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Promises and challenges of personalized 
medicine to guide ARDS therapy
Katherine D. Wick1* , Daniel F. McAuley2, Joseph E. Levitt3, Jeremy R. Beitler4, Djillali Annane5,6, 
Elisabeth D. Riviello7, Carolyn S. Calfee1,8 and Michael A. Matthay1,8 

Abstract 

Identifying new effective treatments for the acute respiratory distress syndrome (ARDS), including COVID-19 ARDS, 
remains a challenge. The field of ARDS investigation is moving increasingly toward innovative approaches such as 
the personalization of therapy to biological and clinical sub-phenotypes. Additionally, there is growing recognition of 
the importance of the global context to identify effective ARDS treatments. This review highlights emerging oppor-
tunities and continued challenges for personalizing therapy for ARDS, from identifying treatable traits to innovative 
clinical trial design and recognition of patient-level factors as the field of critical care investigation moves forward into 
the twenty-first century.
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Key lessons

• Personalized medicine in ARDS is inherently chal-
lenging because of heterogeneous etiology  and 
pathophysiology

• ARDS research need not focus exclusively on novel 
investigational therapies, as repurposing drugs that 
have been studied in untargeted/unenriched popu-
lations could be just as innovative and promising, 
including for COVID-19 ARDS

• Opportunities for targeting therapies include timing, 
clinical phenotypes, and biologic phenotypes

• Adaptive clinical trial design offers the chance to 
investigate multiple therapies quickly and flexibly

• Supportive interventions, such as ventilator manage-
ment and fluid strategy, can also potentially be per-
sonalized

• Though existing drugs and supportive care strategies 
may be repurposed/targeted, novel therapies are also 
on the horizon

Introduction
A challenge in personalizing therapy in critical illness 
syndromes including ARDS is their inherent heterogene-
ity. Perhaps in part because of this heterogeneity, years of 
investigation into possible therapies for classical ARDS 
have not confirmed the benefit of any pharmacologic 
treatment. Despite these challenges, the field of ARDS 
treatment remains rich for investigation. At least two 
biologic phenotypes of ARDS have been identified, first 
in secondary analyses of clinical trials [1, 2], and now in 
large observational cohorts [3]. These phenotypes appear 
to respond differentially to both investigational and 
standard supportive therapies [4, 5]. The understanding 
of not only the biology of ARDS, but also of its clinical 
presentation and timeline, is rapidly evolving [6]. Target-
ing both biologic phenotypes and specific clinical popu-
lations—for example, those that share a common risk 
factor or are identified early in their disease course—may 
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be the key to advancing personalized medicine in ARDS. 
This review will consider specific pharmacologic and 
supportive therapies in ARDS that have not previously 
been proven to have benefit but that could hold promise 
if targeted to specific biological mechanisms (Fig.  1) or 
clinical/biologic phenotypes. Additionally, a new investi-
gational therapy, mesenchymal stromal cells (MSCs), will 
be discussed. We will also explore the challenges of intel-
ligent clinical trial design and the horizon for personal-
izing ARDS therapies in the global context.

Targeting supportive therapy: personalized ventilator 
management
Several studies suggest that mechanical ventilation 
strategy might be personalized for improved outcomes 
in ARDS. Ventilation-induced lung injury (VILI) may 
occur in some patients even when the standard tidal 
volumes of 6 mL/kg predicted body weight (PBW) and 
plateau pressure ≤ of 30  cm  H2O are targeted [7–10]. 
There is evidence that some patients benefit more than 
others from low tidal volume (LTV) and that the likeli-
hood of benefit is associated with the baseline plasma 
concentration of the receptor for advanced glycation 
end products (RAGE), a biomarker of alveolar type 
I cell injury [11]. The recent REST trial demonstrated 
no benefit of extracorporeal carbon dioxide removal 
to facilitate ultra-LTV [12]. Whether baseline biologic 
characteristics could identify populations that may 
benefit is yet to be determined, though no pre-planned 
subgroup analyses showed evidence of heterogeneous 

treatment effect. Personalizing ventilator management 
entails assessing patient-specific risk of VILI and then 
weighing the potential risk/benefit of interventions 
intended to attenuate VILI (Table 1).

