 	 (2) 

where ���� is the threshold of safe friction, ���,��� is the equivalent lateral friction 

coefficient. 

The brake failure ratio BFR represents the loss of adhesion resulting in the 

longitudinal tire slip. The brake failure ratio is defined by road friction coefficient and 

tire longitudinal forces, as follow: ����� � 1 � ����� � ���,�� ���� �
���,�� � |�������� | 	 	 	 	 	 	 (3) 

3 Real-time Estimation of Tire Forces 

3.1 Related works in estimation of tire forces 

The related tire force monitoring methods in the literature can be concluded as 

four types: direct measurement, estimation based on kinematics model, estimation 

based on dynamics model and estimation based on state observers.  

1) Direct measurement 

In (Nam et al, 2013), the author employed four force sensors to measure only the 

lateral forces. However, it is not realistic to use this method to measure all three 

directional components of each tire. In (Dherbomez et al., 2013), the author installed 

four expensive wheel transducers, each of which could measure the six components 

(three forces and three torques in the longitudinal, lateral, and vertical directions) of the 

road–tire contact force system. However, the price and complexity of this system make 

it hardly acceptable for automotive manufacturers. Furthermore, limited by the sensor’s 

physical mechanism, the direct measurements are sensitive to the influence of the 

environment and can only work under particular conditions.  

2) Vehicle kinematics model 

According to the kinematic motion of a vehicle, the tire slip state can be expressed 

using Figure 3 and Equation (4). Then, the sideslip angle can be obtained by numerical 

integration of inertial sensors (Reza, 2007). The advantage of the kinematics model-

based method is that it is independent of the tire properties, road friction, and other 

vehicle parameters. Thus, it can achieve good robustness against the vehicle’s 

unmodeled dynamics and parameters as well as variations under tire-road conditions. 

Nevertheless, the integration process accumulates the sensor errors, especially for the 

lateral acceleration signal, which results in a huge bias in the final estimation result.  



 

 

Figure 3. Bicycle model and four-wheel model for describing vehicle dynamics 

"̇$%& � '�(� � )̇	 	 	 	 	 	 (4) 
where '� is the lateral acceleration, (� is the longitudinal velocity, +,  is the yaw rate 

and "$�& is the sideslip angle of vehicle at center of gravity (COG). 

3) Vehicle dynamics model 

In this method, the relations among the sideslip angle, tire forces, and vehicle 

motion are described by the vehicle dynamics models and tire models (Rajamani, 2012; 

Reza, 2007; Pacejka, 2006). To achieve real-time practical applications, this method 

usually adopts a simplified but effective model, for example, the bicycle model. 

However, the simplified model error is significant, especially during extreme driving 

maneuvers. The main advantage of this method is that it does not accumulate sensor 

bias and can achieve accurate estimation in normal driving maneuvers.  

4) State observer 

To overcome the shortcomings of the kinematics model and the dynamics model 

method, several studies have been proposed to construct a state observer, also called a 

virtual sensor, to provide the best estimation. The linear observer deals with a linear 

model, such as the Luenberger observers, recursive least squares algorithms, and 

Kalman filters (KFs) (Li et al., 2014; Klomp et al., 2014; Li et al., 2014; Gadola et al., 

2014). The nonlinear observer is developed to deal with nonlinear vehicle dynamics 

models. A fuzzy observer that utilizes the fuzzy model with T–S fuzzy rules to represent 

the nonlinear vehicle model was proposed to estimate the vehicle slip angle (Ouahi et 

al., 2013). The extended Kalman filter is an effective method to deal with nonlinear 

models, as it provides a linear approximation of such models (Wang et al., 2013, Reina 

et al. 2017, Lee et al. 2018). Besides, the EKF has been proved able to cover the time-

variant vehicle parameters (Reina and Messina, 2018). 



In this study, the estimation of tire forces is based on the state observer method 

and the observer is developed according to the KF algorithm (including linear KF, 

extended KF, and unscented KF) and particle filter algorithm. Although many KF-

based observers have been proposed in the literature, estimation of the lateral dynamics 

in an accurate and robust way is still challenging. Generally, the existent KF observers 

can be improved in two aspects:  

• further development of vehicle models that can accurately describe all dynamics of 

interest while being as simple as possible.  

• creative construction of observers that can compensate for the model and sensor errors 

to the maximum possible extent.  

This section proposes modifications in both these aspects.  

3.2 Further development of vehicle dynamics models 

Vehicle dynamics has been an intense research subject for more than a hundred 

years. Developing vehicle models that accurately describe all dynamics of interest 

while being as simple as possible is the main challenge in the so-far developed vehicle 

state observers. Consider a four-wheel vehicle model, as illustrated in the Figure 3. The 

longitudinal, lateral and vertical force of a tire are noted as ���� , ���� , ���� 
respectively. The index ij represents the identity of the corresponding tire. In the 

literature, a vehicle's planar dynamics are expressed by 
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where (� , (� , +, , δ indicate the measured longitudinal speed, lateral speed, yaw 

velocity and steering angle, respectively. C� is the vehicle's moment of inertia around 

z-axis. g is the standard gravity on earth.  

However, Equation (5) is inadequate for obtaining individual tire forces in three 

directions (����, ����, ����). Therefore, we propose additional models about vertical, 

longitudinal and lateral vehicle dynamics as follow.  

3.2.1 Consideration of suspension's roll and pitch movements 

Both the pitch and roll motion of suspension are taken into account to model the 

vertical vehicle dynamics. The rotation of the vehicle body with respect to vehicle-



frame-fixed axes is given by the Euler angles (ψM, θM, φM) , where ψM is rotation 

angle about the z -axis, θM is rotation about the y-axis (pitch angle) and φM is rotation 

about the x-axis (roll angle).  

The suspension can be regarded as a damping system. For the pitch motion, the 

suspension is characterized by a pitch stiffness PQ and pitch damping coefficient RQ. 

Similarly, for the roll motion, the suspension can be represented by a roll stiffness PS 

and roll damping coefficient RS . The torques generated by the vehicle suspension 

could be calculated as  ��,TUT � RS+M˙ � PS+M��,TUT � RQVṀ � PQVM 	 	 	 	 	 	 (6) 
where ��,TUT, ��,TUT are the torque about x-axis and y-axis respectively. 

Then, the variation in tire vertical force during the motion can be explained by the 

torque of suspension, as follows:  
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	 	 	 	 	 	 (7) 

where X
 and X� are the width of the front axle and rear axle respectively. 

The advantage of this model is that it is sensitive to suspension motion and is 

independent of the inertial sensors.  

3.2.2 New models for lateral and longitudinal tire forces 

While some model-less estimators were applied to improve the robustness 

(Rezaeian et al. 2015), the common method to obtain lateral and longitudinal tire forces 

in literature is to employ tire slip based tire models, such as the linear tire model, Brush 

tire model, LuGre model (Ehsan et al. 2017), Dugoff’s tire model, and Pacejka’s magic 

tire model (Rajamani, 2012; Reza, 2007; Pacejka, 2006). The linear tire model is 



accused of being over simplified. On the contrary, Dugoff's and Pacejka's tire models 

are very complex and have many parameters to be configured before application. In 

addition, the accuracy of these models is highly dependent on the effect of the tire slip 

measurement. However, the tire slip is such a small quantity that its measurement can 

be easily disturbed by sensor errors. Therefore, we propose novel models to calculate 

tire forces without tire slip. 

In this study, we find that forces at the left and right tires are related, and we try to 

model this relation. We use the following notations: the transfer of lateral force at front 

axle is indicated by  
Z�,[ and that at rear axle is indicated by 
Z�,\; the transfer of 

longitudinal force at front axle is indicated by  
Z�,[  and that at the rear axle is 

indicated by  
Z�,\. They are defined as follows:  
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The value of  
Z�,[, 
Z�,\, 
Z�,[, 
Z�,\ can be obtained by employing the Brush 

model. The final calculation result is approximated by 
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where '
��[?  represents the force difference caused by the steering angle, ZcdefZcddZcdegZcdd ��[ represents the force difference caused by the load transfer. 

With the proposed models in Equation (5) (7) (8) (9), the tire slip is no longer 

needed for computing the tire forces. Instead, the tire forces are computed with vertical 

load transfer, velocity, and yaw rate, which can be easily obtained using low-cost 

sensors.  