Several strategies have been proposed to individual-
ize tidal volumes, including tailoring settings to airway 
driving pressure, end-inspiratory transpulmonary pres-
sure, waveform-derived stress index, end-expiratory 
lung volume, and electrical impedance tomography 
[13–17]. Airway driving pressure (∆P = plateau pres-
sure − PEEP) is perhaps the most readily accessible 
[13]. Adjusting tidal volume and PEEP to achieve driv-
ing pressures between 10 and 15 cm  H2O has been pro-
posed [18, 19], and is a reasonable though unproven 
target. A driving pressure-limited strategy in most 
patients not requiring extracorporeal membrane oxy-
genation (ECMO) is feasible in patients with ARDS 
[19], and refractory high driving pressure despite ven-
tilator optimization may help select patients who would 
benefit from ECMO [20]. Clinical efficacy of a driving 
pressure-targeted strategy to individualize tidal volume 
and PEEP warrants prospective testing in clinical trials.

To date, no one strategy for individualizing positive-
end expiratory pressure (PEEP) has proven superior for 
improving survival [21–25], perhaps in part because 
of the competing risk of overdistension with higher 
PEEP [26]. Personalized positive end-expiratory pres-
sure (PEEP) titration should seek to minimize atelec-
trauma and driving pressure without exacerbating 

Fig. 1 Biologic mechanisms in ARDS that may be targeted by various personalizable therapies. MSC mesenchymal stromal cells, CFH cell-free 
hemoglobin, F2-IsoP  F2 isoprostanes, APAP acetaminophen. Figure created in BioRender
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overdistension, but how best to achieve these objectives 
at the bedside remains unclear.

One challenge to personalized ventilator management 
is that there is no unifying marker of VILI or VILI risk. 
Higher risk is typically assumed in patients with more 
severe ARDS (lower  PaO2/FiO2) or evidence of tidal 
overdistension. The energy delivered by the ventilator to 
the respiratory system per unit time, termed mechani-
cal power, has been proposed to quantify VILI risk and 
guide ventilator titration [27]. Mechanical power corre-
lates with VILI in animal models and mortality in clini-
cal cohorts [28, 29]. However, mechanical power does 
not directly address atelectrauma or regional mechani-
cal heterogeneity, and doubt exists regarding whether 
its empirical formulation correctly weighs importance 
of individual ventilator parameters. Further study is 
required to optimize identification of patients at risk of 
VILI and the approach for personalizing mechanical ven-
tilation to mitigate this risk [29].

Differential treatment responses in ARDS biologic 
phenotypes
Inflammatory phenotypes typically defined as hyperin-
flammatory/reactive and hypoinflammatory/uninflamed 

with distinct clinical outcomes have now been described 
in different settings in several studies of ARDS [1, 4, 30]. 
Recently, these inflammatory phenotypes have been 
described in both COVID-19 [31] and in patients with 
acute hypoxemic respiratory failure [32]. Thus, these 
phenotypes may represent “treatable traits” beyond the 
current syndromic definition of ARDS.

In a secondary analysis of the HARP-2 trial (simvas-
tatin 80 mg or placebo in patients with ARDS), patients 
in the hyperinflammatory subgroup had significantly 
increased 28-day survival when randomized to simvas-
tatin [4]. In contrast, in an analysis of the SAILS study 
(rosuvastatin 10  mg or placebo in patients with sepsis 
induced ARDS), there was no treatment effect in either 
group [2]. This difference may be related to differences in 
the study population (all-cause vs. sepsis-related) or the 
statins used (differences in dose and hydrophilicity).

Although these data support the concept of a preci-
sion medicine approach with simvastatin and other phar-
macological therapies, it is important to highlight that 
these data should be regarded as hypothesis generating 
and need to be confirmed in prospective clinical trials. 
One final challenge to consider for enabling the transla-
tion of this precision medicine approach into prospective 

Table 1 Partial list of pivotal studies advancing precision ventilation for ARDS

Parameter and study Key contribution

Tidal volume

Hager et al. [92] Reanalysis of the ARDSNet tidal volume trial demonstrated plateau pressure below 30 cm  H2O 
was associated with additional improvement in survival, raising the possibility of residual VILI 
despite current standard-of-care low tidal volume ventilation

Amato et al. [13] Reanalysis of several clinical trials demonstrated changes in airway driving pressure mediated 
effects of tidal volume (and PEEP) on mortality, suggesting driving pressure may be a useful 
metric for individualizing tidal volume to patient-specific mechanics