3.3 Observer design 

This subsection describes the observer devoted to tire forces (vertical, lateral, and 

longitudinal forces). The need of observers is motivated by the fact that the open-loop 

estimation is significantly influenced by the sensor noises and model errors. To 

minimize the inevitable errors and obtain the optimal estimation, observer techniques 

are employed. The observers we proposed are based on the Kalman Filter algorithm, 

including linear Kalman filter, extended Kalman filter (EKF) and unscented Kalman 

filter (UKF). The general KF algorithm is expressed by Equation (10).  



hiXj@<k@=Al@kℎ0=jXn>:p̂rg
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hrg
∣r � thr∣rtv � wrg
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x)hrg
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	 	 	 	 	 	 (10) 

Where p̂r∣r, p̂rg
∣r represents the state of system at time { and { � 1 respectively. u represents the control vector. t, � represents the state transfer matrix and control 

matrix separately. h  represents the covariance matrix between predicted and real 

values and w represents the system noise covariance. P is Kalman gain matrix, x 

is observation transformation matrix and � is the observation noise covariance. 

The entire tire force estimation process is divide the into four blocks, as shown in 

Figure 4. Each of the four observers will concentrate at one estimation target. The first 

observer is an Extended Kalman filter to estimate the vertical forces at each wheel. The 

estimation result of the first block will be regarded as a measurement in other blocks. 

The second observer is an Unscented Kalman filter to estimate the lateral forces. The 

unscented Kalman filter is employed to minimize the errors caused by the high non-

linearity of tire's nature. The third observer is for the estimation of the longitudinal 

forces. The last observer is for the estimation of side slip angle. The strategy of using 

cascaded observers allows us to avoid the observability problems, furthermore it can 

enable the estimation process to be carried out in a simple and practical way. When all 

the states are observed in one observer, the covariance’s value of each state is highly 

correlated to each other. It will be very hard to find which covariance value is not 

correct when the estimation is not good. With the cascaded observers, we can check the 

quality of vertical, longitudinal and lateral force estimation respectively. The 

observability of each observer is analysed by using equation (11): | =}>Xi('}nX @~	 i'A8(���) � 0;zA=}>Xi('}nX @~	 i'A8(���) < 0; 	 	 l@kℎ	 �Ο�
�
�
��

RRtRt2⋮Rt0�
��	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11) 

where A is the prediction matrix, C is the observation matrix, m is the dimension of the 

state vector, O is the observability matrix. The system is observable with the condition 

that the rank of above observability matrix is equal to the dimension of the state vector.  



 

Figure 4. Overall algorithm of the tire force estimation process 
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where τ
 is the time constant that the suspension need to develop the vertical force. ����,$  is obtained by Equation (7). The parameters of vehicle are supposed to be 

constants. 



To implement the Kalman filter expressed in equation (10), the prediction matrix and 

the observation matrix are extracted. 
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For the observability, we can find that the observation matrix of vertical force in 

equation (13), �Z�, is already full rank. Then the observability evaluation matrix is 

sure to be full rank.  

The observation models mainly come from equation (7), which enables us have direct 

estimation of vertical forces of four tires. In addition, we know that the total of four 

tire forces is directly related to the vehicle’s mass and vertical acceleration. Then we 

can have 5 equations for the observation, as shown in equation (12). 

Observer for tire's lateral force ��� 
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where ~v�\�,�(�, ���) is the static lateral tire forces calculated by Dugoff model. The 

detailed expression of Dugoff's model can be found in (Wang et al., 2013).  

The prediction matrix and the observation matrix are extracted. 
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For the observability, we can find that the observation matrix of lateral force in 

equation (15), �Z�, is already full rank. Then the observability evaluation matrix is 



sure to be full rank.  

The first and second rows of �Z� represent the total tire forces in the longitudinal 

and lateral directions, the third row of �Z� represents the total moment generated by 

the lateral tire forces. They can be found in equation (5). The fourth and fifth rows of �Z� are the difference of lateral forces between right and left wheels, which are 

modeled by equation (9). 
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where ��[ is the resultant lateral force at front axle, it is obtained from the former 

observer. ��\ is the resultant longitudinal force in the rear axle, it is directly related to 

the brake pressure, normally, it is a constant value. 

The prediction matrix and the observation matrix are extracted. 
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For the observability, we can find that the observation matrix of longitudinal force, �Z�, 

is already full rank. Then the observability evaluation matrix is sure to be full rank. 

The first row of �Z�, is obtained by using equation (5). The second and the fifth rows 

of �Z�, are obtained through their physical definitions. The third and fourth row of �Z� , are the difference of lateral forces between right and left wheels, which are 

modeled by equation (9). 
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The measurements we used in this block are the accelerations and suspension 

deflections. "¦�T�  is the sideslip angle obtained by analyzing the less-slip tire, the 

details have been introduced in (Jiang et al., 2016). 