Pereira Romano et al. [19] Pilot clinical trial demonstrated feasibility of a driving pressure-limited strategy without ECMO, 
laying the groundwork for a future trial of individualized tidal volumes

PEEP

EPVent-1 and EPVent-2 trials [22, 93] Single and multi-center trials, respectively, that demonstrated PEEP individualized to esophageal 
pressure, an estimate of pleural pressure, improved adjusted survival compared to an empirical 
low-PEEP strategy, but did not affect survival compared to an empirical high-PEEP strategy

Alveolar recruitment for ARDS trial (ART) [21] Multicenter trial demonstrated a stepwise recruitment maneuver combined with PEEP titrated to 
highest respiratory system compliance, compared to an empirical low-PEEP strategy, increased 
mortality; interpretation of the PEEP effect is limited by the aggressive, prolonged exposure to 
extremely high airway pressures during the incremental/decremental recruitment maneuver

LIVE trial [23] Multicenter trial demonstrated tailoring PEEP to radiographic findings (higher PEEP in patients 
with non-focal opacities, lower PEEP if focal opacities) did not improve survival compared to an 
empirical low-PEEP strategy, although misclassification of radiographs limits interpretation of 
findings

Weighting relative importance of ventilator parameters

Gattinoni et al. [27] Cohort study proposed mechanical power delivered by the ventilator, combining several ventila-
tor parameters into a unifying metric to quantify VILI risk

Costa et al. [29] Cohort study that concluded driving pressure and respiratory rate were the key parameters of 
mechanical power that influence mortality, also suggesting the effect on mortality of each 1 cm 
 H2O increase in driving pressure was four times that of each 1 breath/min increase in respiratory 
rate
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clinical trials and subsequently clinical practice is how to 
rapidly identify phenotypes at the bedside in real time. It 
is likely that plasma biomarkers, which are not routinely 
available, will be required to most accurately identify 
inflammatory phenotypes. The current lack of point-of-
care assays represents a significant barrier to the clinical 
implementation of ARDS phenotypes. Ongoing clinical 
trials such as the PHIND trial (NCT04009330) aim to 
develop a point-of-care assay that can identify hyperin-
flammatory and hypoinflammatory phenotypes rapidly 
at the bedside. Such assays to facilitate identification of 
phenotypes to guide pharmacological therapy will be an 
important step in delivering precision medicine at the 
bedside.

New avenues for existing therapies: sepsis‑related ARDS
One strategy repurposing existing therapies in ARDS is 
to identify populations with shared clinical features or 
risk factors. For example, the role of cell-free hemoglobin 
(CFH) as a mediator of sepsis-related organ dysfunc-
tion is the basis of ongoing investigation in patients with 
ARDS due to sepsis. Although sepsis is itself a heteroge-
neous syndrome, the underlying pathobiology of patients 
with sepsis-related ARDS may differ from patients 
with ARDS from other causes, especially in the case of 
extrapulmonary sepsis [33, 34]. Targeting patients with 
sepsis for testing new therapies is a promising enrich-
ment strategy for ARDS clinical trials. The effects of CFH 
on endothelial dysfunction, oxidative stress, and inflam-
mation may have particular relevance to sepsis-related 
ARDS [35, 36].

The red blood cell membrane is altered in sepsis [37], 
leading to the release of free hemoglobin, a potent oxi-
dizing and pro-inflammatory mediator [35]. Vitamin C 
and acetaminophen may diminish the injurious effects 
of CFH. Vitamin C infusion for ARDS was tested in the 
double blinded CITRIS-ALI trial. 167 patients with sep-
sis and ARDS were randomized to receive either 50 mg/
kg vitamin C (n = 84) or placebo (n = 83) every 6  h for 
96 h [38]. Patients in the vitamin C arm had significantly 
lower mortality (29.8% vs. 46.3% in the placebo group, 
p = 0.03), significantly more ICU-free days, and numeri-
cally more ventilator-free days [38].