The prediction matrix and the observation matrix are extracted. 
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4 Prediction of tire forces using ADAS map 

In order to make time for correcting driving behaviors, especially when driving at 

high speed, it seems very appealing for us to predict an impending dangerous event and 

react before the danger occurs. A digital map contains lots of useful information about 

the upcoming road for enhancement of road safety (Jiménez et al. 2009). A popular 

application of digital map is the in-vehicle navigation system, which could remind the 

drivers about the speed limits of the road. In the near future, the role of digital map 

would be much more important, if more information are stored in the map, such as the 

curvature and other geometry information of the road. In this case, the digital map is 

also called as ADAS map for its ability to assist drivers. Some example of applying the 

ADAS map can be found in (Durekovic et al., 2011). This section introduces a new 

safety system to predict the tire forces based on the use of ADAS maps. 



4.1 ADAS map data structure 

The road information that are useful for the prediction of tire forces are listed in 

Table 1. We only attribute these road information to the critical points (CPs) where the 

road condition changes a lot, such as roundabout, slippery region or traffic light stop. 

After the CPs are defined, the vehicle path could be represented by the CPs and the 

corridors between two CPs (Victorino et al, 2003), as illustrated in Table 2. 

Table 1 Tags attributed to Critical Points 

Longitude Position Latitude Position Altitude 

x  y  h  

Road Direction Curvature Vertical curvature )\  κ  ρ  

Road Friction Bank Angle Slope Angle 

μ  + θ  

ID in map  Number of lanes Number of roads Cj��® �̄� � \̄��% 

 

Table 2. Tags attributed to Corridors 

Id of Beginning CP Id of Ending CP Length of Corridor Cj° Cj  	$�\\ 

Id of corridor Curve or Line Stop or Not Cj��� �$U\M�={0,1}  �T��®={0,1}  

The road information of a point in the map can be obtained by  �='j±� � 11 � 	�	\��%2�='j©±° � 	�	\��% �='j©±
	 	 	 (20) 
where �='j©±° and �='j©±
 indicates the road geometry information of start and 

end points of a corridor, respectively. 	� is the length between the current position and Rh°.  

4.2 Map reading 

To read required information from the map, the vehicle must be localized in the 

map. Map-matching process were developed using GPS data (Li et al. 2013, Quddus 

and Washington 2015). Lane-level localization can be achieved by incorporating road 

width information with GPS data (Sharath et al.2019). However, the GPS signal is not 

always available. The vehicle location is observed by the Extended Kalman filter 

algorithm to compensate the possible errors caused by signal lost, as shown in Equation 

(21).  
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./ ṗ²̇(̇�)̇)̈ 344

444
45 �

-..
../
sin()) ⋅ (�cos()) ⋅ (�'� � gsin V)̈0 344

445 � A=@>X

Observation model:

-..
...
/ p&®T²&®T(&®T)&®T(�´���)̇&�\� 34

444
45 �

-..
../
1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 1 0 00 0 0 0 134

444
5
-..
../
p²(�))̇ 344
445 � A=@>X

	 	 	 	 	 	 (21) 

where p&®T, ²&®T, (&®T, (�´���, )&®T, ),&�\� are the measurement of GPS receiver 

and inertial units, ) is the clockwise angle between the north and the vehicle direction.  

After the localization, we can obtain the road information of the current position and 

the future position, by combining Equation (21) and the following equation: 	� � ~Gp, ², 	®\�%H	 	 	 	 	 	 (22) 
where p, ² are the current position, 	®\�% is the distance ahead of vehicle, the details 

about ~ are provided in (Jiang et al, 2016). 

Then according to the road information from the ADAS map, the kinematic 

parameters of the vehicle can be predicted as 'I��® � j(�/jk � 8sin	V��®'E��® � (��µ�T� � 8sin	+��®'F��® � (��¶��® � 8cos	V��®cos	+��®)̇��® � (�µ��®?��® � 	Mµ��®
	 	 	 	 	 	 (23) 

where V��® and +��® are the slope and bank angle of the road, ¶��® is the vertical 

curvature of the road, µ��® is the road curvature.  

The most important information from the map is the curvature of road, µ��®. If 

the vehicle follows the road curve, µ��®  could be regarded as the curvature of 

vehicle's trajectory. The lane changing behavior can be viewed as a noise of µ��®. The 

noise variance of µ��® is set as 0.032 . When µ��® is the curvature at current point, 

Equation (23) is an redundant resource of current dynamics states. When µ��® is the 

curvature at future point, the obtained accelerations and yaw rates are used to anticipate 

the tire forces.  



4.3 Tire force prediction algorithm 

The overall prediction process can be expressed by the Figure 5.  

 

Figure 5. Overall structure of vehicle safety prediction system 

The sensor measurements are used to locate the vehicle's position and identify the 

corresponding corridors and CPs. Then CPs can provide information about road friction 

coefficient which can improve the the estimation of current states. Moreover, by 

extracting the upcoming CPs, the estimator could anticipate the potential variation of 

dynamics states. Then the dynamics states of current instant and future instant will be 

evaluated by three indicators of safety, introduced in the above section. To simplify the 

prediction process, the vehicle keeps the current speed during the coming road. The 

prediction system will perform the risk assessment for the coming 300m road. If a 

potential danger is detected, the system will warn the driver to slow down.  

5 Experimental validation 

5.1 Vehicle description  

The experimental vehicle instrumented by the laboratory, is dedicated to validate 

the real time estimation of vehicle's dynamics states, as shown in Figure 6. Besides the 



common sensors like IMU and GPS, the vehicle is also installed with tire force 

transducers (RoadDyn S625), which can measure tire forces directly to provide the 

ground truth. 

 

Figure 6. Experimental vehicle DYNA, equipped with different sensors 

5.2 Validation of dynamics models and real-time observers 

In this section, we will focus on the experimental validation of the above-

mentioned observers. The input measurements of our observers are obtained from CAN 

bus, accelerometer, gyrometer and laser distance sensors. The force transducers are 

used as ground truth. In order to better present the performance of our observers in 

different conditions, we would like to perform three tests with different road conditions 

and different speeds. Three tests are designed for different objectives. 

There are two tests designed for validating tire forces observers are:  

Test 1: intense slalom test at 50 km/h at level ground;  

Test 2: slalom test at 140 km/h at banked road. 

The third test is designed to evaluate the tire force prediction algorithms.  

Test 3: normal driving on the city road (for evaluating prediction algorithms) The 

two tests include:  

All these tests are performed with our experiment vehicle DYNA on the 

Mortefontaine Automobile Testing and Research Centre (CERAM - Centre d’Essais et 

de Recherche Automobile de Mortefontaine), as shown in Figure 7.  

In each test, we will present the estimation results of vertical tire forces, 

longitudinal tire forces and the lateral tire forces. The estimation results of the proposed 

new observers are noted as �Z�,·��, �Z�,·��, �Z�,·��. To make a comparison with 

the observers in the literature, we also developed observers based on the commonly 

used bicycle models. Their estimation results are noted as �Z�,$��, �Z�,$��, �¨,$��.  



  

Figure 7. The trajectory of road circuit on plan 

5.2.1 Intense slalom test at 50 km/h at level ground 

Firstly, an extreme intense slalom test was performed. The test track was well 

paved and set to be dry (�	 � 1). The maneuver time history is illustrated in Figure 8. 

 
Figure 8. Maneuver time history of Test 1: Intense slalom test 

During this test, the maximum lateral acceleration reached to 0.9g, average speed 

was about 50km/h. The steering wheel angle changed from 200° to -200° in one second, 

which could cause the extreme variation of the dynamics states. The slalom test is 

usually considered as a difficult maneuver from the estimation viewpoint, but it can 

better test the observer’s performances. 

Figure 9 demonstrates the estimation results of the vertical forces at each tire. The 

red lines correspond to the ground truth measured by the wheel transducer. Blue lines 

represent the results of the new observer that we proposed in section 3. The black 

dashed lines are used to illustrate the error bounds of the estimation. The value of the 

black dashed lines is equal to Fz�T� ± √h, where h is the covariance obtained by 

Kalman filter. Green lines are the results of �Z�,$��. During the slalom maneuver, the 

vertical tire forces changed quickly, but our observer can follow tightly with the 



measurement. Almost all the red data can be included in the error bounds [Fz�T� � √h,
Fz�T� � √h]. The advantage of our proposed observer is obvious at the moment of each 

peak turning. In the Figure 9, we can see the blue line is close to the red line even at the 

peak points, while the green line is less accurate. It can be explained as the pitch-roll 

motion-based models are more sensitive to the variation of vertical force. 

Figure 10 demonstrates the estimation results of the longitudinal forces at each tire. 