Acetaminophen has also been shown to reduce concen-
trations of  F2 isoprostanes, which are by-products of lipid 
peroxidation, among patients with sepsis [39, 40]. These 
promising findings for the benefit of acetaminophen and 
vitamin C in sepsis and sepsis-related ARDS are the basis 
for a planned phase 2 NHLBI-supported trial, Acetami-
nophen and Ascorbate in Sepsis: Targeted Therapy to 
Enhance Recovery (ASTER, NCT04291508), which will 
test both acetaminophen versus placebo and vitamin C 
versus placebo in a parallel design. Patients with sepsis 

and either evidence of shock or respiratory failure will 
be eligible for enrollment, facilitating an assessment not 
only of the effects of vitamin C and/or acetaminophen 
among patients with established ARDS due to sepsis, but 
also those at risk for sepsis-related ARDS. The ASTER 
trial is an important example of how a shared risk factor 
(sepsis) informs the investigation of repurposed therapies 
for ARDS.

Lessons from the COVID‑19 pandemic
A small benefit of the devastating COVID-19 pandemic 
is the opportunity for studying treatment effects in a 
large population of patients with viral pneumonia as a 
shared risk factor for ARDS. This unprecedented wave 
of respiratory viral infection has dramatically increased 
the incidence of ARDS. In the USA, for example, the 
estimated incidence of severe pneumonia/ARDS during 
the COVID-19 pandemic was approximately 2.5 million 
cases per 18  months, as compared to 300,000 cases per 
18  months prior to the pandemic (Fig.  2) [41]. Treat-
ments with uncertain benefit in undifferentiated ARDS, 
including corticosteroids and specific antagonists of the 
IL-6 receptor, probably prevent disease progression and 
death in hospitalized adults with COVID-19 (Table  2) 
[42–45], effects that are likely additive [42, 46]. Find-
ings from these studies underscore the importance of 
the timing of interventions in the disease course of lung 
injury (discussed further below). In the RECOVERY trial, 
treatment with 6 mg of dexamethasone for 5 to 10 days 
resulted in a major survival benefit in patients with oxy-
gen supplementation but not in those with early or mild 
disease who did not require oxygen support [47], sug-
gesting a heterogeneous treatment effect by disease stage 
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and severity. The survival benefit observed in RECOV-
ERY trial participants receiving invasive mechanical 
ventilation (11% mortality reduction) was comparable 
to the benefits observed with 200 mg of hydrocortisone 
for 7 days in septic shock and ARDS (9% mortality reduc-
tion) [48].

The variability in patients’ response to corticosteroids 
or IL-6 receptor antagonists may partly be explained by 
the variability in patients’ immune responses to SARS-
CoV-2 [49], demonstrating that while investigating ARDS 
due to a common risk factor is an important strategy, it 
does not guarantee homogeneous response. The hetero-
geneity in COVID-19 patients’ responses to corticoster-
oids is in line with previous observations in non-COVID 
ARDS (Table 2) [50, 51]. Preventing the unsafe exposure 
of individuals to immunomodulating drugs such as cor-
ticosteroids and anti-cytokine monoclonal antibodies 
is of the utmost importance. Collectively artificial intel-
ligence, omics tools and new generation of biomark-
ers may help designing individual fingerprints to guide 
immune modulation with corticosteroids in patients with 
ARDS regardless of the etiology or clinical phenotype 
(NCT04280497).

Promising therapies in early ARDS: inhaled therapies
Targeting early ARDS may be another strategy for iden-
tifying personalizable therapies. For example, patients 
with early acute lung injury may be targeted to prevent 
progression. Inhaled delivery of therapies for early treat-
ment of acute lung injury may provide the benefit of 
rapid delivery of therapeutic doses directly to the target 
organ with less systemic toxicity. Inhaled therapies are 
not strictly limited to early lung injury. There is an ongo-
ing phase II trial of inhaled adrenomedullin for intubated 
patients with ARDS (NCT 04417036); however, how per-
sonalization may be relevant to this therapy has not yet 
been explored as its safety in all ARDS still needs to be 
established in this trial.