The red lines correspond to the measurement of the wheel transducer. Blue lines 

represent the results of the new observer that we developed in section 3. The black 

dashed lines represent the error bounds of our observer. The Green lines are the results 

based on the bicycle model and the assumption that ��

 � ��
�, ���
 � ����. During 

the slalom test, the longitudinal force at front tires seems unrelated to the undulation of 

steering angle, while the longitudinal force at rear wheel appears a typical “slalom” 

characteristic. That could be explained by the fact that the experimental car is a front-

drive car. The front tire forces are mainly controlled by the engines. The rear tire forces 

are mainly affected by the turning behaviors. The estimation provided by our new 

observer can tightly follow the variation of the longitudinal forces. We can find the 

estimation of longitudinal forces at rear wheels by using bicycle model is not so good. 

It is because the bicycle model is suitable for estimation of tire forces at each axle, 

which means the resultant longitudinal forces of rear left wheel and the rear right wheel. 

However, in this article, we are estimating the tire forces at each wheel rather than at 

each axle. With only bicycle model, we would assume the longitudinal forces at rear 

left and rear right wheels are the same. However, in fact, the states of left and right 

wheel are quite different especially during dynamic maneuvers. 

Figure 11 demonstrates the estimation results of the lateral forces at each tire with 

the new observer, OZ�,·��, represented by blue lines. The red lines are the real data 

acquired by DYNA. The black lines are the error bounds. From Figure 11, we can find 

that the new observer showed higher accuracy at rear tires than at front tires. It is due 

to the model errors caused by intense slalom behavior. In this intense slalom test, the 

lateral forces at front tire are also greatly influenced by the steering torque, which is not 

considered in our model. 

 



 

 
Figure 9. Test 1 (intense slalom test): Estimation of vertical force at each tire. Top four 

figures are the estimation results using different models; bottom four figures are the 

estimation error bounds to evaluate the observer’s performance. 



 

 
Figure 10. Test 1 (intense slalom test): Estimation of longitudinal force at each tire. Top four 

figures are the estimation results using different models; bottom four figures are the 

estimation error bounds to evaluate the observer’s performance. 



 

 
Figure 11. Test 1 (intense slalom test): Results and error bounds of the new observer for 

estimation of lateral forces at each tire. Top four figures are the estimation results using 

different models; bottom four figures are the estimation error bounds to evaluate the 

observer’s performance. 



5.2.2 Slalom test at 140 km/h on a banked road 

This test is designed to validate the performance of our observers on a banked road. 

The test track was banked and dry (�	 � 1). The maneuver time history is illustrated 

in Figure 12. In the CERAM test center, there are three tracks: the bank angles at low 

track, middle track, and high track were 15°, 30° and 40° respectively. During the test, 

the vehicle was continuously changing from the high track to the low track.  

 

Figure 12. Maneuver time history of Test 2: Banked road slalom test 

Figure 13 demonstrates the estimation result of the vertical forces at each tire. The 

bank angle of the road can cause the additional transfer of vertical load. However, the 

measured acceleration already contained the gravity component in lateral direction. As 

a result, the common model could also provide a good estimation of vertical force on a 

banked road. However, our proposed model was more accurate, as the roll and pitch 

motion of suspension was taken into account. The red plots in Figure 13 is the direct 

measurement of tire force transducers, which is the regarded as the ground truth in this 

article. When the vehicle is driving at 140 km/h, the vehicle is undergoing significant 

vibration, which is one of the reasons why the ground-truth also contains so much 

noises. To better evaluate the performance of our observer, we would like to filter the 

noise using smoothing function first and then add two new statistic indicators to 

evaluate the performance of our observers. 

One statistic indicator is the correct rate (CR), which is calculated by the percentage 



of in-error-bound estimation. This indicator is more related to accuracy, as it can show 

how much percentage of the estimation is close to the ground truth. 

CR �ÀX>kA
 

 , X>k � |1, @~|��T� � ��\U�| ≤ <=(0, @~|��T� � ��\U�| > <=(	 (24) 

Where ��T� is the estimated tire force, ��\U� is the ground truth tire force. 

The other one is the Pearson correlation coefficient (PCC), which is a measure of the 

linear correlation between the estimation results and the direct measurement. When the 

PCC is very high, it means the estimation is very linear-correlated to the ground truth, 

which means the estimation can follow the dynamic variation of the tire force very well. 

PCC � ¡[(��T� � ��T�ÄÄÄÄÄ)(��\U� � ��\U�ÄÄÄÄÄÄÄ)]ÅZÆÇÈÅZÈ«ÉÆ (25) 
Where ÅZÆÇÈ  is the estimated tire force covariance, ÅZÈ«ÉÆ  is the ground truth tire force 

covariance. 

The statistics results of Test 1 and Test 2 are given in the following Tables. 

Table 3. Correct Rate of our observer and bicycle model in Test1&Test2 

Correct Rate Test1:50km/h Test2:140km/h 

our observer bicycle model our observer bicycle model 

front left tire 0.7303 0.5969 0.9289 0.9224 

front right tire 0.7247 0.5913 0.8507 0.9745 

rear left tire 0.9480 0.6770 0.9461 0.9828 

rear right tire 0.9340 0.6208 0.9964 0.9822 

 

Table 4. Pearson Correlation of our observer and bicycle model in Test1&Test2 

Pearson 

Correlation 

Test1:50km/h Test2:140km/h 

our observer bicycle model our observer bicycle model 

front left tire 0.9474 0.8552 0.9116 0.8764 

front right tire 0.9576 0.8666 0.8747 0.8119 

rear left tire 0.9778 0.9069 0.8727 0.8655 

rear right tire 0.9805 0.8924 0.8547 0.8490 

From the table of correct rate, we can find that in Test 1，our observers have better 

performance in estimation of vertical force, while in Test 2, the proposed observers had 

similar performance with the common observers. The different performance of our 

observer in Test 1 and Test 2 can be explained by that our method is more sensitive to 

the suspension vibration at high speed. In Test 2, the vehicle speed is about 140km/h, 

the measurement of vertical acceleration and vertical force contains significant noises.   

From the table of Pearson correlation coefficient, we can find that in both Test 1 

and Test 2, our observer had better performance in estimation of vertical force, as they 

had successfully followed the the sin wave profile which is caused by slalom behavior. 



The advantage of our observer can be explained by that the suspension motion is 

considered in our vertical tire force model. The suspension motion is directly related to 

the vertical force.   

Furthermore, we would like to explain that the plots of estimation error bounds are 

also good methods to demonstrate the improved performance over the existing work in 

the literature. We chose this method in the previous manuscript because it is a direct 

way to show the experimental results. Especially in our experiment, the vehicle is 

behaving in a slalom test. The profile of tire force is similar to a sin wave. It is a good 

proof to validate our observer system if our estimation result could follow the profile 

of real data. 

Figure 14 demonstrates the estimation result of the longitudinal forces at each tire. 

At such a high speed (140km/h), even the direct measurement of force transducer was 

coupled with large noises. However, our observer provided a robust estimation about 

the longitudinal force, which proved the accuracy of the proposed model, 
Z�, on a 

banked road.  

Figure 15 demonstrates the estimation results of the lateral forces at each tire 

obtained by our new observer. The proposed models, 
Z�[  and 
Z�\ , are reliable 

against the variation of road angles, which makes our new observer robust on the 

banked road.  

 



 

Figure 13. Test 2 (banked road slalom test): Comparison of the estimation results of vertical 

force at each tire. Top four figures are the estimation results using different models; bottom 

four figures are the estimation error bounds to evaluate the observer’s performance. 

 



 
Figure 14. Test 2 (banked road slalom test): Comparison of the estimation results of 

longitudinal force at each tire. Top four figures are the estimation results using different 

models; bottom four figures are the estimation error bounds to evaluate the observer’s 

performance. 

 



 
Figure 15. Test 2 (banked road slalom test): Results and error bounds of the new observer 

for estimation of lateral forces at each tire. Top four figures are the estimation results using 

different models; bottom four figures are the estimation error bounds to evaluate the 

observer’s performance. 

5.3 Validation of prediction algorithm models 

We conducted the Test 3 to validate the tire force prediction algorithm. In this test, 

we have constructed a sample map database. Our current map database only contains 

the information about the road near our school, as shown in Figure 16. In the experiment, 

the vehicle has followed the trajectory indicated in this figure. The prediction algorithm 

was implemented in Matlab and validated by using the experimental data from this test. 

 



Figure 16. Vehicle's trajectory and maneuver time history: at t=150s , the vehicle is at the 

point of black circle, t=250s , the vehicle is at the point of black star. 

In total, 53 critical points and 52 corridors were defined to describe the trajectory. 

More CPs were defined around the sharp turning and road intersection in order to better 

describe the road. Some examples of CPs and corridors are demonstrated in Table 3.  