Inhaled beta agonists have been shown to achieve 
therapeutic levels in pulmonary edema fluid of patients 
with ARDS [52] and increase alveolar fluid clearance 
(AFC) in experimental models of lung injury [53]. In a 
phase II trial of patients with ARDS, systemic salbuta-
mol decreased extravascular lung water [54]; however, 
subsequent phase III trials of systemic [55] and inhaled 
[56] beta agonists were stopped early for futility or sig-
nal for harm. Inhaled corticosteroids have been shown to 
reduce the severity of lung injury in experimental models 
of ARDS and have synergistic effects with beta agonists 
in the treatment of asthma and chronic obstructive lung 
disease. In a phase 2 a trial, Festic et al. showed improve-
ment in oxygenation measured by categorical (± 20%) 
and continuous longitudinal change in the ratio of pulse 

oximetric oxygen saturation to the fraction of inspired 
oxygen  (SpO2/FiO2) in 60 patients at risk for develop-
ment of ARDS treated with a combination of aerosolized 
budesonide (0.5 mg/2 mL) and formoterol (20 mcg/2 mL) 
relative to placebo (4 mL 0.9% saline) [57]. Importantly, 
none of the 29 patients treated with aerosolized budeso-
nide and formoterol had a > 20% deterioration in  SpO2/
FiO2. The strongest signal was in the largest subgroup of 
patients who had pneumonia as a risk factor for ARDS. 
Currently, these results are being tested in a randomized, 
placebo-controlled phase 2 trial of 600 patients hospital-
ized for severe pneumonia with hypoxemia. The primary 
endpoint is acute respiratory failure defined as any com-
bination of HFNO, non-invasive ventilation (NIV), or 
IMV for > 36 h (ARREST PNEUMONIA, NCT04193878). 
Together, these studies demonstrate the potential benefit 
of repurposing inexpensive, safe medications for early 
use to prevent respiratory failure from various etiologies 
of acute lung injury.

An investigational agent, AP301, increases AFC by 
activating epithelial sodium channels (ENaC) in alve-
olar epithelial cells. In a phase 2 a trial of 40 mechani-
cally ventilated patients with ARDS, Krenn et al. studied 
the effect of inhaled AP301 versus placebo (0.9% saline) 
[58]. Changes in extravascular lung water measured 
by  PICCO® thermodilution were not significantly dif-
ferent between groups overall, but extravascular lung 
water was significantly reduced in a post hoc subgroup 
of treated patients with greater baseline severity of illness 
(SOFA > 11). Early treatment of acute lung injury with 
inhaled therapies offers a promising potential paradigm 
shift for the prevention of respiratory failure. However, 
further study in phase 2 and 3 trials to identify optimal 
selection of agents, timing of delivery, and sub-pheno-
types of patients to target is needed.

Novel therapies: mesenchymal stromal cells
Personalization of novel therapies may rely on a detailed 
understanding of their biological mechanisms. There are 
considerable pre-clinical data that support the rationale 
for testing allogeneic mesenchymal stromal cells (MSCs) 
for the treatment of ARDS [59–61]. The potential mecha-
nisms of benefit for reducing lung injury and enhancing 
lung repair are summarized in Fig. 3. MSCs can reduce 
lung vascular injury, perhaps in part by release of angi-
opoietin-1 that counteracts increased lung vascular 
protein permeability induced by angiopoietin-2 in both 
infectious and non-infectious causes of lung injury [62, 
63]. In addition, MSCs may reduce the severity of epithe-
lial injury by several pathways [64, 65]. MSCs also have 
anti-bacterial properties that have been demonstrated in 
both mice and the human lung, mediated by release of 
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anti-microbial peptides such as LL-37 and an increase in 
macrophage phagocytosis [66].

Clinical trials have demonstrated no safety concerns 
and possible benefit in terms of improved oxygenation 
(by the oxygenation index) when analyzed by the viability 
of the MSCs [67, 68]. A recent study of the mini-BAL col-
lected 48 h after treatment in a subset of these patients 
(27/60) showed that treatment with MSCs reduced BAL 
concentrations of total protein and mediators of lung 
injury, including sTNFR1 and angiopoietin-2 [69]. These 
data are the first direct evidence that MSCs can have a 
favorable effect on reducing the biologic severity of 
ARDS. A multicenter phase 2b trial of MSCs versus pla-
cebo for ARDS is underway (NCT03818854), and trials 
of MSCs for ARDS are in progress with considerable var-
iation in the dose and source (bone marrow vs. umbilical 
cord for example) of the MSCs. Importantly, the biologic 
actions of MSCs in the airspaces likely depend upon the 
pulmonary microenvironment [70, 71], suggesting that 
populations may respond differentially to treatment 
depending upon their primary ARDS risk factor (for 
example, infectious etiology). Thus, there are likely fur-
ther opportunities to personalize MSC therapy even if no 
benefit is observed in unselected populations.