Table 5. The construction of Critical points and corridors 

CP ID x (m) y (m) h (m) )\ (°) κ ρ ���� + (°) θ (°) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
7 -717.7 986.7 52.6 333.3 0 0 1 0 5 

8 -748.1 1066.1 56.8 2.1 -0.031 0 1 0 0 

9 -743.6 1103.3 57.0 343.7 0.046 0 1 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
 

Corridor Id Cj° Cj  	$�\\ (m) �$U\M� �T��® ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
5 5 6 690 0 0 

6 6 7 270 0 0 

7 7 8 85 1 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
A segmentation of data (150s<t<250s) is selected due to the successive turning 

behaviors in this period, represented by the black line in Figure 16. The maneuver time 

history are presented by red lines in Figure 16. The average speed is about 50 km/h. 

The curvature at each critical point is illustrated by red spots in Figure 17. As we can 

see in this figure, the interpolation method (represented by red lines) was a 

simplification of real road geometry and was not always accurate. However, it 

effectively represented the main characteristic of the road. In the middle of Figure 17, 

we also demonstrated the result of localization. We have successfully estimated the 

travel distance, and therefore we were able to read the geometry information about the 

road. In the bottom of Figure 17, we presented the travel length estimation errors during 

the test. The travel length is obtained through the localization process, and it is the key 

to read map data. 



 

Figure 17. The value of curvature stored in each Critical Point 

The obtained curvature was used to compute the value of accelerations and yaw 

rate with Equation 23. The comparison between inertial sensor measurement and digital 

map based estimation was illustrated in Figure 18. The obtained kinematic parameters 

were used to estimate the tire forces and sideslip angle with the observers developed in 

section 3. The estimation results of tire vertical and lateral forces are compared with 

the measurement of force transducer in Figure 19 and Figure 20. The red lines are the 

measurement data. The green lines represented the estimation result based on inertial 

sensors. The blue lines correspond to the estimation result based on the ADAS map. 

The accuracy of the ADAS map based method depends on the intensity of critical points 

and map quality. Moreover, it is also based on the condition whether the vehicle has 

successfully followed the planned path.  



 

Figure 18. Comparison of lateral dynamics states estimated by inertial sensors and ADAS 

Map 

 

At t=175s, the driver did a lane changing behavior, which was not in the planning 

and caused some errors. As demonstrated by the experimental result, the inertial sensor 

based method can better follow the vertical force variation, while, the map based 

estimation method is accurate when the vehicle is following the curve. Every time we 

localized the vehicle's position, we also got the curvature of the following 300 meters 

ahead of the vehicle's current position. Then these information was used to predict the 

vehicle dynamics states with Equation (12-18). And the vehicle's safety was evaluated 

with the index introduced by Equation (1-3). Figure 21 illustrated the prediction of 

vehicle's safety situation in the following 300 meters at instant t=160s and t=180s. The 

results showed at instant t=180s, the algorithm detected potential dangers in the 

upcoming path. 



 

Figure 19. Estimation of vertical forces at each tire: comparison between sensor 

measurement and estimation 

 

Figure 20. Estimation of lateral forces at each tire: comparison between sensor measurement 

and estimation 



 

Figure 21. Prediction of vehicle safety in the following 300 meters road 

6 Conclusion and Prospective 

An increasing number of intelligent vehicle safety systems are being developed in 

university laboratories and research centers. Expansion of these intelligent systems 

from the early-stage development into the real-time application requires an accurate 

assessment of driving risk, especially when driving at high speed. In this work, we 

developed a driving risk assessment system using tire forces. The main difficulty in 

developing this system is the lack of access to information about tire forces in 

production cars. To solve this problem, this article has developed a set of vehicle 

dynamics observers, which is able to extract immeasurable tire forces from the limited 

measurements in real-time. The construction of an observer that can provide robust 

performance under all conditions is not simple. It requires accurate and efficient models 

and a well-developed estimation algorithm. We propose new vehicle dynamics models 

to consider the influence of suspension deflection and tire interactions. Furthermore, 

we propose the cascaded KF structure to make the estimation more reliable even in the 

presence of sensor noises. Another contribution of this article is to propose an algorithm 

to predict vehicle's dynamics states by incorporating the ADAS map. The current and 

future road information was obtained from the digital map to enable the assessment of 

driving risk in the upcoming road. Experimental results validated the proposed 

algorithm. With the development of high definition map, road information such as road 

friction coefficient is promised to be available in the near further. Therefore, the tire 



force-based safety assessment process developed in this article will soon be applicable. 

Future work will focus on the improvement of map quality and localization 

accuracy. Furthermore, we would like to develop improved warning systems which 

could provide maneuver suggestions besides the speed suggestion.   
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