Intelligent clinical trial design
How should the heterogeneity of ARDS be incorporated 
in the approach to ARDS clinical trials? For some thera-
pies, this heterogeneity may be irrelevant. The benefits 
of lung protective ventilation were demonstrated using a 
variation on the current clinical definition that captured 
patients with considerable variability in clinical sever-
ity, respiratory physiology, and biology [7, 72]. Support-
ive care trials might be relatively agnostic to underlying 
biologic pathways. The counter-argument to this more 
inclusive approach would be that heterogeneity of treat-
ment effect has been identified even in trials of support-
ive care approaches [1, 5], including in the paradigmatic 
trial of low tidal volume ventilation [18], suggesting that 
clinical trials in ARDS should at least consider whether 
underlying heterogeneity is relevant. Table 3 provides an 
overview of incorporating heterogeneity into clinical trial 
design. The simplest approach is to pre-specify patient 
subgroups that will be analyzed for subgroup-specific 
benefits or harms. This approach has the advantage of 
not requiring a clear understanding of the optimal sub-
group-therapy pairing/s and allowing for unexpected dis-
coveries but is also inefficient and prone to type I error.

Two “enrichment” approaches to clinical trials may 
increase the chance of finding a therapeutic benefit: 
prognostic and predictive enrichment [73, 74]. Prognos-
tic enrichment focuses on patients who are most likely 
to have poor disease-related outcomes. In ARDS, this 

approach typically means focusing on more severe dis-
ease. Predictive enrichment focuses on patients with a 
mechanistic phenotype most likely to be responsive to an 
intervention. During the COVID-19 pandemic, some tri-
als of anti-inflammatory therapy have used this approach 
(e.g., RECOVERY’s focus on IL-6 blockade in patients 
with CRP > 75  mg/L) [45]. While both types of enrich-
ment may increase the chance of identifying a signal, they 
also decrease generalizability and may risk missing effects 
in excluded patients. Predictive enrichment approaches 
informed by over-confidence in understanding of disease 
mechanisms could also potentially result in harm if the 
wrong patient subgroup is targeted [75]. Thus, predictive 
enrichment may be best reserved for situations in which 
a strong subgroup-specific treatment benefit has already 
been observed in more inclusive clinical trials [4].

One innovative approach to incorporating ARDS het-
erogeneity into clinical trials is to compare a personalized 
treatment strategy to a “one-size-fits-all” approach, as in 
the LIVE trial [23]. This study compared personalization 
of mechanical ventilation parameters to radiographic 
phenotype (diffuse vs. focal) to standard lung protec-
tive ventilation regardless of radiographic phenotype. 
This approach provides a measure of effectiveness in 
addition to efficacy, but the trial design is fairly complex 
and requires either an understanding of or assumptions 
about the best pairing between subgroup and treatment 
strategy.

A final innovative approach is the adaptive clinical trial. 
In its simplest form, this approach stratifies randomiza-
tion by pre-specified subgroup and conducts interim 
analyses to identify subgroup-specific effects of treat-
ment; one or more subgroups may then be dropped on 
the basis of these interim analyses. More complex itera-
tions of this approach adjust randomization ratios to 
favor specific subgroups on the basis of interim results 
(so-called response-adaptive randomization), and/
or incorporate a platform trial design facilitating mul-
tiple pairings of subgroups with treatments [76]. This 
approach allows trialists to learn as they go regarding the 
optimal pairing of treatment and subgroup while avoid-
ing the inefficiencies of the standard RCT design with 
subgroup analysis only at trial conclusion. However, it 
also requires a much more complex statistical analytic 
approach that may be met with some skepticism by read-
ers used to more traditional designs.

A global perspective on personalized medicine for ARDS
Context, including regional and economic context, 
impacts the personalization of therapies for ARDS. 
Personalizing therapies to a specific clinical setting 
may be as necessary as individual patient personali-
zation. While the overwhelming majority of critical 
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care research occurs in high-income countries (HICs), 
87% of the world’s population lives in low- or middle-
income countries (LMICs) [77]. This economic context 
influences the predominant risk factors and biologic 
pathways leading to ARDS, the background physi-
ologic environments of patients who develop ARDS, 
and the clinical resources available to diagnose and 
treat ARDS.

Different clinical insults predisposing to ARDS likely 
trigger different molecular pathways. While infec-
tion underlies ARDS in the majority of cases in HICs, 
trauma is a significant contributor in LMICs [78, 79]. 
Within infectious causes, malaria, dengue fever, and 
leptospirosis need to be studied in LMICs [80, 81]. 
One example of how this might be important, even for 
supportive therapies, is evident in sepsis care. While 

Fig. 3 Mechanisms of MSC therapy for ARDS. TNFα tumor necrosis factor alpha, IL interleukin, PMN polymorphonuclear cells (neutrophils), PGE-2 
prostaglandin E2, TSG-6 TNF stimulated gene 6, HGF hepatocyte growth factor, ROS reactive oxygen species, LL37 cathelicidin antimicrobial peptide 
LL37, KGF keratinocyte growth factor, Ang angiopoietin, AFC alveolar fluid clearance
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HIC studies have shown benefit from a clinical fluid 
resuscitation protocol for sepsis, a study of a compa-
rable resuscitation protocol in Zambia demonstrated 
harm; one possible explanation for this finding was the 
high rate of subacute tuberculosis as the underlying 
cause of sepsis in the Zambian study [82]. Variability 
in patients’ background pathophysiology prior to the 
onset of ARDS may also have an impact on targetable 
molecular pathways. Patients in LMICs versus HICs 
have very different characteristics by age, nutritional 
status, body mass index, infectious versus non-com-
municable comorbidities, and potentially population 
genetic trends. All of these may influence the targets 
for ARDS therapy in a given patient or population.

Resources may also impact which therapies provide 
benefit. For example, high flow nasal oxygen (HFNO) 
has been shown to decrease intubation rates but has 
not consistently reduced mortality in HICs [83]. In set-
tings where intubation and mechanical ventilation are 
frequently unavailable, a decrease in need for intuba-
tion could conceivably translate to improvement in 
mortality. One study found that HFNC could decrease 
mortality in a model simulating scarce ventilators sec-
ondary to COVID-19 [84]; another study in children 
with hypoxemia in East Africa suggests that HFNC 
may confer a mortality benefit in that setting [85].

For personalized medicine in ARDS to be globally 
relevant, it needs to be developed in all regions of 
the world, including the resource-variable settings of 
LMICs [86]. This means that ARDS must be defined 
in such a way that it can be recognized and studied in 
a wide variety of resource contexts [79, 87]. This also 
requires a commitment to invest in the staff and infra-
structure needed for diverse LMIC sites across the 
world to participate in ARDS trials [88]. The details 
of epidemiologic, resource, and practice characteris-
tics must be documented, so that differences in study 
outcomes between sites can be understood and inter-
preted within the contexts in which they were pro-
duced [86]. Finally, studies in HIC sites should include 
both more and less complex diagnostics to allow cor-
relations to be made and validated, thus facilitating 
the use of less complex diagnostics in LMICs. This 
includes imaging (chest radiograph vs. ultrasound), 
oxygenation (arterial blood gases vs. pulse oxime-
try), and biomarkers (plasma biomarkers vs. readily 
available clinical data) [89–91]. Personalizing ARDS 
treatments within discrete HIC populations and hop-
ing that these therapies will translate to the majority 
of the world living in LMICs is not an adequate strat-
egy. The development of targeted therapies for ARDS 
must include diverse peoples and populations from the 
outset.

Conclusions
The mainstay of ARDS treatment remains optimal sup-
portive therapy with lung protective ventilation, proning, 
and a fluid conservative strategy, but the prospect of per-
sonalized therapies offers promise for further advances 
in treating ARDS. Although the heterogeneity of ARDS 
in some ways presents a challenge for personalization, 
it also provides a rich landscape with many opportuni-
ties for further investigation. By identifying clinical and 
biological characteristics that may differentially respond 
to existing and investigational treatments, clinical trials 
can be enriched in an adaptive manner. Pharmacologic 
and supportive interventions can be targeted by the stage 
of the syndrome of respiratory failure (such as early vs. 
late ARDS), ARDS risk factor, emerging biologic phe-
notypes, and individual pulmonary mechanics. These 
investigations must take into account variable resources 
as the study of ARDS and other critical illness syndromes 
expands globally to ensure that new discoveries carry 
maximal impact across diverse populations.
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